JPH09310150A - Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production - Google Patents

Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production

Info

Publication number
JPH09310150A
JPH09310150A JP12670296A JP12670296A JPH09310150A JP H09310150 A JPH09310150 A JP H09310150A JP 12670296 A JP12670296 A JP 12670296A JP 12670296 A JP12670296 A JP 12670296A JP H09310150 A JPH09310150 A JP H09310150A
Authority
JP
Japan
Prior art keywords
less
grain
steel sheet
rolling
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12670296A
Other languages
Japanese (ja)
Inventor
Masatoshi Araya
昌利 荒谷
Akio Tosaka
章男 登坂
Osamu Furukimi
古君  修
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12670296A priority Critical patent/JPH09310150A/en
Publication of JPH09310150A publication Critical patent/JPH09310150A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To improve a workability, nonearing property and resistance to surface roughening of a steel sheet by incorporating specified amounts of C, Si, Mn, P, S, Al, N and Fe into a steel sheet and regulating the crystal grain size and crystal grain aspect ratio in the surface layer and internal layer of a steel sheet. SOLUTION: This steel sheet for a can has a compsn. contg., by weight, 0.001 to 0.015% C, <=0.1% Si, 0.1 to 0.6% Mn, <=0.02% P, <=0.02% S, 0.015 to 0.15% Al and <=0.02% N, furthermore contg. one or more kinds selected from <=0.02% Nb and <=0.02% Ti and 0.002% B, and the balance substantial Fe. The surface layer region to 1/10 of the sheet thickness from the surface of the steel sheet has a fine equi-axed crystal grain structure in which the crystal grain size is regulated to No. >=10 by ASTM an the crystal grain aspect ratio is regulated to <=1.5. The internal layer of the steel sheet excluding the surface layer has a coarse equi-axed crystal grain structure in which the crystal grain size is regulated to No <=9 by ASTM and the crystal grain aspect ratio is regulated to <=1.5. The steel slab is heated at the Ar3 point or above, and rough rolling is finished at (the Ar3 point + 150 deg.C) to (the Ar3 point + 50 deg.C).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は食品、飲料缶等の使
途に用いられる缶用鋼板に関し、特に加工性(プレス加
工性)、ノンイヤリング性(耳発生の起こりにくさ)、
プレス加工後の耐肌荒れ性に優れる缶用鋼板およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel sheet for cans used for foods, beverage cans and the like, and particularly to workability (press workability), non-earring property (hardness of ear generation),
The present invention relates to a steel sheet for cans having excellent resistance to surface roughening after pressing and a method for manufacturing the same.

【0002】[0002]

【従来の技術】深絞り加工等プレス成形を施して作られ
る深絞り缶、DRD(Drawn and Redrawn )缶、DI
(Drawn and Ironined)缶などに用いられる冷延鋼板に
要求される特性には、 1)プレス加工性;加工時に割れ等の欠陥を発生するこ
となく成形可能であること、 2)耐肌荒れ性;プレス加工後の鋼板表面の肌荒れが小
さく、仕上がり外観、耐食性等の特性が良好であるこ
と、 3)耐イヤリング性;素材の異方性が小さく深絞り加工
後の耳発生が小さいことなどが挙げられる。
2. Description of the Related Art Deep drawing cans, DRD (Drawn and Redrawn) cans, DIs made by press forming such as deep drawing.
(Drawn and Ironined) The properties required for cold-rolled steel sheets used for cans are: 1) Press workability; Can be formed without causing defects such as cracks during processing, 2) Rough skin resistance; The surface roughness of the steel sheet after pressing is small, and the finished appearance and corrosion resistance are good. 3) Earring resistance; The material has small anisotropy and little ears after deep drawing. To be

【0003】これらの特性を付与した鋼板を開発するた
めの提案が、例えば特開平2−267242号公報に開示され
ている。この技術は、低炭素鋼素材を冷間圧延後、窒素
中の箱焼鈍により、焼鈍後の表層を等軸細粒に、内層を
等軸粗大粒に調整するものであり、特に表層の細粒化に
よって、耐肌荒れ性を改善するものである。
A proposal for developing a steel sheet having these characteristics is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-267242. This technology adjusts the surface layer after annealing to equiaxed fine grains and the inner layer to equiaxed coarse grains by box annealing in nitrogen after cold rolling a low carbon steel material. To improve the rough skin resistance.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記特
開平2−267242号公報に開示の技術は、そもそも絞り加
工条件が比較的厳しくない浅絞り缶や絞り加工を伴わな
い3ピース缶などへの用途を念頭に提案されものであ
り、rが高々1.2 程度でしかなく、プレス加工性が十分
ではないので、前述した深絞り缶、DRD缶、DI缶と
して用いると、加工時に割れ等の欠陥を発生する問題を
招き、実用に耐えうるものではなかった。一方、プレス
加工性を改善するためには、素材の成分組成を極低炭素
化することが広く知られている。そこで、肌あれとプレ
ス加工性を兼備させるためには、素材を極低炭素鋼とし
て、この素材に上記技術を適用することが考えられる。
しかし、この場合には、極低炭素化によって粒成長性が
大きくなるために、鋼板表層における細粒化を達成でき
ず、結果的に耐肌荒れ性を向上させることが不可能にな
るという問題があった。そこで、本発明の主たる目的
は、プレス加工性、プレス加工後の耐肌荒れ、イヤリン
グ性ともに優れ、深絞り加工にも耐えうる缶用鋼板とそ
の製造方法を提供することにある。また、本発明の他の
目的は、ランクフォード値(r値)が1.5 以上、r値の
面内異方性を表すΔr(の絶対値)が 0.16 以下、かつ
20%引張加工後の表面粗度Raが 0.65 μm以下の特
性を有する缶用鋼板とその製造方法を提供することにあ
る。
However, the technique disclosed in Japanese Unexamined Patent Publication No. 2-267242 is used for shallow drawing cans whose drawing conditions are relatively strict and three-piece cans without drawing. Since the r is only 1.2 at the most and the press workability is not sufficient, when it is used as the deep-draw can, DRD can, and DI can described above, defects such as cracks occur during processing. However, it was not suitable for practical use. On the other hand, in order to improve press workability, it is widely known that the component composition of the material is made extremely low carbon. Therefore, in order to have both rough skin and press workability, it is conceivable that the material is ultra low carbon steel and the above technique is applied to this material.
However, in this case, since grain growth is increased due to extremely low carbonization, grain refinement in the steel sheet surface layer cannot be achieved, and as a result, it is impossible to improve the rough surface resistance. there were. Therefore, a main object of the present invention is to provide a steel sheet for a can, which is excellent in press workability, resistance to surface roughening after press work, and earring property, and can withstand deep drawing work, and a method for producing the same. Another object of the present invention is to provide a Rankford value (r value) of 1.5 or more, Δr (absolute value) representing the in-plane anisotropy of the r value of 0.16 or less, and a surface roughness after 20% tensile processing. It is an object of the present invention to provide a steel plate for a can having a characteristic Ra of 0.65 μm or less and a method for manufacturing the same.

【0005】[0005]

【課題を解決するための手段】発明者らは、上記の目的
を達成すべく、結晶粒の大きさ(粒度)、形態がプレス
加工性、耐イヤリング性、耐肌荒れ性に及ぼす影響につ
いて調査した。はじめに、プレス加工性は鋼板の伸びと
大きな相関があることに着目し、結晶粒の大きさと伸び
の関係を調査した。その結果、図1に示すように鋼板結
晶粒が大きい程鋼板の伸びは良好であることがわかっ
た。また、Δrは、図2に示すように、等軸組織が延伸
組織Alキルド鋼に比べ小さく、ノンイヤリング性に優れ
ていることがわかった。そして、耐肌荒れ性は、図3に
示すように、プレス加工性とは逆に鋼板結晶粒度が小さ
い程良好であった。
[Means for Solving the Problems] In order to achieve the above object, the inventors investigated the influence of the size (grain size) and morphology of crystal grains on press workability, earring resistance, and rough skin resistance. . First, focusing on the fact that press workability has a strong correlation with the elongation of steel sheets, the relationship between the size of crystal grains and elongation was investigated. As a result, as shown in FIG. 1, it was found that the larger the steel plate crystal grains, the better the elongation of the steel plate. Further, as shown in FIG. 2, the Δr was found to be smaller in the equiaxed structure as compared with the stretched structure Al killed steel, and was excellent in non-earring property. And, as shown in FIG. 3, the rough skin resistance was better as the grain size of the steel sheet was smaller as opposed to the press workability.

【0006】以上の結果をもとに、本発明者らは、主と
して仕上げ圧延に先だって行なうデスケーリングの条件
に着目して研究を重ねた結果、上記目的の実現のために
は、これまでに用いられたことのないような超高圧のデ
スケーリングを適用することによって、熱延鋼帯の表面
を急冷し表層のみを微細化させ、冷延、焼鈍後の結晶粒
も鋼板表層は微細結晶粒組織とすることで肌荒れ性を確
保し、内層は粗大結晶粒組織とすることでプレス加工性
を向上させ、かつ鋼板表面から中心層まで等軸粒とする
ことでΔrが小さくノンイヤリング性にも優れた鋼板を
得ることができることを知見し、本発明を完成するに至
った。すなわち、本発明の要旨構成は下記のとおりであ
る。
On the basis of the above results, the inventors of the present invention have conducted extensive research mainly focusing on the conditions of descaling performed prior to finish rolling, and as a result, have been used so far to achieve the above object. By applying ultra-high pressure descaling that has never been done before, the surface of the hot-rolled steel strip is rapidly cooled and only the surface layer is refined, and the crystal grains after cold rolling and annealing have a fine grain structure. The surface roughness is ensured by the above, the press workability is improved by making the inner layer a coarse grain structure, and the equiaxed grain from the steel plate surface to the center layer results in a small Δr and excellent non-earing property. The present invention has been completed by finding that it is possible to obtain a steel sheet having excellent properties. That is, the gist configuration of the present invention is as follows.

【0007】1)C:0.0010〜0.0150wt%、Si:0.10wt
%以下、Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、
S:0.02wt%以下、 Al:0.015 〜0.15wt%、N:0.
02wt%以下を含有し、残部はFeおよび不可避的不純物か
らなり、鋼板の表面から板厚の1/10までの表層域にお
ける結晶粒は、ASTM粒度No.10 以上かつ結晶粒軸比
1.5以下である微細な等軸結晶粒組織からなり、この表
層を除く鋼板内層は、ASTM粒度No.9以下かつ結晶粒
軸比1.5 以下である粗大な等軸結晶粒組織からなること
を特徴とする加工性、ノンイヤリング性および耐肌荒れ
性に優れる缶用鋼板。
1) C: 0.0010 to 0.0150 wt%, Si: 0.10 wt%
%, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less,
S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.
The content of 02 wt% or less, the balance consisting of Fe and unavoidable impurities, the crystal grains in the surface layer area from the surface of the steel plate to 1/10 of the plate thickness are ASTM grain size No. 10 or more and the crystal grain axis ratio.
It is characterized by having a fine equiaxed grain structure of 1.5 or less, and the inner layer of the steel sheet excluding this surface layer is composed of a coarse equiaxed grain structure of ASTM grain size No. 9 or less and a grain axis ratio of 1.5 or less. A steel plate for cans that has excellent workability, non-earring properties, and resistance to rough skin.

【0008】2)C:0.0010〜0.0150wt%、Si:0.10wt
%以下、Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、
S:0.02wt%以下、 Al:0.015 〜0.15wt%、N:0.
02wt%以下を含み、かつNb:0.020 wt%以下、 Ti:0.
020 wt%以下から選ばれるいずれか1種または2種を含
有し、残部はFeおよび不可避的不純物からなり、鋼板の
表面から板厚の1/10までの表層域における結晶粒は、
ASTM粒度No.10 以上かつ結晶粒軸比1.5 以下である
微細な等軸結晶粒組織からなり、この表層を除く鋼板内
層は、ASTM粒度No.9以下かつ結晶粒軸比1.5 以下で
ある粗大な等軸結晶粒組織からなることを特徴とする加
工性、ノンイヤリング性および耐肌荒れ性に優れる缶用
鋼板。
2) C: 0.0010 to 0.0150 wt%, Si: 0.10 wt
%, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less,
S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.
02 wt% or less, Nb: 0.020 wt% or less, Ti: 0.
It contains any one or two selected from 020 wt% or less, the balance is Fe and unavoidable impurities, and the crystal grains in the surface layer region from the surface of the steel plate to 1/10 of the plate thickness are:
It consists of a fine equiaxed grain structure with an ASTM grain size of No. 10 or more and a grain axis ratio of 1.5 or less. The inner layer of the steel sheet excluding this surface layer is a coarse grain with an ASTM grain size of No. 9 or less and a grain axis ratio of 1.5 or less. A steel sheet for cans having excellent workability, non-earring property, and resistance to roughening, which is characterized by having an equiaxed grain structure.

【0009】3)C:0.0010〜0.0150wt%、Si:0.10wt
%以下、Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、
S:0.02wt%以下、 Al:0.015 〜0.15wt%、N:0.
02wt%以下を含み、かつB:0.0020wt%以下を含有し、
残部はFeおよび不可避的不純物からなり、鋼板の表面か
ら板厚の1/10までの表層域における結晶粒は、AST
M粒度No.10 以上かつ結晶粒軸比1.5以下である微細な
等軸結晶粒組織からなり、この表層を除く鋼板内層は、
ASTM粒度No.9以下かつ結晶粒軸比1.5 以下である粗
大な等軸結晶粒組織からなることを特徴とする加工性、
ノンイヤリング性および耐肌荒れ性に優れる缶用鋼板。
3) C: 0.0010 to 0.0150 wt%, Si: 0.10 wt%
%, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less,
S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.
02 wt% or less and B: 0.0020 wt% or less,
The balance consists of Fe and unavoidable impurities, and the crystal grains in the surface layer area from the surface of the steel plate to 1/10 of the plate thickness are AST.
The inner layer of the steel sheet, excluding this surface layer, consists of a fine equiaxed grain structure with M grain size No. 10 or more and grain axis ratio of 1.5 or less.
A workability characterized by a coarse equiaxed grain structure having an ASTM grain size of 9 or less and a grain axis ratio of 1.5 or less,
Steel sheet for cans with excellent non-earring properties and resistance to rough skin.

【0010】4)C:0.0010〜0.0150wt%、Si:0.10wt
%以下、Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、
S:0.02wt%以下、 Al:0.015 〜0.15wt%、N:0.
02wt%以下を含み、かつNb:0.020 wt%以下、 Ti:0.
020 wt%以下から選ばれるいずれか1種または2種を含
有し、さらにB:0.0020wt%以下を含有し、残部はFeお
よび不可避的不純物からなり、鋼板の表面から板厚の1
/10までの表層域における結晶粒は、ASTM粒度No.1
0 以上かつ結晶粒軸比1.5以下である微細な等軸結晶粒
組織からなり、この表層を除く鋼板内層は、ASTM粒
度No.9以下かつ結晶粒軸比1.5 以下である粗大な等軸結
晶粒組織からなることを特徴とする加工性、ノンイヤリ
ング性および耐肌荒れ性に優れる缶用鋼板。
4) C: 0.0010 to 0.0150 wt%, Si: 0.10 wt%
%, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less,
S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.
02 wt% or less, Nb: 0.020 wt% or less, Ti: 0.
It contains any one or two kinds selected from 020 wt% or less, further contains B: 0.0020 wt% or less, and the balance is Fe and unavoidable impurities.
Crystal grains in the surface layer area up to / 10 are ASTM grain size No. 1
Coarse equiaxed crystal grains consisting of a fine equiaxed grain structure of 0 or more and a grain axis ratio of 1.5 or less, excluding this surface layer, are ASTM grain size No. 9 or less and a grain axis ratio of 1.5 or less. A steel sheet for cans having excellent workability, non-earring property, and resistance to roughening of the surface, which is characterized by having a structure.

【0011】5)C:0.0010〜0.0150wt%、Si:0.10wt
%以下、Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、
S:0.02wt%以下、 Al:0.015 〜0.15wt%、N:0.
02wt%以下を含有する鋼スラブを、平均温度がAc3点以
上になるように加熱し、(Ar3点+150 ℃)〜(Ar3
+50℃)の温度範囲で粗圧延を終了し、得られたシート
バーに、衝突圧が25kgf/cm2 以上かつ液量密度が0.002
リットル/cm2以上を満たす条件の超高圧デスケーリング
を施して、シートバーの表面と厚み方向中心との温度差
を400 ℃以上とし、引き続き、5秒以内に仕上げ圧延を
開始し、Ar3点以上で終了し、仕上げ圧延終了後2秒以
内に50℃/sec 以上で冷却し、700 ℃以下で巻き取り、
常法により酸洗し、冷間圧延し、さらに、再結晶温度以
上で連続焼鈍し、圧下率0.5 〜10%で調質圧延すること
を特徴とする上記1)〜4)のいずれか1つに記載の缶
用鋼板の製造方法。
5) C: 0.0010 to 0.0150 wt%, Si: 0.10 wt
%, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less,
S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.
The steel slab containing up to 02wt%, the average temperature is heated so that the above three points Ac, exit the rough rolling in the temperature range of (Ar 3 point +150 ℃) ~ (Ar 3 point + 50 ° C.), to give The seat bar has a collision pressure of 25 kgf / cm 2 or more and a liquid density of 0.002.
Ultra high pressure descaling under the condition of liter / cm 2 or more is applied to make the temperature difference between the surface of the sheet bar and the center in the thickness direction 400 ° C or more, and then finish rolling is started within 5 seconds, and Ar 3 points are set. Finished above, within 2 seconds after finishing rolling, cool at 50 ℃ / sec or more and wind at 700 ℃ or less,
Any one of the above 1) to 4), characterized in that it is pickled by a conventional method, cold-rolled, continuously annealed at a recrystallization temperature or higher, and temper-rolled at a rolling reduction of 0.5 to 10%. The method for manufacturing a steel sheet for cans according to.

【0012】[0012]

【発明の実施の形態】次に、成分組成および製造条件等
を上記要旨構成の通りに限定した理由について説明す
る。 (1)鋼成分について C:0.0010〜0.0150wt% Cは、少なくする方が伸び性が良く、プレス加工性に有
利であるが、反面少なすぎると鋼板が過度に軟質化して
缶体としての強度を確保できなくなるため下限を0.0010
wt%とする。一方、その量が0.015 wt%を超えると鋼板
が硬質化して伸びが著しく低下しプレス加工性が劣化す
るために、0.0010〜0.0150wt%とする。
BEST MODE FOR CARRYING OUT THE INVENTION Next, the reasons why the component composition, manufacturing conditions and the like are limited to the above-mentioned constitution will be explained. (1) Steel composition C: 0.0010 to 0.0150 wt% C is better for elongation and is more advantageous for press workability, but if too little, the steel sheet becomes excessively soft and the strength of the can body is increased. , The lower limit is 0.0010.
wt%. On the other hand, if the amount exceeds 0.015 wt%, the steel plate becomes hard and elongation is significantly reduced and press workability deteriorates, so 0.0010 to 0.0150 wt% is set.

【0013】Si:0.10wt%以下 Siは、耐食性を低下させ、また材料を極端に硬質化させ
るので、缶用材料として有害な元素であるので、その上
限を0.1 wt%、好ましくは0.05wt%以下とする。
Si: 0.10 wt% or less Si lowers corrosion resistance and extremely hardens the material, and is a harmful element as a can material. Therefore, its upper limit is 0.1 wt%, preferably 0.05 wt%. Below.

【0014】Mn:0.1 〜0.6 wt% Mnは、不純物であるSによる熱延中の赤熱脆性を防止す
るために必要な元素である。この効果を得るためには0.
1 wt%以上必要であるが、0.6 wt%を超えて添加すると
スラブ圧延中に割れを生じたり、鋼板が過度に硬質化す
るので、0.1 〜0.6 wt%の範囲で添加するものとする。
Mn: 0.1-0.6 wt% Mn is an element necessary for preventing red hot embrittlement during hot rolling due to S which is an impurity. 0 for this effect.
1 wt% or more is necessary, but if added in excess of 0.6 wt%, cracks will occur during slab rolling and the steel sheet will be excessively hardened, so the addition amount should be in the range of 0.1 to 0.6 wt%.

【0015】P:0.02wt%以下 Pは、0.02wt%を超えると耐食性が著しく低下するため
に上限を0.02wt%とする。
P: 0.02 wt% or less P exceeds 0.02 wt%, and the corrosion resistance remarkably decreases, so the upper limit is made 0.02 wt%.

【0016】S:0.02wt%以下 Sは、熱延中の赤熱脆性を生じる不純物成分であり、極
力少なくすることが望ましいが、不可避的に含有される
量として0.02wt%まで許容できるので、上限を0.02wt%
とした。
S: 0.02 wt% or less S is an impurity component that causes red hot embrittlement during hot rolling, and it is desirable to reduce it as much as possible. However, the unavoidably contained amount is 0.02 wt%, so the upper limit is 0.02 wt%
And

【0017】Al:0.015 〜0.15wt% Alは、製鋼における脱酸材として鋼浴中に添加され、ス
ラグとして除かれる。添加量が少ないと安定した脱酸効
果が得られないため、0.015 wt%以上添加する必要があ
る。一方、0.15wt%を超えて添加してもさらなる効果が
なく、経済上好ましくないので上限を0.15wt%とする。
Al: 0.015 to 0.15 wt% Al is added to the steel bath as a deoxidizing agent in steelmaking and removed as slag. If the added amount is too small, a stable deoxidizing effect cannot be obtained, so 0.015 wt% or more must be added. On the other hand, even if added in excess of 0.15 wt%, there is no further effect and it is economically unfavorable, so the upper limit is made 0.15 wt%.

【0018】N:0.02wt%以下 Nは、0.02wt%を超えると鋼板が硬質化して伸びが著し
く低下しプレス加工性を劣化させるので、上限を0.02wt
%とする。
N: 0.02 wt% or less N exceeds 0.02 wt%, since the steel plate is hardened, elongation is remarkably reduced, and press workability is deteriorated, so the upper limit is 0.02 wt%.
%.

【0019】Nb:0.020 wt%以下、Ti:0.020 wt%以下 NbおよびTiは、いずれも炭窒化物を形成する元素であ
り、固溶C、Nの低減による伸び、r値の向上のために
添加される。添加量がいずれも0.02wt%を超えると再結
晶終了温度を上昇させ、Tiはさらに鋼板の表面性状を劣
化させるので、これらの上限を0.02wt%とする。
Nb: 0.020 wt% or less, Ti: 0.020 wt% or less Nb and Ti are elements that form carbonitrides, and for improving the elongation and r value by reducing the solute C and N. Is added. If the addition amount of each exceeds 0.02 wt%, the recrystallization end temperature rises and Ti further deteriorates the surface properties of the steel sheet, so the upper limit of these is made 0.02 wt%.

【0020】B:0.0020wt%以下 Bは、固溶CとNの量が低下した場合に生じる粒界脆化
を抑制するほか、焼き入れ性を高める効果があり、必要
に応じて添加する元素であるが、0.0020wt%を超えて添
加すると鋼が硬質化して脆化するので、上限を0.0020wt
%とする。なお、B添加の効果を得るには0.0002wt%以
上の添加が好ましい。
B: 0.0020 wt% or less B has the effect of suppressing the grain boundary embrittlement that occurs when the amounts of solid solution C and N decrease, and enhances the hardenability. However, if added in excess of 0.0020 wt%, the steel becomes hard and brittle, so the upper limit is 0.0020 wt.
%. In order to obtain the effect of adding B, 0.0002 wt% or more is preferably added.

【0021】(2)製造条件について ・熱間圧延 熱延前の鋼素材の加熱は完全な溶体化がなされればよ
く、Ac3点以上に加熱されればよい。具体的には1050〜
1350℃が適する。上記加熱の後、粗圧延及び仕上げ圧延
よりなる熱間圧延を行なう。また、粗圧延により得られ
たシートバーには、仕上げ圧延に先立って、超高圧水に
よるデスケーリングを施す。まず、粗圧延を(Ar3点+
150 ℃)〜(Ar3点+50℃)の温度範囲で終了するの
は、この範囲より低い温度で粗圧延した場合には、仕上
げ圧延が必然的にα域での圧延となり、焼鈍板の深絞り
性に不利な集合組織となるからである。一方、この範囲
を超える高温で粗圧延を終了すると、粗圧延に引き続い
て行なわれる超高圧水デスケーリングによる鋼帯表面の
微細化効果が十分に発揮されないのに加え、圧延ロール
寿命の短命化につながる。従って、粗圧延終了温度範囲
は(Ar3点+150 ℃)〜(Ar3点+50℃)とする。
(2) Manufacturing conditions: Hot rolling The steel material before hot rolling may be heated as long as it is completely solutionized, and may be heated to Ac 3 point or more. Specifically from 1050
1350 ° C is suitable. After the heating, hot rolling including rough rolling and finish rolling is performed. Further, the sheet bar obtained by rough rolling is subjected to descaling with ultra-high pressure water prior to finish rolling. First, rough rolling (Ar 3 points +
The temperature range of (150 ℃) to (Ar 3 points + 50 ℃) ends in the case where rough rolling is performed at a temperature lower than this range, finish rolling inevitably becomes the rolling in the α range, and the depth of the annealed sheet is increased. This is because it becomes a collective organization that is disadvantageous to the drawability. On the other hand, if rough rolling is finished at a high temperature exceeding this range, the effect of refining the steel strip surface by ultrahigh pressure water descaling, which is performed subsequent to rough rolling, will not be fully exerted, and the life of the rolling roll will be shortened. Connect Thus, rough rolling termination temperature range and (Ar 3 point +150 ℃) ~ (Ar 3 point + 50 ° C.).

【0022】粗圧延の後、超高圧デスケーリング及び仕
上げ圧延を行なう。この場合、前述したように焼鈍板の
表層と内層の結晶粒を制御するためには、シートバーの
表面を強冷却し、表層と内部とで大きな温度差を作り、
表層に熱歪みを発生させる必要がある。このためには、
かかる超高圧デスケーリングの条件は、シートバー表面
での衝突圧;25kgf/cm2 以上かつ液量密度が0.002 リッ
トル/cm2以上とし、熱延鋼帯表面と中心で400 ℃以上の
温度差を生じさせること、さらにデスケーリング後の仕
上げ圧延を開始するまでの時間を5秒以内とすることが
必要である。ここで、液量密度はデスケーリングにおけ
る板面の単位面積当たりに投入される総液量を表す。ま
た、衝突圧pは、一般に、ノズルの吐出圧P及び吐出量
Q、板表面とノズル間の距離Hから次式により求められ
る。(「鉄と鋼」1991 vol.77 No.9 p11450 参照) p=5.64PQ/H2 ただし、p:シートバー板表面での衝突圧(MPa ) P:吐出圧(MPa ) Q:吐出量(リットル/sec) H:鋼板表面とノズルとの間の距離(cm)
After the rough rolling, ultrahigh pressure descaling and finish rolling are performed. In this case, in order to control the crystal grains of the surface layer and the inner layer of the annealed plate as described above, the surface of the sheet bar is strongly cooled, and a large temperature difference is created between the surface layer and the inside,
It is necessary to generate thermal strain in the surface layer. To do this,
The conditions for such ultra-high pressure descaling are: impact pressure on the surface of the sheet bar; 25 kgf / cm 2 or more and liquid volume density of 0.002 liter / cm 2 or more, and a temperature difference of 400 ℃ or more between the hot rolled steel strip surface and the center. In addition, it is necessary to set the time to start the finishing rolling after descaling within 5 seconds. Here, the liquid volume density represents the total liquid volume input per unit area of the plate surface in descaling. Further, the collision pressure p is generally obtained by the following equation from the ejection pressure P and the ejection amount Q of the nozzle and the distance H between the plate surface and the nozzle. (Refer to “Iron and Steel” 1991 vol.77 No.9 p11450) p = 5.64 PQ / H 2 However, p: Impact pressure (MPa) on the surface of the sheet bar plate P: Discharge pressure (MPa) Q: Discharge amount ( L / sec) H: Distance between steel plate surface and nozzle (cm)

【0023】本発明において、超高圧デスケーリング条
件およびデスケーリング後の仕上げ圧延を開始するまで
の時間が、冷延、焼鈍後の最終的な結晶粒度に影響する
メカニズムは、必ずしも明らかではないが、衝突圧が25
kgf/cm2 以上という超高圧になると、表層の凹凸が消滅
して平滑化し、局部的に板面が冷やされることなく、
面方向で均一な組織が得られることと、水量密度が0.00
2 リットル/cm2以上を超え、表面と中心との温度差が40
0 ℃以上になると、極表面のみが効果的に冷却され、鋼
帯表層に熱歪みが生じ、その歪みが鋼帯内部からの熱伝
達により開放される前に、即ちデスケーリング後5秒以
内に仕上げ圧延されると、熱延板の極表層のみが均一な
微細粒で、内層は粗大粒な結晶粒構成となり、冷延、焼
鈍後もこの構成を継承するするに十分な粒度となるもの
と考えられる。因に従来の高圧デスケーリングの衝突圧
は1.0 〜4.0kgf/cm2程度であるので、本発明では、その
10倍にあたる超高圧を採用することで、従来技術の下で
は期待されていなかった特有の作用効果を発現したもの
思われる。
In the present invention, the mechanism by which the ultrahigh pressure descaling conditions and the time until the start of finish rolling after descaling affect the final grain size after cold rolling and annealing is not necessarily clear, but Collision pressure is 25
becomes a super high pressure of kgf / cm 2 or more, smoothed surface irregularities disappeared locally without plate surface is cooled, the plate
And the uniform in a flat structure is obtained in the surface direction, water flow rate is 0.00
Beyond 2 liters / cm 2 or more, the temperature difference between the surface and the center 40
Above 0 ℃, only the pole surface is effectively cooled, thermal strain occurs in the surface layer of the strip, and before the strain is released by heat transfer from inside the strip, that is, within 5 seconds after descaling. When finish-rolled, only the outermost layer of the hot-rolled sheet has uniform fine grains, and the inner layer has a coarse grain structure, and the grain size is sufficient to inherit this structure even after cold rolling and annealing. Conceivable. By the way, the collision pressure of the conventional high-pressure descaling is about 1.0 to 4.0 kgf / cm 2 , so in the present invention,
It seems that the use of ultra-high pressure, which is 10 times as high, has produced a unique effect which was not expected under the conventional technology.

【0024】次に、上記高圧デスケーリングに引き続い
て行なう仕上げ圧延は、圧延終了温度Ar3変態点以上の
条件で行ない、2秒以内で冷却し、700 ℃以下で巻き取
る必要がある。なぜなら、Ar3変態点未満で圧延された
場合には、熱延板の結晶粒は圧延方向にも伸びた粗大な
加工組織となり、この組織は冷延、焼鈍後も継承される
ために、結晶粒の軸比(長軸方向長さ/短軸方向長さ)
が1.5 以下の等軸粒とはならず、深絞り性が悪くなるか
らである。また、仕上げ圧延終了後は結晶粒の粗大化を
防止するためには、2秒以内に、50℃/sec以上の冷却速
度で所望の巻き取り温度まで冷却する必要がある。ここ
で、巻き取り温度が700 ℃を超えた場合には巻き取り後
のスケール成長が著しくなり酸洗性が低下するほか、結
晶粒が異常に粗大化して材質が劣化したり、耐肌あれ性
が劣化するなどの不具合を生じる。したがって、巻き取
り温度は700 ℃以下、好ましくは 500〜600 ℃の範囲と
する。
Next, finish rolling, which is performed subsequent to the high pressure descaling, must be carried out under the conditions of the rolling end temperature Ar 3 transformation point or higher, cooled within 2 seconds, and wound up at 700 ° C. or lower. This is because when rolled below the Ar 3 transformation point, the crystal grains of the hot rolled sheet have a coarse processed structure that extends in the rolling direction, and this structure is inherited even after cold rolling and annealing. Axial ratio of grains (long axis length / short axis length)
Is not an equiaxed grain of 1.5 or less and the deep drawability becomes poor. Further, after finishing rolling, in order to prevent the coarsening of the crystal grains, it is necessary to cool to a desired winding temperature at a cooling rate of 50 ° C./sec or more within 2 seconds. Here, when the winding temperature exceeds 700 ° C, scale growth after winding becomes remarkable and the pickling property deteriorates, and the crystal grains become abnormally coarse and the material deteriorates, and the skin resistance Will cause problems such as deterioration. Therefore, the coiling temperature is 700 ° C or lower, preferably 500 to 600 ° C.

【0025】・冷間圧延 以上の熱間圧延を終えたあとに、常法により酸洗を行
い、冷間圧延を行う。この冷間圧延は、圧下率が80%未
満では焼鈍工程で結晶粒が異常に粗大化したり、混粒化
し、材質が劣化するほか、深絞り性に有効な集合組織を
発達させることが困難になるので、圧下率は80%以上と
するのが望ましい。
Cold Rolling After the above hot rolling is finished, pickling is carried out by a conventional method to carry out cold rolling. In this cold rolling, if the rolling reduction is less than 80%, the crystal grains become abnormally coarse or mixed in the annealing process, the material deteriorates, and it becomes difficult to develop a texture effective for deep drawability. Therefore, it is desirable that the rolling reduction is 80% or more.

【0026】・連続焼鈍 連続焼鈍には、再結晶温度以上の温度が必要であるが、
焼鈍温度が高すぎると結晶粒が異常に粗大化し、加工後
の肌荒れが大きくなるほか、缶用鋼板などの薄物材では
炉内破断やバックリング発生の危険が大きくなるために
750 ℃を上限とすることが望ましい。
Continuous annealing The continuous annealing requires a temperature higher than the recrystallization temperature.
If the annealing temperature is too high, the crystal grains will become abnormally coarse and the surface roughness after processing will increase, and in thin materials such as steel plates for cans, the risk of fracture in the furnace and buckling will increase.
It is desirable to set the upper limit to 750 ° C.

【0027】・調質圧延 調質圧延の圧下率は、鋼板の調質度により随時決定され
るが、ストレッチャーストレインの発生を防止するため
には0.5 %以上の圧下率で圧延する必要がある。一方、
10%を超える圧下率で圧延すると鋼板が過度に硬質化し
て、加工性が低下するために上限を10%とする。
Temper rolling The reduction ratio of temper rolling is determined by the temper ratio of the steel sheet at any time, but in order to prevent the occurrence of stretcher strain, it is necessary to roll at a rolling ratio of 0.5% or more. . on the other hand,
If rolled at a rolling reduction of more than 10%, the steel sheet excessively hardens and the workability deteriorates, so the upper limit is made 10%.

【0028】・鋼板の組織 以上の方法により製造された鋼板の結晶粒は、粒の大き
さが鋼板表面から板厚の1/10までの表層域で、AST
M粒度No.10 以上の等軸結晶粒(結晶粒軸比1.5 以下)
組織とし、この表層を除く鋼板内層で、ASTM粒度N
o.9以下の粗大な等軸結晶粒(結晶粒軸比1.5 以下)組
織とすることができる。ここに、軸比とは長軸方向長さ
/短軸方向長さをさすものとする。結晶粒軸比は、Δr
を小さくし、ノンイヤリング性をよくするうえから、鋼
板の表面から中央部に至る全板厚にわたって1.5 以下で
ある必要がある。また、表層は加工後の耐肌荒れ性を良
くするために粒度No.10 以上あり、かつ加工性を確保す
るためには極表層(表面から板厚の1/10まで)のみが
微細であり、内層は粒度No.9以下、好ましくはNo.8.5以
下の粗大粒である必要がある。なお、上記の各領域にお
ける結晶粒の大きさ(粒度No. )および軸比は、いずれ
もそれぞれの領域における平均値で表すものとする.
Structure of Steel Sheet Crystal grains of the steel sheet produced by the above method are AST in the surface area from the surface of the steel sheet to 1/10 of the sheet thickness.
Equiaxed crystal grains with M grain size No. 10 or more (crystal grain axis ratio 1.5 or less)
As a structure, the inner layer of the steel plate excluding this surface layer, ASTM grain size N
Coarse equiaxed crystal grains of o.9 or less (crystal grain axis ratio of 1.5 or less) can be formed. Here, the axial ratio refers to the length in the major axis direction / the length in the minor axis direction. Grain axis ratio is Δr
In order to reduce the thickness and improve the non-earring property, the total thickness from the surface of the steel sheet to the central portion must be 1.5 or less. In addition, the surface layer has a grain size of No. 10 or more to improve the resistance to roughening after processing, and only the extreme surface layer (from the surface to 1/10 of the plate thickness) is fine to ensure processability, The inner layer needs to be coarse grains having a grain size of No. 9 or less, preferably No. 8.5 or less. The crystal grain size (grain size No.) and axial ratio in each of the above regions shall be expressed as the average value in each region.

【0029】[0029]

【実施例】表1に示す本発明に適合する成分およびC量
が本発明の範囲を外れる成分からなる溶鋼を連続鋳造し
て得たスラブを、表2に示す条件で、熱延、冷延、焼鈍
および調質圧延し、さらに25番目付で錫めっきして製品
とし、各種特性試験に供した。なお、粗圧延後のシート
バー厚みは40mmであり、これに超高圧デスケーリン
グを行った後の厚み方向の温度差は、鋼の熱伝達係数等
のデータをもとに伝熱計算により求めた。なお、熱伝達
係数等、計算に用いた値および温度計算値はオフライン
で実測した値との比較により、その妥当性を確認した。
また、冷延板の板厚は0.1 〜0.3 mmであった。
EXAMPLE A slab obtained by continuous casting of molten steel consisting of components compatible with the present invention shown in Table 1 and components having a C content outside the range of the present invention was subjected to hot rolling and cold rolling under the conditions shown in Table 2. Then, the product was annealed, temper-rolled, and then plated with tin in the 25th order to obtain a product, which was then subjected to various characteristic tests. The thickness of the sheet bar after rough rolling was 40 mm, and the temperature difference in the thickness direction after performing ultrahigh pressure descaling on this was determined by heat transfer calculation based on data such as the heat transfer coefficient of steel. . The validity of the values used for calculation such as heat transfer coefficient and the calculated temperature values were confirmed by comparison with the values measured off-line.
The thickness of the cold rolled sheet was 0.1 to 0.3 mm.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】試験方法を次に示す。 (A)金属組織 製品断面を研磨、エッチング後、光学顕微鏡観察によ
り、ASTM粒度No. と結晶粒の軸比を、最表面から板
厚の1/10位置までの領域およびこれ以外の領域に分け
測定し、各領域におけるそれぞれの平均値を求めた。 (B)機械的性質 JIS5号試験片を用いて製品の引張試験を実施した。
なお、r値およびr値の異方性は、それぞれ次式によ
り、平均r値およびΔrとして求めた。 平均r値=(r0 +r90+2r45)/4 Δr=(r0 +r90−2r45)/2 ただし、 r0 :圧延方向のr値 r90:圧延方向と90度の傾きをなす方向のr値 r45:圧延方向と45度の傾きをなす方向のr値 (C)肌荒れ性 JIS5号の試験片に20%引張歪みを付与し、鋼板の表
面粗度を粗度計にて測定した。なお、引張前の製品表面
粗度Raは全て0.21μmであった。また、本発明者らの実
験により、20%引張テスト後の表面粗度Raが0.65μm以
下であればプレス加工後の肌荒れによる問題は発生しな
いことが確認されている。 (D)円筒加工テスト 深絞り加工時の加工性、肌荒れ性、イヤリング性を調査
するために円筒加工テストを行なった。直径100 mmの
円形ブランクを絞り比2.2 でカップ状に成形し、加工時
の割れ発生状態、肌荒れ状態およびイヤリング発生状態
を、○;発生なしまたは微小、△;軽度〜中度、×;実
用不可の3段階で評価した。
The test method is shown below. (A) Metallographic structure After polishing and etching the product cross section, by optical microscope observation, the ASTM grain size No. and crystal grain axial ratio are divided into the region from the outermost surface to the 1/10 position of the plate thickness and other regions. It measured and calculated | required each average value in each area | region. (B) Mechanical Properties A tensile test of the product was carried out using a JIS No. 5 test piece.
The r-value and the anisotropy of the r-value were calculated as the average r-value and Δr by the following equations, respectively. Average r value = (r 0 + r 90 + 2r 45 ) / 4 Δr = (r 0 + r 90 −2r 45 ) / 2 where r 0 is the r value in the rolling direction r 90 is the direction forming a 90 ° inclination with the rolling direction R value r 45 : r value in the direction that forms an inclination of 45 degrees with the rolling direction (C) Surface roughness Roughness is measured by applying 20% tensile strain to the JIS No. 5 test piece. did. In addition, all the product surface roughness Ra before the tension was 0.21 μm. Further, it has been confirmed by the experiments by the present inventors that if the surface roughness Ra after the 20% tensile test is 0.65 μm or less, the problem due to the rough surface after pressing does not occur. (D) Cylindrical processing test A cylindrical processing test was conducted in order to investigate the workability during deep drawing, surface roughness, and earring properties. A circular blank with a diameter of 100 mm is formed into a cup shape with a drawing ratio of 2.2, and the cracking state, skin roughening state and earring generation state during processing are indicated by ○: no or minute, △: mild to moderate, ×: not practical It was evaluated in three stages.

【0033】以上の試験結果を表3に示す。表3から、
本発明に従う鋼板は、伸びに優れ、プレス加工性、耐肌
荒れ性、ノンイヤリング性の全てを満足し良好であるの
に対し、比較例はいずれかの特性に劣っていることがわ
かる。
Table 3 shows the above test results. From Table 3,
It can be seen that the steel sheet according to the present invention is excellent in elongation and satisfies all of press workability, surface roughening resistance and non-earring property, while the comparative example is inferior to any of the properties.

【0034】[0034]

【表3】 [Table 3]

【0035】[0035]

【発明の効果】以上説明したように、本発明によれば、
プレス加工性、耐肌荒れ性、ノンイヤリング性ともに優
れた缶用鋼板が製造可能となり、この発明による鋼板
は、特に深絞り加工を施す食缶および飲料缶等の素材と
して好適に使用しうる。また、本発明による鋼板は、各
種金属缶のみならず、乾電池内装缶、各種家電・電気部
品および自動車部品等の幅広い範囲で活用されることが
期待される。
As described above, according to the present invention,
It becomes possible to manufacture a steel sheet for cans which is excellent in press workability, resistance to surface roughening, and non-earring resistance, and the steel sheet according to the present invention can be suitably used as a material for food cans and beverage cans to which deep drawing is particularly applied. In addition, the steel sheet according to the present invention is expected to be utilized in a wide range of various metal cans, as well as internal cans for dry batteries, various home appliances / electric parts, automobile parts, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】結晶粒度No. と伸びの関係を示す図である。FIG. 1 is a diagram showing the relationship between grain size No. and elongation.

【図2】結晶粒の軸比とΔrの関係を示す図である。FIG. 2 is a diagram showing the relationship between the crystal grain axial ratio and Δr.

【図3】結晶粒度No. と肌荒れ性の関係を示す図であ
る。
FIG. 3 is a diagram showing a relationship between grain size No. and skin roughness.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. Kawasaki Steel Corporation Chiba Works

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】C:0.0010〜0.0150wt%、 Si:0.10wt%以下、 Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.015 〜0.15wt%、 N:0.02wt%以下 を含有し、残部はFeおよび不可避的不純物からなり、鋼
板の表面から板厚の1/10までの表層域における結晶粒
は、ASTM粒度No.10 以上かつ結晶粒軸比1.5以下で
ある微細な等軸結晶粒組織からなり、この表層を除く鋼
板内層は、ASTM粒度No.9以下かつ結晶粒軸比1.5 以
下である粗大な等軸結晶粒組織からなることを特徴とす
る加工性、ノンイヤリング性および耐肌荒れ性に優れる
缶用鋼板。
1. C: 0.0010 to 0.0150 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.02 wt% or less, the balance consisting of Fe and unavoidable impurities, and the crystal grains in the surface layer region from the surface of the steel plate to 1/10 of the plate thickness are ASTM grain size No. 10 or more and crystal grain axial ratio. It is characterized by having a fine equiaxed grain structure of 1.5 or less, and the inner layer of the steel sheet excluding this surface layer is composed of a coarse equiaxed grain structure of ASTM grain size No. 9 or less and a grain axis ratio of 1.5 or less. A steel plate for cans that has excellent workability, non-earring properties, and resistance to rough skin.
【請求項2】C:0.0010〜0.0150wt%、 Si:0.10wt%以下、 Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.015 〜0.15wt%、 N:0.02wt%以下 を含み、かつ Nb:0.020 wt%以下、 Ti:0.020 wt%以下 から選ばれるいずれか1種または2種を含有し、残部は
Feおよび不可避的不純物からなり、鋼板の表面から板厚
の1/10までの表層域における結晶粒は、ASTM粒度
No.10 以上かつ結晶粒軸比1.5 以下である微細な等軸結
晶粒組織からなり、この表層を除く鋼板内層は、AST
M粒度No.9以下かつ結晶粒軸比1.5 以下である粗大な等
軸結晶粒組織からなることを特徴とする加工性、ノンイ
ヤリング性および耐肌荒れ性に優れる缶用鋼板。
2. C: 0.0010 to 0.0150 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.02 wt% or less, Nb: 0.020 wt% or less, Ti: 0.020 wt% or less, and the balance is
Crystal grains consisting of Fe and inevitable impurities in the surface layer area from the surface of the steel plate to 1/10 of the plate thickness are ASTM grain size.
It consists of a fine equiaxed grain structure with a grain axis ratio of No.10 or more and a grain axis ratio of 1.5 or less.
A steel sheet for cans having excellent workability, non-earring property, and resistance to surface roughening, which is characterized by having a coarse equiaxed grain structure with an M grain size of 9 or less and a grain axis ratio of 1.5 or less.
【請求項3】C:0.0010〜0.0150wt%、 Si:0.10wt%以下、 Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.015 〜0.15wt%、 N:0.02wt%以下 を含み、かつ B:0.0020wt%以下 を含有し、残部はFeおよび不可避的不純物からなり、鋼
板の表面から板厚の1/10までの表層域における結晶粒
は、ASTM粒度No.10 以上かつ結晶粒軸比1.5以下で
ある微細な等軸結晶粒組織からなり、この表層を除く鋼
板内層は、ASTM粒度No.9以下かつ結晶粒軸比1.5 以
下である粗大な等軸結晶粒組織からなることを特徴とす
る加工性、ノンイヤリング性および耐肌荒れ性に優れる
缶用鋼板。
3. C: 0.0010 to 0.0150 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.02 wt% or less, B: 0.0020 wt% or less, the balance Fe and unavoidable impurities, and the crystal grains in the surface region from the surface of the steel plate to 1/10 of the plate thickness are ASTM It consists of a fine equiaxed grain structure with grain size No.10 or more and grain axis ratio of 1.5 or less. The inner layer of the steel sheet excluding this surface layer is coarse grained with ASTM grain size No.9 or less and grain grain axis ratio of 1.5 or less. A steel sheet for cans, which is excellent in workability, non-earring property, and resistance to roughening, which is characterized by having an axial grain structure.
【請求項4】C:0.0010〜0.0150wt%、 Si:0.10wt%以下、 Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.015 〜0.15wt%、 N:0.02wt%以下 を含み、かつ Nb:0.020 wt%以下、 Ti:0.020 wt%以下 から選ばれるいずれか1種または2種を含有し、さらに B:0.0020wt%以下 を含有し、残部はFeおよび不可避的不純物からなり、鋼
板の表面から板厚の1/10までの表層域における結晶粒
は、ASTM粒度No.10 以上かつ結晶粒軸比1.5以下で
ある微細な等軸結晶粒組織からなり、この表層を除く鋼
板内層は、ASTM粒度No.9以下かつ結晶粒軸比1.5 以
下である粗大な等軸結晶粒組織からなることを特徴とす
る加工性、ノンイヤリング性および耐肌荒れ性に優れる
缶用鋼板。
4. C: 0.0010 to 0.0150 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: 0.02 wt% or less, Nb: 0.020 wt% or less, Ti: 0.020 wt% or less, and 1 or 2 selected, and B: 0.0020 wt% or less, and the balance is The crystal grains consisting of Fe and unavoidable impurities in the surface layer area from the surface of the steel sheet to 1/10 of the sheet thickness have a fine equiaxed crystal grain structure with ASTM grain size No. 10 or more and grain axis ratio 1.5 or less. The inner layer of the steel sheet, excluding this surface layer, is characterized by a coarse equiaxed grain structure with ASTM grain size No. 9 or less and grain axis ratio of 1.5 or less. Excellent steel sheet for cans.
【請求項5】C:0.0010〜0.0150wt%、 Si:0.10wt%以下、 Mn:0.1 〜0.6 wt%、 P:0.02wt%以下、 S:0.02wt%以下、 Al:0.015 〜0.15wt%、 N:0.02wt%以下 を含有する鋼スラブを、平均温度がAc3点以上になるよ
うに加熱し、(Ar3点+150 ℃)〜(Ar3点+50℃)の
温度範囲で粗圧延を終了し、得られたシートバーに、衝
突圧が25kgf/cm2 以上かつ液量密度が0.002 リットル/c
m2以上を満たす条件の超高圧デスケーリングを施し、シ
ートバーの表面と厚み方向中心との温度差を400 ℃以上
とし、引き続き、5秒以内に仕上げ圧延を開始し、Ar3
点以上で終了し、仕上げ圧延終了後2秒以内に50℃/se
c 以上で冷却し、700 ℃以下で巻き取り、常法により酸
洗し、冷間圧延し、さらに、再結晶温度以上で連続焼鈍
し、圧下率0.5 〜10%で調質圧延することを特徴とする
請求項1〜4のいずれか1項に記載の缶用鋼板の製造方
法。
5. C: 0.0010 to 0.0150 wt%, Si: 0.10 wt% or less, Mn: 0.1 to 0.6 wt%, P: 0.02 wt% or less, S: 0.02 wt% or less, Al: 0.015 to 0.15 wt%, N: a steel slab containing less 0.02 wt%, the average temperature is heated so that the above three points Ac, ends the rough rolling in the temperature range of (Ar 3 point +150 ℃) ~ (Ar 3 point + 50 ° C.) The resulting sheet bar had an impact pressure of 25 kgf / cm 2 or more and a liquid volume density of 0.002 liter / c.
subjected to ultra-high pressure descaling conditions satisfying m 2 or more, the temperature difference between the surface and the thickness direction center of the sheet bar and 400 ° C. or higher, subsequently, finishing starts rolling within 5 seconds, Ar 3
It finishes above the point, and 50 ℃ / se within 2 seconds after finishing rolling.
Characterized by cooling above c, winding at 700 ℃ or below, pickling by the conventional method, cold rolling, continuous annealing above the recrystallization temperature, and temper rolling at a rolling reduction of 0.5 to 10%. The method for manufacturing a steel sheet for cans according to any one of claims 1 to 4.
JP12670296A 1996-05-22 1996-05-22 Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production Pending JPH09310150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12670296A JPH09310150A (en) 1996-05-22 1996-05-22 Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12670296A JPH09310150A (en) 1996-05-22 1996-05-22 Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production

Publications (1)

Publication Number Publication Date
JPH09310150A true JPH09310150A (en) 1997-12-02

Family

ID=14941743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12670296A Pending JPH09310150A (en) 1996-05-22 1996-05-22 Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production

Country Status (1)

Country Link
JP (1) JPH09310150A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307350A (en) * 2004-03-25 2005-11-04 Jfe Steel Kk Steel sheet for flexible can, and its production method
WO2006100796A1 (en) * 2005-03-24 2006-09-28 Jfe Steel Corporation Flexible sheet steel for can and process for producing the same
WO2007111188A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation Cold-rolled steel sheet, process for producing the same, and cell and process for producing the same
JP2009149946A (en) * 2007-12-21 2009-07-09 Jfe Steel Corp Hot-rolled base plate for steel sheet for can
JP2010150580A (en) * 2008-12-24 2010-07-08 Jfe Steel Corp Steel sheet and method of manufacturing the same
EP2309013A1 (en) * 2008-07-22 2011-04-13 JFE Steel Corporation Cold-rolled steel sheet, process for production of same, and backlight chassis
JP2012021230A (en) * 2004-03-25 2012-02-02 Jfe Steel Corp Steel sheet for soft can and method for manufacturing the same
JP2015127063A (en) * 2013-11-26 2015-07-09 国立大学法人大阪大学 Reinforcement method for weld zone
WO2016157760A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
WO2016157761A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
WO2017010064A1 (en) * 2015-07-10 2017-01-19 Jfeスチール株式会社 Cold rolled steel sheet and method for producing same

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307350A (en) * 2004-03-25 2005-11-04 Jfe Steel Kk Steel sheet for flexible can, and its production method
JP2012021230A (en) * 2004-03-25 2012-02-02 Jfe Steel Corp Steel sheet for soft can and method for manufacturing the same
WO2006100796A1 (en) * 2005-03-24 2006-09-28 Jfe Steel Corporation Flexible sheet steel for can and process for producing the same
EP2806046A1 (en) 2006-03-16 2014-11-26 JFE Steel Corporation Cold-rolled steel sheet, method of producing the same, battery, and method of producing the same
WO2007111188A1 (en) 2006-03-16 2007-10-04 Jfe Steel Corporation Cold-rolled steel sheet, process for producing the same, and cell and process for producing the same
JP2008179877A (en) * 2006-03-16 2008-08-07 Jfe Steel Kk Cold rolled steel sheet with excellent non-earing property, and its manufacturing method
US8388770B2 (en) 2006-03-16 2013-03-05 Jfe Steel Corporation Cold-rolled steel sheet, method of producing the same, battery, and method of producing the same
JP2009149946A (en) * 2007-12-21 2009-07-09 Jfe Steel Corp Hot-rolled base plate for steel sheet for can
EP2309013A1 (en) * 2008-07-22 2011-04-13 JFE Steel Corporation Cold-rolled steel sheet, process for production of same, and backlight chassis
EP2309013A4 (en) * 2008-07-22 2014-01-15 Jfe Steel Corp Cold-rolled steel sheet, process for production of same, and backlight chassis
JP2010150580A (en) * 2008-12-24 2010-07-08 Jfe Steel Corp Steel sheet and method of manufacturing the same
JP2015127063A (en) * 2013-11-26 2015-07-09 国立大学法人大阪大学 Reinforcement method for weld zone
WO2016157760A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
WO2016157761A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
JPWO2016157760A1 (en) * 2015-03-27 2017-07-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JPWO2016157761A1 (en) * 2015-03-27 2017-07-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
CN107406944A (en) * 2015-03-27 2017-11-28 杰富意钢铁株式会社 Steel plate for tanks and its manufacture method
CN107429348A (en) * 2015-03-27 2017-12-01 杰富意钢铁株式会社 Steel plate for tanks and its manufacture method
CN107406944B (en) * 2015-03-27 2019-05-10 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
WO2017010064A1 (en) * 2015-07-10 2017-01-19 Jfeスチール株式会社 Cold rolled steel sheet and method for producing same
CN107849654A (en) * 2015-07-10 2018-03-27 杰富意钢铁株式会社 Cold-rolled steel sheet and its manufacture method

Similar Documents

Publication Publication Date Title
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
US5853503A (en) Hot rolled steel sheets and method of producing the same
WO2005103316A1 (en) Steel sheet for can and method for production thereof
JP2005336610A (en) High strength and high ductility steel sheet for can and method for production thereof
JPH0123530B2 (en)
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
EP1394276B1 (en) High tensile hot-rolled steel sheet excellent in resistance to scuff on mold and in fatigue characteristics
JP3449003B2 (en) Steel plate for cans and manufacturing method thereof
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3390256B2 (en) High-strength and high-workability steel sheet for cans with excellent bake hardenability and aging resistance, and method for producing the same
JP2000054070A (en) Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture
JP3551878B2 (en) High-ductility, high-hole-expansion high-tensile steel sheet and method for producing the same
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP2001207244A (en) Cold rolled ferritic stainless steel sheet excellent in ductility, workability and ridging resistance, and its manufacturing method
JP3516747B2 (en) Manufacturing method of cold-rolled steel sheet for non-aging deep drawing at room temperature with excellent material uniformity and surface quality in the coil longitudinal direction
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JPH093547A (en) Production of high strength steel sheet for can
JPH11222647A (en) Original sheet for surface treated steel sheet excellent in aging resistance and small in generating rate of earing and its production
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP2002088446A (en) Steel sheet for forming outer cylinder of battery having excellent anisotropy and its production method
JPH0967648A (en) Hot rolled steel sheet and its production
KR102484992B1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing the same
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability