JPH11209845A - Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture - Google Patents

Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture

Info

Publication number
JPH11209845A
JPH11209845A JP1551298A JP1551298A JPH11209845A JP H11209845 A JPH11209845 A JP H11209845A JP 1551298 A JP1551298 A JP 1551298A JP 1551298 A JP1551298 A JP 1551298A JP H11209845 A JPH11209845 A JP H11209845A
Authority
JP
Japan
Prior art keywords
less
rolling
steel sheet
transformation point
workability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1551298A
Other languages
Japanese (ja)
Inventor
Masatoshi Araya
昌利 荒谷
Akio Tosaka
章男 登坂
Osamu Furukimi
古君  修
Makoto Araya
誠 荒谷
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1551298A priority Critical patent/JPH11209845A/en
Publication of JPH11209845A publication Critical patent/JPH11209845A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a steel sheet for can, having workability necessary for can forming and excellent surface roughing resistance after can manufacture, and its manufacture. SOLUTION: A steel slab, having a composition consisting of, by weight, 0.001-0.005% C, <=0.10% Si, 0.4-1.0% Mn, <=0.04% P, <=0.02% s, 0.01-0.10% Al, <=0.0050% N, 0.008-0.10% Nb, and the balance Fe with inevitable impurities, is heated to 1000-1350 deg.C, and roughing is finished at a temp. between (Ar3 transformation point + 250 deg.C) and (Ar3 transformation point + 150 deg.C). Subsequently, finish rolling is performed at a temp. between (Ar3 transformation point + 100 deg.C) and (Ar3 transformation point - 50%oC). Within 2 sec after the completion of finish rolling, cooling is started at a rate of >=50 deg.C/sec. Then, coiling is done at <580 to 400 deg.C, and cold rolling is carried out at 80 to 95% draft. The resultant steel sheet is continuously annealed at a temp. between the recrystallization finishing temp. and 800 deg.C and further temper-rolled at 0.5 to 40%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品、飲料缶等の
缶容器材料としての使途に好適な缶用鋼板に関し、特
に、深絞り缶用に用いて薄肉で、深絞り加工性に優れ、
加工後の鋼板表面に肌荒れが生じない缶用鋼板およびそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for cans suitable for use as a material for cans such as food and beverage cans, and more particularly to a thin-walled and excellent deep-drawing workable for deep-drawn cans.
The present invention relates to a steel plate for a can that does not cause roughening on the surface of the steel plate after processing and a method for producing the same.

【0002】[0002]

【従来の技術】2ピース缶は、従来、DRD(Draw and
Redraw) 缶、DWI(Draw and Wall Ironing) 缶などに
見られるように、成形後に有機塗料の塗布を施すことに
より、缶内容物を保護するものが一般的であった。一
方、最近になって、成形前の金属板に樹脂フィルムを予
め被覆した、フィルムラミネート鋼板が地球環境保護の
面から注目されている。例えば、特開平2-269647 号公
報では、ティンフリースチール板に二軸延伸ポリエチレ
ンテレフタレートを被覆した鋼板について開示してい
る。後者の方法では、予め、金属板にフィルムを被覆し
ておくことにより、これまで深絞りやしごき加工の時に
必要とされた潤滑油が必要なくなるので、潤滑油の洗浄
工程が省略され、洗浄排水が出なくなるという利点があ
る。また、内容物保護のための、缶内面塗装および焼き
付けの工程が不要になるので、焼き付け時にオーブンか
ら排出される炭酸ガスもなくなるという利点もある。。
2. Description of the Related Art Conventionally, two-piece cans have been conventionally manufactured by DRD (Draw and
As seen in Redraw) cans, DWI (Draw and Wall Ironing) cans, etc., it was common to protect the contents of the can by applying an organic paint after molding. On the other hand, recently, a film-laminated steel sheet in which a metal plate before molding is coated with a resin film in advance has been receiving attention from the viewpoint of global environmental protection. For example, JP-A-2-269647 discloses a steel sheet in which a tin-free steel sheet is coated with biaxially stretched polyethylene terephthalate. In the latter method, since the metal plate is coated with the film in advance, the lubricating oil that has been required for deep drawing and ironing is no longer necessary. There is an advantage that no longer appears. In addition, since the steps of coating and baking the inner surface of the can for protecting the contents are not required, there is an advantage that carbon dioxide gas discharged from the oven during baking is also eliminated. .

【0003】フィルムラミネート法は、これらの点で、
地球環境保護に寄与できる製缶方法であり、今後、主流
になる技術になると考えれる。ただし、この方法は、D
RD缶やDWI缶に比べて、トータルの製缶コストで高
くなるために、素材の薄肉化による、材料面からのコス
トダウンが求められている。そして、この種の薄肉缶素
材に要求される特性値としては、先ず、缶の最終的な製
品形状になるまでに、厳しい絞り加工、あるいは絞り加
工−しごき加工といった工程を経るので、大きな加工度
に耐えうる高い成形性が要求される。また同時に、加工
後の鋼板表面性状も重要な要素であり、表面に肌荒れが
発生すると、単に外観不良となるだけではなく、被覆し
たフィルムが母板から剥離し、耐食性が劣下する。
[0003] The film lamination method is based on these points.
It is a can-making method that can contribute to the protection of the global environment, and is expected to become the mainstream technology in the future. However, this method uses D
Compared with RD cans and DWI cans, the total can manufacturing cost is higher. Therefore, it is required to reduce the material cost by reducing the material thickness. The characteristic value required for this kind of thin can material is as follows. First, a severe drawing process or a drawing-ironing process is performed until the final product shape of the can is obtained. High formability that can withstand the heat is required. At the same time, the surface properties of the steel sheet after processing is also an important factor. If the surface becomes rough, not only the appearance becomes poor, but also the coated film peels off from the mother plate, and the corrosion resistance deteriorates.

