JPH093547A - Production of high strength steel sheet for can - Google Patents

Production of high strength steel sheet for can

Info

Publication number
JPH093547A
JPH093547A JP15741795A JP15741795A JPH093547A JP H093547 A JPH093547 A JP H093547A JP 15741795 A JP15741795 A JP 15741795A JP 15741795 A JP15741795 A JP 15741795A JP H093547 A JPH093547 A JP H093547A
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15741795A
Other languages
Japanese (ja)
Other versions
JP3108330B2 (en
Inventor
Akio Tosaka
章男 登坂
Toshiyuki Kato
俊之 加藤
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP07157417A priority Critical patent/JP3108330B2/en
Publication of JPH093547A publication Critical patent/JPH093547A/en
Application granted granted Critical
Publication of JP3108330B2 publication Critical patent/JP3108330B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE: To increase the strength of a steel sheet while satisfying the formability necessary for use in can material and to reduce the thickness of the steel sheet by specially combining the composition of an extra low carbon steel slab as a stock with manufacturing conditions. CONSTITUTION: A slab of a steel, which has a composition consisting of, by weight, <=0.0050% C, <=0.020% Si, 0.050-1.50% Mn, <=0.010% S, <=0.0200% N, <=0.100% Al, and the balance Fe and containing, if necessary, 0.002-0.020% Nb and/or 0.005-0.020% Ti, is used as a stock. Hot rolling, where finish rolling is finished at a temp. exceeding the Ar3 transformation point, is applied to the stock to <1.8mm plate thickness. The resulting plate is subjected to water cooling, which is started within 0.2sec from the completion of finish rolling, at >=50 deg.C/sec average cooling rate, followed by coiling at <=450 deg.C. After ordinary acid pickling, cold rolling is performed at 80-98% draft. The resulting sheet is subjected to short time annealing at a temp. not lower than the recrystallization temp. and then to temper rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、深絞り成形性に優
れ、かつ強度特性に優れる缶用鋼板の製造方法に関する
ものであり、極薄ぶりき原板あるいはティンフリースチ
ール等として、容器用、より詳しくは、ある程度の絞り
性を要求される用途、例えば通常2ピース缶と呼ばれる
容器用に向けられるものに好適な鋼板の製造法を提案し
ようとするものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet for a can which is excellent in deep-drawing formability and is excellent in strength characteristics. Specifically, the present invention intends to propose a method for producing a steel sheet suitable for applications that require a certain drawability, for example, those intended for containers that are usually called two-piece cans.

【0002】[0002]

【従来の技術】昨今、大量に消費されている飲料缶、18
リットル缶、ペール缶等はその製法(工法)によって2
ピース缶と3ピース缶とに大別できる。前者の2ピース
缶は、錫めっき、クロームめっき、化成処理、塗油等の
処理を施した表面処理鋼板に、浅い絞り加工、DWI
(Drawn & Wall Ironed)加工、DRD (Drawn & Redr
awn)加工等の加工を施したものと蓋との2部品からな
る缶である。後者の3ピース缶は、上述の表面処理鋼板
を円筒状又は角筒状に曲げ、突き合わせ端部を接合して
形成した缶胴と天蓋及び底蓋との3部品からなる缶であ
る。
Beverage cans, which have been consumed in large quantities these days, 18
2 liter cans, pail cans, etc., depending on the manufacturing method (construction method)
It can be roughly divided into a piece can and a three piece can. The former two-piece can is a tin-plated, chrome-plated, surface-treated steel sheet that has been subjected to chemical conversion treatment, oil coating, etc., shallow drawing, and DWI.
(Drawn & Wall Ironed) processing, DRD (Drawn & Redr
It is a can made of two parts, one that has been subjected to processing such as awn) processing and the lid. The latter three-piece can is a can consisting of three parts, a can body formed by bending the above-mentioned surface-treated steel plate into a cylindrical shape or a rectangular tube shape and joining the abutting ends, a canopy, and a bottom lid.

【0003】これらの2ピース缶、3ピース缶は、いず
れも製缶コストに占める素材コストの割合が高いため、
鋼板に対するコスト低減ヘの要求が強い。したがって、
かかる缶用鋼板を製造するに当たっては、従来のような
箱焼鈍法では非効率的で材料の歩留まり、表面品質に劣
ることから、生産効率が高く、しかも歩留まり、表面品
質に優れた連続焼鈍法の適用が必須である。このような
連続焼鈍法を適用した缶用鋼板の製造方法については、
例えば特公昭63−10213号公報に提案がある他、
さらに改善を加えた技術が開発されて、調質度がT2程
度までの軟質な容器用鋼板の製造が行われてきた。また
近年では、さらに軟質な鋼板を連続焼鈍法で製造するた
めの技術開発が進み、例えば特開平1−52452号公
報の如く極低炭素鋼を用いることと、焼鈍後の加工硬化
との組み合わせによって種々の硬さの缶用鋼板を作り分
ける技術が開発されるに至った。
These two-piece cans and three-piece cans have a high material cost ratio to the can manufacturing cost.
There is a strong demand for cost reduction for steel sheets. Therefore,
In producing such a steel sheet for cans, the conventional box annealing method is inefficient and the material yield is inferior to the surface quality, so that the production efficiency is high, the yield is high, and the surface quality of the continuous annealing method is excellent. Application is mandatory. Regarding the manufacturing method of the steel plate for a can to which such a continuous annealing method is applied,
For example, in addition to the proposal in Japanese Patent Publication No. 63-10213,
Techniques with further improvements have been developed, and soft steel plates for containers having a temper of up to about T2 have been manufactured. Further, in recent years, technological development for producing a softer steel plate by a continuous annealing method has been advanced, and for example, by using ultra-low carbon steel as disclosed in JP-A-1-52452 and combining work hardening after annealing. Technology has been developed for making steel plates for cans of various hardness.

【0004】その一方で、缶用鋼板に対するコストダウ
ンの要求は現在でも止むことがないために、これに応え
るべく鋼板の強度を向上させて、使用する鋼板の薄肉化
を図ることが希求されるようになった。しかし、良く知
られているように鋼板の強度を向上させることは、一般
に加工性あるいは成形性の劣化につながるため、単純な
高強度化では実際の使用には耐え得なかった。しかも、
一般には同一強度であっても鋼板の厚みが減少すると伸
びに代表される成形性が劣化する傾向にあるため、鋼板
の高強度化による薄肉化の達成は二重の意味で困難な課
題であった。したがって、缶用鋼板の用途において弊害
を伴うことなしに薄肉化を達成するには、従来にない新
しい高強度化の手法を適用する必要があった。
On the other hand, there is an ever-present demand for cost reduction of steel sheets for cans. Therefore, it is demanded to improve the strength of the steel sheets to reduce the thickness of the steel sheets to be used in order to meet the demand. It became so. However, as is well known, improving the strength of a steel sheet generally leads to deterioration of workability or formability, and therefore simple enhancement of strength cannot withstand actual use. Moreover,
Generally, even if the strength is the same, as the thickness of the steel sheet decreases, the formability represented by elongation tends to deteriorate, so achieving thinning by increasing the strength of the steel sheet is a difficult task in a double sense. It was Therefore, in order to achieve thinning without any adverse effect in the use of the steel sheet for cans, it has been necessary to apply a new method for strengthening, which has never existed before.

【0005】[0005]

【発明が解決しようとする課題】上述したように従来の
缶用鋼板の製造方法では、厳しい加工性を要求される容
器用鋼板の加工性の仕様を満足しつつ、薄肉化が達成で
きるような鋼板の高強度化が実現できなかった。
As described above, in the conventional method for manufacturing a steel sheet for cans, it is possible to achieve thinning while satisfying the specification of the workability of the steel sheet for containers, which requires severe workability. High strength of steel sheet could not be realized.

