JP3407531B2 - Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy - Google Patents

Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy

Info

Publication number
JP3407531B2
JP3407531B2 JP05786396A JP5786396A JP3407531B2 JP 3407531 B2 JP3407531 B2 JP 3407531B2 JP 05786396 A JP05786396 A JP 05786396A JP 5786396 A JP5786396 A JP 5786396A JP 3407531 B2 JP3407531 B2 JP 3407531B2
Authority
JP
Japan
Prior art keywords
less
plane anisotropy
steel sheet
thickness
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP05786396A
Other languages
Japanese (ja)
Other versions
JPH09249919A (en
Inventor
克己 谷川
佳弘 細谷
克己 小島
敬 粟屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP05786396A priority Critical patent/JP3407531B2/en
Publication of JPH09249919A publication Critical patent/JPH09249919A/en
Application granted granted Critical
Publication of JP3407531B2 publication Critical patent/JP3407531B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明は、面内異方性の小さ
い2ピース缶用極薄鋼板の製造方法に関する。 【0002】 【従来の技術】鋼板表面に錫めっきを施した錫めっき鋼
板あるいは電解クロム酸処理を施したティンフリースチ
ール(TFS)のような缶用鋼板は食缶や飲料缶に多用
されている。これらの食缶や飲料缶は、その製缶方法の
違いから3ピース缶と2ピース缶に分類される。 【0003】近年、飲料缶等を中心として、缶体軽量
化、製缶時の工程省略、素材および製造コストの低減の
観点から、3ピース缶から2ピース缶への移行、および
缶体の薄肉化が進められている。また、2ピース缶用鋼
板に対しては、缶体のさらなる軽量化、コストダウンを
目的として、素材となる鋼板自体のゲージダウンニーズ
が一段と強まっている。しかし、鋼板の板厚を薄くする
と缶体強度の低下を招くため、再結晶焼鈍後に第2回目
の冷間圧延を行い高強度化した鋼板、すなわちDR(Do
uble Reduce )材が2ピース缶用鋼板に用いられるよう
になってきている。 【0004】ところで、食缶、飲料缶用の2ピース缶に
は、絞り−再絞り加工により製缶されるDRD缶(Draw
n and redrawn can )、缶胴部の薄肉化を伴う多段の絞
り加工により製缶されるDTR缶(Drawn-thin-redrawn
can)、および絞り加工後にしごき加工が施されるDI
缶(Drawn and wall ironed can )等があるが、いずれ
の場合も、その製缶時に、円盤状のブランク板から絞り
加工によりカップ状の缶体を成形する、あるいはカップ
状の缶体から再絞り加工により、さらに径が小さく深さ
の深いカップ状の缶体を成形する工程を含んでいる。 【0005】このような2ピース缶の製缶の際の絞り加
工時に、鋼板の加工性の面内異方性に起因して、しばし
ば缶端部の高さ、あるいはフランジ部の幅が円周方向に
沿って不均一となる、いわゆる「耳」が発生する。この
耳は缶端部のネッキング加工前にトリムし除去される
が、耳が大きい場合にはトリム代が大きくなり、材料歩
留まりを低下させる。 【0006】さらに、耳は円周方向に沿った板厚分布の
変動をもたらし、後工程のネッキング加工の際のネック
しわ発生の要因となるのみならず、DI加工時にパンチ
から缶体を抜き取る際のパンチ抜け不良の発生原因にも
なり、材料歩留まりの低下、品質の低下をもたらす。 【0007】このようなことから、2ピース缶用鋼板に
対しては、製缶時の耳発生の小さい、すなわち面内異方
性の小さい鋼板が求められている。特に、板厚の薄いD
R材では耳が大きくなりやすいため、面内異方性が一段
と小さい2ピース缶用極薄鋼板が強く望まれるようにな
ってきている。 【0008】面内異方性の小さい2ピース缶用鋼板の製
造方法として、従来いくつかの技術が提案されている。
例えば、特開平2−141535号公報および特開平2
−141536号公報には、C:0.010〜0.04
0%の低炭素鋼の熱延仕上温度をAr3 変態点未満とす
る技術、および鋼片加熱温度を1100℃未満とし、冷
間圧延、再結晶焼鈍後に8〜30%の再冷延を行う技術
が提案されており、また特開平3−36215号公報に
は、C:0.006〜0.02%の低炭素鋼にNを0.
002〜0.015%の範囲で積極的に添加し、一次冷
間圧延率、二次冷間圧延をそれぞれ80〜90%、20
〜50%とする技術が提案されている。さらに、特開平
5−311245号公報には低炭素アルミキルド鋼およ
び極低炭素鋼を2回圧延2回焼鈍する技術が提案されて
いる。 【0009】しかし、これらの技術を用いても、最近の
2ピース缶用鋼板に求められる耳発生抑制に対する厳し
い要求を満足させることは難しく、さらに改善を図る必
要がある。特に、特開平5−311245号公報の技術
では、従来技術に比較して面内異方性は低減するが、冷
間圧延、焼鈍をそれぞれ2回ずつ行う必要があり、鋼板
の製造コストが高くなるという問題点がある。 【0010】また、特開平4−337049号公報、特
開平5−247669号公報、特開平7−62486号
公報等には缶用鋼板にBを添加する技術が開示されてい
る。これらはいずれもミクロ組織をフェライトとマルテ
ンサイト、ベイナイトまたはパーライトとからなる二相
組織とすること要件とし、そのため、C含有量を高く
し、かつ焼鈍温度を二相域すなわちAc1 点以上の高温
にする必要がある。板厚0.20mm以下の極薄缶用の
鋼板の製造にあたっては、このような高温焼鈍はCAL
通板性を著しく劣化させ、生産性の低下、すなわち製造
コストの増加をもたらすという問題点を有している。ま
た、二相組織であるがゆえにフェライト単相組織に比
べ、根本的に加工性および加工性の均一性が劣る。 【0011】さらに、特公昭55−34851号公報、
特開平6−306534号公報にもBを添加する技術が
開示されているが、これらの技術は単に軟質化を目的と
してBを添加したにすぎず、面内異方性については何等
考慮されておらず、これらの技術を用いても面内異方性
を充分に小さくすることはできない。 【0012】 【発明が解決しようとする課題】本発明はかかる事情に
鑑みてなされたものであって、最近の要請を充分満たし
得る面内異方性の小さい2ピース缶用極薄鋼板を、生産
性を低下させずに経済的に製造する方法を提供すること
を目的とする。 【0013】 【課題を解決するための手段】本発明者らは、面内異方
性の小さい2ピース缶用極薄鋼板を製造する方法につい
て鋭意検討を重ねた結果、鋼板の組成を厳密に調整した
低炭素鋼にBを添加し、かつ製造条件、特にスラブ厚と
熱延仕上との比、二次冷間圧延の圧下率を最適化するこ
とにより、経済的かつ効率的に面内異方性を低減できる
ことを見出した。 【0014】本発明はこのような知見に基づいてなされ
たものであって、C:0.015〜0.04wt%、S
i:0.1wt%以下、Mn:0.1〜0.6wt%、
P:0.02wt%以下、S:0.02wt%以下、s
ol.Al:0.02〜0.1wt%、N:0.002
5wt%以下、O:0.005wt%以下、B:(−
0.02C+0.0010)〜0.002wt%を含有
する鋼組成を有するスラブを、仕上温度がAr以上
で、かつスラブ厚と熱延仕上厚との比が125以上とな
るように熱間圧延し、酸洗後、83〜88%の圧下率で
冷間圧延した後、再結晶温度以上、750℃以下の温度
で連続焼鈍し、さらに圧下率R2(%)が、−60C−
6Mn+9≦R2≦10×log(B×10)+12
を満たす二次圧延を行い、板厚0.20mm以下とする
ことを特徴とする面内異方性の小さい2ピース缶用極薄
鋼板の製造方法を提供するものである。 【0015】 【発明の実施の形態】以下、本発明について具体的に説
明する。まず本発明を完成するに至った基本的な考え方
および実験結果について説明する。 【0016】本発明者らは、面内異方性に対するB添加
の効果について種々検討を行った。まず、熱間圧延条件
の影響に着目した。C:0.02〜0.03t%、N:
0.0020〜0.0025wt%、sol.Al:
0.04〜0.08wt%、O:0.0015〜0.0
025wt%とし、Bを、無添加、0.0008wt
%、0.0012wt%の3種類とした鋼に対して、ス
ラブ厚と熱延仕上厚との比を種々変化させ、冷圧率86
%で冷間圧延後、連続焼鈍し、圧下率12%の二次圧延
を行い板厚0.20mmに仕上げた後、イヤリング率を
評価した。ここで、イヤリング率は面内異方性のパラメ
ータとして用いた。イヤリング率は、絞り比1.8で深
絞り成形し、耳高さを測定し、耳の最大値と最小値との
差を耳の最小値で割った値を百分率で表した。その結果
を図1に示す。 【0017】B無添加鋼の場合、スラブ厚/熱延仕上厚
の値によるイヤリング率の変化はほとんどなく、その値
は大きい。一方、B添加鋼はB無添加鋼に比べてイヤリ
ング率は小さくなり、特にスラブ厚/熱延仕上厚の値が
125以上になると急激にイヤリング率が小さくなり、
B添加効果が顕著となることを見出した。 【0018】この理由については現在のところ必ずしも
明らかではないが、スラブ厚/熱延仕上厚の値を増大さ
せると熱延板の結晶粒が細粒化し、オーステナイト粒界
にBが偏析しやすくなり、変態後のフェライト粒界にも
Bが偏析すること、その結果、熱延板のフェライト粒の
細粒化と粒界偏析Bの相乗効果により、冷間圧延、焼鈍
後の集合組織が変化し、面内異方性が低減したものと考
えられる。 【0019】次に、B量およびC量の影響について検討
した。図2は、C,B量を種々変化させた鋼板を製造
し、イヤリング率を測定した結果を示した図である。ス
ラブ厚と熱延仕上厚との比を139とし、冷圧率は86
%、二次圧延圧下率は15%とし、板厚を0.195m
mとした。同図から明らかなように、B量およびC量は
多すぎても少なすぎても面内異方性が劣化する。C:
0.015〜0.04wt%、B:(−0.02C+
0.001)〜0.002wt%の場合にイヤリング率
4%以下となり、面内異方性が小さくなることがわか
る。これらの結果から、本発明では、C:0.015〜
0.04wt%、B:(−0.02C+0.0010)
〜0.002wt%としている。 【0020】さらに、C量、Mn量、B量と二次圧延圧
下率の影響について検討した。まず、C量、Mn量のこ
となる鋼板を種々の二次圧延圧下率で製造し、イヤリン
グ率とビッカース硬度Hvを測定した。その結果を図3
に示す。図3は、横軸に(10C+Mn)量をとり、縦
軸に二次圧延圧下率R2をとって、これらの関係を示す
図である。ここで、B量は0.0010〜0.0015
wt%であり、スラブ厚と熱延仕上厚との比は129〜
138、一次冷圧率は85〜88%、二次圧延圧下率は
3〜17%とし、板厚を0.19〜0.20mmに仕上
げた。 【0021】同図から明らかなように、10C+Mn=
0.25(C:0.015wt%、Mn:0.10wt
%)未満あるいは10C+Mn=1.0(C:0.04
wt%、Mn:0.60wt%)を超える場合には、イ
ヤリング率が4%を超えており、面内異方性が劣ってい
る。 【0022】一方、二次圧延圧下率R2(%)がR2=
−6(10C+Mn)+9=−60C−6Mn+9未満
の場合には、鋼板のビッカース硬度Hvが140未満で
あり、2ピース缶の缶体強度を確保するために必要な素
材強度が得られていない。これは、C、Mnが少ない場
合には、二次圧延による加工硬化により鋼板の強度を高
める必要があることを示している。 【0023】本発明ではこれらの結果に基づいて、缶体
強度を確保するために充分な素材強度を有し、かつ面内
異方性の小さい鋼板を製造するための条件としてC:
0.015〜0.04wt%、Mn:0.1〜0.6w
t%に規定するとともに、二次圧延圧下率R2(%)の
下限をC,Mnの関数としてR2=−60C−6Mn+
9と規定した。 【0024】図4は、Bを無添加、およびB:0.00
04、0.0008、0.0015wt%の4種類の鋼
板の二次圧延圧下率によるイヤリング率の変化を示す図
である。B無添加鋼は二次圧延圧下率が低い場合もイヤ
リング率が大きく、さらに圧下率の増加に伴いイヤリン
グ率が増大している。これに対し、B添加鋼はB無添加
鋼に比べイヤリング率は小さく、しかもB添加量により
若干異なるが二次圧延圧下率が20%程度までは圧下率
の増加に伴うイヤリング率の増大が小さく、4%以下と
なっている。しかし、Bを添加した場合でも、二次圧延
圧下率が大きくなり過ぎるとイヤリング率は増大する。 【0025】そこで、さらに詳細にB添加量および二次
圧延圧下率とイヤリング率との関係を調査した。C:
0.036wt%とし、B:0.0003〜0.002
3wt%と種々変化させた鋼板を、スラブ厚と熱延仕上
厚との比139〜147、一次冷圧率84〜88%、二
次圧延圧下率10〜28%の条件で製造し、板厚0.2
0mm以下に仕上げ、イヤリング率を測定した。その結
果を図5に示す。図5は、横軸にB含有量をとり、縦軸
に二次圧延圧下率R2をとって、これらの関係を示す図
である。この図に示すように、B含有量を増加させると
二次圧延圧下率を高くしてもイヤリング率は低く抑えら
れており、R2≦10×log(B×104 )+12と
することにより、イヤリング率を4%以下にすることが
できる。この理由は現在のところ必しも明らかではない
が、粒界に偏析したBが二次圧延による異方性の劣化を
抑制する作用を有するための推定される。しかし、B添
加量が少なすぎたり、多すぎる場合には、二次圧延圧下
率によらずイヤリング率4%を超えており、面内異方性
を充分低減させることはできない。これらの結果によ
り、本発明では、二次圧延圧下率R2(%)をR2≦1
0×log(B×104)+12としている。 【0026】次に、本発明の組成について説明する。本
発明の2ピース缶用鋼板は、C:0.015〜0.04
wt%、Si:0.1wt%以下、Mn:0.1〜0.
6wt%、P:0.02wt%以下、S:0.02wt
%以下、sol.Al:0.02〜0.1wt%、N:
0.0025wt%以下、O:0.005wt%以下、
B:(−0.02C+0.0010)〜0.002wt
%を含有する鋼組成を有する。 【0027】C:Cは面内異方性を制御するために極め
て重要な元素である。Cが0.015wt%未満の場合
には、熱延板組織が粗粒化しやすくなるため、Bを添加
してスラブ厚/熱延仕上げ厚、一次冷圧率、二次圧延圧
下率を制御しても、図2および図3に示したように面内
異方性を低減することが困難となる。また、Mnを添加
し二次圧延を行ったとしても、図3に示すように硬度H
vが140未満となり、異方性を劣化させずに2ピース
缶として必要な強度を得ることが困難となる。一方、C
含有量が0.04wt%を超えると、フェライト粒内の
固溶C量、粒界に偏析するCの量および炭化物の量が増
加するため、図2および図3に示したようにB添加効果
が充分発揮されず、面内異方性が劣化する。したがっ
て、C含有量を0.015〜0.04wt%の範囲とす
る。 【0028】Si:Siは、意図的に添加しない場合で
も不純物として鋼中に残留し、鋼板を脆化させ、耐食性
を劣化させる元素であり、またTFSの下地鋼板として
使用する場合には金属Crの電析に対しても悪影響を与
えるため、その含有量は少ないほど望ましい。本発明で
はこのような悪影響を回避する観点から、Si含有量を
0.1wt%以下とする。 【0029】Mn:Mnは鋼中SをMnSとして析出さ
せることによってスラブの熱間割れを防止するととも
に、固溶強化元素としてCによる強化を補い、2ピース
缶の缶体強度を確保するために必要な元素である。Sを
析出固定し、鋼板強度、硬度を確保するためには0.1
wt%以上の添加が必要であるが、0.6wt%を超え
ると集合組織形成に悪影響を与え面内異方性の増大をも
たらす。したがって、Mn含有量を0.1〜0.6wt
%の範囲とする。 【0030】P:PもMnと同様に置換型固溶元素であ
り、Mn以上に大きな強化能を有し鋼板の高強度化を図
るためには有効な元素であるが、同時にフェライト粒界
に偏析して粒界を脆化させる元素であり、その含有量は
極力少ないほうが好ましい。また、Pの積極的添加は集
合組織形成に悪影響を与え面内異方性の増大をもたら
す。そのためP含有量を0.02wt%以下とする。 【0031】S:Sはスラブの熱間割れを防止する観点
から極力少ないほうが望ましく、そのような観点から
0.02wt%以下とする。 sol.Al:sol.Alは鋼中NをAlNとして析
出させるために添加するが、その量が0.02wt%未
満の場合には、添加したBの多くがBNを形成し、B添
加による面内異方性低減効果が充分に発揮されなくな
る。一方、多量のAlを添加するとAl23 系介在物
が残留し、製缶時の介在物起因の割れが発生しやすくな
り加工性が劣化するが、実用上加工性の観点から許容さ
れる限界は0.10wt%である。したがって、so
l.Al含有量を0.02〜0.1wt%の範囲とす
る。 【0032】N:面内異方性に対するB添加の効果を充
分に発揮させるためにはNは極力少なくすることが望ま
しい。Nが多い場合には、Al、Bの添加量を適性化し
てもBNが形成されやすくなり、B添加効果が弱まり面
内異方性の増大をもたらすこととなる。そのような観点
からNを0.0025wt%以下に規制する。 【0033】O:鋼中にOが多量に存在すると、添加し
たBの一部が酸化物を形成しやすくなり、B添加による
面内異方性低減効果が充分に発揮されなくなる。また、
鋼中の酸化物系介在物は2ピース缶製缶時の割れ発生の
起点となり、加工性を著しく阻害する。したがってトー
タルO量は極力少なくすることが望ましい。本発明にお
いては、B添加効果を充分発揮させるとともに、加工性
の劣化を回避するために、鋼中のトータルO量を0.0
05wt%以下に規制する。 【0034】B:Bは本発明において最も重要な添加元
素である。適正量のBを添加することにより面内異方性
を効果的に低減することができる。Bはスラブ厚と熱延
仕上厚の比を制御することにより、熱延時のオーステナ
イト粒界に効果的に偏析し、熱延板のオーステナイト粒
さらには変態後のフェライト粒を細粒化させる。Bの一
部はBNを形成するが、その他のBは変態後の熱延板の
フェライト粒界にも偏析する。このような熱延板細粒化
および粒界偏析Bの相乗作用により、冷間圧延後の再結
晶時の集合組織形成に影響を及ぼし、面内異方性を低減
させる効果を発揮させるものと考えられる。さらに、粒
界に偏析したBは二次圧延による異方性の劣化を抑制す
る。このようなB添加効果を充分に発揮させるために
は、C量が少ない場合にはオーステナイト、フェライト
の粒径が大きくなりやすいため、C量が比較的多い場合
よりも多量のBを添加する必要がある。すなわち、図2
および図5に示したように、B≧−0.02C+0.0
01(wt%)の場合に、B添加の効果が充分に発揮さ
れ、面内異方性が低減される。一方、必要以上に多量に
Bを添加すると、粒界のみならずフェライト粒内にも固
溶Bが残存し、面内異方性を増大させる集合組織を形成
しやすくなる。図2および図5に示したようにB含有量
が0.002%を超えると面内異方性が逆に大きくな
る。したがって、B含有量を(−0.02C+0.00
10)〜0.002wt%とする。 【0035】次に、本発明の製造条件について説明す
る。本発明では、上記組成を有する鋼を転炉溶製後、連
続鋳造によりスラブとし、粗圧延を経て、あるいは粗圧
延を省略して直接熱間仕上圧延機に挿入して熱間圧延を
行い、酸洗後、冷間圧延を行い、その後連続焼鈍炉にて
連続焼鈍を行い、さらに二次圧延を行って板厚0.20
mm以下とする。 【0036】熱間圧延は、仕上温度がAr3 以上で、か
つスラブ厚と熱延仕上厚との比が125以上となるよう
に行われる。スラブ厚と熱延仕上厚との比を125以上
としたのは、図1に示したようにB添加による面内異方
性低減効果を充分に発揮させるためである。両者の比が
125以上であれば、スラブ厚、熱延仕上厚は、それぞ
れ最終製品板厚および最適一次冷圧率、二次圧延圧下率
に応じて適宜選定すればよい。 【0037】熱延仕上温度をAr3 以上としたのは、A
3 変態点未満で仕上げると、熱延板に集合組織が形成
されるとともに、結晶粒が粗大化し、冷間圧延、焼鈍後
の面内異方性が劣化するためである。 【0038】スラブ加熱温度、巻取温度は特に限定する
必要はなく、通常行われる範囲で行うことができ、例え
ばスラブ加熱温度1100〜1250℃、巻取温度50
0〜700℃程度とすることができる。 【0039】このように熱間圧延した後の冷間圧延は8
3〜88%の圧下率で行う。この一次冷圧率は、後述す
る二次圧延圧下率とともに面内異方性を制御するために
重要な条件であり、安定して面内異方性を小さくするた
めには冷圧率を83〜88%とする必要がある。83%
未満あるいは88%を超える場合には、二次圧延圧下率
を制御したとしても安定して面内異方性を小さくするこ
とが困難となる。 【0040】その後の連続焼鈍は、再結晶温度以上75
0℃以下の温度で行う。再結晶温度未満では未再結晶組
織が残り面内異方性が劣化する。逆に750℃を超える
と、本発明のように最終製品の板厚が0.20mm以下
の鋼板では一次冷延後のCAL通板時の板厚も小さいた
めにCAL通板性が著しく劣化し、板破断、形状不良等
のトラブルが発生しやすくなり、生産性が低下する。ま
た、均熱中にオーステナイト相が生成し、冷却過程で硬
質な低温変態相が生成しやすくなる。このような硬質な
第2相とフェライト母相との界面は製缶時の割れの起点
となりやすく、加工性を劣化させる。 【0041】その後の過時効処理は実施してもしなくと
もよい。過時効処理を実施した場合と実施しない場合と
で本発明の効果は変わらない。過時効処理を実施する場
合は、連続焼鈍炉内のインラインOA、連続焼鈍後の箱
焼鈍によるバッチOAのいずれの方法を用いてもよい。 【0042】連続焼鈍後、さらに二次圧延を行い、0.
20mm以下の所定の板厚に仕上げるが、その際の圧下
率R2(%)を−60C−6Mn+9≦R2≦10×l
og(B×104 )+12とする。R2が−60C−6
Mn+9未満の場合には、鋼板のビッカース硬度Hvが
140未満となり、2ピース缶の缶体強度を確保するた
めに必要な素材強度が得られない。一方、図4および図
5に示すように、R2を10×log(B×104 )+
12以下の場合にイヤリング率を4%以下とすることが
できる。 【0043】このようにして最終板厚に仕上げられた鋼
板は、その後、錫めっき、極薄錫めっき、錫−ニッケル
めっき、ニッケルめっき、クロムめっき等の各種表面処
理が施される。特に、このような表面処理鋼板をDI缶
用に用いる場合には、ノーリフローの錫めっき鋼板が望
ましく、また、DTR缶用のフィルムラミネート鋼板、
プレコート鋼板の下地鋼板として用いる場合には、電解
クロム酸処理鋼板すなわちTFSが加工密着性の観点か
ら最も望ましい。これらの表面処理鋼板は、鋼板単独で
使用することもできるし、ポリエステル等の樹脂フィル
ムをラミネートしたフィルムラミネート鋼板、エポキシ
等の塗料をコーティングしたプレコート鋼板としても使
用可能である。 【0044】 【実施例】 (実施例1)表1、表2に示す組成の鋼を転炉溶製後、
連続鋳造によりスラブとし、このスラブに対して熱間圧
延を行い、酸洗後、冷間圧延を行い、その後連続焼鈍炉
にて連続焼鈍を行い、さらに二次圧延を行って所定板厚
の鋼板とした。なお、その際のスラブ厚と熱延仕上厚と
の比、−60C−6Mn+9の値、10×log(B×
104 )+12の値、二次圧延圧下率、板厚を表3に示
す。また、スラブ加熱温度を1230℃、仕上温度を8
70℃、巻取温度620℃、一次冷圧率83〜88%、
焼鈍温度650℃とした。 【0045】このようにして製造した鋼板について、イ
ヤリング率を測定した。イヤリング率は、絞り比1.8
で深絞り後に耳高さを測定し、耳の最大値と最小値をの
差を耳の最小値で割った百分率で表し、これにより面内
異方性を評価した。その結果を表3に併記する。 【0046】 【表1】 【0047】 【表2】 【0048】 【表3】【0049】表3に示すように、本発明例の鋼板はいず
れもイヤリング率が4%以下と小さく、面内異方性が小
さいことが確認された。これに対して、本発明の範囲外
の比較例は本発明例に比較してイヤリング率が大きく、
面内異方性が大きいことが確認された。 【0050】(実施例2)上記表1、表2のうち鋼番
5、10、14、21、31の5種類について転炉溶製
後、連続鋳造によりスラブとし、このスラブに対して熱
間圧延を行い、酸洗後、冷間圧延を行い、その後連続焼
鈍炉にて連続焼鈍を行い、さらに二次圧延を行って所定
板厚の鋼板とした。なお、その際のスラブ厚と熱延仕上
厚との比、−60C−6Mn+9の値、10×log
(B×104 )+12の値、一次冷圧率、焼鈍温度、二
次圧延圧下率、板厚を表4に示す。また、スラブ加熱温
度を1150℃、仕上温度を870℃、巻取温度660
℃とした。 【0051】このようにして製造した鋼板について、イ
ヤリング率を測定し、これにより面内異方性を評価し
た。また、ビッカース硬度を測定した。硬度がH≧14
0であれば缶体強度を確保できることから、Hv<14
0は×とし、Hv≧140は○とした。その結果を表4
に併記する。 【0052】 【表4】【0053】表4に示すように、本発明例の鋼板はいず
れも比較例の鋼板よりもイヤリング率が小さく、面内異
方性が小さいことが確認された。また、本発明例では鋼
板硬度がHv≧140であり、充分に缶体強度を確保す
ることができることが確認された。 【0054】 【発明の効果】以上説明したように、本発明によれば、
面内異方性が小さく、耳発生による歩留まり低下が小さ
いDRD缶、DI缶、DTR缶のような2ピース缶用極
薄鋼板を、生産性を低下させずに製造することができ
る。したがって2ピース缶の製造コストを低減すること
が可能となる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin steel sheet for a two-piece can having a small in-plane anisotropy. 2. Description of the Related Art Tin-plated steel sheets having tin-plated steel sheets or tin-free steel sheets (TFS) having been subjected to electrolytic chromic acid treatment are frequently used for food and beverage cans. . These cans and beverage cans are classified into three-piece cans and two-piece cans depending on the method of making the cans. In recent years, from the viewpoints of weight reduction of can bodies, omission of steps in can manufacturing, reduction of materials and manufacturing costs, mainly for beverage cans, etc., the transition from three-piece cans to two-piece cans and thinner can bodies have been carried out. Is being promoted. In addition, for steel plates for two-piece cans, there is a growing need for a gauge down of the steel plate itself as a material in order to further reduce the weight and cost of the can body. However, when the thickness of the steel sheet is reduced, the strength of the can body is reduced. Therefore, the steel sheet which has been subjected to the second cold rolling after the recrystallization annealing to have a high strength, that is, DR (Do
uble Reduce) materials are being used in steel sheets for two-piece cans. [0004] By the way, two-piece cans for food cans and beverage cans are provided with DRD cans (Draw cans) made by drawing and redrawing.
n and redrawn can), DTR cans (Drawn-thin-redrawn) made by multi-stage drawing with thinner can body
can) and DI which is ironed after drawing
There are cans (Drawn and wall ironed can), etc. In each case, a cup-shaped can body is formed by drawing from a disc-shaped blank plate during remanufacturing, or re-drawn from a cup-shaped can body. The method includes a step of forming a cup-shaped can body having a smaller diameter and a deeper depth by processing. [0005] During drawing in such a two-piece can making process, the height of the can end or the width of the flange is often reduced due to the in-plane anisotropy of the workability of the steel sheet. A so-called "ear" occurs that is non-uniform along the direction. These ears are trimmed and removed before necking of the end of the can. However, if the ears are large, the trim margin becomes large and the material yield decreases. Further, the ears cause fluctuations in the thickness distribution along the circumferential direction, which not only causes neck wrinkles during necking processing in a later step, but also causes the can body to be removed from a punch during DI processing. , Which may cause a punch-out defect, thereby lowering the material yield and lowering the quality. [0007] For these reasons, there is a demand for a steel plate for a two-piece can that has little ears during can-making, that is, a small in-plane anisotropy. In particular, D
Since the R material tends to have large ears, an ultrathin steel sheet for two-piece cans with much smaller in-plane anisotropy has been strongly desired. Several techniques have been proposed as methods for producing a two-piece steel sheet having a small in-plane anisotropy.
For example, Japanese Patent Application Laid-Open Nos.
JP-A-141536 discloses that C: 0.010 to 0.04.
A technique for reducing the hot rolling finish temperature of 0% low carbon steel to less than the Ar 3 transformation point, and setting the slab heating temperature to less than 1100 ° C., and performing cold rolling and recrystallization annealing after cold rolling and recrystallization annealing. A technique has been proposed, and Japanese Patent Application Laid-Open No. 3-36215 discloses a method in which C is added to a low carbon steel of 0.006 to 0.02% by adding N to 0.1%.
002 to 0.015% in the range, the primary cold rolling reduction and the secondary cold rolling are 80 to 90% and 20 respectively.
Techniques for reducing the power to 50% have been proposed. Further, Japanese Patent Application Laid-Open No. Hei 5-31245 proposes a technique of rolling a low carbon aluminum killed steel and an ultra low carbon steel twice and annealing twice. However, even with the use of these techniques, it is difficult to satisfy the strict requirements for the generation of ears recently required for steel sheets for two-piece cans, and further improvements need to be made. In particular, in the technique of JP-A-5-31245, the in-plane anisotropy is reduced as compared with the conventional technique, but it is necessary to perform cold rolling and annealing twice each, which increases the manufacturing cost of the steel sheet. There is a problem that becomes. Japanese Patent Application Laid-Open Nos. 4-337049, 5-247669, and 7-62486 disclose techniques for adding B to steel plates for cans. All of these require that the microstructure be a two-phase structure composed of ferrite and martensite, bainite, or pearlite. Therefore, the C content is increased, and the annealing temperature is increased in the two-phase region, that is, at a high temperature of one or more Ac. Need to be In the production of steel sheets for ultra-thin cans having a thickness of 0.20 mm or less, such high-temperature annealing is performed using CAL.
There is a problem that the threadability is remarkably deteriorated, and the productivity is reduced, that is, the production cost is increased. Further, due to the two-phase structure, workability and workability uniformity are fundamentally inferior to ferrite single-phase structure. Further, Japanese Patent Publication No. 55-34851,
Japanese Patent Application Laid-Open No. 6-306534 also discloses techniques for adding B, but these techniques merely add B for the purpose of softening, and any consideration is given to in-plane anisotropy. However, even if these techniques are used, the in-plane anisotropy cannot be sufficiently reduced. SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been developed to provide an ultrathin steel sheet for a two-piece can having a small in-plane anisotropy, which can sufficiently satisfy recent demands. It is an object of the present invention to provide a method for economical production without reducing productivity. The inventors of the present invention have conducted intensive studies on a method of manufacturing an ultrathin steel sheet for a two-piece can having a small in-plane anisotropy. By adding B to the adjusted low-carbon steel and optimizing the production conditions, especially the ratio between the slab thickness and the hot-rolled finish, and the rolling reduction in the secondary cold rolling, economical and efficient in-plane differences can be achieved. It has been found that the anisotropy can be reduced. The present invention has been made based on these findings, and has a C content of 0.015 to 0.04 wt%,
i: 0.1 wt% or less, Mn: 0.1 to 0.6 wt%,
P: 0.02 wt% or less, S: 0.02 wt% or less, s
ol. Al: 0.02 to 0.1 wt%, N: 0.002
5 wt% or less , O: 0.005 wt% or less, B: (−
A slab having a steel composition containing 0.02C + 0.0010) to 0.002 wt% is hot-rolled so that the finishing temperature is Ar 3 or more and the ratio of the slab thickness to the hot-rolled finished thickness is 125 or more. Then, after pickling, cold rolling is performed at a reduction rate of 83 to 88%, and then continuous annealing is performed at a temperature not lower than the recrystallization temperature and not higher than 750 ° C.
6Mn + 9 ≦ R2 ≦ 10 × log (B × 10 4 ) +12
The present invention provides a method for producing an ultra-thin steel sheet for a two-piece can having a small in-plane anisotropy, wherein the sheet thickness is reduced to 0.20 mm or less by performing secondary rolling satisfying the following conditions. Hereinafter, the present invention will be described in detail. First, the basic concept and the experimental results that led to the completion of the present invention will be described. The present inventors have conducted various studies on the effect of B addition on in-plane anisotropy. First, attention was paid to the effect of hot rolling conditions. C: 0.02 to 0.03 t%, N:
0.0020 to 0.0025 wt%, sol. Al:
0.04 to 0.08 wt%, O: 0.0015 to 0.0
025 wt%, B is not added, 0.0008 wt%
% And 0.0012 wt%, the ratio of the slab thickness to the hot-rolled finish thickness is changed variously to obtain a cold pressure ratio of 86.
%, Cold-rolled, continuously annealed, and subjected to secondary rolling at a rolling reduction of 12% to finish the sheet thickness of 0.20 mm, and then the earring rate was evaluated. Here, the earring rate was used as a parameter of in-plane anisotropy. The earring ratio was obtained by deep drawing at a drawing ratio of 1.8, measuring the height of the ear, and expressing the value obtained by dividing the difference between the maximum value and the minimum value of the ear by the minimum value of the ear in percentage. The result is shown in FIG. In the case of B-free steel, there is almost no change in the earring ratio depending on the value of the slab thickness / the hot-rolled finish thickness, and the value is large. On the other hand, the B-added steel has a lower earring ratio than the B-free steel, and particularly when the value of the slab thickness / hot-rolled finish thickness is 125 or more, the earring ratio rapidly decreases,
It has been found that the effect of adding B is remarkable. Although the reason for this is not always clear at present, increasing the value of slab thickness / finished hot roll thickness causes the grains of the hot rolled sheet to become finer, and B tends to segregate at the austenite grain boundaries. B is also segregated at the ferrite grain boundaries after transformation. As a result, the texture after cold rolling and annealing changes due to the synergistic effect of grain refinement of the ferrite grains of the hot rolled sheet and the grain boundary segregation B. It is considered that the in-plane anisotropy was reduced. Next, the effects of the amounts of B and C were examined. FIG. 2 is a diagram showing the results of manufacturing steel sheets with various amounts of C and B and measuring the earring rate. The ratio of the slab thickness to the hot-rolled finish thickness is 139, and the cold pressure ratio is 86.
%, The secondary rolling reduction rate is 15%, and the sheet thickness is 0.195 m.
m. As is clear from the figure, the in-plane anisotropy is deteriorated if the B amount and the C amount are too large or too small. C:
0.015 to 0.04 wt%, B: (−0.02C +
It can be seen that the earring ratio is 4% or less when the content is 0.001) to 0.002 wt%, and the in-plane anisotropy is reduced. From these results, in the present invention, C: 0.015
0.04 wt%, B: (-0.02C + 0.0010)
0.000.002 wt%. Further, the effects of the amounts of C, Mn, and B and the rolling reduction in the secondary rolling were examined. First, steel sheets having different amounts of C and Mn were manufactured at various secondary rolling reduction rates, and the earring rate and Vickers hardness Hv were measured. The result is shown in FIG.
Shown in FIG. 3 is a diagram showing the relationship between the (10C + Mn) amount on the horizontal axis and the secondary rolling reduction R2 on the vertical axis. Here, the amount of B is 0.0010 to 0.0015.
wt%, and the ratio of the slab thickness to the hot-rolled finished thickness is 129 to
138, the primary cold reduction rate was 85 to 88%, the secondary rolling reduction rate was 3 to 17%, and the plate thickness was finished to 0.19 to 0.20 mm. As apparent from FIG. 2, 10C + Mn =
0.25 (C: 0.015 wt%, Mn: 0.10 wt%
%) Or 10C + Mn = 1.0 (C: 0.04%)
(wt%, Mn: 0.60 wt%), the earring ratio exceeds 4%, and the in-plane anisotropy is poor. On the other hand, when the secondary rolling reduction R2 (%) is R2 =
When −6 (10C + Mn) + 9 = −60C−6Mn + 9, the Vickers hardness Hv of the steel sheet is less than 140, and the material strength required for securing the strength of the two-piece can cannot be obtained. This indicates that when C and Mn are small, it is necessary to increase the strength of the steel sheet by work hardening by secondary rolling. In the present invention, based on these results, the conditions for producing a steel sheet having sufficient material strength to secure the strength of the can body and having small in-plane anisotropy are as follows:
0.015 to 0.04 wt%, Mn: 0.1 to 0.6 w
t2, and the lower limit of the secondary rolling reduction R2 (%) is defined as a function of C and Mn. R2 = −60C−6Mn +
9 was defined. FIG. 4 shows that no B was added and B: 0.00
It is a figure which shows the change of the earring rate by the secondary rolling reduction of four types of steel plates of 04, 0.0008, and 0.0015 wt%. The B-free steel has a large earring ratio even when the secondary rolling reduction ratio is low, and the earring ratio increases with an increase in the rolling reduction ratio. On the other hand, the B-added steel has a smaller earring ratio than the B-free steel, and slightly increases depending on the amount of B added, but the increase in the earring ratio with the increase in the secondary rolling reduction is small up to about 20%. , 4% or less. However, even when B is added, the earring rate increases if the secondary rolling reduction rate becomes too large. Therefore, the relationship between the amount of B added, the secondary rolling reduction, and the earring rate was investigated in more detail. C:
0.036 wt%, B: 0.0003 to 0.002
A steel sheet with various changes of 3 wt% is manufactured under the conditions of a ratio of slab thickness to hot-rolled finished thickness of 139 to 147, a primary cold reduction rate of 84 to 88%, and a secondary rolling reduction rate of 10 to 28%. 0.2
It finished to 0 mm or less, and measured the earring rate. The result is shown in FIG. FIG. 5 is a diagram showing the relationship between the B content on the horizontal axis and the secondary rolling reduction R2 on the vertical axis. As shown in this figure, when the B content is increased, the earring rate is kept low even when the secondary rolling reduction is increased. By setting R2 ≦ 10 × log (B × 10 4 ) +12, The earring rate can be reduced to 4% or less. The reason for this is not necessarily clear at present, but it is presumed that B segregated at the grain boundary has an effect of suppressing anisotropy deterioration due to secondary rolling. However, if the amount of B added is too small or too large, the earring ratio exceeds 4% regardless of the secondary rolling reduction, and the in-plane anisotropy cannot be sufficiently reduced. From these results, in the present invention, the secondary rolling reduction R2 (%) is set to R2 ≦ 1.
0 × log (B × 10 4 ) +12. Next, the composition of the present invention will be described. The steel sheet for two-piece cans of the present invention has a C content of 0.015 to 0.04.
wt%, Si: 0.1 wt% or less, Mn: 0.1-0.
6 wt%, P: 0.02 wt% or less, S: 0.02 wt
% Or less, sol. Al: 0.02 to 0.1 wt%, N:
0.0025 wt% or less , O: 0.005 wt% or less,
B: (−0.02C + 0.0010) to 0.002 wt
% Steel composition. C: C is an extremely important element for controlling in-plane anisotropy. When C is less than 0.015 wt%, the grain structure of the hot-rolled sheet tends to be coarsened. Therefore, B is added to control the slab thickness / finished hot-roll thickness, the primary cold reduction ratio, and the secondary rolling reduction ratio. However, it is difficult to reduce in-plane anisotropy as shown in FIGS. Further, even if secondary rolling is performed by adding Mn, as shown in FIG.
v becomes less than 140, and it becomes difficult to obtain necessary strength as a two-piece can without deteriorating anisotropy. On the other hand, C
If the content exceeds 0.04 wt%, the amount of solid solution C in the ferrite grains, the amount of C segregated at the grain boundaries and the amount of carbides increase, so that the effect of adding B as shown in FIGS. Is not sufficiently exhibited, and the in-plane anisotropy is deteriorated. Therefore, the C content is in the range of 0.015 to 0.04 wt%. Si: Si is an element that remains in the steel as an impurity even if not intentionally added, embrittles the steel sheet and deteriorates the corrosion resistance. When used as a base steel sheet for TFS, it is a metal Cr. It also has an adverse effect on the electrodeposition of aluminum, so the smaller the content, the better. In the present invention, from the viewpoint of avoiding such adverse effects, the Si content is set to 0.1 wt% or less. Mn: Mn is used in order to prevent hot cracking of the slab by precipitating S in steel as MnS, to supplement the strengthening by C as a solid solution strengthening element, and to secure the strength of a two-piece can. It is a necessary element. In order to precipitate and fix S and secure the steel sheet strength and hardness, 0.1
Addition of not less than wt% is necessary, but if it exceeds 0.6 wt%, the formation of texture is adversely affected and the in-plane anisotropy is increased. Therefore, the Mn content is set to 0.1 to 0.6 wt.
% Range. P: P is a substitutional solid solution element like Mn, and has a greater strengthening ability than Mn, and is an effective element for increasing the strength of a steel sheet. It is an element that segregates and embrittles grain boundaries, and its content is preferably as small as possible. Further, the positive addition of P adversely affects the texture formation, resulting in an increase in in-plane anisotropy. Therefore, the P content is set to 0.02% by weight or less. S: S is desirably as small as possible from the viewpoint of preventing hot cracking of the slab, and is set to 0.02 wt% or less from such a viewpoint. sol. Al: sol. Al is added to precipitate N in steel as AlN. When the amount is less than 0.02 wt%, most of the added B forms BN, and the effect of reducing the in-plane anisotropy due to the addition of B is added. Is not fully exhibited. On the other hand, when a large amount of Al is added, Al 2 O 3 -based inclusions remain, and cracks due to inclusions are apt to occur at the time of can making, and workability is deteriorated. However, practically acceptable from the viewpoint of workability. The limit is 0.10 wt%. Therefore, so
l. The Al content is in the range of 0.02 to 0.1 wt%. N: In order to sufficiently exert the effect of the addition of B on in-plane anisotropy, it is desirable to minimize N as much as possible. When N is large, BN is easily formed even if the addition amounts of Al and B are adjusted appropriately, and the effect of adding B is weakened, resulting in an increase in in-plane anisotropy. From such a viewpoint, N is regulated to 0.0025 wt% or less. O: If a large amount of O is present in the steel, a part of the added B tends to form an oxide, and the effect of reducing the in-plane anisotropy due to the addition of B cannot be sufficiently exhibited. Also,
Oxide-based inclusions in the steel serve as starting points for the occurrence of cracks in the production of two-piece cans, and significantly impair workability. Therefore, it is desirable to minimize the total O amount. In the present invention, the total amount of O in steel is set to 0.0
Restrict to 05 wt% or less. B: B is the most important additive element in the present invention. By adding an appropriate amount of B, in-plane anisotropy can be effectively reduced. By controlling the ratio of the slab thickness to the hot-rolled finished thickness, B effectively segregates at the austenite grain boundaries during hot rolling, and makes the austenite grains of the hot-rolled sheet and the ferrite grains after transformation finer. Part of B forms BN, but other B also segregates at the ferrite grain boundaries of the hot rolled sheet after transformation. The synergistic effect of such hot-rolled sheet refinement and grain boundary segregation B affects the texture formation during recrystallization after cold rolling and exerts the effect of reducing in-plane anisotropy. Conceivable. Further, B segregated at the grain boundaries suppresses deterioration of anisotropy due to secondary rolling. In order to sufficiently exhibit the effect of adding B, it is necessary to add a larger amount of B than when the amount of C is relatively large, because when the amount of C is small, the grain size of austenite and ferrite tends to be large. There is. That is, FIG.
And as shown in FIG. 5, B ≧ −0.02C + 0.0
In the case of 01 (wt%), the effect of adding B is sufficiently exhibited, and the in-plane anisotropy is reduced. On the other hand, if B is added in an unnecessarily large amount, solid solution B remains not only in the grain boundaries but also in the ferrite grains, and it becomes easy to form a texture that increases in-plane anisotropy. As shown in FIGS. 2 and 5, when the B content exceeds 0.002%, the in-plane anisotropy increases. Therefore, the B content is (−0.02C + 0.00)
10) to 0.002 wt%. Next, the manufacturing conditions of the present invention will be described. In the present invention, after the steel having the above composition is melted from the converter, a slab is produced by continuous casting, and is subjected to hot rolling through rough rolling or by omitting rough rolling and directly inserting into a hot finishing mill. After pickling, cold rolling is performed, and then continuous annealing is performed in a continuous annealing furnace.
mm or less. The hot rolling is performed so that the finishing temperature is Ar 3 or more and the ratio of the slab thickness to the hot rolled finished thickness is 125 or more. The ratio of the slab thickness to the hot-rolled finish thickness is set to 125 or more in order to sufficiently exert the effect of reducing the in-plane anisotropy by adding B as shown in FIG. If the ratio of the two is 125 or more, the slab thickness and the hot rolled finish thickness may be appropriately selected according to the final product sheet thickness and the optimum primary cold reduction rate and secondary rolling reduction rate, respectively. The reason why the hot rolling finishing temperature was set to Ar 3 or more is that A
If finished below the r 3 transformation point, a texture is formed in the hot-rolled sheet, crystal grains are coarsened, and in-plane anisotropy after cold rolling and annealing is deteriorated. The slab heating temperature and the winding temperature need not be particularly limited, and may be in the range usually performed. For example, the slab heating temperature is 1100 to 1250 ° C. and the winding temperature is 50.
It can be about 0 to 700 ° C. As described above, the cold rolling after the hot rolling is 8
It is performed at a rolling reduction of 3-88%. The primary cold pressure rate is an important condition for controlling the in-plane anisotropy together with the secondary rolling reduction rate to be described later. In order to stably reduce the in-plane anisotropy, the cold pressure rate is set to 83%. It needs to be ~ 88%. 83%
If it is less than or exceeds 88%, it becomes difficult to stably reduce the in-plane anisotropy even if the secondary rolling reduction is controlled. The subsequent continuous annealing is carried out at a recrystallization temperature of 75
Perform at a temperature of 0 ° C. or less. If the temperature is lower than the recrystallization temperature, an unrecrystallized structure remains and in-plane anisotropy deteriorates. Conversely, if the temperature exceeds 750 ° C., the steel sheet having a thickness of 0.20 mm or less as in the present invention has a small thickness at the time of the CAL threading after the primary cold rolling, so that the CAL sheeting property is significantly deteriorated. Troubles such as plate breakage and defective shape are likely to occur, and the productivity is reduced. Further, an austenite phase is generated during the soaking, and a hard low-temperature transformation phase is easily generated in a cooling process. Such an interface between the hard second phase and the ferrite matrix tends to be a starting point of cracking during can making, and deteriorates workability. The subsequent overaging process may or may not be performed. The effect of the present invention does not change when the overaging process is performed and when it is not performed. When performing the overaging treatment, any method of in-line OA in a continuous annealing furnace and batch OA by box annealing after continuous annealing may be used. After the continuous annealing, secondary rolling was further performed.
The plate is finished to a predetermined thickness of 20 mm or less, and the rolling reduction R2 (%) at that time is -60C-6Mn + 9 ≦ R2 ≦ 10 × l
og (B × 10 4 ) +12. R2 is -60C-6
If it is less than Mn + 9, the Vickers hardness Hv of the steel plate is less than 140, and the material strength necessary for securing the strength of the two-piece can cannot be obtained. On the other hand, as shown in FIGS. 4 and 5, R2 is set to 10 × log (B × 10 4 ) +
In the case of 12 or less, the earring rate can be 4% or less. The steel sheet thus finished to the final thickness is then subjected to various surface treatments such as tin plating, ultra-thin tin plating, tin-nickel plating, nickel plating, chromium plating and the like. In particular, when such a surface-treated steel sheet is used for a DI can, a no-reflow tin-plated steel sheet is desirable, and a film laminated steel sheet for a DTR can,
When used as a base steel sheet of a precoated steel sheet, an electrolytic chromic acid-treated steel sheet, that is, TFS, is most desirable from the viewpoint of working adhesion. These surface-treated steel sheets can be used alone or as a film-laminated steel sheet obtained by laminating a resin film such as polyester or a pre-coated steel sheet coated with a paint such as epoxy. EXAMPLES Example 1 Steels having the compositions shown in Tables 1 and 2 were melted in a converter,
A slab is produced by continuous casting, hot rolling is performed on the slab, pickling is performed, cold rolling is performed, then continuous annealing is performed in a continuous annealing furnace, and then secondary rolling is performed to obtain a steel sheet having a predetermined thickness. And In this case, the ratio of the slab thickness to the hot-rolled finish thickness, the value of -60C-6Mn + 9, and 10 × log (B ×
Table 3 shows the value of 10 4 ) +12, the secondary rolling reduction, and the sheet thickness. The slab heating temperature was 1230 ° C and the finishing temperature was 8
70 ° C, winding temperature 620 ° C, primary cold pressure rate 83-88%,
The annealing temperature was 650 ° C. The earring ratio of the steel sheet manufactured as described above was measured. The earring rate is 1.8
The ear height was measured after the deep drawing, and the difference between the maximum value and the minimum value of the ear was expressed as a percentage obtained by dividing the difference by the minimum value of the ear, thereby evaluating the in-plane anisotropy. The results are also shown in Table 3. [Table 1] [Table 2] [Table 3] As shown in Table 3, it was confirmed that each of the steel sheets of the present invention had a small earring ratio of 4% or less and a small in-plane anisotropy. On the other hand, a comparative example outside the scope of the present invention has a larger earring ratio than the inventive example,
It was confirmed that the in-plane anisotropy was large. (Example 2) Five types of steel Nos. 5, 10, 14, 21, and 31 in Tables 1 and 2 were melted from a converter and then continuously cast into slabs. Rolling was performed, after pickling, cold rolling was performed, then continuous annealing was performed in a continuous annealing furnace, and secondary rolling was performed to obtain a steel sheet having a predetermined thickness. In this case, the ratio of the slab thickness to the hot-rolled finish thickness, the value of -60C-6Mn + 9, 10 × log
Table 4 shows the value of (B × 10 4 ) +12, the primary cooling pressure ratio, the annealing temperature, the secondary rolling reduction ratio, and the plate thickness. The slab heating temperature was 1150 ° C., the finishing temperature was 870 ° C., and the winding temperature was 660.
° C. The steel sheet thus manufactured was measured for the earring rate, and the in-plane anisotropy was evaluated. In addition, Vickers hardness was measured. Hardness is H ≧ 14
If it is 0, the strength of the can body can be secured, so that Hv <14
0 was x, and Hv ≧ 140 was ○. Table 4 shows the results.
It is described together. [Table 4] As shown in Table 4, it was confirmed that each of the steel sheets of the present invention had a smaller earring ratio and a smaller in-plane anisotropy than the steel sheets of the comparative examples. Further, in the examples of the present invention, the hardness of the steel sheet was Hv ≧ 140, and it was confirmed that the strength of the can was sufficiently secured. As described above, according to the present invention,
Ultra-thin steel sheets for two-piece cans, such as DRD cans, DI cans, and DTR cans, which have low in-plane anisotropy and low yield reduction due to ear generation, can be manufactured without lowering productivity. Therefore, it is possible to reduce the manufacturing cost of the two-piece can.

【図面の簡単な説明】 【図1】スラブ厚/熱延仕上厚によるイヤリング率の変
化を示す図。 【図2】CおよびB含有量とイヤリング率との関係を示
す図。 【図3】(10C+Mn)量および二次圧延圧下率とイ
ヤリング率およびビッカース硬度Hvとの関係を示す
図。 【図4】B含有量による二次圧延圧下率に対するイヤリ
ング率の変化を示す図。 【図5】B含有量、二次圧延圧下率とイヤリング率との
関係を示す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing a change in an earring ratio depending on a slab thickness / a hot-rolled finish thickness. FIG. 2 is a diagram showing a relationship between C and B contents and an earring rate. FIG. 3 is a view showing the relationship between the (10C + Mn) amount, the secondary rolling reduction, the earring rate, and the Vickers hardness Hv. FIG. 4 is a diagram showing a change in an earring ratio with respect to a secondary rolling reduction ratio depending on a B content. FIG. 5 is a diagram showing a relationship between a B content, a secondary rolling reduction ratio, and an earring ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 粟屋 敬 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 昭64−15327(JP,A) 特開 平9−241756(JP,A) (58)調査した分野(Int.Cl.7,DB名) C21D 9/48 C21D 8/04 C22C 38/00 301 C22C 38/06 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Takashi Awaya 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Inside Nippon Kokan Co., Ltd. (56) References JP-A-64-15327 (JP, A) JP-A-9 −241756 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C21D 9/48 C21D 8/04 C22C 38/00 301 C22C 38/06

Claims (1)

(57)【特許請求の範囲】 【請求項1】 C:0.015〜0.04wt%、S
i:0.1wt%以下、Mn:0.1〜0.6wt%、
P:0.02wt%以下、S:0.02wt%以下、s
ol.Al:0.02〜0.1wt%、N:0.002
5wt%以下、O:0.005wt%以下、B:(−
0.02C+0.0010)〜0.002wt%を含有
する鋼組成を有するスラブを、仕上温度がAr以上
で、かつスラブ厚と熱延仕上厚との比が125以上とな
るように熱間圧延し、酸洗後、83〜88%の圧下率で
冷間圧延した後、再結晶温度以上、750℃以下の温度
で連続焼鈍し、さらに圧下率R2(%)が、−60C−
6Mn+9≦R2≦10×log(B×10)+12
を満たす二次圧延を行い、板厚0.20mm以下とする
ことを特徴とする面内異方性の小さい2ピース缶用極薄
鋼板の製造方法。
(57) [Claims 1] C: 0.015 to 0.04 wt%, S
i: 0.1 wt% or less, Mn: 0.1 to 0.6 wt%,
P: 0.02 wt% or less, S: 0.02 wt% or less, s
ol. Al: 0.02 to 0.1 wt%, N: 0.002
5 wt% or less , O: 0.005 wt% or less, B: (−
A slab having a steel composition containing 0.02C + 0.0010) to 0.002 wt% is hot-rolled such that the finishing temperature is Ar 3 or more and the ratio of the slab thickness to the hot-rolled finished thickness is 125 or more. Then, after pickling, cold rolling is performed at a reduction rate of 83 to 88%, then continuous annealing is performed at a temperature of not less than the recrystallization temperature and not more than 750 ° C, and the reduction rate R2 (%) is −60C−
6Mn + 9 ≦ R2 ≦ 10 × log (B × 10 4 ) +12
A method for producing an ultra-thin steel sheet for a two-piece can having a small in-plane anisotropy, comprising performing a secondary rolling that satisfies the following:
JP05786396A 1996-03-14 1996-03-14 Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy Expired - Lifetime JP3407531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05786396A JP3407531B2 (en) 1996-03-14 1996-03-14 Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05786396A JP3407531B2 (en) 1996-03-14 1996-03-14 Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy

Publications (2)

Publication Number Publication Date
JPH09249919A JPH09249919A (en) 1997-09-22
JP3407531B2 true JP3407531B2 (en) 2003-05-19

Family

ID=13067842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05786396A Expired - Lifetime JP3407531B2 (en) 1996-03-14 1996-03-14 Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy

Country Status (1)

Country Link
JP (1) JP3407531B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016067514A1 (en) * 2014-10-28 2016-05-06 Jfeスチール株式会社 Steel sheet for two-piece can and manufacturing method therefor

Also Published As

Publication number Publication date
JPH09249919A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
US5853503A (en) Hot rolled steel sheets and method of producing the same
EP1006203B1 (en) Can steel strip and method of producing can steel strip
WO2005103316A1 (en) Steel sheet for can and method for production thereof
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
EP0731182A2 (en) Method for making a steel sheet suitable as a material for can making
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP2001089829A (en) Steel sheet for can and method for manufacting the same
JP3407531B2 (en) Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP3379375B2 (en) Ultra-thin steel sheet for weld cans, weld can, and method for producing ultra-thin steel sheet for weld cans with excellent flangeability
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JPH11279688A (en) Steel sheet for can, excellent in uniform deformability and appearance and its production
JPH02141536A (en) Production of steel sheet for drawn can decreased earing
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
JP3917749B2 (en) Manufacturing method of steel sheets for ultra-thin soft containers
JPH1088233A (en) Production of steel sheet for can
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPS6330969B2 (en)
JP2980486B2 (en) Manufacturing method of steel plate for non-aging low earring container
JP3675190B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080314

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090314

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100314

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110314

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120314

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130314

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140314

Year of fee payment: 11

EXPY Cancellation because of completion of term