【0004】[0004]

【発明が解決しようとする課題】ところで、製缶加工し
た後の肌荒れを防止する技術として、特開平4−314535
号公報に記載の方法がある。この方法は、平均結晶粒径
を5μm以下にし、原板の表面粗さRaを0.5 μm以下と
することにより、肌荒れを防ぐものである。しかし、結
晶粒の微細化を達成するために、C含有量が0.1 〜0.2
wt%と多いために、マトリックスが硬質化しており、さ
らに、r値などの加工性が不十分であるという問題があ
った。これは、C=0.01〜0.1 %程度の低炭素鋼を用い
ても同様である。したがって、かかる硬質鋼板は、今後
の素材の薄肉化の傾向にあっては、十分に対応すること
ができない。このため、今後の製缶材料として、より軟
質で良好な成形性を具えるとともに、耐肌荒れ性にも優
れる鋼板が求められるようになると考えられる。
Incidentally, as a technique for preventing rough skin after can-making, Japanese Patent Application Laid-Open No. 4-314535 has been proposed.
There is a method described in Japanese Unexamined Patent Application Publication No. 2000-205,878. In this method, the average crystal grain size is set to 5 μm or less, and the surface roughness Ra of the original plate is set to 0.5 μm or less, thereby preventing skin roughness. However, in order to achieve the refinement of crystal grains, the C content is 0.1 to 0.2.
Due to the large amount of wt%, the matrix is hardened, and further, there is a problem that workability such as r value is insufficient. This is the same even when a low-carbon steel of about C = 0.01 to 0.1% is used. Therefore, such a hard steel plate cannot sufficiently cope with the tendency of the material to become thinner in the future. For this reason, it is considered that a steel sheet which is softer, has better formability, and is excellent in surface roughening resistance will be required as a material for cans in the future.

【0005】しかしながら、軟質で成形性を得るため
に、C量を極端に低減した極低炭素の成分系を採用して
も、従来の技術では、結晶粒径を微細にすることが非常
に難しかった。このため、従来技術の下では、成形加工
性と耐肌荒れ性とを両立させることは困難であった。
However, even if a very low carbon component system in which the amount of carbon is extremely reduced is adopted in order to obtain a soft and moldable material, it is very difficult to make the crystal grain size fine with the conventional technology. Was. For this reason, under the conventional technology, it has been difficult to achieve both moldability and rough surface resistance.

【0006】そこで、本発明の主たる目的は、缶成形に
必要な加工性を具えるとともに、製缶後の耐肌荒れ性に
も優れる、缶用鋼板とその製造方法を提供することにあ
る。
Accordingly, a main object of the present invention is to provide a steel sheet for a can and a method for producing the same, which has the workability required for forming a can and has excellent resistance to rough skin after can production.

【0007】[0007]

【課題を解決するための手段】発明者らは、上記の目的
を達成すべく、まず、極低炭素鋼をベースとする成分系
を前提として、結晶粒系の細粒化を達成するための方法
について検討した。その結果、極低炭素鋼の結晶粒微細
化には、Nbの添加、熱延仕上げ圧延後にストリップを急
冷開始するまでの時間の短縮化、熱延巻取り温度の適正
な低下、粗圧延温度の適正化、およびMnの添加等が有効
であることが明らかとなった。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors first prescribe a component system based on ultra-low carbon steel to achieve a fine grain system. The method was discussed. As a result, to refine the crystal grains of ultra-low carbon steel, the addition of Nb, shortening of the time until the start of rapid cooling of the strip after hot rolling finish rolling, appropriate reduction of the hot rolling winding temperature, and reduction of the rough rolling temperature It became clear that optimization and addition of Mn were effective.

【0008】また、発明者らは、製缶後の肌荒れを防止
するために必要な結晶粒径を明らかにするために、予
め、結晶粒径の異なる材料を用いて実際の製缶試験を行
ない、肌あれと結晶粒径との関係を明らかにした。な
お、極低炭素鋼を用いたので、結晶組織は全て実質上フ
ェライト単相である。
In addition, the inventors conducted an actual can-making test using materials having different crystal grain sizes in advance in order to clarify the crystal grain size required for preventing roughening after can-making. Then, the relationship between skin roughness and crystal grain size was clarified. In addition, since the ultra-low carbon steel was used, all the crystal structures were substantially a ferrite single phase.

【0009】調査方法は、以下のとおりである。すなわ
ち、板厚0.180 mmの鋼板に、金属クロム層とクロム酸
化物を形成させる表面処理を行い、さらにこの表面処理
鋼板の両面に厚さ20μm、融点30℃のポリエステルフィ
ルムを熱接着して、樹脂フィルム被覆鋼板を得た。この
樹脂フィルム被覆鋼板に予めパーム油を塗布し、直径17
9 mmの円盤に打抜き、常法に従い、浅絞りカップに成
形した。この絞り工程における絞り比は、1.56である。
次いで、第1次、第2次、再絞り工程で、絞り比をそれ
ぞれ、1.37および1.27の条件で成形し、カップ径63m
m、カップ高さ127 mmの深絞りカップを得た。この
後、常法に従ってボトム成形を行なった後、パーム油を
洗浄水により脱脂した。製缶後の肌荒れについては、と
くに肌荒れが発生しやすいネックイン加工部の表面を目
視観察し、比較材として市販されている同じタイプの缶
と比較して、その優劣を比較評価した。また、平均結晶
粒径は、板厚断面の結晶組織観察 (板幅方向中央部) に
おいてJIS G 0552に記載された切断方法を用いて測定
し、最表面5μmを除く板厚全体の平均値をとった。
[0009] The investigation method is as follows. That is, a steel plate having a thickness of 0.180 mm is subjected to a surface treatment for forming a metal chromium layer and a chromium oxide, and a polyester film having a thickness of 20 μm and a melting point of 30 ° C. is thermally bonded to both surfaces of the surface-treated steel plate to form a resin. A film-coated steel sheet was obtained. Palm oil is applied to this resin film-coated steel sheet in advance,
It was punched into a 9 mm disk and formed into a shallow drawn cup according to a conventional method. The drawing ratio in this drawing step is 1.56.
Then, in the first, second, and re-drawing steps, molding was performed under the conditions of the drawing ratio of 1.37 and 1.27, respectively, and the cup diameter was 63 m.
m, a deep drawing cup with a cup height of 127 mm was obtained. Then, after performing bottom molding according to a conventional method, palm oil was degreased with washing water. Regarding the rough surface after can-making, the surface of the neck-in processed portion where the rough surface is particularly likely to occur was visually observed, and compared with the same type of commercially available can as a comparative material, and evaluated for its superiority. In addition, the average crystal grain size is measured using a cutting method described in JIS G 0552 in observing the crystal structure of the sheet thickness cross section (the center part in the sheet width direction), and calculating the average value of the entire sheet thickness excluding the outermost surface of 5 μm. I took it.