【0006】そこでこの発明は、ロールフォーミング、
フランジ加工等の成形を行う3ピース缶用としての成形
性は勿論のこと、深絞り成形を行う、いわゆる2ピース
缶に向けられる容器用鋼板としての成形性をも満足しつ
つ、鋼板の高強度化を行うことで鋼板の薄肉化を可能と
する高強度缶用鋼板の製造方法を提案することを目的と
する。
Therefore, the present invention provides roll forming,
High strength of steel sheet while satisfying not only the formability for a three-piece can for forming such as flanging but also the formability as a steel sheet for a container for so-called two-piece can for performing deep drawing. It is an object of the present invention to propose a method for manufacturing a steel sheet for a high-strength can, which makes it possible to reduce the thickness of the steel sheet.

【0007】[0007]

【課題を解決するための手段】さて、発明者らは、上記
の目的を達成するために、成分及び熱間圧延条件を検討
しつつ、さらに容器用鋼板の使用特性についてそれを支
配する冶金的な検討を行って、以下の知見を得た。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors have studied the components and hot rolling conditions, and have a metallurgical method that governs the usage characteristics of steel sheets for containers. After conducting various studies, the following findings were obtained.

【0008】まず、深絞りを行う2ピース缶の薄肉化・
高強度化を行う場合に、鋼板に要求される特性に関して
重要な点は以下のとおりである。 (1) 高いr値は必須条件ではない。 (2) r値の面内異方性(Δr値)は小さい方が望まし
い。 (3) リジングのような変形の不均一性を生ずることは不
可。 (4) 微細な組織であることが変形の均一性の面で望まし
い。また、微細な組織であれば製缶後の肌荒れ等の外観
不良も防止できる。 (5) 時効性は必ずしも箱焼鈍材(低炭素アルミキルド
鋼)のような完全非時効である必要はないが、通常の連
続焼鈍材(低炭素アルミキルド鋼)では製缶工程及びそ
の後の2次、3次の加工工程で不都合を生ずる危険性が
高い。 (6) 通常の引張試験で得られるような低加工速度条件で
の延性ではなく、それらより一桁から二桁早い実成形プ
ロセス同等の高い加工速度での局部延性が重要である。
First, thinning the two-piece can that is deep-drawn
The important points regarding the properties required for the steel sheet when strengthening are as follows. (1) A high r value is not a requirement. (2) It is desirable that the in-plane anisotropy (Δr value) of the r value is small. (3) Uneven deformation such as ridging cannot occur. (4) A fine structure is desirable in terms of uniform deformation. Further, if the structure is fine, it is possible to prevent appearance defects such as rough skin after can making. (5) Aging does not necessarily have to be completely non-aged as in box annealed material (low carbon aluminum killed steel), but with normal continuous annealed material (low carbon aluminum killed steel), the can manufacturing process and the subsequent secondary, There is a high risk of inconvenience occurring in the third processing step. (6) The local ductility at the high processing speed equivalent to the actual forming process, which is one to two orders of magnitude faster than those, is important, not the ductility at the low processing speed condition obtained by the normal tensile test.

【0009】かかる知見に基づいて上記の特性を満足す
べく、鋼の成分と製造条件の組み合わせについて種々の
検討を行った結果、この発明を得るに至った。この発明
の要旨構成は次のとおりである。
Based on such knowledge, various studies have been conducted on the combination of steel components and manufacturing conditions in order to satisfy the above-mentioned characteristics, and as a result, the present invention has been obtained. The gist of the present invention is as follows.

【0010】C:0.0050wt%(以下、単に%で示す)
以下、Si:0.020 %以下、Mn:0.050 〜1.50%、P:0.
020 %以下、S:0.010 %以下、N:0.0200%以下及び
Al:0.100 %以下を含み、残部はFe及び不可避的不純物
よりなる鋼スラブを素材とし、この素材にAr3 変態点を
超える温度で仕上圧延を終了する熱間圧延を施して板厚
1.8 mm未満とし、該仕上圧延終了から0.2 s 以内に開始
した水冷を平均冷却速度50℃/s以上で行い、450 ℃以下
で巻取った後、通常の酸洗を経て圧下率80〜98%の冷間
圧延を行い、次いで再結晶温度以上の短時間焼鈍を行
い、その後調質圧延を行うことを特徴とする高強度缶用
鋼板の製造方法(第1発明)。
C: 0.0050 wt% (hereinafter, simply expressed as%)
Below, Si: 0.020% or less, Mn: 0.050 to 1.50%, P: 0.
020% or less, S: 0.010% or less, N: 0.0200% or less and
Al: A steel slab containing 0.100% or less and the balance Fe and unavoidable impurities is used as a material, and this material is hot-rolled to finish rolling at a temperature above the Ar 3 transformation point
Water cooling was started at less than 1.8 mm and started within 0.2 s from the end of the finish rolling at an average cooling rate of 50 ° C / s or more, and after winding at 450 ° C or less, ordinary pickling was performed and the reduction rate was 80 to 98%. Cold rolling, followed by short-time annealing at a recrystallization temperature or higher, followed by temper rolling (first invention).

【0011】選択的添加成分としてNb及び/又はTiを
さらに添加した発明、すなわちC:0.0050%以下、Si:
0.020 %以下、Mn:0.050 〜1.50%、P:0.020 %以
下、S:0.010 %以下、N:0.0200%以下及びAl:0.10
0 %以下を含み、かつNb:0.002 〜0.020 %及びTi:0.
005 〜0.020 %のうちから選ばれる1種又は2種を含有
し、残部はFe及び不可避的不純物よりなる鋼スラブを素
材とし、この素材にAr3 変態点を超える温度で仕上圧延
を終了する熱間圧延を施して板厚 1.8mm未満とし、該仕
上圧延終了から 0.2s以内に開始した水冷を平均冷却速
度50℃/s以上で行い、450 ℃以下で巻取った後、通常の
酸洗を経て圧下率80〜98%の冷間圧延を行い、次いで再
結晶温度以上の短時間焼鈍を行い、その後調質圧延を行
うことを特徴とする高強度缶用鋼板の製造方法(第2発
明)。
Invention in which Nb and / or Ti is further added as a selective addition component, that is, C: 0.0050% or less, Si:
0.020% or less, Mn: 0.050 to 1.50%, P: 0.020% or less, S: 0.010% or less, N: 0.0200% or less and Al: 0.10.
Including 0% or less, and Nb: 0.002 to 0.020% and Ti: 0.
A steel slab containing one or two selected from 005 to 0.020% and the balance being Fe and unavoidable impurities is used as the material, and the heat for finishing rolling at a temperature exceeding the Ar 3 transformation point is applied to this material. Cold rolling to a plate thickness of less than 1.8 mm, water cooling that started within 0.2 s after the finish rolling was completed at an average cooling rate of 50 ° C / s or more, and after winding at 450 ° C or less, normal pickling was performed. After that, cold rolling with a reduction rate of 80 to 98% is performed, then short-time annealing at a recrystallization temperature or higher is performed, and then temper rolling is performed, followed by temper rolling (second invention). .

【0012】 鋼板強度を、焼鈍ままの状態からさら
に増加させるために、第1発明又は第2発明において、
調質圧延に代わり、圧下率30%以下の2次冷間圧延を行
うことを特徴とする高強度缶用鋼板の製造方法(第3発
明)。
In order to further increase the strength of the steel sheet from the as-annealed state, in the first invention or the second invention,
A method for producing a steel sheet for high-strength cans, which is characterized by performing secondary cold rolling with a reduction rate of 30% or less instead of temper rolling (third invention).

