JP3257390B2 - Method for producing two-piece steel sheet with small in-plane anisotropy - Google Patents
Method for producing two-piece steel sheet with small in-plane anisotropyInfo
- Publication number
- JP3257390B2 JP3257390B2 JP05786496A JP5786496A JP3257390B2 JP 3257390 B2 JP3257390 B2 JP 3257390B2 JP 05786496 A JP05786496 A JP 05786496A JP 5786496 A JP5786496 A JP 5786496A JP 3257390 B2 JP3257390 B2 JP 3257390B2
- Authority
- JP
- Japan
- Prior art keywords
- plane anisotropy
- less
- thickness
- steel
- hot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
【0001】[0001]
【発明の属する技術分野】本発明は、面内異方性の小さ
い2ピース缶用鋼板の製造方法に関する。The present invention relates to a method for producing a two-piece steel sheet having a small in-plane anisotropy.
【0002】[0002]
【従来の技術】鋼板表面に錫めっきを施した錫めっき鋼
板あるいは電解クロム酸処理を施したティンフリースチ
ール(TFS)のような缶用鋼板は食缶や飲料缶に多用
されている。これらの食缶や飲料缶は、その製缶方法の
違いから3ピース缶と2ピース缶に分類される。2. Description of the Related Art Steel plates for cans such as tin-plated steel plates having a tin-plated surface or tin-free steel (TFS) having been subjected to electrolytic chromic acid treatment are frequently used in food cans and beverage cans. These cans and beverage cans are classified into three-piece cans and two-piece cans depending on the method of making the cans.
【0003】近年、飲料缶等を中心として、缶体軽量
化、製缶時の工程省略、素材および製造コストの低減の
観点から、3ピース缶から2ピース缶への移行、および
缶体の薄肉化が進められている。In recent years, from the viewpoints of weight reduction of can bodies, omission of steps in can manufacturing, and reduction of materials and manufacturing costs, mainly for beverage cans and the like, the transition from three-piece cans to two-piece cans and thinner can bodies have been carried out. Is being promoted.
【0004】食缶、飲料缶用の2ピース缶には、絞り−
再絞り加工により製缶されるDRD缶(Drawn and redr
awn can )、缶胴部の薄肉化を伴う多段の絞り加工によ
り製缶されるDTR缶(Drawn-thin-redrawn can)、お
よび絞り加工後にしごき加工が施されるDI缶(Drawn
and wall ironed can )等があるが、いずれの場合も、
その製缶時に、円盤状のブランク板から絞り加工により
カップ状の缶体を成形する、あるいはカップ状の缶体か
ら再絞り加工により、さらに径が小さく深さの深いカッ
プ状の缶体を成形する工程を含んでいる。[0004] In two-piece cans for food and beverage cans, squeezing is used.
DRD cans (Drawn and redr)
awn can), a DTR can (Drawn-thin-redrawn can) made by multi-stage drawing with thinning of the can body, and a DI can (Drawn) subjected to ironing after drawing.
and wall ironed can), but in each case,
At the time of can making, a cup-shaped can body is formed by drawing from a disc-shaped blank plate, or a cup-shaped can body with a smaller diameter and a deeper depth is formed by re-drawing from a cup-shaped can body. Including the step of:
【0005】このような2ピース缶の製缶の際の絞り加
工時に、鋼板の加工性の面内異方性に起因して、しばし
ば缶端部の高さ、あるいはフランジ部の幅が円周方向に
沿って不均一となる、いわゆる「耳」が発生する。この
耳は缶端部のネッキング加工前にトリムし除去される
が、耳が大きい場合にはトリム代が大きくなり、材料歩
留まりを低下させる。[0005] During drawing in such a two-piece can making process, the height of the can end or the width of the flange is often reduced due to the in-plane anisotropy of the workability of the steel sheet. A so-called "ear" occurs that is non-uniform along the direction. These ears are trimmed and removed before necking of the end of the can. However, if the ears are large, the trim margin becomes large and the material yield decreases.
【0006】さらに、耳は円周方向に沿った板厚分布の
変動をもたらし、後工程のネッキング加工の再のネック
しわ発生の要因となるのみならず、DI加工時にパンチ
から缶体を抜き取る際のパンチ抜け不良の発生原因にも
なり、材料歩留まりの低下、品質の低下をもたらす。Further, the ears cause fluctuations in the thickness distribution along the circumferential direction, which not only causes a neck wrinkle in the necking process in the subsequent process, but also causes the can body to be removed from the punch during DI processing. , Which may cause a punch-out defect, thereby lowering the material yield and lowering the quality.
【0007】このようなことから、2ピース缶用鋼板に
対しては、製缶時の耳発生の小さい、すなわち面内異方
性の小さい鋼板が求められている。特に、DI缶、DT
R缶用鋼板に対しては、近年の缶体軽量化、製造コスト
低減の観点から、薄ゲージで、しかも材料歩留まりの向
上が可能な面内異方性が一段と小さい鋼板が強く望まれ
るようになってきている。[0007] For these reasons, there is a demand for a steel plate for a two-piece can that has little ears during can-making, that is, a small in-plane anisotropy. In particular, DI can, DT
As for steel plates for R cans, from the viewpoint of weight reduction of can bodies and reduction of manufacturing cost in recent years, steel plates with thin gauges and further small in-plane anisotropy that can improve material yield have been strongly desired. It has become to.
【0008】面内異方性の小さい2ピース缶用鋼板の製
造方法として、従来いくつかの技術が提案されている。
例えば、特開平2−141535号公報には、C:0.
010〜0.040%の低炭素鋼の熱延仕上温度をAr
3 変態点未満とする技術が提案されており、また特開平
5−311245号公報には低炭素アルミキルド鋼およ
び極低炭素鋼を2回圧延2回焼鈍する技術が提案されて
いる。Several techniques have been proposed as methods for producing a two-piece steel sheet having a small in-plane anisotropy.
For example, JP-A-2-141535 discloses that C: 0.
The hot rolling finish temperature of low carbon steel of 100 to 0.040% is Ar
A technique for reducing the temperature to less than 3 transformation points has been proposed, and Japanese Patent Application Laid-Open No. 5-31245 has proposed a technique for rolling a low-carbon aluminum-killed steel and an ultra-low-carbon steel twice by rolling twice.
【0009】しかし、これらの技術を用いても、最近の
2ピース缶用鋼板に求められる耳発生抑制に対する厳し
い要求を満足させることは難しく、さらに改善を図る必
要がある。特に、後者の技術では、従来技術に比較して
面内異方性は低減するが、冷間圧延、焼鈍をそれぞれ2
回ずつ行う必要があり、鋼板の製造コストが高くなると
いう問題点がある。However, even with the use of these techniques, it is difficult to satisfy the strict requirements for the generation of ears recently required for steel sheets for two-piece cans, and further improvements need to be made. In particular, in the latter technique, the in-plane anisotropy is reduced as compared with the conventional technique, but cold rolling and annealing are each performed by 2 times.
There is a problem in that it is necessary to perform the process every time, and the manufacturing cost of the steel plate increases.
【0010】また、特開平4−337049号公報、特
開平5−247669号公報、特開平7−62486号
公報等には缶用鋼板にBを添加する技術が開示されてい
る。これらはいずれもミクロ組織をフェライトとマルテ
ンサイト、ベイナイトまたはパーライトとからなる二相
組織とすること要件とし、そのため、C含有量を高く
し、かつ焼鈍温度を二相域すなわちAc1 点以上の高温
にする必要がある。板厚0.23mm以下の極薄缶用の
鋼板の製造にあたっては、このような高温焼鈍はCAL
通板性を著しく劣化させ、生産性の低下、すなわち製造
コストの増加をもたらすという問題点を有している。ま
た、二相組織であるがゆえにフェライト単相組織に比
べ、根本的に加工性および加工性の均一性が劣る。Japanese Patent Application Laid-Open Nos. 4-337049, 5-247669, and 7-62486 disclose techniques for adding B to steel plates for cans. All of these require that the microstructure be a two-phase structure composed of ferrite and martensite, bainite, or pearlite. Therefore, the C content is increased, and the annealing temperature is increased in the two-phase region, that is, at a high temperature of one or more Ac. Need to be In the production of steel sheets for ultra-thin cans having a thickness of 0.23 mm or less, such high-temperature annealing is performed using CAL.
There is a problem that the threadability is remarkably deteriorated, and the productivity is reduced, that is, the production cost is increased. Further, due to the two-phase structure, workability and workability uniformity are fundamentally inferior to ferrite single-phase structure.
【0011】さらに、特公昭55−34851号公報、
特開平6−306534号公報にもBを添加する技術が
開示されているが、これらの技術は単に軟質化を目的と
してBを添加したにすぎず、面内異方性については何等
考慮されておらず、これらの技術を用いても面内異方性
を充分に小さくすることはできない。Further, Japanese Patent Publication No. 55-34851,
Japanese Patent Application Laid-Open No. 6-306534 also discloses techniques for adding B, but these techniques merely add B for the purpose of softening, and any consideration is given to in-plane anisotropy. However, even if these techniques are used, the in-plane anisotropy cannot be sufficiently reduced.
【0012】[0012]
【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、最近の要請を充分満たし
得る面内異方性の小さい2ピース缶用鋼板を、生産性を
低下させずに製造する方法を提供することを目的とす
る。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed to provide a two-piece can steel sheet having a small in-plane anisotropy which can sufficiently satisfy recent demands. It is an object of the present invention to provide a method for manufacturing without using the same.
【0013】[0013]
【課題を解決するための手段】本発明者らは、面内異方
性の小さい2ピース缶用鋼板を製造する方法について鋭
意検討を重ねた結果、鋼板の組成を厳密に調整した低炭
素鋼にBを添加し、かつ製造条件を最適化することによ
り、経済的かつ効率的に面内異方性を低減できることを
見出した。The inventors of the present invention have conducted intensive studies on a method for producing a two-piece steel sheet for a two-piece can having a small in-plane anisotropy. It has been found that the in-plane anisotropy can be reduced economically and efficiently by adding B to the steel and optimizing the production conditions.
【0014】本発明はこのような知見に基づいてなされ
たものであって、C:0.015〜0.06wt%、S
i:0.1wt%以下、Mn:0.1〜0.6wt%、
P:0.02wt%以下、S:0.02wt%以下、s
ol.Al:0.02〜0.1wt%、N:0.003
5wt%、O:0.005wt%以下、B:0.000
2〜0.002wt%を含有し、B≧−0.02C+
0.0010を満足する鋼組成を有するスラブを、仕上
温度がAr3 以上で、かつスラブ厚と熱延仕上厚との比
が120以上となるように熱間圧延し、酸洗後、85〜
90%の圧下率で冷間圧延した後、再結晶温度以上、7
50℃以下の温度で連続焼鈍し、さらに伸長率0.5%
以上3%未満の調質圧延を行い、板厚0.23mm以下
とすることを特徴とする面内異方性の小さい2ピース缶
用鋼板の製造方法を提供するものである。The present invention has been made based on such findings, and has a C content of 0.015 to 0.06 wt%,
i: 0.1 wt% or less, Mn: 0.1 to 0.6 wt%,
P: 0.02 wt% or less, S: 0.02 wt% or less, s
ol. Al: 0.02 to 0.1 wt%, N: 0.003
5 wt%, O: 0.005 wt% or less, B: 0.000
2 to 0.002 wt%, B ≧ −0.02C +
A slab having a steel composition satisfying 0.0010 is hot-rolled so that the finishing temperature is Ar 3 or more, and the ratio of the slab thickness to the hot-rolled finished thickness is 120 or more.
After cold rolling at a rolling reduction of 90%, the recrystallization temperature is higher than 7%.
Continuous annealing at a temperature of 50 ° C or less, and an elongation of 0.5%
An object of the present invention is to provide a method for producing a two-piece can steel sheet having a small in-plane anisotropy, wherein temper rolling of less than 3% is performed to a sheet thickness of 0.23 mm or less.
【0015】[0015]
【発明の実施の形態】以下、本発明について具体的に説
明する。まず本発明を完成するに至った基本的な考え方
および実験結果について説明する。BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described specifically. First, the basic concept and the experimental results that led to the completion of the present invention will be described.
【0016】本発明者らは、面内異方性に対するB添加
の効果について種々検討を行った。まず、熱間圧延条件
の影響に着目した。C:0.02〜0.04wt%、
N:0.0020〜0.0025wt%、sol.A
l:0.04〜0.08wt%、O:0.0015〜
0.0040wt%とし、Bを、無添加、0.0008
wt%、0.0012wt%の3種類とした鋼に対し
て、スラブ厚と熱延仕上厚との比を種々変化させ、冷圧
率87%で冷間圧延後、連続焼鈍、調質圧延し、イヤリ
ング率を評価した。ここで、イヤリング率は面内異方性
のパラメータとして用いた。イヤリング率は、絞り比
1.8で深絞り成形し、耳高さを測定し、耳の最大値と
最小値との差を耳の最小値で割った値を百分率で表し
た。その結果を図1に示す。The present inventors have conducted various studies on the effect of B addition on in-plane anisotropy. First, attention was paid to the effect of hot rolling conditions. C: 0.02 to 0.04 wt%,
N: 0.0020 to 0.0025 wt%, sol. A
l: 0.04 to 0.08 wt%, O: 0.0015 to
0.0040 wt%, B is not added, 0.0008
The ratio between the slab thickness and the hot-rolled finish thickness was changed variously for the three types of steel, wt% and 0.0012 wt%. After cold rolling at a cold pressure rate of 87%, continuous annealing and temper rolling were performed. And the earring rate were evaluated. Here, the earring rate was used as a parameter of in-plane anisotropy. The earring ratio was obtained by deep drawing at a drawing ratio of 1.8, measuring the height of the ear, and expressing the value obtained by dividing the difference between the maximum value and the minimum value of the ear by the minimum value of the ear in percentage. The result is shown in FIG.
【0017】B無添加鋼の場合、スラブ厚/熱延仕上厚
の値の増加により、わずかにイヤリング率が低下するが
その変化は小さい。一方、B添加鋼はB無添加鋼に比べ
てイヤリング率は小さくなり、特にスラブ厚/熱延仕上
厚の値が120以上になると急激にイヤリング率が小さ
くなり、B添加効果が顕著となることを見出した。In the case of B-free steel, an increase in the value of slab thickness / finished hot roll thickness slightly reduces the earring rate, but the change is small. On the other hand, the B-added steel has a smaller earring ratio than the B-free steel, and particularly when the value of slab thickness / finished hot-rolled thickness is 120 or more, the earring ratio is sharply reduced, and the B-added effect becomes remarkable. Was found.
【0018】この理由については現在のところ必ずしも
明らかではないが、スラブ厚/熱延仕上厚の値を増大さ
せると熱延板の結晶粒が細粒化し、オーステナイト粒界
にBが偏析しやすくなり、変態後のフェライト粒界にも
Bが偏析すること、その結果、熱延板のフェライト粒の
細粒化と粒界偏析Bの相乗効果により、冷間圧延、焼鈍
後の集合組織が変化し、面内異方性が低減したものと考
えられる。Although the reason for this is not always clear at present, increasing the value of slab thickness / finished hot roll thickness causes the grains of the hot rolled sheet to become finer, and B tends to segregate at the austenite grain boundaries. B is also segregated at the ferrite grain boundaries after transformation. As a result, the texture after cold rolling and annealing changes due to the synergistic effect of grain refinement of the ferrite grains of the hot rolled sheet and the grain boundary segregation B. It is considered that the in-plane anisotropy was reduced.
【0019】次に、冷間圧延条件、特に冷圧率に着目
し、B添加の効果について検討した。C:0.02〜
0.04wt%、N:0.0020〜0.0025wt
%、sol.Al:0.04〜0.08wt%、O:
0.0015〜0.0040wt%とし、Bを無添加、
およびB:0.0006〜0.0015wt%の範囲で
添加した鋼に対し、スラブ厚と熱延仕上厚との比を12
5として熱間圧延し、種々の冷圧率で冷間圧延後、連続
焼鈍、調質圧延し、イヤリング率を測定した。その結果
を図2に示す。Next, paying attention to the cold rolling conditions, particularly the cold pressure ratio, the effect of adding B was examined. C: 0.02-
0.04 wt%, N: 0.0020 to 0.0025 wt
%, Sol. Al: 0.04 to 0.08 wt%, O:
0.0015 to 0.0040 wt%, B is not added,
And B: The ratio of the slab thickness to the hot-rolled finished thickness was 12 with respect to the steel added in the range of 0.0006 to 0.0015 wt%.
After hot rolling at 5 and cold rolling at various cold pressure ratios, continuous annealing and temper rolling were performed, and the earring ratio was measured. The result is shown in FIG.
【0020】B無添加鋼では、冷圧率87%程度でイヤ
リング率が最小となるが、冷圧率依存性が強く、またバ
ラツキも大きい。これに対し、B添加鋼は冷圧率によら
ずB無添加鋼に比べイヤリング率が小さい。特に、冷圧
率85〜90%の範囲では安定してイヤリング率は小さ
く、またバラツキも小さい。In the case of B-free steel, the earring rate is minimized at a cooling pressure rate of about 87%, but the dependency on the cooling pressure rate is strong and the variation is large. On the other hand, the B-added steel has a smaller earring ratio than the B-free steel regardless of the cold pressure ratio. In particular, the earring rate is small and the variation is small in the range of the cooling pressure rate of 85 to 90%.
【0021】図3は、C,B量を種々変化させた鋼板を
溶製し、イヤリング率を測定した結果を示した図であ
る。スラブ厚と熱延仕上厚との比を122とし、冷圧率
は86.5%とした。同図から明らかなように、C:
0.015〜0.06wt%、B:0.0002〜0.
0020wt%でかつB≧−0.02C+0.0010
(%)の場合にイヤリング率3%以下となり、面内異方
性が小さくなることがわかる。FIG. 3 is a diagram showing the results of measuring the earring ratio by melting steel sheets with various C and B contents. The ratio of the slab thickness to the hot-rolled finish thickness was 122, and the cold-pressure ratio was 86.5%. As is apparent from FIG.
0.015-0.06 wt%, B: 0.0002-0.
0020 wt% and B ≧ −0.02C + 0.0010
In the case of (%), the earring ratio becomes 3% or less, and the in-plane anisotropy becomes small.
【0022】次に、本発明の組成について説明する。本
発明の2ピース缶用鋼板は、C:0.015〜0.06
wt%、Si:0.1wt%以下、Mn:0.1〜0.
6wt%、P:0.02wt%以下、S:0.02wt
%以下、sol.Al:0.02〜0.1wt%、N:
0.0035wt%、O:0.005wt%以下、B:
0.0002〜0.002wt%を含有し、B≧−0.
02C+0.0010を満足する。Next, the composition of the present invention will be described. The steel sheet for two-piece cans of the present invention has a C of 0.015 to 0.06.
wt%, Si: 0.1 wt% or less, Mn: 0.1-0.
6 wt%, P: 0.02 wt% or less, S: 0.02 wt
% Or less, sol. Al: 0.02 to 0.1 wt%, N:
0.0035 wt%, O: 0.005 wt% or less, B:
0.0002-0.002 wt%, and B ≧ −0.
02C + 0.0010 is satisfied.
【0023】C:Cは面内異方性を制御するために極め
て重要な元素である。Cが0.015wt%未満の場合
には、熱延板組織が粗粒化しやすくなるため、Bを添加
してスラブ厚/熱延仕上げ厚、冷圧率を制御しても、図
3に示したように面内異方性を低減することが困難とな
る。また、Mnを添加したとしても2ピース缶として必
要な強度を得ることが困難となる。一方、C含有量が
0.06wt%を超えると、フェライト粒内の固溶C
量、粒界に偏析するCの量および炭化物の量が増加する
ため、深絞り性が劣化するとともに、図3に示したよう
にB添加による効果が充分に発揮されず、面内異方性も
劣化する。したがって、C含有量を0.015〜0.0
6wt%の範囲とする。C: C is an extremely important element for controlling in-plane anisotropy. When C is less than 0.015 wt%, the structure of the hot-rolled sheet tends to be coarsened. Therefore, even if B is added to control the slab thickness / finished hot-rolled thickness and the cooling pressure ratio, it is shown in FIG. As described above, it becomes difficult to reduce in-plane anisotropy. Further, even if Mn is added, it becomes difficult to obtain the required strength as a two-piece can. On the other hand, if the C content exceeds 0.06% by weight, the solid solution C
Since the amount, the amount of C segregated at the grain boundaries, and the amount of carbide increase, the deep drawability deteriorates, and as shown in FIG. Also deteriorates. Therefore, the C content is 0.015 to 0.0
The range is 6 wt%.
【0024】Si:Siは、意図的に添加しない場合で
も不純物として鋼中に残留し、鋼板を脆化させ、耐食性
を劣化させる元素である。またTFSの下地鋼板として
使用する場合には金属Crの電析に対しても悪影響を与
えるため、その含有量は少ないほど望ましい。本発明で
はこのような悪影響を回避する観点から、Si含有量を
0.1wt%以下とする。Si: Si is an element that remains in steel as an impurity even if not intentionally added, embrittles the steel sheet and deteriorates corrosion resistance. Further, when used as a base steel sheet for TFS, it also has an adverse effect on the electrodeposition of metallic Cr, so the smaller the content, the better. In the present invention, from the viewpoint of avoiding such adverse effects, the Si content is set to 0.1 wt% or less.
【0025】Mn:Mnは鋼中SをMnSとして析出さ
せることによってスラブの熱間割れを防止するととも
に、固溶強化元素としてCによる強化を補う役割を果た
す。Sを析出固定するためには0.1wt%以上の添加
が必要であるが、0.6wt%を超えると集合組織形成
に悪影響を与え面内異方性の増大をもたらす。したがっ
て、Mn含有量を0.1〜0.6wt%の範囲とする。Mn: Mn serves to prevent hot cracking of the slab by precipitating S in the steel as MnS, and to supplement the strengthening by C as a solid solution strengthening element. In order to precipitate and fix S, it is necessary to add 0.1 wt% or more. However, if it exceeds 0.6 wt%, the formation of texture is adversely affected and in-plane anisotropy is increased. Therefore, the Mn content is set in the range of 0.1 to 0.6 wt%.
【0026】P:PもMnと同様に置換型固溶元素であ
り、Mn以上に大きな強化能を有し鋼板の高強度化を図
るためには有効な元素であるが、同時にフェライト粒界
に偏析して粒界を脆化させる元素であり、その含有量は
極力少ないほうが好ましい。また、Pの積極的添加は集
合組織形成に悪影響を与え面内異方性の増大をもたら
す。そのためP含有量を0.02wt%以下とする。P: P is a substitutional solid solution element like Mn, and has a greater strengthening ability than Mn and is an effective element for increasing the strength of a steel sheet. It is an element that segregates and embrittles grain boundaries, and its content is preferably as small as possible. Further, the positive addition of P adversely affects the texture formation, resulting in an increase in in-plane anisotropy. Therefore, the P content is set to 0.02% by weight or less.
【0027】S:Sはスラブの熱間割れを防止する観点
から極力少ないほうが望ましく、そのような観点から
0.02wt%以下とする。 sol.Al:sol.Alは鋼中NをAlNとして析
出させるために添加するが、その量が0.02wt%未
満の場合には、添加したBの多くがBNを形成し、B添
加による面内異方性低減効果が充分に発揮されなくな
る。一方、多量のAlを添加するとAl2 O3 系介在物
が残留し、製缶時の介在物起因の割れが発生しやすくな
り加工性が劣化するが、実用上、加工性の観点から許容
される限界は0.10wt%である。したがって、so
l.Al含有量を0.02〜0.1wt%の範囲とす
る。S: S is desirably as small as possible from the viewpoint of preventing hot cracking of the slab, and is set to 0.02 wt% or less from such a viewpoint. sol. Al: sol. Al is added to precipitate N in steel as AlN. When the amount is less than 0.02 wt%, most of the added B forms BN, and the effect of reducing the in-plane anisotropy due to the addition of B is added. Is not fully exhibited. On the other hand, when a large amount of Al is added, Al 2 O 3 -based inclusions remain, and cracks due to inclusions are apt to occur at the time of can making, and the workability is deteriorated. The limit is 0.10 wt%. Therefore, so
l. The Al content is in the range of 0.02 to 0.1 wt%.
【0028】N:Nが多い場合には、Al、Bを添加し
たとしても固溶Nが残留しやすくなり、集合組織が変化
し、面内異方性の増大をもたらすこととなるため、Nは
極力少なくすることが望ましい。そのような観点からN
を0.0035wt%以下に規制する。N: When N is large, even if Al and B are added, solid solution N tends to remain, which changes the texture and increases in-plane anisotropy. It is desirable to reduce as much as possible. From such a viewpoint, N
Is regulated to 0.0035 wt% or less.
【0029】O:鋼中にOが多量に存在すると、添加し
たBの一部が酸化物を形成しやすくなり、B添加による
面内異方性低減効果が充分に発揮されなくなる。また、
鋼中の酸化物系介在物は2ピース缶製缶時の割れ発生の
起点となり、加工性を著しく阻害する。したがってトー
タルO量は極力少なくすることが望ましい。本発明にお
いては、B添加効果を充分発揮させるとともに、加工性
の劣化を回避するために、鋼中のトータルO量を0.0
05wt%以下に規制する。O: If a large amount of O is present in the steel, a part of the added B tends to form an oxide, and the effect of reducing the in-plane anisotropy due to the addition of B cannot be sufficiently exhibited. Also,
Oxide-based inclusions in the steel serve as starting points for the occurrence of cracks in the production of two-piece cans, and significantly impair workability. Therefore, it is desirable to minimize the total O amount. In the present invention, the total amount of O in steel is set to 0.0
Restrict to 05 wt% or less.
【0030】B:Bは本発明において最も重要な添加元
素である。Bはスラブ厚と熱延仕上厚の比を制御するこ
とにより、熱延時のオーステナイト粒界に効果的に偏析
し、熱延板のオーステナイト粒さらには変態後のフェラ
イト粒を細粒化させる。Bの一部はBNを形成するが、
その他のBは変態後の熱延板のフェライト粒界にも偏析
している。このような熱延板細粒化および粒界偏析Bの
相乗作用により、冷間圧延後の再結晶時の集合組織形成
に影響を及ぼし、面内異方性を低減させる効果を発揮さ
せるものと考えられる。このようなB添加効果を充分に
発揮させるためには、C量が少ない場合にはオーステナ
イト、フェライトの粒径が大きくなりやすいため、C量
が比較的多い場合に比べて多量の添加を必要とする。図
3に示したように、B≧0.0002wt%でかつB≧
−0.02C+0.0010(wt%)の場合に面内異
方性が低減される。一方、必要以上に多量にBを添加す
ると、粒界のみならずフェライト粒内にも固溶Bが残存
し、面内異方性を増大させる集合組織を形成しやすくな
る。図3に示したようにB含有量が0.002%を超え
ると面内異方性が逆に大きくなる。したがって、B含有
量を0.0002〜0.002wt%とするとともに、
B≧−0.02C+0.0010を満足する量とする。B: B is the most important additive element in the present invention. By controlling the ratio of the slab thickness to the hot-rolled finished thickness, B effectively segregates at the austenite grain boundaries during hot rolling, and makes the austenite grains of the hot-rolled sheet and the ferrite grains after transformation finer. Part of B forms BN,
Other B also segregates at the ferrite grain boundaries of the hot rolled sheet after transformation. The synergistic effect of such hot-rolled sheet refinement and grain boundary segregation B affects the texture formation during recrystallization after cold rolling and exerts the effect of reducing in-plane anisotropy. Conceivable. In order to sufficiently exhibit the effect of adding B, when the amount of C is small, the grain size of austenite and ferrite tends to be large, so that a large amount of addition is required as compared with the case where the amount of C is relatively large. I do. As shown in FIG. 3, B ≧ 0.0002 wt% and B ≧
In the case of −0.02C + 0.0010 (wt%), the in-plane anisotropy is reduced. On the other hand, if B is added in an unnecessarily large amount, solid solution B remains not only in the grain boundaries but also in the ferrite grains, and it becomes easy to form a texture that increases in-plane anisotropy. As shown in FIG. 3, when the B content exceeds 0.002%, the in-plane anisotropy increases. Therefore, while making the B content 0.0002 to 0.002 wt%,
The amount satisfies B ≧ −0.02C + 0.0010.
【0031】次に、本発明の製造条件について説明す
る。本発明では、上記組成を有する鋼を転炉溶製後、連
続鋳造によりスラブとし、粗圧延を経て、あるいは粗圧
延を省略して直接熱間仕上圧延機に挿入して熱間圧延を
行い、酸洗後、冷間圧延を行い、その後連続焼鈍炉にて
連続焼鈍を行い、さらに調質圧延を行って板厚0.23
mm以下とする。Next, the manufacturing conditions of the present invention will be described. In the present invention, after the steel having the above composition is melted from the converter, a slab is produced by continuous casting, and is subjected to hot rolling through rough rolling or by omitting rough rolling and directly inserting into a hot finishing mill. After pickling, cold rolling is performed, and then continuous annealing is performed in a continuous annealing furnace.
mm or less.
【0032】熱間圧延は、仕上温度がAr3 以上で、か
つスラブ厚と熱延仕上厚との比が120以上となるよう
に行われる。スラブ厚と熱延仕上厚との比を120以上
としたのは、図1に示したようにB添加による面内異方
性低減効果を充分に発揮させるためである。両者の比が
120以上であれば、スラブ厚、熱延仕上厚は、それぞ
れ最終製品板厚および最適冷圧率に応じて適宜選定すれ
ばよい。The hot rolling is performed so that the finishing temperature is Ar 3 or more and the ratio of the slab thickness to the hot rolled finished thickness is 120 or more. The reason for setting the ratio of the slab thickness to the hot-rolled finished thickness to 120 or more is to sufficiently exert the effect of reducing the in-plane anisotropy by adding B as shown in FIG. If the ratio between the two is 120 or more, the slab thickness and the hot rolled finish thickness may be appropriately selected according to the final product sheet thickness and the optimum cooling pressure ratio, respectively.
【0033】熱延仕上温度をAr3 以上としたのは、A
r3 変態点未満で仕上げると、熱延板に集合組織が形成
されるとともに、結晶粒が粗大化し、冷間圧延、焼鈍後
の面内異方性が劣化するためである。The reason why the hot rolling finishing temperature is Ar 3 or more is that A
If finished below the r 3 transformation point, a texture is formed in the hot-rolled sheet, crystal grains are coarsened, and in-plane anisotropy after cold rolling and annealing is deteriorated.
【0034】スラブ加熱温度、巻取温度は特に限定する
必要はなく、通常行われる範囲で行うことができ、例え
ばスラブ加熱温度1100〜1250℃、巻取温度50
0〜700℃程度とすることができる。The slab heating temperature and the winding temperature need not be particularly limited, and may be in the range usually performed. For example, the slab heating temperature is 1100 to 1250 ° C., and the winding temperature is 50.
It can be about 0 to 700 ° C.
【0035】このように熱間圧延した後の冷間圧延は8
5〜90%の圧下率で行う。冷圧率は面内異方性を制御
するために重要な条件であり、図2に示したように、安
定して面内異方性を小さくするためには冷圧率を85〜
90%とする必要がある。The cold rolling after the hot rolling is performed in 8
It is performed at a rolling reduction of 5 to 90%. The cold pressure rate is an important condition for controlling the in-plane anisotropy, and as shown in FIG.
It must be 90%.
【0036】その後の再結晶焼鈍は、再結晶温度以上7
50℃以下の温度で行う。再結晶温度未満では未再結晶
組織が残り面内異方性が劣化する。逆に750℃を超え
ると、本発明のように最終製品の板厚が0.23mm以
下の鋼板では一次冷延後のCAL通板時の板厚も小さい
ためにCAL通板性が著しく劣化し、板破断、形状不良
等のトラブルが発生しやすくなり、生産性が低下する。
また、均熱中にオーステナイト相が生成し、冷却過程で
硬質な低温変態相が生成しやすくなる。このような硬質
な第2相とフェライト母相との界面は製缶時の割れの起
点となりやすく、加工性を劣化させる。The subsequent recrystallization annealing is performed at a temperature not lower than the recrystallization temperature of 7
Perform at a temperature of 50 ° C. or less. If the temperature is lower than the recrystallization temperature, an unrecrystallized structure remains and in-plane anisotropy deteriorates. On the other hand, when the temperature exceeds 750 ° C., in the steel sheet having a thickness of 0.23 mm or less as in the present invention, the sheet thickness at the time of CAL passing after primary cold rolling is small, so that the CAL passing property is significantly deteriorated. Troubles such as plate breakage and defective shape are likely to occur, and the productivity is reduced.
Further, an austenite phase is generated during the soaking, and a hard low-temperature transformation phase is easily generated in a cooling process. Such an interface between the hard second phase and the ferrite matrix tends to be a starting point of cracking during can making, and deteriorates workability.
【0037】その後の過時効処理は実施してもしなくと
もよい。過時効処理を実施した場合と実施しない場合と
で本発明の効果は変わらない。過時効処理を実施する場
合は、連続焼鈍炉内のインラインOA、連続焼鈍後の箱
焼鈍によるバッチOAのいずれの方法を用いてもよい。The subsequent overaging process may or may not be performed. The effect of the present invention does not change when the overaging process is performed and when it is not performed. When performing the overaging treatment, any method of in-line OA in a continuous annealing furnace and batch OA by box annealing after continuous annealing may be used.
【0038】連続焼鈍後、調質圧延により鋼板を所定の
板厚に仕上げるが、その際の伸長率は0.5%以上3%
未満とする。これは伸長率が0.5%未満および3%以
上の場合には形状制御が困難であるためである。After continuous annealing, the steel sheet is finished to a predetermined thickness by temper rolling, and the elongation at that time is 0.5% or more and 3% or more.
Less than This is because shape control is difficult when the elongation is less than 0.5% or 3% or more.
【0039】このようにして最終板厚に仕上げられた鋼
板は、その後、錫めっき、極薄錫めっき、錫−ニッケル
めっき、ニッケルめっき、クロムめっき等の各種表面処
理が施される。特に、このような表面処理鋼板をDI缶
用に用いる場合には、ノーリフローの錫めっき鋼板が望
ましく、また、DTR缶用のフィルムラミネート鋼板、
プレコート鋼板の下地鋼板として用いる場合には、電解
クロム酸処理鋼板すなわちTFSが加工密着性の観点か
ら最も望ましい。これらの表面処理鋼板は、鋼板単独で
使用することもできるし、ポリエステル等の樹脂フィル
ムをラミネートしたフィルムラミネート鋼板、エポキシ
等の塗料をコーティングしたプレコート鋼板としても使
用可能である。The steel sheet finished in the final thickness as described above is thereafter subjected to various surface treatments such as tin plating, ultra-thin tin plating, tin-nickel plating, nickel plating, and chromium plating. In particular, when such a surface-treated steel sheet is used for a DI can, a no-reflow tin-plated steel sheet is desirable, and a film laminated steel sheet for a DTR can,
When used as a base steel sheet of a precoated steel sheet, an electrolytic chromic acid-treated steel sheet, that is, TFS, is most desirable from the viewpoint of working adhesion. These surface-treated steel sheets can be used alone or as a film-laminated steel sheet obtained by laminating a resin film such as polyester or a pre-coated steel sheet coated with a paint such as epoxy.
【0040】[0040]
【実施例】 (実施例1)表1、表2に示す組成の鋼を転炉溶製後、
連続鋳造によりスラブとし、このスラブに対して熱間圧
延を行い、酸洗後、冷間圧延を行い、その後連続焼鈍炉
にて連続焼鈍を行い、さらに調質圧延を行って所定板厚
の鋼板とした。なお、その際のスラブ厚と熱延仕上厚と
の比、冷間圧延率、板厚を表3に示す。また、スラブ加
熱温度を1230℃、仕上温度を870℃、巻取温度6
20℃、焼鈍温度650℃とし過時効処理を行わなかっ
た。また、調質圧延の伸長率は1.5%とした。EXAMPLES (Example 1) Steels having the compositions shown in Tables 1 and 2 were melted in a converter,
A slab is formed by continuous casting, hot rolling is performed on the slab, pickling is performed, cold rolling is performed, then continuous annealing is performed in a continuous annealing furnace, and further temper rolling is performed to obtain a steel sheet having a predetermined thickness. And Table 3 shows the ratio of the slab thickness to the hot-rolled finished thickness, the cold rolling reduction, and the plate thickness at that time. The slab heating temperature was 1230 ° C., the finishing temperature was 870 ° C., and the winding temperature was 6 ° C.
The temperature was set to 20 ° C. and the annealing temperature was set to 650 ° C., and the overaging treatment was not performed. Further, the elongation rate of the temper rolling was 1.5%.
【0041】このようにして製造した鋼板について、イ
ヤリング率を測定した。イヤリング率は、絞り比1.8
で深絞り後に耳高さを測定し、耳の最大値と最小値をの
差を耳の最小値で割った百分率で表し、これにより面内
異方性を評価した。その結果を表3に併記する。The thus manufactured steel sheet was measured for earring ratio. The earring rate is 1.8
The ear height was measured after the deep drawing, and the difference between the maximum value and the minimum value of the ear was expressed as a percentage obtained by dividing the difference by the minimum value of the ear, thereby evaluating the in-plane anisotropy. The results are also shown in Table 3.
【0042】[0042]
【表1】 [Table 1]
【0043】[0043]
【表2】 [Table 2]
【0044】[0044]
【表3】 [Table 3]
【0045】表3に示すように、本発明例の鋼板はいず
れもイヤリング率が小さく、面内異方性が小さいことが
確認された。これに対して、本発明の範囲外の比較例は
本発明例に比較してイヤリング率が大きく、面内異方性
が大きいことが確認された。As shown in Table 3, it was confirmed that each of the steel sheets of the present invention had a low earring ratio and a small in-plane anisotropy. On the other hand, it was confirmed that the comparative examples outside the scope of the present invention had higher earring ratios and higher in-plane anisotropy than the present invention examples.
【0046】(実施例2)上記表1、表2のうち鋼番
5、10、14、17、21、25、27、34の8種
類について転炉溶製後、連続鋳造によりスラブとし、こ
のスラブに対して熱間圧延を行い、酸洗後、冷間圧延を
行い、その後連続焼鈍炉にて連続焼鈍を行い、さらに調
質圧延を行って所定板厚の鋼板とした。なお、その際の
スラブ厚と熱延仕上厚との比、冷間圧延率、板厚を表3
に示す。また、スラブ加熱温度を1150℃、仕上温度
を870℃、巻取温度640℃、焼鈍温度700℃と
し、連続焼鈍インラインで400℃の過時効処理を行な
った。また、調質圧延の伸長率は1.0%とした。この
ようにして製造した鋼板について、イヤリング率を測定
し、これにより面内異方性を評価した。その結果を表4
に併記する。Example 2 Eight types of steel Nos. 5, 10, 14, 17, 21, 25, 27 and 34 in Tables 1 and 2 were melted in a converter and then continuously cast into slabs. The slab was hot-rolled, pickled, cold-rolled, then continuously annealed in a continuous annealing furnace, and then temper rolled to obtain a steel sheet having a predetermined thickness. Table 3 shows the ratio of the slab thickness to the hot-rolled finished thickness, the cold rolling reduction, and the plate thickness.
Shown in The slab heating temperature was 1150 ° C., the finishing temperature was 870 ° C., the winding temperature was 640 ° C., the annealing temperature was 700 ° C., and the overaging treatment was performed at 400 ° C. in a continuous annealing inline. Further, the elongation rate of the temper rolling was set to 1.0%. For the steel sheet thus manufactured, the earring rate was measured, and thereby the in-plane anisotropy was evaluated. Table 4 shows the results.
It is described together.
【0047】[0047]
【表4】 表4に示すように、本発明例の鋼板はいずれも比較例の
鋼板よりもイヤリング率が小さく、面内異方性が小さい
ことが確認された。[Table 4] As shown in Table 4, it was confirmed that all of the steel sheets of the present invention had lower earring ratios and lower in-plane anisotropy than the steel sheets of the comparative examples.
【0048】[0048]
【発明の効果】以上説明したように、本発明によれば、
面内異方性が小さく、耳発生による歩留まり低下が小さ
いDRD缶、DI缶、DTR缶のような2ピース缶用鋼
板を、生産性を低下させずに製造することができる。し
たがって2ピース缶の製造コストを低減することが可能
となる。As described above, according to the present invention,
It is possible to manufacture a two-piece steel plate for a two-piece can, such as a DRD can, a DI can, and a DTR can, which has a small in-plane anisotropy and a small decrease in yield due to the occurrence of ears, without lowering productivity. Therefore, it is possible to reduce the manufacturing cost of the two-piece can.
【図1】スラブ厚/熱延仕上厚によるイヤリング率の変
化を示す図。FIG. 1 is a diagram showing a change in an earring ratio depending on a slab thickness / a hot rolled finish thickness.
【図2】冷圧率によるイヤリング率の変化を示す図。FIG. 2 is a diagram showing a change in an earring rate according to a cold pressure rate.
【図3】CおよびB含有量とイヤリング率との関係を示
す図。FIG. 3 is a view showing a relationship between C and B contents and an earring rate.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟屋 敬 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭64−15327(JP,A) 特開 昭53−48913(JP,A) 特開 昭57−57835(JP,A) 特開 昭58−221263(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Awaya 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (56) References JP-A-64-15327 (JP, A) JP-A-53 -48913 (JP, A) JP-A-57-57835 (JP, A) JP-A-58-221263 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C22C 38/00- 38/60
Claims (1)
i:0.1wt%以下、Mn:0.1〜0.6wt%、
P:0.02wt%以下、S:0.02wt%以下、s
ol.Al:0.02〜0.1wt%、N:0.003
5wt%、O:0.005wt%以下、B:0.000
2〜0.002wt%を含有し、B≧−0.02C+
0.0010を満足する鋼組成を有するスラブを、仕上
温度がAr3 以上で、かつスラブ厚と熱延仕上厚との比
が120以上となるように熱間圧延し、酸洗後、85〜
90%の圧下率で冷間圧延した後、再結晶温度以上、7
50℃以下の温度で連続焼鈍し、さらに伸長率0.5%
以上3%未満の調質圧延を行い、板厚0.23mm以下
とすることを特徴とする面内異方性の小さい2ピース缶
用鋼板の製造方法。1. C: 0.015 to 0.06 wt%, S
i: 0.1 wt% or less, Mn: 0.1 to 0.6 wt%,
P: 0.02 wt% or less, S: 0.02 wt% or less, s
ol. Al: 0.02 to 0.1 wt%, N: 0.003
5 wt%, O: 0.005 wt% or less, B: 0.000
2 to 0.002 wt%, B ≧ −0.02C +
A slab having a steel composition satisfying 0.0010 is hot-rolled so that the finishing temperature is Ar 3 or more, and the ratio of the slab thickness to the hot-rolled finished thickness is 120 or more.
After cold rolling at a rolling reduction of 90%, the recrystallization temperature is higher than 7%.
Continuous annealing at a temperature of 50 ° C or less, and an elongation of 0.5%
A method for producing a two-piece steel sheet having a small in-plane anisotropy, wherein a temper rolling of not less than 3% and a sheet thickness of 0.23 mm or less are performed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05786496A JP3257390B2 (en) | 1996-03-14 | 1996-03-14 | Method for producing two-piece steel sheet with small in-plane anisotropy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP05786496A JP3257390B2 (en) | 1996-03-14 | 1996-03-14 | Method for producing two-piece steel sheet with small in-plane anisotropy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09249938A JPH09249938A (en) | 1997-09-22 |
JP3257390B2 true JP3257390B2 (en) | 2002-02-18 |
Family
ID=13067868
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP05786496A Expired - Fee Related JP3257390B2 (en) | 1996-03-14 | 1996-03-14 | Method for producing two-piece steel sheet with small in-plane anisotropy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3257390B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4630268B2 (en) * | 2006-12-28 | 2011-02-09 | 新日本製鐵株式会社 | Steel plate for profile can |
CN110494581B (en) * | 2017-03-27 | 2021-07-09 | 杰富意钢铁株式会社 | Two-piece steel sheet for can and method for producing same |
-
1996
- 1996-03-14 JP JP05786496A patent/JP3257390B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09249938A (en) | 1997-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5162924B2 (en) | Steel plate for can and manufacturing method thereof | |
JP3931455B2 (en) | Steel plate for can and manufacturing method thereof | |
JPH08325670A (en) | Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production | |
WO2005103316A1 (en) | Steel sheet for can and method for production thereof | |
KR100605835B1 (en) | A can steel strip and a method of producing the can steel strip | |
JPH09310150A (en) | Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production | |
JP4193228B2 (en) | Steel plate for can and manufacturing method thereof | |
JP3826442B2 (en) | Manufacturing method of steel plate for can making with good workability and no rough skin | |
JP2000054070A (en) | Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture | |
JP3257390B2 (en) | Method for producing two-piece steel sheet with small in-plane anisotropy | |
JP3108330B2 (en) | Manufacturing method of steel sheet for high strength cans | |
JPH11209845A (en) | Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture | |
JP3707260B2 (en) | Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil | |
JP3682683B2 (en) | Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil | |
JP3379375B2 (en) | Ultra-thin steel sheet for weld cans, weld can, and method for producing ultra-thin steel sheet for weld cans with excellent flangeability | |
JP4045602B2 (en) | Manufacturing method of steel sheet for cans with excellent drawability | |
JP3407531B2 (en) | Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy | |
JP3735142B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent formability | |
JPH11222647A (en) | Original sheet for surface treated steel sheet excellent in aging resistance and small in generating rate of earing and its production | |
JP2980486B2 (en) | Manufacturing method of steel plate for non-aging low earring container | |
JP3273383B2 (en) | Cold rolled steel sheet excellent in deep drawability and method for producing the same | |
JP3675190B2 (en) | Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil | |
JPH08283863A (en) | Production of hard steel sheet for can excellent in uniformity of material | |
JPS6267119A (en) | Manufacture of steel sheet for di can having good flanging property and baking hardenability | |
JP3917749B2 (en) | Manufacturing method of steel sheets for ultra-thin soft containers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071207 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081207 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091207 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101207 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111207 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121207 Year of fee payment: 11 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131207 Year of fee payment: 12 |
|
LAPS | Cancellation because of no payment of annual fees |