【0010】以上の実験から、肌あれの防止のために
は、鋼板におけるフェライトの平均結晶粒径を6μm以
下とすることが必要であることが判明した(図1)。ま
た、材料の製缶加工性を評価するために、製缶加工で最
も加工度が高く成形性が要求されるネック部の加工にお
いて、ネック成形しわの発生率により評価した。その結
果、ネックしわの発生を防止するには、調質圧延後の最
終製品板ではなく、焼鈍後の鋼板の降伏応力(YS)が
低いことが重要であり、その値は350MPa以下である必
要があり、さらに、最終製品板のr値が1.4 以上である
ことが肝要であることもわかった(図2)。なお、たと
えば特開平4−314535号公報に記載の方法で得られた鋼
板では、その成分および製造手段から考えて、焼鈍後の
YSで450 MPa程度、r値は1.0 程度と思われる。本発
明はこのような知見に基づいて構成されたものであり、
その要旨とするところは次のとおりである。
From the above experiments, it has been found that the average grain size of ferrite in a steel sheet must be 6 μm or less in order to prevent skin roughness (FIG. 1). Further, in order to evaluate the workability of the material for canning, the degree of neck forming wrinkles was evaluated in the processing of the neck portion, which has the highest degree of workability and requires formability in can making. As a result, in order to prevent the occurrence of neck wrinkles, it is important that the yield stress (YS) of the steel sheet after annealing, not the final product sheet after temper rolling, is low, and the value must be 350 MPa or less. It was also found that it was essential that the r value of the final product plate was 1.4 or more (FIG. 2). For example, in the steel sheet obtained by the method described in Japanese Patent Application Laid-Open No. 4-314535, it is considered that YS after annealing is about 450 MPa and the r value is about 1.0 in view of its components and production means. The present invention has been constructed based on such knowledge,
The summary is as follows.

【0011】(1) C:0.001 〜0.005 wt%、Si:0.10wt
%以下、Mn:0.4 〜1.0 wt%、P:0.04wt%以下、S:
0.02wt%以下、Al:0.01〜0.10wt%、N:0.0050wt%以
下、Nb:0.008 〜0.10wt%を含有し、残部がFeおよび不
可避的不純物からなる成分組成を有するとともに、平均
結晶粒径が6μm以下であることを特徴とする、板厚が
0.20mm以下の、加工性と耐肌荒れ性に優れる缶用鋼板。
(1) C: 0.001 to 0.005 wt%, Si: 0.10 wt%
%, Mn: 0.4 to 1.0 wt%, P: 0.04 wt% or less, S:
0.02wt% or less, Al: 0.01 to 0.10wt%, N: 0.0050wt% or less, Nb: 0.008 to 0.10wt%, the balance being Fe and inevitable impurities, and the average crystal grain size Is 6 μm or less.
A steel plate for cans with a workability of 0.20mm or less and excellent skin resistance.

【0012】(2) C:0.001 〜0.005 wt%、Si:0.10wt
%以下、Mn:0.4 〜1.0 wt%、P:0.04wt%以下、S:
0.02wt%以下、Al:0.01〜0.10wt%、N:0.0050wt%以
下、Nb:0.008 〜0.10wt%を含有し、残部がFeおよび不
可避的不純物からなる鋼スラブを、1000〜1350℃に加熱
し、(Ar3 変態点+250 ℃)〜(Ar3 変態点+150 ℃)
の温度範囲で粗圧延を終了し、次いで、(Ar3 変態点+
100 ℃)〜(Ar3 変態点−50℃)の温度範囲で仕上圧延
し、仕上圧延終了後2秒以内に50℃/秒以上で冷却を開
始し、580 ℃未満〜400 ℃の温度範囲で巻き取り、圧下
率80〜95%で冷間圧延し、再結晶終了温度以上、800 ℃
以下で連続焼鈍し、さらに、0.5 〜40%で調質圧延する
ことを特徴とする、加工性と耐肌荒れ性に優れる缶用鋼
板の製造方法。
(2) C: 0.001 to 0.005 wt%, Si: 0.10 wt%
%, Mn: 0.4 to 1.0 wt%, P: 0.04 wt% or less, S:
A steel slab containing 0.02 wt% or less, Al: 0.01 to 0.10 wt%, N: 0.0050 wt% or less, Nb: 0.008 to 0.10 wt%, and the balance consisting of Fe and unavoidable impurities is heated to 1000 to 1350 ° C. (Ar 3 transformation point + 250 ° C) ~ (Ar 3 transformation point + 150 ° C)
The rough rolling is completed in the temperature range of, and then (Ar 3 transformation point +
100 ° C.) and finishing rolling at a temperature range of ~ (Ar 3 transformation point -50 ° C.), a temperature range of the finish after rolling completion within 2 seconds to start the cooling at 50 ° C. / sec or higher, 580 ° C. below to 400 ° C. Winding, cold rolling at a reduction of 80 to 95%, above the recrystallization end temperature, 800 ° C
A method for producing a steel sheet for cans having excellent workability and surface roughening resistance, wherein the steel sheet is continuously annealed in the following manner and further temper-rolled at 0.5 to 40%.

【0013】次に、上記要旨構成のとおりに限定した理
由について説明する。 (1)鋼成分について C:0.001 〜0.005 wt% Cは、成形性 (焼鈍後YSの低下および高r値化) およ
び結晶粒の微細化の観点から、本発明において重要な成
分元素の1つである。0.001 wt%未満では、たとい、連
続焼鈍にて短時間焼鈍を行なったとしても、鋼板の結晶
粒径を6μm以下に微細化することが困難となる。一
方、0.005 wt%を超えて含有すると鋼板が硬質化し、成
形性が悪くなる。なお、近年、コスト低減の観点から、
天蓋の小径化が進められており、そのため缶頂部に施す
ネックイン加工の成形度がより高くなってきている。そ
れにともない、ネックイン加工部で発生する肌荒れを抑
制することが困難化することが予想されるので、安定し
て細粒を得るために、Cは0.0025〜0.0050wt%の範囲で
含有させることが望ましい。
Next, a description will be given of the reason for limiting the configuration as described above. (1) Steel component C: 0.001 to 0.005 wt% C is one of the important component elements in the present invention from the viewpoints of formability (reduction of YS after annealing and increase of r value) and refinement of crystal grains. It is. If the content is less than 0.001 wt%, it is difficult to reduce the crystal grain size of the steel sheet to 6 μm or less even if short-time annealing is performed by continuous annealing. On the other hand, if the content exceeds 0.005 wt%, the steel sheet becomes hard and the formability deteriorates. In recent years, from the viewpoint of cost reduction,
As the diameter of the canopy is reduced, the degree of neck-in processing applied to the top of the can is increasing. Accordingly, it is expected that it will be difficult to suppress the rough surface generated in the neck-in processed portion. Therefore, in order to obtain fine granules stably, C should be contained in the range of 0.0025 to 0.0050 wt%. desirable.

【0014】Si:0.10wt%以下 Siは、多量に添加すると、表面処理性の劣化、耐食性の
低下等の問題を引き起こすので、0.10wt%以下、好まし
くは0.02wt%以下とする。
Si: 0.10 wt% or less If a large amount of Si is added, it causes problems such as deterioration of surface treatment properties and corrosion resistance. Therefore, the content of Si is set to 0.10 wt% or less, preferably 0.02 wt% or less.

【0015】Mn:0.4 〜1.0 wt% Mnは、不純物として含まれるSに起因する熱延中の赤熱
脆性を防止するために必要であり、結晶粒の微細化にも
有効な元素である。これらの効果は、0.4 wt%以上必要
であるが、1.0 wt%を超えて含有すると、耐食性を低下
させるほか、鋼板の過度の硬質化のために製缶加工性を
低下させるので、0.4 〜1.0 wt%とする。
Mn: 0.4 to 1.0 wt% Mn is necessary to prevent red hot embrittlement during hot rolling caused by S contained as an impurity, and is an effective element for refining crystal grains. These effects need to be 0.4 wt% or more. However, if the content exceeds 1.0 wt%, the corrosion resistance is reduced and the workability of cans is reduced due to excessive hardening of the steel sheet. wt%.

【0016】P:0.04wt%以下 Pは、多量に含有した場合に、鋼の硬質化、加工性の低
下をもたらし、耐食性を低下させるため、その上限を0.
04wt%とする。これらの特性が特に重要視される場合に
は、0.01wt%以下とすることが望ましい。
P: not more than 0.04 wt% When P is contained in a large amount, it hardens steel and lowers workability and lowers corrosion resistance.
04 wt%. When these characteristics are particularly important, the content is desirably 0.01 wt% or less.

【0017】S:0.02wt%以下 Sは、鋼中で介在物として存在し、鋼板の延性を減少さ
せ、さらに耐食性の劣化をもたらす元素であるので、そ
の上限を0.02wt%とする。
S: 0.02 wt% or less S is an element existing as an inclusion in the steel, which reduces the ductility of the steel sheet and further deteriorates the corrosion resistance. Therefore, the upper limit is set to 0.02 wt%.

【0018】Al:0.01〜0.10wt% Alは、AlNとして鋼中の固溶Nを固定化して、低時効性
の付与に有効な元素である。このような効果を得るに
は、0.01%wt以上、好ましくは0.03wt%以上の添加が必
要である。一方、含有量が多くなるとアルミナクラスタ
ーなどに起因する表面欠陥の発生頻度が急増するため、
その上限を0.10wt%とする。
Al: 0.01 to 0.10 wt% Al is an element which is effective for immobilizing solid solution N in steel as AlN and imparting low aging property. To obtain such an effect, it is necessary to add 0.01% by weight or more, preferably 0.03% by weight or more. On the other hand, as the content increases, the frequency of occurrence of surface defects caused by alumina clusters etc. increases rapidly,
The upper limit is 0.10 wt%.

【0019】N:0.0050wt%以下 Nは、0.0050wt%を超えると鋼板が硬質化して、伸びが
著しく低下し、プレス加工性を損ねるので、上限を0.00
50wt%とする。
N: 0.0050 wt% or less N exceeds 0.0050 wt%, the steel sheet becomes hardened, the elongation is remarkably reduced, and the press workability is impaired.
50 wt%.

【0020】Nb:0.008 〜0.10wt% Nbは、炭窒化物を形成する元素であり、固溶C低減によ
る伸び、r値の向上を目的として添加される。また、Nb
添加により、結晶粒の微細化が可能となる。この添加量
が、0.008 wt%未満では上記効果が得られず、一方0.10
wt%を超えると再結晶終了温度を上昇させるので、0.00
8 〜0.10wt%の範囲とする。このほかに、Sn, Cu, Crな
どのいわゆるトランプエレメントが混入しても、これら
の量が、おおむね各0.10wt%以下の含有量であれば、缶
としての使用特性に及ぼす悪影響は無視できる。
Nb: 0.008 to 0.10 wt% Nb is an element forming a carbonitride, and is added for the purpose of improving the elongation and the r value by reducing the solid solution C. Also, Nb
Addition makes it possible to refine crystal grains. If the amount is less than 0.008 wt%, the above effects cannot be obtained.
If it exceeds wt%, the recrystallization end temperature will be increased.
The range is 8 to 0.10 wt%. In addition, even if so-called tramp elements, such as Sn, Cu, and Cr, are mixed, as long as their contents are each approximately 0.10 wt% or less, the adverse effect on use characteristics as a can can be ignored.

【0021】(2)製造条件について ・スラブ加熱温度:1000〜1350℃ 熱間圧延のための、スラブはAc3点以上に加熱されれば
よい。具体的には平均温度 (表面温度でなく、スラブ全
体の温度の平均であり、通常は表面温度と加熱履歴より
算出する) で1000〜1350℃の加熱温度が適する。
(2) Manufacturing conditions Slab heating temperature: 1000-1350 ° C. The slab for hot rolling may be heated to three or more Ac points. Specifically, a heating temperature of 1000 to 1350 ° C. with an average temperature (not the surface temperature but the average of the temperature of the entire slab, usually calculated from the surface temperature and the heating history) is suitable.

【0022】・粗圧延終了温度:(Ar3 変態点+250
℃)〜(Ar3 変態点+150 ℃) 粗圧延を(Ar3 変態点+250 ℃)〜(Ar3 変態点+150
℃)の温度範囲で終了させ、仕上げ圧延前のオーステナ
イト粒径を適正なサイズとする。(Ar3 変態点+150
℃)よりも低温で粗圧延を終了すると、仕上圧延に到る
までのオーステナイト粒の成長が速くなるため、微細化
に不利となる。一方、(Ar3 変態点+250 ℃)を超える
高温で粗圧延すると、粗圧延後のオーステナイト粒径が
十分小さくならず、また圧延ロールの寿命短命化につな
がる。したがって、粗圧延終了温度は(Ar3 変態点+25
0 ℃)〜(Ar3 変態点+150 ℃)の範囲とする。
Rough rolling end temperature: (Ar 3 transformation point + 250
℃) ~ (Ar 3 transformation point + 150 ℃) Rough rolling (Ar 3 transformation point + 250 ℃) ~ (Ar 3 transformation point + 150
C), and the austenite grain size before finish rolling is adjusted to an appropriate size. (Ar 3 transformation point + 150
When rough rolling is completed at a temperature lower than (° C.), growth of austenite grains until finish rolling is accelerated, which is disadvantageous for miniaturization. On the other hand, when rough rolling is performed at a high temperature exceeding (Ar 3 transformation point + 250 ° C.), the austenite grain size after rough rolling does not become sufficiently small, and the life of the rolling roll is shortened. Therefore, the rough rolling end temperature is (Ar 3 transformation point + 25
0 ° C) to (Ar 3 transformation point + 150 ° C).

【0023】・仕上圧延の温度範囲:(Ar3 変態点+10
0 ℃)〜(Ar3 変態点−50℃)、圧延終了後の冷却:2
秒以内に開始し50℃/秒以上で冷却 仕上圧延が(Ar3 変態点−50℃)未満の温度で行われた
場合には、圧延方向に伸びた粗大な加工組織となり、こ
の組織は冷延、焼鈍後も継承されるために、結晶粒径を
6μm以下にすることはできなくなる。一方、(Ar3
態点+100 ℃)を超える圧延でも、結晶粒は粗大化し、
結晶粒径を6μm以下にすることができないことのほ
か、バーニングスケールが発生して、鋼帯に表面疵が発
生したり、スケール厚みが増加し、酸洗性が悪化して酸
洗工程での歩止り低下につながる。したがって、仕上げ
圧延は(Ar3 変態点+100 ℃)〜(Ar3 変態点−50℃)
の温度範囲で行なう必要がある。
Temperature range of finish rolling: (Ar 3 transformation point +10
0 ° C.) to (Ar 3 transformation point −50 ° C.), cooling after rolling is completed: 2
Start within seconds and cool at 50 ° C / sec or more If finish rolling is performed at a temperature lower than (Ar 3 transformation point −50 ° C), a coarse work structure extending in the rolling direction is obtained, and this structure is cooled. The crystal grain size cannot be reduced to 6 μm or less because it is inherited even after rolling and annealing. On the other hand, even if the rolling exceeds (Ar 3 transformation point + 100 ° C), the crystal grains become coarse,
In addition to the fact that the crystal grain size cannot be reduced to 6 μm or less, burning scale is generated, surface flaws are generated on the steel strip, the scale thickness is increased, the pickling property is deteriorated, and the pickling process is deteriorated. It leads to lower yield. Therefore, finish rolling is (Ar 3 transformation point + 100 ° C) ~ (Ar 3 transformation point-50 ° C)
It is necessary to carry out in the temperature range.

【0024】仕上げ圧延終了後は2秒以内、好ましくは
0.5 秒以内、さらに好ましくは0.2秒以内に冷却速度50
℃/秒以上で冷却を開始しないと、微細粒にならない。
急冷開始までの時間が前記範囲を超え、空冷を長く行っ
た場合には、オーステナイト粒あるいはフェライト粒の
粒成長が進み、微細粒とならない。また、鋼帯には板幅
方向に温度分布が存在するために、板温の高い幅中央部
は粒成長速度が速く、粗大粒となるが、一方、板温の低
い幅端部近傍では、逆に比較的微細な結晶粒となるため
に、板内で不均一な組織となる。さらに、冷却速度50℃
/秒以上で冷却できない場合には、結晶粒は高温域で滞
留する時間が長くなるために、再結晶・粒成長あるいは
回復・粒成長が進行し、粗大な熱延組織となり、冷延・
焼鈍後もこれを継承して粗大な結晶粒となり、結晶粒径
を6μm以下にすることはできなくなる。
[0024] After the finish rolling is completed within 2 seconds, preferably
Cooling rate 50 within 0.5 seconds, more preferably within 0.2 seconds
If the cooling is not started at a temperature of at least ° C / sec, fine particles will not be formed.
If the time until the start of rapid cooling exceeds the above range and air cooling is performed for a long time, the growth of austenite grains or ferrite grains proceeds, and fine grains do not become fine grains. In addition, since the steel strip has a temperature distribution in the width direction of the sheet, the grain growth rate is high in the central portion having a high sheet temperature and coarse grains are formed, whereas, in the vicinity of the width end portion where the sheet temperature is low, Conversely, since the crystal grains are relatively fine, the structure becomes uneven in the plate. In addition, cooling rate 50 ℃
If cooling cannot be performed at a rate of more than / g, the crystal grains stay in the high-temperature region for a long time, so that recrystallization / grain growth or recovery / grain growth proceeds, resulting in a coarse hot-rolled structure,
Even after annealing, this is inherited to form coarse crystal grains, and the crystal grain size cannot be reduced to 6 μm or less.

【0025】・巻取り温度;580 ℃未満〜400 ℃ 熱間圧延後の巻取りは、580 ℃未満〜400 ℃の温度範囲
で行う必要がある。400 ℃未満の温度では、AlNやNbC
が十分に析出せず、これにより焼鈍時の再結晶、粒成長
が阻害され、r値やその面内異方性(△r)が悪化し、
加工性が劣下する。また、NbCが過度に微細化し、焼鈍
後のYSが増大する。一方、580 ℃を超える温度では、
熱延板の結晶粒が大きくなり、これを継承して冷延・焼
鈍後の結晶粒も粗大化する。また、NbCが粗大化して再
結晶焼鈍に際しての粒成長抑制効果も低下する。このほ
か、巻取り後のスケール成長が著しくなり、酸洗性が低
下するなどの不具合を生じる。これらの理由のために、
巻取り温度は580 ℃未満〜400 ℃、好ましくは580 ℃未
満〜450 ℃超えの温度範囲とする。なお、熱間圧延後、
冷間圧延に先立ち、必要に応じて酸洗等により、鋼板表
面の酸化スケールを除去する。
Winding temperature: less than 580 ° C. to 400 ° C. Winding after hot rolling must be performed in a temperature range of less than 580 ° C. to 400 ° C. At temperatures below 400 ° C, AlN or NbC
Is not sufficiently precipitated, thereby hindering recrystallization and grain growth during annealing, deteriorating the r value and its in-plane anisotropy (△ r),
Poor workability. Further, NbC becomes excessively fine, and YS after annealing increases. On the other hand, at temperatures above 580 ° C,
The crystal grains of the hot-rolled sheet become large, and the crystal grains after cold rolling and annealing are coarsened by inheriting this. Further, NbC is coarsened, and the effect of suppressing grain growth during recrystallization annealing is also reduced. In addition, the scale growth after winding becomes remarkable, causing problems such as a decrease in pickling properties. For these reasons,
The winding temperature is in the range of less than 580 ° C to 400 ° C, preferably less than 580 ° C to more than 450 ° C. After hot rolling,
Prior to cold rolling, oxide scale on the steel sheet surface is removed by pickling or the like as necessary.

【0026】・冷間圧延の圧下率:80〜95% 冷間圧延の圧下率は、薄肉化の要望に応えるには、高く
するほど望ましい。圧下率が80%未満では、この要望に
応えられないとともに、焼鈍工程で結晶粒が異常に粗大
化したり、混粒化したりして、材質が劣化するほか、深
絞り性に有効な集合組織を発達させることが困難とな
る。一方、圧下率が95%を超えるような高圧下を行う
と、r値が低下し、またΔrが増大してイヤリングが大
きくなる。このため、圧下率は80%〜95%の範囲とす
る。
Cold rolling reduction: 80 to 95% The cold rolling reduction is preferably as high as possible to meet the demand for thinning. If the rolling reduction is less than 80%, this requirement cannot be met, and in addition to abnormally coarsening or mixing of grains during the annealing process, the material deteriorates and a texture effective for deep drawability is obtained. It is difficult to develop. On the other hand, when a high pressure is applied such that the reduction ratio exceeds 95%, the r value decreases, and Δr increases to increase the earring. For this reason, the rolling reduction is in the range of 80% to 95%.

【0027】・焼鈍温度:再結晶終了温度以上、800 ℃
以下 焼鈍方法は、材質の均一性が優れることと、生産性が高
いなどの点から、連続焼鈍が好ましい。連続焼鈍におけ
る焼鈍温度は、再結晶終了温度以上が必要であるが、高
すぎると、結晶粒が異常に粗大化し、加工後の肌荒れが
大きくなるほか、缶用鋼板などの薄物材では、炉内破断
やバックリング発生の危険が大きくなる。このため焼鈍
温度の上限は、800 ℃とする。
Annealing temperature: 800 ° C. or higher than the recrystallization end temperature
As the annealing method, continuous annealing is preferable in terms of excellent material uniformity and high productivity. The annealing temperature in continuous annealing must be equal to or higher than the recrystallization end temperature, but if it is too high, the crystal grains become abnormally coarse and the surface roughness after processing becomes large. The risk of breakage or buckling increases. Therefore, the upper limit of the annealing temperature is set to 800 ° C.

【0028】・調質圧延圧下率:0.5 〜40% 調質圧延の圧下率は、鋼板の調質度により適宜決定され
るが、ストレッチャーストレインの発生を防止するうえ
から、0.5 %以上の圧下率で圧延する必要がある。一
方、40%を超える圧下率で圧延すると鋼板が過度に硬質
化して、加工性が低下するほか、r値の低下、r値の異
方性の増大を招くので、その上限を40%とする。
Temper rolling reduction: 0.5 to 40% The temper rolling reduction is appropriately determined according to the degree of tempering of the steel sheet. However, in order to prevent the occurrence of stretcher strain, the reduction is 0.5% or more. It is necessary to roll at a rate. On the other hand, if the rolling is performed at a rolling reduction of more than 40%, the steel sheet becomes excessively hard, and the workability is reduced. In addition, the r-value is reduced and the anisotropy of the r-value is increased. .

【0029】板厚:0.20mm以下 製缶コスト低減の観点から素材の薄肉化が進められてお
り、このような製缶業界の要求に対応するために、板厚
は0.20mm以下とする。
Sheet thickness: 0.20 mm or less Material thickness is being reduced from the viewpoint of cost reduction in can making, and the thickness is set to 0.20 mm or less in order to meet such requirements of the can making industry.

【0030】以上の方法により得られる鋼板は、加工度
の高いネックイン加工に対しても、ネックしわが発生し
ない、あるいは、絞り、しごき加工においても割れなど
の不具合が発生しないという特性を有する。さらに、成
形加工後の耐肌荒れ性にも優れた特性を有している。な
お、本発明工程における焼鈍後では、降伏応力(YS)
400 MPa以下が得られ、調質圧延後ではr値1.4 以上が
得られる。
The steel sheet obtained by the above-described method has such a characteristic that no neck wrinkles are generated even when neck-in processing is performed with a high degree of processing, and no troubles such as cracks are generated even in drawing and ironing. In addition, it has excellent properties in terms of resistance to surface roughness after molding. After the annealing in the process of the present invention, the yield stress (YS)
400 MPa or less is obtained, and after temper rolling, an r value of 1.4 or more is obtained.

【0031】[0031]

【実施例】表1に示す成分を含み残部が実質的にFeから
なる鋼を転炉で溶製し、この鋼スラブを表2に示す条件
で熱間圧延、冷間圧延、連続焼鈍、調質圧延し、最終仕
上げ板厚を0.13〜0.17mmとした。その後、表面処理を
施して金属クロム層とクロム酸化物層を鋼板表面に形成
させた。このようにして得られたティンフリー鋼板につ
いて、以下の方法により特性を調査した。
EXAMPLE A steel containing the components shown in Table 1 and consisting essentially of Fe was smelted in a converter, and this steel slab was hot-rolled, cold-rolled, continuously annealed and tempered under the conditions shown in Table 2. The final finished plate thickness was 0.13 to 0.17 mm. Thereafter, a surface treatment was performed to form a metal chromium layer and a chromium oxide layer on the steel sheet surface. The characteristics of the tin-free steel sheet thus obtained were investigated by the following methods.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】(A) 成形性 調質圧延後の鋼板のr値を、次式により、平均値として
求めた。 r値=(rL +rC +2rD )/4 ただし、rL 、rC 、rD は、それぞれ圧延方向に0
度、90度、45度方向のr値(JIS 13 号引張試験片を使
用) を表す。なお、表面処理後に測定してもr値はほぼ
同じ値であった。 (B) 焼鈍後の降伏応力(YS) 焼鈍後の板に、上降伏点を除去するために圧下率1.0 %
の軽圧延を施した後、引張り試験に供した。 (C) 製缶性(ネックしわ、ネック部の肌荒れ) 製缶性の評価は前述の方法と同様にして行った。表面処
理鋼板の両面に樹脂フィルムを被覆した後、浅絞りカッ
プ成形、第1次、第2次、再絞り成形、続いてボトム成
形を行なった。製缶後のネックイン加工部を外観目視観
察することにより、しわの発生および表面の肌荒れを調
査した。肌荒れについて判定困難なものは、フィルム剥
離後の表面粗度Raが1.0 μm 以上の場合に「肌荒れあ
り」とした。
(A) Formability The r value of the steel sheet after temper rolling was determined as an average value by the following equation. r value = (r L + r C + 2r D ) / 4 where r L , r C , and r D are each 0 in the rolling direction.
The r-value in the direction of 90 degrees, 90 degrees and 45 degrees (using a JIS No. 13 tensile test piece). Note that the r value was almost the same even when measured after the surface treatment. (B) Yield stress after annealing (YS) To reduce the upper yield point on the annealed sheet, a rolling reduction of 1.0%
, And subjected to a tensile test. (C) Manufacturability (wrinkled neck, rough skin at neck part) The evaluation of can manufacture was performed in the same manner as described above. After coating the resin film on both surfaces of the surface-treated steel sheet, shallow draw cup forming, primary, secondary, redraw forming, and then bottom forming were performed. The appearance of the wrinkles and the rough surface were investigated by visually observing the neck-in processed part after the can-making. If the surface roughness was difficult to determine, the surface roughness Ra after film peeling was 1.0 μm or more, and “skin roughness was found”.

【0035】これらの結果を表3に示す。表3から、r
値が1.4 以上であり、ネックイン加工部でもしわのない
優れた成形加工性を有し、しかも製缶加工後の表面には
肌荒れが発生しないという良好な特性を示した。これに
対し、本発明条件を満たさない比較例は、上記特性のう
ちのいずれかが不良であった。なお、Cが0.0025%未満
あるいは仕上圧延後の急冷開始時間が0.2 秒後より遅い
場合は、フェライト粒の平均粒径は6.0 μm 以下ではあ
るが粒径にあまり余裕がなく、安定して平均粒径6.0 μ
m 以下を得るためには、Cを0.0025%以上とするか、あ
るいは仕上圧延後の急冷を0.2 秒以内に開始することが
望ましい。上記実施例では、供試鋼板は、ティンフリー
鋼板としたが、ぶりき鋼板、複合めっき鋼板などとして
もよく、さらにめっきを施さない塗油鋼板としてもよ
い。また、DI缶用あるいは3ピース缶用として用いて
もなんら問題はない。
Table 3 shows the results. From Table 3, r
The value was 1.4 or more, and it had excellent molding workability without wrinkles even in the neck-in processed portion, and exhibited good characteristics that the surface after the can-making process did not have rough skin. On the other hand, the comparative example that did not satisfy the conditions of the present invention had any of the above-mentioned characteristics poor. When C is less than 0.0025% or the quenching start time after finish rolling is later than 0.2 seconds, the average grain size of ferrite grains is less than 6.0 μm, but there is not much room for grain size, and the average grain size is stable. 6.0 μ diameter
In order to obtain m or less, it is desirable to set C to 0.0025% or more, or to start quenching after finish rolling within 0.2 seconds. In the above embodiment, the test steel sheet is a tin-free steel sheet, but may be a tinned steel sheet, a composite plated steel sheet, or the like, or may be an oil-coated steel sheet that is not subjected to plating. Also, there is no problem if it is used for DI cans or three-piece cans.

【0036】[0036]

【表3】 [Table 3]

【0037】[0037]

【発明の効果】以上説明したように、本発明によれば、
缶成形性に優れ、成形加工後の肌あれが発生することも
ないので、最近の厳しい加工用途に適した缶用鋼板が提
供できる。そして、本発明によれば、とくに、樹脂フィ
ルム被覆鋼板の薄肉化に適応した缶用鋼板が提供でき
る。
As described above, according to the present invention,
Since it is excellent in can formability and does not cause roughening after forming, a steel sheet for can suitable for recent severe processing applications can be provided. According to the present invention, it is possible to provide a steel sheet for a can which is particularly adapted to thinning of a resin film-coated steel sheet.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ネックイン加工部の肌荒れに及ぼす鋼板(製品
板)の結晶粒径の影響を示すグラフである。
FIG. 1 is a graph showing the effect of the crystal grain size of a steel plate (product plate) on the rough surface of a neck-in processed portion.

【図2】焼鈍後の降伏応力と鋼板(製品板)のr値との
関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the yield stress after annealing and the r value of a steel sheet (product sheet).

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 荒谷 誠 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. (72) Makoto Aratani 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works (72) Inventor Hideo Kukuminato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Kawasaki Steel Corporation Chiba Works

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】C:0.001 〜0.005 wt%、 Si:0.10wt%以下、 Mn:0.4 〜1.0 wt%、 P:0.04wt%以下、 S:0.02wt%以下、 Al:0.01〜0.10wt%、 N:0.0050wt%以下、 Nb:0.008 〜0.10wt% を含有し、残部がFeおよび不可避的不純物からなる成分
組成を有するとともに、平均結晶粒径が6μm以下であ
ることを特徴とする、板厚が0.20mm以下の、加工性と耐
肌荒れ性に優れる缶用鋼板。
C: 0.001 to 0.005 wt%, Si: 0.10 wt% or less, Mn: 0.4 to 1.0 wt%, P: 0.04 wt% or less, S: 0.02 wt% or less, Al: 0.01 to 0.10 wt%, N: 0.0050% by weight or less, Nb: 0.008 to 0.10% by weight, the balance being a component composition comprising Fe and unavoidable impurities, and an average crystal grain size of 6 μm or less. With a workability of 0.20mm or less and excellent skin roughness resistance.
【請求項2】C:0.001 〜0.005 wt%、 Si:0.10wt%以下、 Mn:0.4 〜1.0 wt%、 P:0.04wt%以下、 S:0.02wt%以下、 Al:0.01〜0.10wt%、 N:0.0050wt%以下、 Nb:0.008 〜0.10wt% を含有し、残部がFeおよび不可避的不純物からなる鋼ス
ラブを、1000〜1350℃に加熱し、(Ar3 変態点+250
℃)〜(Ar3 変態点+150 ℃)の温度範囲で粗圧延を終
了し、次いで、(Ar3 変態点+100 ℃)〜(Ar3 変態点
−50℃)の温度範囲で仕上圧延し、仕上圧延終了後2秒
以内に50℃/秒以上で冷却を開始し、580 ℃未満〜400
℃の温度範囲で巻き取り、圧下率80〜95%で冷間圧延し
て、再結晶終了温度以上、800 ℃以下で連続焼鈍し、さ
らに、0.5 〜40%で調質圧延することを特徴とする、加
工性と耐肌荒れ性に優れる缶用鋼板の製造方法。
2. C: 0.001 to 0.005 wt%, Si: 0.10 wt% or less, Mn: 0.4 to 1.0 wt%, P: 0.04 wt% or less, S: 0.02 wt% or less, Al: 0.01 to 0.10 wt%, A steel slab containing N: 0.0050 wt% or less, Nb: 0.008 to 0.10 wt%, and the balance consisting of Fe and unavoidable impurities is heated to 1000 to 1350 ° C, and (Ar 3 transformation point + 250
℃) ~ (Ar 3 transformation point + 150 ℃) to complete the rough rolling, then finish rolling in the temperature range of (Ar 3 transformation point + 100 ℃) ~ (Ar 3 transformation point -50 ℃), finish Start cooling at 50 ° C / sec or more within 2 seconds after the end of rolling.
Rolling in the temperature range of 80 ° C, cold rolling at a reduction of 80 to 95%, continuous annealing at a temperature higher than the recrystallization end temperature and 800 ° C or lower, and further temper rolling at 0.5 to 40%. A method for producing a steel sheet for cans having excellent workability and resistance to rough skin.
JP1551298A 1998-01-28 1998-01-28 Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture Pending JPH11209845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1551298A JPH11209845A (en) 1998-01-28 1998-01-28 Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1551298A JPH11209845A (en) 1998-01-28 1998-01-28 Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture

Publications (1)

Publication Number Publication Date
JPH11209845A true JPH11209845A (en) 1999-08-03

Family

ID=11890880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1551298A Pending JPH11209845A (en) 1998-01-28 1998-01-28 Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture

Country Status (1)

Country Link
JP (1) JPH11209845A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045590A (en) * 2004-07-30 2006-02-16 Toyo Kohan Co Ltd Steel sheet coated with organic resin film for di can, and manufacturing method therefor
JP2007162082A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Method for producing cold-rolled steel sheet having excellent strain aging-resistant property and less intra-plane anisotropy
WO2010110485A1 (en) 2009-03-27 2010-09-30 Jfeスチール株式会社 Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
KR100989778B1 (en) 2008-08-28 2010-10-26 현대제철 주식회사 hot-rolled steel sheet having good drawing ability and galvanizing property, and method for producing the same
WO2011052763A1 (en) 2009-10-29 2011-05-05 Jfeスチール株式会社 Steel sheet for cans having excellent surface roughening resistance, and method for producing same
WO2015129191A1 (en) * 2014-02-25 2015-09-03 Jfeスチール株式会社 Steel plate for crown cap, method for manufacturing same, and crown cap
WO2015182360A1 (en) * 2014-05-30 2015-12-03 Jfeスチール株式会社 Steel sheet for cans and manufacturing method thereof
EP3000906A4 (en) * 2013-07-17 2016-08-03 Jfe Steel Corp Steel sheet for can, and method for manufacturing same

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006045590A (en) * 2004-07-30 2006-02-16 Toyo Kohan Co Ltd Steel sheet coated with organic resin film for di can, and manufacturing method therefor
JP2007162082A (en) * 2005-12-15 2007-06-28 Jfe Steel Kk Method for producing cold-rolled steel sheet having excellent strain aging-resistant property and less intra-plane anisotropy
JP4715496B2 (en) * 2005-12-15 2011-07-06 Jfeスチール株式会社 Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy
KR100989778B1 (en) 2008-08-28 2010-10-26 현대제철 주식회사 hot-rolled steel sheet having good drawing ability and galvanizing property, and method for producing the same
WO2010110485A1 (en) 2009-03-27 2010-09-30 Jfeスチール株式会社 Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
JP2010229486A (en) * 2009-03-27 2010-10-14 Jfe Steel Corp Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
EP2412838A4 (en) * 2009-03-27 2017-05-24 JFE Steel Corporation Steel sheet for cans which exhibits excellent surface properties after drawing and ironing, and process for production thereof
US20120018055A1 (en) * 2009-03-27 2012-01-26 Jfe Steel Corporation Steel sheet for cans with excellent surface properties after drawing and ironing and method for producing the same
US9034119B2 (en) 2009-03-27 2015-05-19 Jfe Steel Corporation Steel sheet for cans with excellent surface properties after drawing and ironing and method for producing the same
US9005375B2 (en) 2009-10-29 2015-04-14 Jfe Steel Corporation Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
KR101423849B1 (en) * 2009-10-29 2014-07-25 제이에프이 스틸 가부시키가이샤 Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
AU2010312372B2 (en) * 2009-10-29 2013-08-29 Jfe Steel Corporation Steel sheet for can having excellent surface roughening resistance and manufacturing method thereof
EP2479308A4 (en) * 2009-10-29 2017-07-19 JFE Steel Corporation Steel sheet for cans having excellent surface roughening resistance, and method for producing same
WO2011052763A1 (en) 2009-10-29 2011-05-05 Jfeスチール株式会社 Steel sheet for cans having excellent surface roughening resistance, and method for producing same
US10144985B2 (en) 2013-07-17 2018-12-04 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same
EP3000906A4 (en) * 2013-07-17 2016-08-03 Jfe Steel Corp Steel sheet for can, and method for manufacturing same
JPWO2015129191A1 (en) * 2014-02-25 2017-03-30 Jfeスチール株式会社 Crown steel plate, method for producing the same, and crown
WO2015129191A1 (en) * 2014-02-25 2015-09-03 Jfeスチール株式会社 Steel plate for crown cap, method for manufacturing same, and crown cap
JPWO2015182360A1 (en) * 2014-05-30 2017-04-20 Jfeスチール株式会社 Steel plate for cans
CN106460118A (en) * 2014-05-30 2017-02-22 杰富意钢铁株式会社 Steel sheet for cans and manufacturing method thereof
WO2015182360A1 (en) * 2014-05-30 2015-12-03 Jfeスチール株式会社 Steel sheet for cans and manufacturing method thereof
CN106460118B (en) * 2014-05-30 2018-12-25 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
US10301702B2 (en) 2014-05-30 2019-05-28 Jfe Steel Corporation Steel sheet for cans and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
CN102597289B (en) Steel sheet for cans having excellent surface roughening resistance, and method for producing same
JP5423092B2 (en) Steel plate for cans with excellent surface properties after drawing and ironing and method for producing the same
JP6428986B1 (en) Cold-rolled steel sheet for drawn cans and manufacturing method thereof
JP5958038B2 (en) Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
JP6455640B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP2001107186A (en) High strength steel sheet for can and its producing method
JPH11209845A (en) Steel sheet for can, excellent in workability and surface roughing resistance, and its manufacture
JP6699310B2 (en) Cold rolled steel sheet for squeezer and method for manufacturing the same
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP2001107187A (en) High strength steel sheet for can and its producing method
JP3728911B2 (en) Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same
WO2018180403A1 (en) Steel sheet for two-piece can and production method therefor
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof
JP3560267B2 (en) Manufacturing method of polyester resin coated steel sheet for thinning deep drawn ironing can
JPH05247669A (en) Manufacture of high strength steel sheet for thinned and deep-drawn can
JP3132338B2 (en) Method for producing DTR can-adaptive steel sheet having excellent resistance to side wall breakage
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP2000087145A (en) Manufacture of steel sheet for two-piece can, excellent in uniformity of inplane anisotropy in coil
JP3164853B2 (en) Manufacturing method of thin steel plate for food cans
JP2002317248A (en) Thinned steel sheet for deep drawn and ironed can having excellent workability
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JP2023549876A (en) Plated steel sheet with excellent strength, formability and surface quality, and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050215