【0013】[0013]

【作用】この発明では、鋼の成分組成範囲を限定するこ
とに加えて、熱延条件、特に熱延直後の急冷と極めて低
い熱延巻取温度条件とを組み合わせることを主要な要件
とする。これらの要件のうち、まず鋼成分組成範囲は、
主として成形性の観点から極低炭素鋼(C含有量:0.00
50%以下)とし、かつ強度を向上させるためにNを積極
的に添加するとともに、かかる成分の鋼中における存在
状態を適正化することで鋼板の強度と成形性を両立させ
ている。この発明における高強度化の機構は組織の均一
微細化及び固溶Nによる強化である。このような機構を
適用することで、成形段階では軟質で成形し易く、しか
も最終の缶体強度は高いという従来にない特性を利用で
きる。
In this invention, in addition to limiting the compositional range of the steel composition, the main requirement is to combine hot rolling conditions, particularly rapid cooling immediately after hot rolling with extremely low hot rolling temperature conditions. Of these requirements, the steel composition range is
Ultra-low carbon steel (C content: 0.00
(50% or less), N is positively added to improve the strength, and the presence state of such components in the steel is optimized to achieve both strength and formability of the steel sheet. The mechanism of high strength in the present invention is the uniform miniaturization of the structure and the strengthening by solid solution N. By applying such a mechanism, it is possible to utilize the unprecedented characteristic of being soft and easy to mold at the molding stage and having a high final can strength.

【0014】また、この発明における熱延後の冷却条件
に関し、冷却速度を大きく、しかも圧延直後から急冷す
ることは、従来の設備では冷却設備の配置、鋼板形状の
顕著な劣化等のために不可能とされていたのであるけれ
ども、後述する直近急冷設備とこれまで行われていなか
った連続的な熱間圧延を行うことで達成できるようにな
った。また、前述したように缶用鋼板では、一般用及び
自動車用の鋼板とは異なり、極めて高いr値は不要であ
ることが判明したため、このような極端な熱延条件を選
択することが可能になったのである。
Regarding the cooling conditions after hot rolling according to the present invention, it is not possible to increase the cooling rate and to quench immediately after rolling due to the arrangement of the cooling equipment and the remarkable deterioration of the shape of the steel sheet in the conventional equipment. Although it was made possible, it has become possible to achieve this by using the latest quenching facility described later and continuous hot rolling that has not been performed until now. Further, as described above, it has been found that extremely high r-values are not necessary for steel plates for cans, unlike steel plates for general use and automobiles, so it is possible to select such extreme hot rolling conditions. It has become.

【0015】さらに、従来缶用鋼板として主に用いられ
てきた低炭素鋼において、上記のような熱延後の冷却条
件を適用した場合には、強度は確保できるものの延性の
劣化が顕著であるため、適用範囲が極めて狭い範囲に制
限されるという不都合が避けられなかった。しかし、こ
の発明では極低炭素鋼を素材とすることにより、この材
質の劣化を回避できることが明らかとなった。すなわ
ち、この発明の缶用鋼板のr値は、従来の自動車用鋼板
等に適用される、いわゆる高r値鋼板と比較して高いも
のではないが、強度と延性のバランスは極めて良好であ
るため、深い絞りを伴う加工に対しても十分に適用でき
るものである。
Further, in the case of the low carbon steel which has been mainly used as a steel sheet for cans in the related art, when the above cooling conditions after hot rolling are applied, the strength can be secured but the ductility is remarkably deteriorated. Therefore, the inconvenience that the applicable range is limited to an extremely narrow range is unavoidable. However, in this invention, it became clear that deterioration of this material can be avoided by using ultra low carbon steel as the material. That is, the r value of the steel sheet for cans of the present invention is not higher than the so-called high r value steel sheet applied to conventional steel sheets for automobiles and the like, but the balance between strength and ductility is extremely good. It can be sufficiently applied to processing involving deep drawing.

【0016】以下に各々の構成要件についての数値限定
理由について述べる。 C:0.0050%以下 C量が0.0050%を超えると最終的な材質の変動割合が増
加するため、C量は概ね0.0050%以下とする必要があ
る。なお、加工性を重要視するのであれば、0.0040%以
下がより望ましい。C量の下限は特に制限はないが、C
量が低減すれば結晶粒の粗大化の傾向が現れるので、特
に「肌あれ」に対する規制が厳格な用途においては、C
量を0.0010%以上とすることが望ましい。上限について
は、加工性の改善の面からさらに望ましくは、0.0030%
以下である。
The reasons for limiting the numerical values of the respective constituents will be described below. C: 0.0050% or less If the C content exceeds 0.0050%, the variation ratio of the final material increases, so the C content needs to be approximately 0.0050% or less. If workability is important, 0.0040% or less is more desirable. The lower limit of the amount of C is not particularly limited, but C
If the amount is reduced, the tendency of coarsening of crystal grains appears.
It is desirable that the amount be 0.0010% or more. Regarding the upper limit, 0.0030% is more desirable from the viewpoint of workability improvement.
It is the following.

【0017】Si:0.020 %以下 Si含有量が0.020 %を超えると鋼板の表面性状が劣化
し、表面処理鋼板として望ましくないばかりでなく、鋼
が硬化して熱延工程が困難化するため、上限は0.020 %
にした。
Si: 0.020% or less If the Si content exceeds 0.020%, the surface properties of the steel sheet deteriorate, which is not desirable as a surface-treated steel sheet, and the steel hardens to make the hot rolling process difficult. Is 0.020%
I made it.

【0018】Mn:0.050 〜1.50% Mnを0.050 %以上は添加しないとSを低下させた場合で
もいわゆる熱間脆性を回避することが困難で、表面割れ
等の問題を生ずることがある。また、Mnは、鋼板を固溶
強化する作用があることに加え鋼板の変態点を低下させ
る成分であるため、鋼板の熱延仕上温度条件を緩和する
ために有効である。しかし、Mnを1.50%を超えて添加し
た場合には、詳細な機構は不明であるが、組織の均一性
が劣化し、層状の組織を形成しやすくなる。加工性が特
に重要な場合には、Mn量を0.80%以下とするのが望まし
い。
Mn: 0.050 to 1.50% If 0.050% or more of Mn is not added, it is difficult to avoid so-called hot embrittlement even when S is lowered, and problems such as surface cracking may occur. Further, Mn is a component that has the effect of solid solution strengthening the steel sheet and also lowers the transformation point of the steel sheet, so it is effective for relaxing the hot rolling finish temperature condition of the steel sheet. However, when Mn is added in an amount of more than 1.50%, although the detailed mechanism is unknown, the uniformity of the structure deteriorates and a layered structure is easily formed. When workability is particularly important, the Mn content is preferably 0.80% or less.

【0019】P:0.020 %以下 Pの低減により、加工性の改善及び耐食性の改善の効果
が得られ、概ね0.020 %以下で十分な効果を奏するが、
過度に低減してもその効果は飽和することに加えて、製
造コストの増加につながり望ましくない。したがって、
P量は0.020 %以下とした。
P: 0.020% or less By reducing P, the effect of improving workability and corrosion resistance can be obtained.
Even if it is excessively reduced, the effect is saturated, and the manufacturing cost is increased, which is not desirable. Therefore,
The amount of P was set to 0.020% or less.

【0020】S:0.010 %以下 Sは加工性の改善の面から低減する必要がある。概ね0.
010 %以下とすることにより顕著に加工性(特に伸びフ
ランジ特性)が改善するが、さらるな低減は大きな改善
効果が得られないばかりでなく、製造コストの増大につ
ながる。なお、特に高度な局部延性が要求される場合に
は、S量を0.007 %以下に低減することが望ましい。
S: 0.010% or less S must be reduced in order to improve workability. About 0.
When the content is 010% or less, the workability (especially the stretch flange characteristic) is remarkably improved, but a smooth reduction does not result in a great improvement effect, but also leads to an increase in manufacturing cost. If a high degree of local ductility is required, it is desirable to reduce the S content to 0.007% or less.

【0021】N:0.0200%以下 Nは、この発明においては、特徴的な成分の一つであ
り、概ね0.0200%までの添加で、顕著な強化効果が得ら
れ、一方、この範囲の添加量であれば、時効性の劣化は
比較的小さい。また、Nは熱延時の鋼の変態点を低下さ
せるので、熱延条件の規制を緩和するのにも有効であ
る。さらに、含有量が0.0200%を超えると鋼が顕著に硬
化するために冷延工程に支障を来すことと、製鋼工程で
鋼中にブローホールを生ずる危険性が増加するので好ま
しくない。したがって、Nの上限は0.0200%とした。な
お、下限は特に限定されないが目安として概ね0.0030%
以上を添加することで、この発明の鋼の製造が顕著に容
易化される。強度と延性との兼ね合いから、さらに好ま
しいのは、0.0050〜0.0150%の範囲である。
N: 0.0200% or less N is one of the characteristic components in the present invention, and when it is added up to about 0.0200%, a remarkable strengthening effect is obtained. On the other hand, N is added in this range. If so, the deterioration of aging is relatively small. Further, N lowers the transformation point of steel during hot rolling, and is therefore effective in relaxing restrictions on hot rolling conditions. Further, if the content exceeds 0.0200%, the steel is significantly hardened, which hinders the cold rolling process and increases the risk of producing blowholes in the steel during the steel making process, which is not preferable. Therefore, the upper limit of N is set to 0.0200%. The lower limit is not particularly limited, but is generally 0.0030%
By adding the above, the production of the steel of the present invention is significantly facilitated. From the balance of strength and ductility, the range of 0.0050 to 0.0150% is more preferable.

【0022】Al:0.100 %以下 Alは脱酸剤として清浄度を向上させるためにその添加が
必須である。材質上の観点からは特に添加量の最低限度
を定める必要はないが、清浄度の向上のためという観点
からは概ね0.005 %程度以上の添加が望ましい。しか
し、0.100 %を超えて添加した場合にはその清浄度改善
効果が飽和することに加え、製造コストの上昇、表面欠
陥発生傾向の増大等の問題を生ずる。また、固溶Nを強
化成分として活用するのが困難となる。これらを勘案し
て、Alの上限は、0.100 %とした。さらに望ましい範囲
は0.020 〜0.080 %である。
Al: 0.100% or less Al must be added as a deoxidizing agent in order to improve cleanliness. It is not necessary to determine the minimum amount of addition from the viewpoint of material quality, but from the viewpoint of improving cleanliness, it is desirable to add approximately 0.005% or more. However, if it is added in excess of 0.100%, not only the cleanliness improving effect is saturated, but also problems such as an increase in manufacturing cost and an increase in the tendency to generate surface defects occur. Further, it becomes difficult to utilize the solid solution N as a strengthening component. Taking these into consideration, the upper limit of Al was set to 0.100%. A more desirable range is 0.020 to 0.080%.

【0023】以上述べた成分が必須成分であり、この発
明ではこれらの成分に加えて、Nb、Tiの単独あるいは複
合添加が可能であり、材質改善のために有効である。 Nb:0.002 〜0.020 % Nbは、鋼の組織の微細化、リジングの防止、時効性の低
減に有効であり、このような望ましい効果を発揮させる
ためには、0.0020%以上の添加が必要である。また、0.
020 %を超えて添加することは、熱間圧延後の組織の不
均一性を増し、缶材料としては不適正な材質となるばか
りでなく、製造コストの上昇をもたらす。材質安定の観
点からさらに望ましくは、0.0050〜0.0150%の範囲であ
る。
The above-mentioned components are essential components. In the present invention, Nb and Ti can be added alone or in combination in addition to these components, which is effective for improving the material quality. Nb: 0.002 to 0.020% Nb is effective for refining the structure of steel, preventing ridging, and reducing aging. In order to exert such desirable effects, 0.0020% or more must be added. . Also, 0.
Addition in excess of 020% increases the non-uniformity of the structure after hot rolling, not only makes the material unsuitable as a can material, but also raises the manufacturing cost. From the viewpoint of material stability, the range is more preferably 0.0050 to 0.0150%.

【0024】Ti:0.005 〜0.020 % Tiは、鋼板の組織の微細化に有効な成分であり、また、
Cの一部を固定することによる時効性の調整作用がある
ために、添加により材質の改善が図れるので選択的に添
加することが望ましい。上述の望ましい効果が発揮され
るのは概ね0.0050%以上の添加量からである。しかしな
がら、添加量が0.0200%を超えると熱間圧延後の組織の
不均一を生ずる可能性が大きくなり、また、耐食性の劣
化も懸念される。したがって、0.0050〜0.0200%とする
が、強度と延性のバランスを考慮した場合にさらに望ま
しいのは、0.0080〜0.0200%の範囲である。
Ti: 0.005 to 0.020% Ti is an effective component for refining the structure of the steel sheet.
Since there is an action of adjusting the aging property by fixing a part of C, it is possible to improve the material quality by addition, so it is desirable to add selectively. The desirable effect described above is exhibited from an addition amount of approximately 0.0050% or more. However, if the addition amount exceeds 0.0200%, there is a high possibility that the structure after hot rolling becomes non-uniform, and there is a concern that the corrosion resistance may deteriorate. Therefore, 0.0050 to 0.0200% is set, but 0.0080 to 0.0200% is more preferable when considering the balance between strength and ductility.

【0025】次いで、熱間圧延条件についての限定理由
について述べる。 仕上圧延温度:Ar3 変態点を超える温度 仕上圧延温度の制限は、鋼板の組織の均一・微細化のた
めである。すなわち、仕上圧延温度がAr3 変態点以下と
なり、フェライト相が出現する温度域になると、生成し
たフェライトが加工を受け、これが完全に歪みを開放で
きないままに急冷されるため、極めて不均一な熱延板組
織となる。この組織の不均一性は冷延・焼鈍を経たのち
も完全には除去されず、缶用鋼板としての適性が劣化し
てしまう。したがって、仕上圧延温度はAr3 変態点を超
える温度とする。仕上圧延温度の上限は特に規制しな
い。より高温の仕上圧延温度とすることは鋼板材質の面
内異方性も改善できる点でも好ましいため、制約がある
とすれば圧延ロールの損耗等の生産技術上の制約であ
る。
Next, the reasons for limiting the hot rolling conditions will be described. Finishing rolling temperature: a temperature exceeding the Ar 3 transformation point The limiting of the finishing rolling temperature is to make the structure of the steel sheet uniform and fine. That is, when the finish rolling temperature falls below the Ar 3 transformation point and reaches the temperature range where the ferrite phase appears, the generated ferrite undergoes processing and is rapidly cooled without being able to completely release strain, resulting in extremely uneven heat. It becomes a rolled sheet structure. This nonuniformity of the structure is not completely removed even after cold rolling and annealing, and the suitability as a steel sheet for cans deteriorates. Therefore, the finish rolling temperature is set to a temperature exceeding the Ar 3 transformation point. The upper limit of finish rolling temperature is not particularly limited. A higher finish rolling temperature is preferable in that the in-plane anisotropy of the steel sheet material can also be improved.

【0026】このような仕上圧延により得られる熱延母
板の厚みは、1.8 mm未満とする必要がある。その理由
は、その後の冷却をより急速に行うためもあるが、1.8
mm未満とすることにより、冷延・焼鈍後の素材の材質、
なかでも面内異方性を顕著に改善するのに有効であるた
めである。下限については、仕上圧延温度を確保すると
いう制約で決定されるものであり、特に材質面からの制
約はない。さらに、材質的には、1.6 mm未満が望まし
い。
The thickness of the hot-rolled mother plate obtained by such finish rolling needs to be less than 1.8 mm. The reason for this is that the subsequent cooling is performed more rapidly, but 1.8
By making it less than mm, the material of the material after cold rolling and annealing,
This is because it is effective in remarkably improving the in-plane anisotropy. The lower limit is determined by the constraint of ensuring the finish rolling temperature, and there is no particular constraint on the material. Furthermore, it is desirable that the material is less than 1.6 mm.

【0027】仕上圧延終了後の冷却は、極めて重要な要
件の一つである。すなわち、仕上圧延後の鋼板は、圧延
終了から0.2 s 以内に水冷を開始する必要がある。詳細
な機構は不明であるが、このように圧延直後から水冷を
開始することによって、顕著な熱延母板の組織の微細化
が起こり、これは熱延母板を冷延・焼鈍した後も継承さ
れるため、最終的な鋼板の組織が均一かつ微細化されて
強度−延性バランスの向上に顕著な効果が発揮される。
この水冷は、より短時間のうちに開始させることが望ま
しく、この下限値は設備的な問題から派生するものであ
る。
Cooling after finishing rolling is one of the extremely important requirements. That is, the steel sheet after finish rolling needs to start water cooling within 0.2 s after the completion of rolling. Although the detailed mechanism is unknown, by starting water cooling immediately after rolling in this way, remarkable micronization of the structure of the hot-rolled base metal occurs, which is even after cold-rolling and annealing of the hot-rolled base metal. Since it is inherited, the structure of the final steel sheet is made uniform and fine, and a remarkable effect is exhibited in improving the strength-ductility balance.
It is desirable to start this water cooling in a shorter time, and this lower limit value is derived from equipment problems.

【0028】このように仕上圧延終了から短時間で水冷
を開始するための水冷設備は、基本的には従来のホット
ライン冷却設備と同一であるが、その設備の設置位置
が、圧延機の出側直近である必要がある。このため、出
側に通常設置されている温度計、厚み計などを取除く必
要が生ずるため、より高度な圧延制御能力が必要とされ
る。また一般に高温域においては水冷による熱伝達効率
が低下するため、通常より多くの水量密度を有する冷却
装置を適用することが望ましい。
The water cooling equipment for starting water cooling in a short time after finishing rolling is basically the same as the conventional hot line cooling equipment, but the installation position of the equipment is the same as that of the rolling mill. Must be close to the side. For this reason, it becomes necessary to remove a thermometer, a thickness gauge, etc., which are usually installed on the outlet side, so that a higher rolling control capability is required. Further, in general, the heat transfer efficiency due to water cooling is lowered in a high temperature region, so it is desirable to apply a cooling device having a water amount density higher than usual.

【0029】次に、冷却開始した後の平均冷却速度は、
50℃/s以上とする必要がある。50℃/sよりも遅い冷却速
度では、目標とする均一かつ微細な鋼板組織を得ること
ができない。さらに望ましくは冷却速度は70℃/s以上と
することにより、延性を維持したまま強度が一層向上す
る。なお、このような平均冷却速度50℃/s以上の水冷
は、冷却開始から少なくとも 700℃程度までの温度範囲
で行う。この温度域はフェライトの粒成長、 AlNの析出
が急速に進行する領域であるので急冷が必要となる。
Next, the average cooling rate after the start of cooling is
It should be 50 ℃ / s or more. If the cooling rate is lower than 50 ° C / s, the target uniform and fine steel sheet structure cannot be obtained. More desirably, by setting the cooling rate to 70 ° C./s or more, the strength is further improved while maintaining the ductility. Water cooling at such an average cooling rate of 50 ° C / s or more is performed within a temperature range from the start of cooling to at least about 700 ° C. Since this temperature range is a region where ferrite grain growth and AlN precipitation rapidly proceed, rapid cooling is required.

【0030】巻取温度は450 ℃以下とする必要がある。
巻取温度を450 ℃以下とすることで鋼板中のN,Cの析
出を抑制すること及び組織の均一微細化が達成され、こ
の状態が冷却・焼鈍後においても維持されるために、こ
の発明で目標とする極薄高強度鋼板として望ましい特性
となる。また、AlN の析出を完全に抑制するためにも45
0 ℃以下の巻取温度条件が必須である。これまで、缶用
に用いられる鋼板の熱延母板は、通常の一般冷延鋼板の
母板より一般に薄いため、このような急速冷却・低温巻
取りを行った場合は、鋼板の形状の乱れが顕著となり、
これが下工程の冷延工程で種々のトラブルを生む元であ
った。しかし、この発明の鋼では、このような冷却を行
った場合でも形状の不具合は比較的軽微である。また、
この不都合をさらに改善するためには、仕上圧延機の入
り側にて先行するシートバーの後端部とこれに引き続く
シートバーの先端部とを接合して複数本のシートバーの
連続熱延を実施し、常に鋼板に張力がかかった状況を保
持することと、鋼板のエッジ部の過冷却を防止して幅方
向に均一な冷却を実施することが有効である。
The coiling temperature should be 450 ° C. or lower.
By controlling the coiling temperature to 450 ° C. or lower, the precipitation of N and C in the steel sheet is suppressed and the micronization of the structure is achieved uniformly, and this state is maintained even after cooling and annealing. The characteristics are desirable for the ultra-thin high-strength steel sheet targeted in. In addition, in order to completely suppress the precipitation of AlN, 45
A winding temperature condition of 0 ° C. or lower is essential. Up to now, the hot-rolled base plate of steel sheet used for cans is generally thinner than the base plate of ordinary cold-rolled steel sheet, so when such rapid cooling / low-temperature winding is performed, the shape of the steel sheet is disturbed. Becomes remarkable,
This was the cause of various problems in the cold rolling process of the lower process. However, in the steel of the present invention, the shape defect is relatively slight even when such cooling is performed. Also,
In order to further improve this inconvenience, the rear end portion of the preceding sheet bar and the leading end portion of the succeeding sheet bar are joined on the entry side of the finishing rolling mill to continuously hot-roll a plurality of sheet bars. It is effective to keep the steel sheet under tension always and to prevent the edge portion of the steel sheet from being overcooled to perform uniform cooling in the width direction.

【0031】加えて、巻取温度に関し、従来の一般冷延
鋼板(特に連続焼鈍材)では鋼板のr値を高める必要性
から680 ℃程度の高温巻取を実施する必要があり、缶用
鋼板についても同様の製造法が適用されていた。しか
し、種々の検討の結果、この発明の鋼においては、前述
のような仕上圧延後に急速冷却・低温巻取りを適用して
もr値の劣化は比較的小さく、それ以上に顕著な強度−
延性バランスの改善が得られることが明らかとなったの
である。以上述べたことが熱延巻取温度の限定理由であ
るが、さらに高強度を得るためには巻取温度は300 ℃以
下が望ましい。
In addition, regarding the coiling temperature, in the case of conventional general cold-rolled steel sheets (particularly continuous annealed materials), it is necessary to carry out high temperature coiling at about 680 ° C. from the necessity of increasing the r value of the steel sheet. The same manufacturing method was also applied to. However, as a result of various studies, in the steel of the present invention, even if rapid cooling and low temperature winding are applied after finish rolling as described above, the deterioration of r value is relatively small, and the remarkable strength-
It was clarified that the ductility balance could be improved. The reason for limiting the hot rolling coiling temperature is as described above. However, the coiling temperature is preferably 300 ° C or lower in order to obtain higher strength.

【0032】かくして得られた熱延コイルは、通常の方
法で表面のスケールを除去し、冷延に供する。この発明
の熱延条件では、極めて脱スケール性の良好な熱延母板
が得られることも大きな特徴の一つである。
The hot rolled coil thus obtained is subjected to cold rolling by removing the scale on the surface by a usual method. Under the hot rolling conditions of the present invention, one of the major characteristics is that a hot rolled mother plate having extremely good descaling property can be obtained.

【0033】冷延圧下率は80〜98%とする。冷延圧下率
が80%未満では鋼板組織の十分な均一微細化が図れず、
r値のレベルも低い。冷延圧下率が高いほど、r値は改
善されるが、98%を超えるような圧下率では鋼が顕著に
硬化し、圧延が困難になることに加え、Δr値が負の大
きな値を示すようになり望ましくない。したって、冷延
圧下率は80〜98%とするが、平均r値、Δr値のバラン
スからさらに望ましくは83〜92%の範囲である。
The cold rolling reduction is 80 to 98%. If the cold rolling reduction rate is less than 80%, the steel sheet structure cannot be sufficiently and uniformly refined,
The r-value level is also low. The higher the cold rolling reduction, the better the r-value, but at a reduction of more than 98%, the steel will be significantly hardened, making rolling difficult and in addition, the Δr value will show a large negative value. This is not desirable. Therefore, the cold rolling reduction is set to 80 to 98%, but more preferably 83 to 92% in view of the balance between the average r value and the Δr value.

【0034】冷間圧延後の焼鈍は連続焼鈍法により短時
間(例えば均熱時間:10〜40s)で行い、かつ焼鈍温度
は再結晶温度以上とする。特殊な用途においては再結晶
温度以下の焼鈍の適用より、いわゆる部分再結晶組織を
得ることも可能であるが、材質の安定性の観点からは望
ましくない。したがって、焼鈍温度は再結晶温度以上と
した。焼鈍温度の上限は、Ac3 変態点であるが、連続焼
鈍の工程限界からも決定される。
Annealing after cold rolling is performed by a continuous annealing method in a short time (for example, soaking time: 10 to 40 s), and the annealing temperature is not less than the recrystallization temperature. For special applications, it is possible to obtain a so-called partial recrystallization structure by applying annealing at a recrystallization temperature or lower, but this is not desirable from the viewpoint of material stability. Therefore, the annealing temperature is set to the recrystallization temperature or higher. The upper limit of the annealing temperature is the Ac 3 transformation point, but it is also determined from the process limit of continuous annealing.

【0035】焼鈍後の鋼板に対して、表面粗度の調整と
降伏点伸び消去のため、5%以下の調質圧延を施す。ま
た、鋼板強度を焼鈍ままの状態からさらに増加させるた
めに、調質圧延の代わりに圧下率が5%を超え30%以下
の2次冷間圧延を付与することも有効である。2次冷間
圧延の付与による加工硬化の利用は、大幅なコストの増
加を伴わない点と均一伸びは劣化するが局部伸びは劣化
しない点で、かなり広い用途に適用できることから有利
な方法といえる。しかし、30%を超えるような圧下率の
2次冷延で鋼を強化した場合は、降伏強度の面内異方性
が顕著となり、また、これに付随してイヤリングの発生
も顕在化してくる。したがって、焼鈍後の2次冷延圧下
率は30%以下とする。より好ましくは、20%以下とする
ことで、さらに良好な加工性を確保できる。
The annealed steel sheet is temper-rolled at 5% or less in order to adjust the surface roughness and eliminate the elongation at yield. Further, in order to further increase the strength of the steel sheet from the as-annealed state, it is also effective to apply secondary cold rolling with a reduction ratio of more than 5% and 30% or less instead of temper rolling. The use of work hardening by imparting secondary cold rolling is an advantageous method because it can be applied to a considerably wide range of applications because it does not cause a significant increase in cost and uniform elongation deteriorates but local elongation does not deteriorate. . However, when the steel is strengthened by secondary cold rolling with a rolling reduction of more than 30%, the in-plane anisotropy of yield strength becomes remarkable, and the occurrence of earrings becomes conspicuous. . Therefore, the secondary cold rolling reduction rate after annealing should be 30% or less. More preferably, by setting the content to 20% or less, better workability can be secured.

【0036】これまで述べた鋼成分組成範囲及び製造工
程より得られるこの発明の鋼は、熱延後に急冷を行い、
さらに低温の巻取を行うため固溶Nの残存が多く、いわ
ゆる時効性が高いものとなる。しかし、この発明が目的
とする缶用の用途においては詳細な機構は不明である
が、その成形速度が通常のプレス成形に比して格段に大
きいことあるいは、成形体の形状が軸対象で比較的単純
であること等のためか、いわゆるストレッチャーストレ
インの発生等といった時効性が大きいことに伴う不具合
の発生はない。これがこの用途へのNによる強化の適用
を可能にしているのである。また、缶体として成形され
た後の使用に際してはNによる歪み時効効果が十分に発
揮されるためか、従来の固溶強化で単純に説明される以
上の大きな強化効果が得られる。
The steel of the present invention obtained from the steel composition range and the manufacturing process described above is hot-rolled and then rapidly cooled,
Further, since winding is performed at a low temperature, a large amount of solid solution N remains, so that the so-called aging property is high. However, although the detailed mechanism is not clear in the intended use for cans of the present invention, the molding speed is remarkably higher than that of normal press molding, or the shape of the molded body is compared with the axial object. Because of its simplicity, there are no problems such as the occurrence of so-called stretcher strain due to its large aging effect. This allows the application of N enhancements for this application. In addition, probably because the strain aging effect due to N is sufficiently exerted when used after being formed as a can body, a larger strengthening effect than that simply explained by conventional solid solution strengthening can be obtained.

【0037】[0037]

【実施例】【Example】

実施例1 表1に示す種々の鋼を溶製し、熱延条件、冷延条件を種
々に変化させて、得られる冷延鋼板の特性について調査
してみた。その結果を表2に示す。このうちリジング特
性は、鋼板を浅い円筒形に絞り、その表面性状を観察し
て評価した。また、r値、Δr値はJIS に定める、弾性
率の異方性により評価する方法によった。なお、熱延時
のスラブ加熱温度は1100〜1250℃の範囲とした。焼鈍温
度は表中の如く変化させたが、焼鈍の均熱時間は20 sと
一定にした。焼鈍後は圧下率1.5〜2.0 %の調質圧延を
行った。本実施例は軟質極薄物材を想定し、比較的高い
一次冷間圧下条件で製造したものである。
Example 1 Various steels shown in Table 1 were melted, the hot rolling conditions and the cold rolling conditions were variously changed, and the characteristics of the obtained cold rolled steel sheet were investigated. The results are shown in Table 2. Among them, the ridging property was evaluated by squeezing a steel plate into a shallow cylindrical shape and observing its surface texture. The r value and the Δr value were determined by JIS, which is a method for evaluating the anisotropy of elastic modulus. The slab heating temperature during hot rolling was in the range of 1100 to 1250 ° C. Although the annealing temperature was changed as shown in the table, the soaking time of annealing was kept constant at 20 s. After annealing, temper rolling was performed at a reduction rate of 1.5 to 2.0%. In this example, a soft ultrathin material is assumed, and is manufactured under a relatively high primary cold reduction condition.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】これらの表から明らかな如く、この発明に
従う適合例は、Nを添加することにより鋼板の強度増加
効果が得られ、TS(引張強度)の高い、また、高強度
な割に延性が良好で、さらに鋼板の機械的性質の面内異
方性の小さな表面処理原板であることがわかる。また、
適合例は、従来法(低炭素アルミキルド綱の連続焼鈍
法)により製造された高強度鋼板の平均r値:1.0 以下
に比べ、はるかに高いr値を示すことから、より優れた
深絞り性を有していることが明らかである。さらに、適
合例はいずれもNの固溶強化を用いているとともに、加
工強化を最小限に抑えているため、降伏応力(YS)が
低めであり、降伏比(YS/TS)の値が0.65〜0.75の
範囲であるため、プレス成形性が良好であることがわか
る。またΔrも従来法(低炭素アルミキルド鋼の連続焼
鈍法)によるものは−0.6 程度ときわめて大きいが本発
明のものは小さなΔrとなっており良好である。
As is apparent from these tables, in the conformity example according to the present invention, the effect of increasing the strength of the steel sheet can be obtained by adding N, and the ductility is high despite the high TS (tensile strength) and the high strength. It can be seen that this is a surface-treated original plate which is good and has a small in-plane anisotropy of mechanical properties of the steel plate. Also,
A conforming example shows a much higher r-value than the average r-value of 1.0 or less for high-strength steel sheets manufactured by the conventional method (continuous annealing of low-carbon aluminum killed steel). It is clear that they have. Furthermore, all the conforming examples use solid solution strengthening of N, and since the work strengthening is minimized, the yield stress (YS) is low and the yield ratio (YS / TS) value is 0.65. Since it is in the range of to 0.75, it can be seen that the press moldability is good. Also, the Δr is as large as about -0.6 in the conventional method (continuous annealing of low carbon aluminum killed steel), but the present invention has a small Δr, which is good.

【0041】実施例2 表1に示す成分組成になる鋼を用いて、表3に示す条件
で冷延鋼板を製造した。この製造の際は、表中に示す焼
鈍温度で、均熱時間15秒の焼鈍後に2次冷間圧延を圧下
率18%で行った。次いで通常の条件で♯25相当の錫めっ
きを行い、通常の塗装・焼き付け処理を行った。製品厚
みは0.180 mmと一定にしている。これをロールフォーミ
ング、高速シーム溶接で3ピース缶の缶胴部相当に成形
し、ロールフォーミング性を成形後の形状のばらつきで
判定した。次いでこの成形体に伸びフランジ加工を行
い、フランジ割れ発生の有無を調査した。このフランジ
割れは、通常の350 mlサイズ缶を想定した条件で行った
フランジ成形試験で3%以上のHAZ(熱影響部)割れ
の有無で判定した。これらの結果を表3に併記する。ま
た参考までに、本発明綱の|Δr|は 0.2程度であり、
従来の低炭素アルミキルド鋼板の2回冷延材の|Δr|
=0.6 に比べると良好であった。
Example 2 A cold-rolled steel sheet was produced under the conditions shown in Table 3 using the steel having the chemical composition shown in Table 1. At the time of this production, at the annealing temperature shown in the table, secondary cold rolling was performed at a rolling reduction of 18% after annealing for a soaking time of 15 seconds. Then, tin plating equivalent to # 25 was performed under normal conditions, and ordinary coating / baking treatment was performed. The product thickness is fixed at 0.180 mm. This was formed into a can body portion of a three-piece can by roll forming and high-speed seam welding, and the roll forming property was judged by the variation in shape after forming. Next, this molded body was subjected to stretch flange processing, and the presence or absence of flange cracking was investigated. This flange crack was judged by the presence or absence of HAZ (Heat Affected Zone) crack of 3% or more in the flange forming test conducted under the conditions assuming a normal 350 ml size can. Table 3 also shows these results. Also, for reference, | Δr | of the present invention is about 0.2,
Conventional low carbon aluminum killed steel sheet double cold rolled material | Δr |
It was good compared to = 0.6.

【0042】[0042]

【表3】 [Table 3]

【0043】表3より、この発明に従う条件で製造され
たものは、必要特性を満足していることが明らかであ
る。また、缶体の強度特性においても比較例で示した低
炭素鋼の2回冷延法の場合と同等の特性を有していた。
その理由は、詳細には不明であるが、固溶状態で存在す
るNが、缶体の強度増加に大きく寄与しているものと考
えられる。また、ロールフォーミング性は、素材のYS
と対応していない。その詳細な機構は不明であるが、実
際のロール成形プロセスの特異性のためと推定される。
From Table 3, it is clear that the products manufactured under the conditions according to the present invention satisfy the required characteristics. Also, the strength characteristics of the can body were the same as those of the low-carbon steel double cold rolling method shown in the comparative example.
The reason is not clear in detail, but it is considered that N existing in a solid solution state greatly contributes to the increase in the strength of the can body. In addition, the roll forming property is YS of the material.
Does not correspond to. The detailed mechanism is unknown, but it is presumed to be due to the peculiarities of the actual roll forming process.

【0044】実施例3 表1に示す成分の鋼を用い、表4に示す製造条件で冷延
鋼板を製造した。なお、表中に示す焼鈍温度で、均熱時
間30秒の焼鈍後は、圧下率10%の2次冷延を施した。こ
の鋼板表面に通常のCrめっきを行い、次いで潤滑効果を
持たせるように塗装を行った後、1回の絞り加工と2回
の再絞り加工を行って、いわゆるDRD缶を成形してか
ら、表面の状態その他を調査した。その結果を表4に併
記する。
Example 3 Using the steel having the components shown in Table 1, a cold rolled steel sheet was produced under the production conditions shown in Table 4. After annealing at the annealing temperature shown in the table for a soaking time of 30 seconds, secondary cold rolling with a reduction rate of 10% was performed. The surface of the steel sheet is then plated with normal Cr, then coated to give a lubricating effect, then drawn once and redrawn twice to form a so-called DRD can. The surface condition and others were investigated. The results are shown in Table 4.

【0045】[0045]

【表4】 [Table 4]

【0046】表4から、この発明に従う適合例が、必要
な特性を満足していることがわかる。また、耐食性につ
いても通常の方法に従って調査したが、適合例について
は全く問題がなかった。これは、塗装の健全性が寄与し
たためと考えられる。
From Table 4 it can be seen that the adaptations according to the invention fulfill the required properties. Further, the corrosion resistance was also investigated according to the usual method, but there was no problem in the conformity example. This is probably because the soundness of the painting contributed.

【0047】[0047]

【発明の効果】この発明の高強度缶用鋼板の製造方法
は、以上述べた構成からなるので、得られた鋼板を原板
として使用した容器用鋼板(場合によっては特別な表面
処理を行わない場合でも)を容器に成形・加工して使用
されるにあたり、従来の工程で製造されたものよりも優
れた強度−延性バランスを有しており、また、より高い
平均r値、良好な(小さい)面内異方性を有しているの
で、従来鋼を使用した場合に比して各種プレス成形時の
成形可能範囲が広く、プレス加工の不具合を生ずる危険
性が小さい。また、鋼板のプレス成形性は、一般に鋼板
の厚みが薄くなるとそれだけで劣化する傾向があるけれ
ども、良好なプレス成形性を有するこの発明に従う鋼板
を用いることにより、この板厚減少に伴う成形性の劣化
を補償できるため、鋼板の薄肉化という合理化を達成で
きる。さらに、この発明により得られる鋼板は、固溶状
態のNを積極的に強化成分として用いているため、プレ
ス成形時には比較的軟質で成形性に優れ、その後の自然
時効(あるいは促進時効)により強度が増加し、缶体と
しての強度特性を十分に満足できるという優れた特徴を
有している。
The method for producing a steel sheet for a high-strength can of the present invention has the above-described structure, and therefore, the obtained steel sheet is used as a base sheet for a container (in some cases, when no special surface treatment is performed). However, it has a better strength-ductility balance than the one produced by the conventional process, and has a higher average r value and good (small) Since it has in-plane anisotropy, it has a wider formable range at the time of various press forming than the case where conventional steel is used, and the risk of causing press work defects is small. Further, the press formability of the steel sheet generally tends to deteriorate only when the thickness of the steel sheet becomes thin, but by using the steel sheet according to the present invention having good press formability, the formability of the steel sheet due to the reduction of the plate thickness is improved. Since deterioration can be compensated for, rationalization of thin steel plate can be achieved. Furthermore, since the steel sheet obtained by the present invention positively uses solid solution N as a strengthening component, it is relatively soft during press forming and has excellent formability, and the strength due to subsequent natural aging (or accelerated aging). Is increased and the strength characteristics as a can can be sufficiently satisfied.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】C:0.0050wt%以下、 Si:0.020 wt%以下、 Mn:0.050 〜1.50wt%、 P:0.020 wt%以下、 S:0.010 wt%以下、 N:0.0200wt%以下及びAl:0.100 wt%以下を含み、残
部はFe及び不可避的不純物よりなる鋼スラブを素材と
し、 この素材にAr3 変態点を超える温度で仕上圧延を終了す
る熱間圧延を施して板厚1.8 mm未満とし、該仕上圧延終
了から0.2 s 以内に開始した水冷を平均冷却速度50℃/s
以上で行い、450 ℃以下で巻取った後、通常の酸洗を経
て圧下率80〜98%の冷間圧延を行い、次いで再結晶温度
以上の短時間焼鈍を行い、その後調質圧延を行うことを
特徴とする高強度缶用鋼板の製造方法。
1. C: 0.0050 wt% or less, Si: 0.020 wt% or less, Mn: 0.050 to 1.50 wt%, P: 0.020 wt% or less, S: 0.010 wt% or less, N: 0.0200 wt% or less and Al: A steel slab containing 0.100 wt% or less and the balance Fe and unavoidable impurities is used as a material, and this material is hot-rolled to finish rolling at a temperature above the Ar 3 transformation point to a plate thickness of less than 1.8 mm. , The average cooling rate of water cooling started within 0.2 s after the finish rolling was 50 ℃ / s
After performing the above, after winding at 450 ℃ or less, through ordinary pickling, cold rolling with a reduction rate of 80 to 98%, followed by short-time annealing above the recrystallization temperature, and then temper rolling. A method of manufacturing a steel sheet for high-strength cans, which is characterized by the above.
【請求項2】C:0.0050wt%以下、 Si:0.020 wt%以下、 Mn:0.050 〜1.50wt%、 P:0.020 wt%以下、 S:0.010 wt%以下、 N:0.0200wt%以下及びAl:0.100 wt%以下を含み、か
つNb:0.002 〜0.020 wt%及びTi:0.005 〜0.020 wt%
のうちから選ばれる1種又は2種を含有し、残部はFe及
び不可避的不純物よりなる鋼スラブを素材とし、 この素材にAr3 変態点を超える温度で仕上圧延を終了す
る熱間圧延を施して板厚1.8 mm未満とし、該仕上圧延終
了から0.2 s 以内に開始した水冷を平均冷却速度50℃/s
以上で行い、450 ℃以下で巻取った後、通常の酸洗を経
て圧下率80〜98%の冷間圧延を行い、次いで再結晶温度
以上の短時間焼鈍を行い、その後調質圧延を行うことを
特徴とする高強度缶用鋼板の製造方法。
2. C: 0.0050 wt% or less, Si: 0.020 wt% or less, Mn: 0.050 to 1.50 wt%, P: 0.020 wt% or less, S: 0.010 wt% or less, N: 0.0200 wt% or less and Al: Including 0.100 wt% or less, and Nb: 0.002-0.020 wt% and Ti: 0.005-0.020 wt%
The steel slab containing 1 or 2 selected from the above, the balance being Fe and unavoidable impurities is used as the material, and this material is subjected to hot rolling to finish the finish rolling at a temperature exceeding the Ar 3 transformation point. With a sheet thickness of less than 1.8 mm, water cooling started within 0.2 s after the finish rolling was completed, and the average cooling rate was 50 ° C / s.
After performing the above, after winding at 450 ℃ or less, through ordinary pickling, cold rolling with a reduction rate of 80 to 98%, followed by short-time annealing above the recrystallization temperature, and then temper rolling. A method of manufacturing a steel sheet for high-strength cans, which is characterized by the above.
【請求項3】 請求項1又は2記載の高強度缶用鋼板の
製造方法において、調質圧延に代わり、圧下率30%以下
の2次冷間圧延を行うことを特徴とする高強度缶用鋼板
の製造方法。
3. The method for producing a steel plate for a high-strength can according to claim 1 or 2, wherein secondary cold rolling with a reduction rate of 30% or less is performed instead of temper rolling. Steel plate manufacturing method.
JP07157417A 1995-06-23 1995-06-23 Manufacturing method of steel sheet for high strength cans Expired - Fee Related JP3108330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07157417A JP3108330B2 (en) 1995-06-23 1995-06-23 Manufacturing method of steel sheet for high strength cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07157417A JP3108330B2 (en) 1995-06-23 1995-06-23 Manufacturing method of steel sheet for high strength cans

Publications (2)

Publication Number Publication Date
JPH093547A true JPH093547A (en) 1997-01-07
JP3108330B2 JP3108330B2 (en) 2000-11-13

Family

ID=15649185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07157417A Expired - Fee Related JP3108330B2 (en) 1995-06-23 1995-06-23 Manufacturing method of steel sheet for high strength cans

Country Status (1)

Country Link
JP (1) JP3108330B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053931A (en) * 2000-05-31 2002-02-19 Kawasaki Steel Corp Cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method
JP2002356739A (en) * 2001-05-30 2002-12-13 Kawasaki Steel Corp Hot rolled steel sheet for deep drawing excellent in strain age hardening characteristic and production method therefor
JP2007277700A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
WO2010110485A1 (en) 2009-03-27 2010-09-30 Jfeスチール株式会社 Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
WO2011052763A1 (en) * 2009-10-29 2011-05-05 Jfeスチール株式会社 Steel sheet for cans having excellent surface roughening resistance, and method for producing same
CN107201436A (en) * 2017-05-08 2017-09-26 武汉钢铁有限公司 A kind of process for producing Thin Specs medium carbon steel

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002053931A (en) * 2000-05-31 2002-02-19 Kawasaki Steel Corp Cold-rolled steel sheet excellent in strain age-hardening characteristic and its production method
JP2002356739A (en) * 2001-05-30 2002-12-13 Kawasaki Steel Corp Hot rolled steel sheet for deep drawing excellent in strain age hardening characteristic and production method therefor
JP4608811B2 (en) * 2001-05-30 2011-01-12 Jfeスチール株式会社 Deep drawn hot-rolled steel sheet with excellent strain age hardening characteristics and method for producing the same
JP2007277700A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
WO2010110485A1 (en) 2009-03-27 2010-09-30 Jfeスチール株式会社 Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
US9034119B2 (en) 2009-03-27 2015-05-19 Jfe Steel Corporation Steel sheet for cans with excellent surface properties after drawing and ironing and method for producing the same
WO2011052763A1 (en) * 2009-10-29 2011-05-05 Jfeスチール株式会社 Steel sheet for cans having excellent surface roughening resistance, and method for producing same
AU2010312372B2 (en) * 2009-10-29 2013-08-29 Jfe Steel Corporation Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
US9005375B2 (en) 2009-10-29 2015-04-14 Jfe Steel Corporation Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
CN107201436A (en) * 2017-05-08 2017-09-26 武汉钢铁有限公司 A kind of process for producing Thin Specs medium carbon steel
CN107201436B (en) * 2017-05-08 2018-07-31 武汉钢铁有限公司 A kind of process producing Thin Specs medium carbon steel

Also Published As

Publication number Publication date
JP3108330B2 (en) 2000-11-13

Similar Documents

Publication Publication Date Title
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
JP2001107186A (en) High strength steel sheet for can and its producing method
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP4374126B2 (en) Steel plate for squeeze cans with excellent earring properties and manufacturing method
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JP4045602B2 (en) Manufacturing method of steel sheet for cans with excellent drawability
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP3756779B2 (en) Steel plate for thinned deep drawn ironing can with excellent workability
JP3700280B2 (en) Manufacturing method of steel plate for cans
JPH09316543A (en) Production of steel sheet for can, excellent in formability
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JPH07228921A (en) Production of starting sheet for surface treated steel sheet, excellent in workability
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3292033B2 (en) Manufacturing method of steel sheet for battery outer cylinder with excellent material uniformity and corrosion resistance
JPH08155565A (en) Production of light weight can excellent in bottom pressure withstanding strength
JP3680004B2 (en) Steel plate for thinned deep drawn ironing can with excellent workability

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070908

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080908

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees