WO2005103316A1 - Steel sheet for can and method for production thereof - Google Patents

Steel sheet for can and method for production thereof Download PDF

Info

Publication number
WO2005103316A1
WO2005103316A1 PCT/JP2005/008399 JP2005008399W WO2005103316A1 WO 2005103316 A1 WO2005103316 A1 WO 2005103316A1 JP 2005008399 W JP2005008399 W JP 2005008399W WO 2005103316 A1 WO2005103316 A1 WO 2005103316A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
less
strength
steel
temperature
Prior art date
Application number
PCT/JP2005/008399
Other languages
French (fr)
Japanese (ja)
Inventor
Yuka Nishihara
Katsumi Kojima
Hiroki Iwasa
Eisuke Hotta
Teruhiro Saito
Kazuhiro Matsumoto
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to EP05736903A priority Critical patent/EP1741800A1/en
Priority to MXPA06012304A priority patent/MXPA06012304A/en
Publication of WO2005103316A1 publication Critical patent/WO2005103316A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment

Definitions

  • the present invention relates to a thin steel sheet (hereinafter, also referred to as a steel sheet for cans) suitable for a surface-treated steel sheet for cans such as tinplate steel sheets and electrochrome plated steel sheets, and a method for producing the same.
  • a thin steel sheet hereinafter, also referred to as a steel sheet for cans
  • a surface-treated steel sheet for cans such as tinplate steel sheets and electrochrome plated steel sheets
  • the Double Reduce method (hereinafter also referred to as DR method), in which secondary cold rolling is performed after annealing.
  • DR method Double Reduce method
  • the cost is increased by adding one step of secondary cold rolling in addition to the normal steps of hot rolling, cold rolling and annealing.
  • the obtained steel sheet has an elongation of only a few percent and its workability is not good.
  • surface flaws and stains occur chronically, and it is extremely difficult to completely prevent them.
  • Japanese Patent Application Laid-Open No. 2001-107186 describes that by adding a large amount of (:, N and baking and hardening, a steel sheet for cans having a strength as high as that of a steel sheet by the DR method can be obtained.
  • This steel sheet for cans has a high yield stress of 550 MPa or more after baking. It discloses that the hardness obtained can be adjusted by the amount of N added and the heat treatment conditions.
  • this method is an effective method for increasing the strength, even after temper rolling, there is a concern that yield elongation due to strain aging may occur, and there is a possibility that strain-strain occurs during processing.
  • Japanese Patent Application Laid-Open No. 2003-34825 proposes a method in which a low-carbon steel is hot-rolled in the + r region, cooled at a high speed, and regulates a heating rate of annealing.
  • a steel sheet having a tensile strength of 600 MPa and a total elongation of 30% or more has been obtained.
  • the increase in strength due to this high-speed cooling increases operating costs.
  • An object of the present invention is to provide a steel sheet for cans having both the strength equivalent to that of a DR steel sheet and the elongation exceeding that of the DR steel sheet, and a method for producing the same. Disclosure of the invention In the present invention, at a weight of 0 / o, C: 0.04 to 0.1%, N: 0.002 to 0.012%, Mn: 0.5 to 1.5% P: 0.01 to 0.
  • a high-strength, high-ductility steel sheet for cans characterized in that it is 0.2 ram or less.
  • FIG. 1 is a diagram illustrating the relationship between the amount of Nb added and the strength of a steel sheet for cans when Nb is added simultaneously with the solid solution element being Mn.
  • the present inventors have paid attention to a composite combination of solid solution strengthening, precipitation strengthening, and micronization as a means for strengthening a steel sheet.
  • a composite combination of solid solution strengthening, precipitation strengthening, and micronization as a means for strengthening a steel sheet.
  • P and Mn as the solid solution strengthening elements
  • Nb as the precipitation strengthening element and the finely divided strengthening element
  • the strength and elongation could be made compatible at a high level by defining the structure as a substantially ferrite single phase structure and defining the average ferrite grain size.
  • a high-strength steel sheet for cans is a thin steel sheet suitable as a base sheet of a surface-treated steel sheet such as a tinned steel sheet (electroplated tin sheet) or an electrochromic plated steel sheet.
  • the high-strength and high-elongation steel sheet for cans of the present invention is defined by the following elements and their amounts as solid-solution strengthening elements, precipitation strengthening elements and Z or refinement strengthening elements. It consists essentially of a ferrite single phase structure with a diameter of 7 / m or less. These are the most important requirements in the present invention, and a steel sheet for cans having a tensile strength of 550 MPa or more and an elongation of more than 10% can be obtained.
  • the high strength and large elongation steel sheet for cans is hot-rolled at a finishing temperature higher than the Ar 3 transformation point, wound at a winding temperature of 560 to 600 ° C, pickled, After cold-rolling at a rolling reduction of not less than%, the production can be performed by performing soaking annealing at a temperature of 700 to 820 ° C.
  • the crystal grain size In order for the steel sheet after annealing to achieve a tensile strength of 550 MPa or more and an elongation of more than 10%, the crystal grain size must be ⁇ m or less. In order to satisfy these characteristics, the amount of C added is important, and C is one of the main requirements for the present invention. In particular, since the amount and density of carbides greatly affect the strength and particle size, it is necessary to secure the amount of carbon used for precipitation. Also, considering the high strength due to solid solution C, C is 0.04% or more. On the other hand, when the content exceeds 0.1%, a pearlite phase precipitates in the second phase, and the elongation decreases. Based on the above, C should be from 0.04% to 0.1%.
  • Si is an element that increases the strength of the steel sheet by solid solution strengthening, but if added in a large amount, the corrosion resistance is significantly impaired. Therefore, the Si content ranges from 0.01% or more to 0.5% or less. To do. In order to prevent the corrosion resistance 14 from being impaired, the content of Si is preferably 0.01% or more to 0.3% or less.
  • Mn is an element that increases the strength of the steel sheet by solid solution strengthening, reduces the crystal grain size, and also increases the strength as finer strengthening. This is one of the main requirements for the present invention. The above-mentioned effect is remarkably recognized by adding 0.5% or more. On the other hand, when a large amount of Mn is added, the corrosion resistance is poor. Based on the above, Mn should be between 0.5% and 1.5%. Note that Mn is preferably 0.5% or more to 1.0% or less so as not to significantly increase the recrystallization temperature.
  • P like Mn, is an element having a large solid solution strengthening ability, and is one of the main requirements for the present invention. The effect is remarkable at 0.01% or more. On the other hand, when added in large amounts, the corrosion resistance of the steel sheet deteriorates. Based on the above, P should be between 0.01% and 0.15%. It should be noted that P is preferably from 0.01% or more to 0.1% or less in order not to impair the corrosion resistance.
  • S is an element that exists as inclusions in the steel and is disadvantageous to the elongation and corrosion resistance of the steel sheet, so it is preferable to reduce it as much as possible. From the above, S is set to 0.01% or less. Usually, it is about 0.0001% or more and 0.01% or less.
  • A1 0.01% or less
  • the recrystallization temperature rises, so it is necessary to raise the annealing temperature.
  • the annealing temperature is increased, the amount of A1N formed increases, the amount of solute N decreases, and the strength of the steel sheet decreases.
  • the recrystallization temperature is increased by other elements added to increase the strength of the steel sheet, and the annealing temperature is increased. Therefore, it is preferable to avoid an increase in the recrystallization temperature due to A1 as much as possible, and A1 is set to 0.01% or less. Usually, it is about 0.003% or more and about 0.01% or less.
  • N is an element that has a high solid solution strengthening ability and increases the strength of the steel sheet. Therefore, N is actively added. In order to effectively act on the strength increase, 0.002% or more is required. On the other hand, if a large amount is added, a problem occurs due to strain aging of the steel sheet. From the above, N should be from 0.002% or more to 0.012% or less.
  • Nb is one of the main requirements in the present invention.
  • b is an element having a high ability to form carbides, which precipitates fine carbides and increases the strength of the steel sheet. Further, the fineness increases the strength.
  • FIG. 1 is a diagram illustrating the relationship between the amount of Nb added and the strength of a steel sheet for cans when Nb is added simultaneously with the solid solution element being Mn. From Fig. 1, it can be seen that by adding Nb at the same time as Mn, which is a solid solution element, the strength increase is higher than the strength of the steel sheet, which originally increases by solid solution strengthening. This factor is considered as follows. In other words, by adding a solid solution element (Mn in the example) simultaneously with Nb, the precipitated b-C is more soluble than the solid solution element (Mn in the example) alone. Mn) is suppressed, and the growth of recrystallized grains during annealing is inhibited.
  • Mn solid solution element
  • the solid solution element itself effectively acts on the grain refinement, and the effect of the grain refinement strengthening is added to the effect of the solid solution strengthening. Then, the above-mentioned effect starts to occur remarkably when the Nb addition amount exceeds 0.025%.
  • Nb raises the recrystallization temperature, and if it exceeds 0.1%, the steel sheet becomes extremely hard during hot rolling and the workability during cold rolling deteriorates.
  • Nb is set to be more than 0.025% to 0.1% or less. From the viewpoint of the workability during cold rolling, Nb is preferably from more than 0.025% to 0.05% or less.
  • a ferrite single phase structure is used. Even if it contains about 1% of cementite or the like, it is determined that the structure is substantially a ferrite single-phase structure as long as the effects of the present invention are achieved.
  • the inventors investigated the balance between strength and elongation by changing the steel structure to a ferrite single phase and changing the average crystal grain size of the ferrite phase. As a result, it was found that when the average grain size of ferrite was 7 im or less, a high-strength steel was obtained without a decrease in elongation. It was also found that if the average crystal grain size exceeds 7 _ ⁇ m, the surface appearance after can making becomes unsatisfactory.
  • the average crystal grain size of ferrite is as follows.
  • the ferrite grain size is measured according to, for example, the average ferrite grain size obtained by the ASTM cutting method.
  • the steel sheet for cans of the present invention preferably has a thickness of 0.2 mm or less.
  • the cold rolling ratio increases, and a steel sheet for cans having a tensile strength of 550 MPa or more can be easily obtained.
  • a method for producing a high-strength and large-extension steel plate for a can according to the present invention will be described. According to a usual method, a molten steel adjusted to the above chemical composition is prepared using a converter or the like, and the molten steel is formed into a rolled material by a continuous forming method or the like. Next, the obtained rolled material is hot-rolled.
  • the finishing temperature must be at the Ar 3 transformation point or higher because the steel sheet must be in the r single-phase region.
  • the temperature of the rolled material before hot rolling is preferably low so that the crystal grain size tends to be fine. Therefore, the final rolling temperature must be within the r single-phase region.
  • 1150-1300 ° C is desirable.
  • the winding temperature In order to increase the strength of the steel sheet after annealing by reducing the crystal grain size to 7 ⁇ m or less, it is necessary to set the winding temperature from 560 ° C or higher to 600 ° C or lower. If the winding temperature exceeds 600 ° C, the crystal grain size becomes coarse. On the other hand, if the coiling temperature in hot rolling is lower than 560 ° C, solid solution N and C remain in the hot-rolled steel sheet and inhibit formation of a favorable texture during recrystallization annealing after cold rolling. .
  • cold rolling is performed at a rolling reduction of 80% or more.
  • the texture after annealing can be developed and markedly refined, and at the same time, a more uniform Site organization is obtained.
  • the rolling reduction is less than 80%, it is difficult to achieve a tensile strength of 550MPa or more.
  • isothermal annealing is performed in a temperature range from 700 ° C or more to 820 ° C or less.
  • the soaking temperature must be equal to or higher than the recrystallization temperature of the steel sheet in order to ensure good workability, and soaking at a temperature of 700 ° C or more to make the structure more uniform. There is a need. On the other hand, if the soaking temperature is higher than 820 ° C, the annealing process may be affected.
  • the temper rolling reduction at this time is preferably 1.5% or less in order to prevent elongation from decreasing due to excessive work hardening. More preferably, it is from 0.5% or more to 1.5% or less.
  • the tensile strength can be controlled to a target value by the components, the coil winding temperature during hot rolling, the soaking temperature, and the cold rolling reduction.
  • Example 1
  • the composition of the steel was varied as shown in Table 1.
  • steel plates for cans were prepared according to the conditions shown in Inventive Examples 1 to 9 and Comparative Examples 1 to 8 in Table 2.
  • the steel sheet for cans was subjected to temper rolling at a rolling reduction of about 1.5%, and a normal chrome plating was continuously performed to obtain an electrochromic plated steel sheet.
  • the soaking temperature was adjusted according to the amount of Nb added, but the values in Table 2 were maintained.
  • a tensile test was performed to evaluate strength and elongation. Table 3 shows the obtained results.
  • a tensile test was performed using a JIS No. 5 size tensile test piece, and the yield point, tensile strength, and elongation were measured. Rockwell hardness was also measured separately.
  • the crystal structure was observed by optical microscopy by polishing the sample, corroding the crystal grain boundaries with nital.
  • the average crystal grain size was measured using the ASTM cutting method for the crystal structure observed as described above.
  • Table 3 shows that the steels of Invention Examples 1 to 9 are ferrite single-phase structures having an average crystal grain size of 7 ⁇ m or less. Therefore, it can be seen that both strength and elongation are excellent.
  • the steel j of Comparative Example 1 and the steel n of Comparative Example 5 are inferior in strength, although the elongation is about the same as that of the invention example due to the low P content.
  • the steel k of Comparative Example 2 had a small amount of Nb, so that the elongation was about the same as the invention example, but the strength was inferior.
  • Comparative Example 3 since the steel structure has an average crystal grain size of more than 7 m and a mixed structure of ferrite and pearlite, it has high strength but inferior elongation. I understand. Comparative Examples 4 and 6 were subjected to temper rolling at high pressure reductions of 20% and 33%, respectively, and although they had high strength, they were just the same technology as the conventional DR method. . The tensile strength of Comparative Example 8 was only 500 MPa despite the value after baking at 210 ° C for 20 minutes.
  • Example 2
  • the steel type was fixed to steel a shown in Inventive Example 1 in Table 1, and the influence of the difference in manufacturing conditions was examined.
  • Example 3 steel a was used, and the production conditions shown in Invention Examples 1, 10 and 11 in Table 2 and Comparative Example 9 were applied. Obtained. The same test as in Example 1 was performed on the obtained electrochrome plated steel sheet, and the results are shown in Table 3.
  • a single-phase ferrite having a crystal grain size of 7 / m or less can be formed into a single phase, so that a steel plate having a tensile strength of 550 MPa or more without impairing elongation. Is obtained.
  • Comparative Example 9 Under the manufacturing conditions of Comparative Example 9, the average crystal grain size of the ferrite exceeds 10 ⁇ m, indicating that the elongation is excellent but the strength is inferior. In Comparative Example 7, although high in strength, rapid heating and rapid cooling before and after annealing are required, and it is difficult to manufacture with conventional equipment.
  • the steel sheets of the present invention have good surface properties and no rough surface.
  • the average crystal grain size of ferrite exceeded 10 / m, rough skin was observed.
  • the target tensile strength can be reliably achieved when the reduction ratio of the temper rolling after the annealing step is 1.5% or less.
  • Cooling rate after annealing is 1 000 ° C / s
  • a steel sheet for cans having a tensile strength of 550 MPa or more and an elongation of more than 10% and a method for producing the same are provided.
  • This steel sheet can also be applied to parts such as the trunk of DRD cans and welded cans.
  • the steel sheet is solid-solution-strengthened by using a number of elements, and is further increased in strength by combining precipitation strengthening with Nb and fine-grained stiffening. Therefore, the temper rolling after the annealing step can achieve the target tensile strength reliably with a reduction of 1.5% or less. Also, since the contents of C and N are suppressed, there is no concern about yield elongation due to strain aging. Therefore, the steel sheet can widely contribute to society as a thin steel sheet suitable for a surface-treated steel sheet such as a tinned steel sheet or an electrochrome plated steel sheet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A steel sheet for a can which has a chemical composition, in wt %, C: 0.04 to 0.1 %, N: 0.002 to 0.012 %, Mn: 0.5 to 1.5 %, P: 0.01 to 0.15 % Si: 0.01 to 0.5 %, Nb: more than 0.025% and not more than 0.1 %, Al: 0.01 % or less, S: 0.01 % or less, and the balance: Fe and inevitable impurities, and is substantially consisted of a ferrite single phase structure having an average crystal grain diameter of 7 μm or less; and a method for producing the above steel sheet which comprises hot-rolling a steel having the above composition with a finishing temperature of an Ar3 transformation temperature or higher, winding up the resultant sheet at a winding temperature of 560 to 600°C, followed by washing with an acid, and then cold-rolling the resultant sheet with a rolling reduction of 80 % or more, followed by soaking-annealing at a temperature of 700 to 820°C. The resulting steel sheet for a can is a product obtained by a composite combination of solid-solution strengthening, deposition strengthening and refining strengthening, and exhibits a strength being the same as that of the DR steel sheet and also an elongation being greater than that of the DR steel sheet.

Description

缶用鋼板およびその製造方法 Steel plate for can and method for producing the same
技術分野 Technical field
本発明は、 ぶりき鋼板や電気クロムめつき鋼板などの製缶用の表面処理鋼板に 適する薄鋼板 (以下、 缶用鋼板とも呼ぶ) 、 およびその製造方法に関する。  The present invention relates to a thin steel sheet (hereinafter, also referred to as a steel sheet for cans) suitable for a surface-treated steel sheet for cans such as tinplate steel sheets and electrochrome plated steel sheets, and a method for producing the same.
背景技術 明 Background art
近年、 製缶コストの低減を図るため、 素材となる製缶用の薄鋼板ゃ冷延鋼板に 田  In recent years, in order to reduce the cost of making cans, we have been using thin steel sheets and cold-rolled steel sheets for can manufacturing as raw materials.
も低コスト化が求められている。 そのため、 業界では、 絞り加工を行う 2ピース 缶はもとより、 単純な円筒成形が主体の 3ピース缶であっても、 缶用鋼板の薄肉 化が要求されるようになつた。 There is also a need for cost reduction. For this reason, the industry has been required to reduce the thickness of steel plates for cans, not only for two-piece cans that are drawn but also for three-piece cans that are mainly formed by simple cylindrical molding.
ただし、 現行の缶用鋼板を単に薄肉化しても強度が低下するだけなので、 Draw and Redraw缶 (以下、 DRD缶とも呼ぶ) あるいは溶接缶の胴部のように強度が要 求される箇所には現行の缶用鋼板は適用できなレ、。 そのため、 薄肉化しても強度 が維持できる缶用鋼板が望まれている。  However, simply reducing the thickness of the existing steel sheet for cans only reduces the strength. Therefore, in places where strength is required, such as the body of a Draw and Redraw can (hereinafter also referred to as a DRD can) or the body of a welded can. The current steel plate for cans cannot be applied. Therefore, there is a demand for a steel sheet for cans that can maintain strength even when it is made thinner.
現在、 薄肉化しても強度を維持できる鋼板を製造する方法として最も頻繁に利 用されているのは、 焼鈍後に 2次冷延を施す Double Reduce法 (以下、 DR法と も呼ぶ) である。 しカ し、 DR法は、 熱延、 冷延および焼鈍の通常工程に加えて 2 次冷延の 1工程が増加する分コストが高くなる。 また、 得られる鋼板は数%の伸 びしか有せず、 加工性もよくない。 さらに表面疵、 表面汚れなどが慢性的に発生 し、 それを完全に防ぐのは極めて困難である。  Currently, the most frequently used method for producing steel sheets that can maintain strength even when they are thinned is the Double Reduce method (hereinafter also referred to as DR method), in which secondary cold rolling is performed after annealing. However, in the DR method, the cost is increased by adding one step of secondary cold rolling in addition to the normal steps of hot rolling, cold rolling and annealing. Moreover, the obtained steel sheet has an elongation of only a few percent and its workability is not good. In addition, surface flaws and stains occur chronically, and it is extremely difficult to completely prevent them.
そこで、 これまでに、 DR法の代替として薄肉鋼板の強化法が種々提案されて いる。 例えば特開 2001- 107186号公報には、 (:、 Nを多量に添加し、 焼付け硬化 させることで、 DR法による鋼板並みに強度が高い缶用鋼板が得られることが記 載されている。 この缶用鋼板は、 塗装焼付処理後の降伏応力が 550MPa以上と高 く、 Nの添加量と熱処理条件によって得られる硬度を調整できることが開示され ている。 この方法は、 強度上昇には有効な方法ではあるが、 調質圧延後であって も歪時効による降伏伸びが懸念され、 加工時にストレツチャ-ストレインが発生 する恐れがある。 Therefore, various methods of strengthening thin steel plates have been proposed as an alternative to the DR method. For example, Japanese Patent Application Laid-Open No. 2001-107186 describes that by adding a large amount of (:, N and baking and hardening, a steel sheet for cans having a strength as high as that of a steel sheet by the DR method can be obtained. This steel sheet for cans has a high yield stress of 550 MPa or more after baking. It discloses that the hardness obtained can be adjusted by the amount of N added and the heat treatment conditions. Although this method is an effective method for increasing the strength, even after temper rolling, there is a concern that yield elongation due to strain aging may occur, and there is a possibility that strain-strain occurs during processing.
また、 特開平 8- 325670号公報では、 Nb炭化物による析出強化と Nb、 Ti、 Bの 炭窒化物による結晶粒の微細化強化を複合的に組み合わせることで、 強度と伸ぴ のバランスがとれた鋼板を製造する方法が提案されている。 しかしながら、 発明 者らが、 この方法に従い、 Nbの添加量を 0. 025wt。/。にして得た鋼板では、 引張強 度が 510MPaと低く、 現行の DR法で製造されている鋼板の強度には到達しなかつ た。  Also, in Japanese Patent Application Laid-Open No. 8-325670, strength and elongation were balanced by combining precipitation strengthening with Nb carbide and grain refinement strengthening with Nb, Ti, and B carbonitrides in a complex manner. A method for manufacturing a steel sheet has been proposed. However, according to this method, the inventors set the amount of Nb added to 0.025 wt. /. The tensile strength of the obtained steel sheet was as low as 510MPa, and did not reach the strength of the steel sheet manufactured by the current DR method.
また、 特開平 5-345926号公報では、 Pによる固溶強ィヒと Nb、 Ti、 Bの炭窒化 物による結晶粒の微細化強化を用いて、 ロックウェル硬度 (HR30T) (JIS G 3303参照) で 60〜75の強度レベルに到達する鋼板の製造方法が提案されている。 また、 特開 2000- 119802号公報では、 Nb、 Tiなどの合金元素を添加して析出強 化によって引張強度が 540MPa以上である高強度鋼板の製造方法を提案している。 し力 し、 これらのいずれの方法も、 調質圧延を 10%〜30%程度もの高圧下率で 行うことで、 高強度ィヒしているに過ぎないため、 焼鈍直後の強度では現行の DR 法で製造されている鋼板 (以下、 DR鋼板とも呼ぶ) の強度には至らない。  In Japanese Patent Application Laid-Open No. 5-345926, Rockwell hardness (HR30T) (see JIS G 3303) is described using solid solution strength P by P and crystal grain refinement strengthening by Nb, Ti, and B carbonitrides. A method for producing a steel sheet reaching a strength level of 60 to 75 has been proposed. Also, Japanese Patent Application Laid-Open No. 2000-119802 proposes a method for producing a high-strength steel sheet having a tensile strength of 540 MPa or more due to precipitation strengthening by adding alloying elements such as Nb and Ti. However, in any of these methods, the temper rolling is performed at a high reduction rate of about 10% to 30%, and only high strength is obtained. It does not reach the strength of steel sheets manufactured by the method (hereinafter, also referred to as DR steel sheets).
また特開 2003-34825号公報では、 低炭素鋼を + r域で熱間圧延した後、 高 速で冷却し、 焼鈍の加熱速度を規定する方法を提案している。 この方法により、 引張強度 600Mpaでかつ全伸びが 30%以上を有する鋼板を得ている。 し力 し、 こ の高速冷却による高強度化は、 操業上コスト高になる。  Japanese Patent Application Laid-Open No. 2003-34825 proposes a method in which a low-carbon steel is hot-rolled in the + r region, cooled at a high speed, and regulates a heating rate of annealing. By this method, a steel sheet having a tensile strength of 600 MPa and a total elongation of 30% or more has been obtained. However, the increase in strength due to this high-speed cooling increases operating costs.
本発明は、 上記問題を解決するためになされたものである。 本発明の目的は、 DR鋼板並の強度と DR鋼板を凌駕する伸ぴを兼備する缶用鋼板、 およびその製造 方法を提供することである。 発明の開示 本発明は、 重量0 /oで、 C: 0. 04〜0. 1%、 N: 0. 002〜0. 012%、 Mn: 0. 5〜 1. 5 % P: 0. 01〜0. 15%、 Si: 0. 01〜0. 5%、 Nb: 0. 025超〜 0. 1%、 A1: 0. 01% 以下、 S: 0. 01%以下を含有し、 残部が Fe及び不可避的不純物からなり、 かつ平 均結晶粒径が 7 / m以下のフェライト単相組織から実質的になる缶用鋼板である。 また、 本発明は、 重量0 /0で、 C: 0. 04〜0. 1%、 N: 0. 002〜0. 012%、 Mn: 0. 5〜 1. 5%、 P: 0. 01〜0. 15%、 Si: 0. 01〜0. 5%、 Nb: 0. 025超〜 0. 1% 、 A1: 0. 01%以下、 S: 0. 01%以下を含有し、 残部が Fe及ぴ不可避的不純物からなる鋼 を、 Ar3変態点以上の仕上げ温度で熱間圧延し、 560〜600°Cの卷取り温度で卷取 り、 酸洗し、 次いで、 80%以上の圧下率で冷間圧延を行った後に、 700〜820°Cの 温度で均熱焼鈍を行う缶用鋼板の製造方法である。 The present invention has been made to solve the above problems. An object of the present invention is to provide a steel sheet for cans having both the strength equivalent to that of a DR steel sheet and the elongation exceeding that of the DR steel sheet, and a method for producing the same. Disclosure of the invention In the present invention, at a weight of 0 / o, C: 0.04 to 0.1%, N: 0.002 to 0.012%, Mn: 0.5 to 1.5% P: 0.01 to 0. 15%, Si: 0.01 to 0.5%, Nb: more than 0.025 to 0.1%, A1: 0.01% or less, S: 0.01% or less, balance Fe and unavoidable This is a steel sheet for cans consisting of chemical impurities and consisting essentially of a ferrite single-phase structure with an average crystal grain size of 7 / m or less. Further, in the present invention, the weight 0/0, C:. 0. 04~0 1%, N:. 0. 002~0 012%, Mn: 0. 5~ 1. 5%, P: 0. 01 ~ 0.15%, Si: 0.01 ~ 0.5%, Nb: more than 0.025 ~ 0.1%, A1: 0.01% or less, S: 0.01% or less, with the balance being less Steel consisting of Fe and unavoidable impurities is hot-rolled at a finishing temperature above the Ar 3 transformation point, wound at a winding temperature of 560 to 600 ° C, pickled, and then reduced by 80% or more. This is a method for manufacturing steel sheets for cans in which cold rolling is performed at a low rate and then isothermal annealing is performed at a temperature of 700 to 820 ° C.
さらに、 本発明は、 重量0 /0で、 C: 0. 04〜0. 1%、 N: 0. 002〜0. 012% Mn: 0. 5 〜1. 5%、 P: 0. 010〜0. 15%、 Si: 0. 01〜0. 5%、 Nb: 0. 025〜0. 1%、 A1: 0. 01% 以下、 S: 0. 01%以下を含有し、 残部が Fe及ぴ不可避的不純物からなり、 実質的 にフェライト単相組織であり、 フェライト平均結晶粒径が 7 ju m以下、 板厚 Furthermore, in the present invention, the weight 0/0, C:. 0. 04~0 1%, N: 0. 002~0 012% Mn:.. 0. 5 ~1 5%, P: 0. 010~ 0.15%, Si: 0.01-0.5%, Nb: 0.025-0.1%, A1: 0.01% or less, S: 0.01% or less, with the balance Fe andな り Consisting of unavoidable impurities, has a substantially ferrite single-phase structure, ferrite average crystal grain size of 7 jum or less, sheet thickness
0. 2ram以下であることを特徴とする高強度高延性な缶用鋼板である。 図面の簡単な説明 A high-strength, high-ductility steel sheet for cans, characterized in that it is 0.2 ram or less. Brief Description of Drawings
図 1は、 固溶元素を Mnとして Nbを同時に添加した場合の、 Nb添加量と缶用 鋼板の強度との関係を例示した図である。 発明を実施するための最良の形態  FIG. 1 is a diagram illustrating the relationship between the amount of Nb added and the strength of a steel sheet for cans when Nb is added simultaneously with the solid solution element being Mn. BEST MODE FOR CARRYING OUT THE INVENTION
本発明者らは、 鋼板の強化手段として、 固溶強化、 析出強化および微細化強ィ匕 の複合的な組み合わせに着目した。 その結果、 固溶強化元素とし Pと Mnを、 析 出強化元素兼微細化強ィヒ元素として Nbをそれぞれ適量添加することで、 結晶粒 径を小さくし、 伸びを損なわずに高強度化できることを見出した。 さらに、 組織 を実質的にフェライト単相組織とし、 フェライト平均結晶粒径を規定することで 強度と伸びを高レベルで両立させることが出来ることも見出した。 本発明において、 高強度な缶用鋼板とは、 例えばぶりき鋼板 (電気錫めつき鋼 板) や電気クロムめつき鋼板などの表面処理鋼板の原板として好適な薄鋼板であ る。 The present inventors have paid attention to a composite combination of solid solution strengthening, precipitation strengthening, and micronization as a means for strengthening a steel sheet. As a result, by adding appropriate amounts of P and Mn as the solid solution strengthening elements and Nb as the precipitation strengthening element and the finely divided strengthening element, it is possible to reduce the crystal grain size and increase the strength without impairing the elongation. Was found. Furthermore, they found that the strength and elongation could be made compatible at a high level by defining the structure as a substantially ferrite single phase structure and defining the average ferrite grain size. In the present invention, a high-strength steel sheet for cans is a thin steel sheet suitable as a base sheet of a surface-treated steel sheet such as a tinned steel sheet (electroplated tin sheet) or an electrochromic plated steel sheet.
本発明の高強度でかつ伸びの大きい缶用鋼板は、 固溶強化元素、 析出強化元素 および Zまたは微細化強化元素として下記に示した元素とその量が規定され、 さ らに、 平均結晶粒径が 7 / m以下のフェライト単相組織から実質的になる。 これ らは本発明において最も重要な要件であり、 引張強度が 550MPa以上でかつ伸ぴ が 10%超の缶用鋼板を得ることができる。 また、 上記の高強度で伸びの大きな 缶用鋼板は、 Ar3変態点以上の仕上げ温度で熱間圧延し、 560〜600°Cの卷取り温 度で卷取り、 酸洗し、 次いで、 80%以上の圧下率で冷間圧延を行った後に、 700 〜820°Cの温度で均熱焼鈍を行うことにより製造が可能となる。 The high-strength and high-elongation steel sheet for cans of the present invention is defined by the following elements and their amounts as solid-solution strengthening elements, precipitation strengthening elements and Z or refinement strengthening elements. It consists essentially of a ferrite single phase structure with a diameter of 7 / m or less. These are the most important requirements in the present invention, and a steel sheet for cans having a tensile strength of 550 MPa or more and an elongation of more than 10% can be obtained. The high strength and large elongation steel sheet for cans is hot-rolled at a finishing temperature higher than the Ar 3 transformation point, wound at a winding temperature of 560 to 600 ° C, pickled, After cold-rolling at a rolling reduction of not less than%, the production can be performed by performing soaking annealing at a temperature of 700 to 820 ° C.
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明における鋼の化学成分の限定理由は以下の通りである。 なお、 本願にお いて、 鋼の成分を示す%は、 すべて重量%である。  The reasons for limiting the chemical components of steel in the present invention are as follows. In the present application, all the percentages indicating the components of steel are percentages by weight.
C: 0. 04〜0. 1%  C: 0.04 ~ 0.1%
焼鈍後の鋼板が、 550Mpa以上の引張強度と 10%超の伸ぴを達成するためには 結晶粒径が Ί m以下になることが必要である。 これらの特性を満たすために、 Cの添加量は重要であり、 本発明にとって Cは主要な要件の一つである。 特に強 度と粒径には、 炭化物の量や密度が大きく関わってくるので、 析出に利用される 炭素量を確保する必要がある。 また、 固溶 Cによる高強度化も考慮すると、 Cは 0. 04%以上となる。 一方、 0. 1%を超えると、 第 2相にパーライト相が析出する ようになり、 伸びが低下する。 以上より、 Cは 0. 04%以上から 0. 1%以下までと する。  In order for the steel sheet after annealing to achieve a tensile strength of 550 MPa or more and an elongation of more than 10%, the crystal grain size must be 粒径 m or less. In order to satisfy these characteristics, the amount of C added is important, and C is one of the main requirements for the present invention. In particular, since the amount and density of carbides greatly affect the strength and particle size, it is necessary to secure the amount of carbon used for precipitation. Also, considering the high strength due to solid solution C, C is 0.04% or more. On the other hand, when the content exceeds 0.1%, a pearlite phase precipitates in the second phase, and the elongation decreases. Based on the above, C should be from 0.04% to 0.1%.
Si : 0. 01〜0. 5%  Si: 0.01 to 0.5%
Siは固溶強化により鋼板を高強度化させる元素であるが、 多量に添加すると 耐食性が著しく損なわれる。 そのため、 Siは 0. 01%以上から 0. 5%以下までと する。 なお、 特に耐食 14を損なわないようにするためには、 Siは 0.01%以上か ら 0.3%以下までが好ましい。 Si is an element that increases the strength of the steel sheet by solid solution strengthening, but if added in a large amount, the corrosion resistance is significantly impaired. Therefore, the Si content ranges from 0.01% or more to 0.5% or less. To do. In order to prevent the corrosion resistance 14 from being impaired, the content of Si is preferably 0.01% or more to 0.3% or less.
Mn:0.5〜: 1.5%  Mn: 0.5 ~: 1.5%
Mn は固溶強化により鋼板の強度を増加させ、 結晶粒径も小さくし、 さらには 微細化強化としても強度を増加させる元素である。 本発明にとって主要な要件の 一つである。 上記効果は 0.5%以上の添加により顕著に認められる。 一方、 Mnを 多量に添加すると、 耐食性が劣る。 以上より、 Mnは 0.5%以上から 1.5%以下ま でとする。 なお、 再結晶温度を大きく上昇させないためには、 Mnは 0.5%以上か ら 1.0%以下までが好ましい。  Mn is an element that increases the strength of the steel sheet by solid solution strengthening, reduces the crystal grain size, and also increases the strength as finer strengthening. This is one of the main requirements for the present invention. The above-mentioned effect is remarkably recognized by adding 0.5% or more. On the other hand, when a large amount of Mn is added, the corrosion resistance is poor. Based on the above, Mn should be between 0.5% and 1.5%. Note that Mn is preferably 0.5% or more to 1.0% or less so as not to significantly increase the recrystallization temperature.
Ρ:0.01〜0.15%  Ρ: 0.01-0.15%
Pは Mn同様、 固溶強化能が大きい元素であり、 本発明にとって主要な要件の 一つである。 その効果が顕著に生じるのは、 0.01%以上である。 一方、 多量に添 加すると鋼板の耐食性が劣化する。 以上より、 Pは 0.01%以上から 0.15%以下 までとする。 なお、 特に耐食性を損なわないようにするためには、 Pは 0.01%以 上から 0.1%以下までが好ましい。  P, like Mn, is an element having a large solid solution strengthening ability, and is one of the main requirements for the present invention. The effect is remarkable at 0.01% or more. On the other hand, when added in large amounts, the corrosion resistance of the steel sheet deteriorates. Based on the above, P should be between 0.01% and 0.15%. It should be noted that P is preferably from 0.01% or more to 0.1% or less in order not to impair the corrosion resistance.
S: 0.01%以下  S: 0.01% or less
Sは鋼中で介在物として存在し、 鋼板の伸びおよび耐食性にとって不利になる 元素なので、 極力減らすのが好ましい。 以上より、 Sは 0.01%以下とする。 通常 は、 0.0001%以上から 0.01%以下程度である。  S is an element that exists as inclusions in the steel and is disadvantageous to the elongation and corrosion resistance of the steel sheet, so it is preferable to reduce it as much as possible. From the above, S is set to 0.01% or less. Usually, it is about 0.0001% or more and 0.01% or less.
A1: 0.01%以下  A1: 0.01% or less
A1含有量が増加すると、 再結晶温度の上昇をもたらすため、 焼鈍温度を高く する必要がある。 焼鈍温度を高くすると、 A1N形成量が多くなり、 固溶 N量が減 少し、 鋼板の強度の低下を招く。 また、 本発明においては、 鋼板の強度を増加さ せるために添加した他の元素で再結晶温度の上昇がもたらされ、 焼鈍温度が高く なる。 よって、 A1による再結晶温度の上昇は極力回避することが好ましく、 A1 は 0.01%以下とする。 通常は、 0.003%以上から 0.01%以下程度である。  If the A1 content increases, the recrystallization temperature rises, so it is necessary to raise the annealing temperature. When the annealing temperature is increased, the amount of A1N formed increases, the amount of solute N decreases, and the strength of the steel sheet decreases. Further, in the present invention, the recrystallization temperature is increased by other elements added to increase the strength of the steel sheet, and the annealing temperature is increased. Therefore, it is preferable to avoid an increase in the recrystallization temperature due to A1 as much as possible, and A1 is set to 0.01% or less. Usually, it is about 0.003% or more and about 0.01% or less.
Ν:0.002〜0·012% Nは、 固溶強化能の高い元素であり、 鋼板の強度を上昇させるので、 積極的に 添加する。 該強度上昇に有効に作用させるためには 0. 002%以上必要である。 一 方、 多量に添加すると鋼板の歪時効性による問題が生じてくる。 以上より、 Nは 0. 002%以上から 0. 012%以下までとする。 Ν: 0.002 to 0.0012% N is an element that has a high solid solution strengthening ability and increases the strength of the steel sheet. Therefore, N is actively added. In order to effectively act on the strength increase, 0.002% or more is required. On the other hand, if a large amount is added, a problem occurs due to strain aging of the steel sheet. From the above, N should be from 0.002% or more to 0.012% or less.
Nb : 0. 025超〜 0. 1%  Nb: Over 0.025 to 0.1%
Nbは、 本発明においては主要な要件の一つである。 bは炭化物生成能の高い 元素であり、 微細な炭化物を析出させて鋼板の強度を上昇させる。 また、 細粒化 することで該強度を上昇させる。  Nb is one of the main requirements in the present invention. b is an element having a high ability to form carbides, which precipitates fine carbides and increases the strength of the steel sheet. Further, the fineness increases the strength.
図 1は、 固溶元素を Mnとして Nbを同時に添加した場合の Nb添加量と缶用鋼 板の強度との関係を例示した図である。 図 1より、 Nbを固溶元素である Mnと同 時に添加することにより、 本来固溶強化によって上昇する鋼板の強度よりも強度 上昇量が高くなることがわかる。 この要因は次のように考えられる。 すなわち、 固溶元素 (例では Mn) を Nbと同時に添加することで、 固溶元素 (例では Mn) の みを単独で添加した時に比べて、 析出した b- Cが固溶元素 (例では Mn) の拡散 を抑制し、 焼鈍時における再結晶粒の成長が阻害される。 つまり固溶元素自体が 細粒化にも有効に作用し、 固溶強化の効果に細粒化強化の効果が加算されるため であると考えられる。 そして、 上記効果は Nb添加量が 0. 025%を超えるときに 顕著に生じ始める。  FIG. 1 is a diagram illustrating the relationship between the amount of Nb added and the strength of a steel sheet for cans when Nb is added simultaneously with the solid solution element being Mn. From Fig. 1, it can be seen that by adding Nb at the same time as Mn, which is a solid solution element, the strength increase is higher than the strength of the steel sheet, which originally increases by solid solution strengthening. This factor is considered as follows. In other words, by adding a solid solution element (Mn in the example) simultaneously with Nb, the precipitated b-C is more soluble than the solid solution element (Mn in the example) alone. Mn) is suppressed, and the growth of recrystallized grains during annealing is inhibited. In other words, it is considered that the solid solution element itself effectively acts on the grain refinement, and the effect of the grain refinement strengthening is added to the effect of the solid solution strengthening. Then, the above-mentioned effect starts to occur remarkably when the Nb addition amount exceeds 0.025%.
一方、 Nbは再結晶温度の上昇をもたらし、 0. 1%を超えると、 熱間圧延時に鋼 板が著しく硬質化して冷間圧延時の加工性が悪化する。  On the other hand, Nb raises the recrystallization temperature, and if it exceeds 0.1%, the steel sheet becomes extremely hard during hot rolling and the workability during cold rolling deteriorates.
以上より、 Nbは 0. 025%超から 0. 1%以下までとする。 なお、 冷間圧延時の加 ェ性の点から、 Nbは好ましくは 0. 025%超から 0. 05%以下までが好ましい。 次に組織の限定理由について説明する。  From the above, Nb is set to be more than 0.025% to 0.1% or less. From the viewpoint of the workability during cold rolling, Nb is preferably from more than 0.025% to 0.05% or less. Next, the reasons for limiting the organization will be described.
平均結晶粒径が 7〃 m以下のフェライト単相組織  Ferrite single phase structure with average grain size of 7〃m or less
まず、 本発明では実質的にフェライト単相組織とする。 セメンタイト等を 1% 程度含む場合でも、 本発明の作用効果を奏する限り'、 実質的にフェライト単相組 織であると判断する。 発明者らは、 鋼組織をフェライト単相とし、 フェライト相の平均結晶粒径を変 化させて強度と伸びのバランスを調査した。 その結果、 フェライトの平均結晶粒 径が 7 i m以下になると、 伸びが低下することなく高強度鋼が得られることがわ かった。 また、 平均結晶粒径が 7 _< mを超えると、 製缶後の表面外観の美麗さが 失われることが判明した。 これは肌荒れ現象のような表面の粗度の極端な変化に 対応するものと考えられる。 これらの現象は、 発生する部位や程度は異なるもの の、 特に 2ピース缶において確認された。 以上より、 フェライトの平均結晶粒径 は 以下とする。 なお、 フェライト結晶粒径は、 例えば ASTMの切断法によ るフェライト平均結晶粒径に準じて測定するものとする。 First, in the present invention, a ferrite single phase structure is used. Even if it contains about 1% of cementite or the like, it is determined that the structure is substantially a ferrite single-phase structure as long as the effects of the present invention are achieved. The inventors investigated the balance between strength and elongation by changing the steel structure to a ferrite single phase and changing the average crystal grain size of the ferrite phase. As a result, it was found that when the average grain size of ferrite was 7 im or less, a high-strength steel was obtained without a decrease in elongation. It was also found that if the average crystal grain size exceeds 7 _ <m, the surface appearance after can making becomes unsatisfactory. This is thought to correspond to extreme changes in surface roughness such as skin roughness. These phenomena, although varying in extent and extent of occurrence, were observed especially in 2-piece cans. Based on the above, the average crystal grain size of ferrite is as follows. The ferrite grain size is measured according to, for example, the average ferrite grain size obtained by the ASTM cutting method.
本発明の缶用鋼板は、 板厚が 0. 2mm以下であるのが好ましい。 板厚が 0. 2m m以下であれば、 冷間圧延率が高くなり、 550MPa以上の引張強度を有する缶用 鋼板が容易に得られる。 次に本発明の高強度でかつ伸びの大きな缶用鋼板の製造方法について説明する。 通常の方法に従い、 転炉等を用いて上記の化学組成に調整された溶鋼を作成し、 該溶鋼を連続鎵造法等で圧延素材に铸造する。 次いで、 得られた圧延素材を熱間 圧延する。 仕上げ温度は、 鋼板を r単相域にする必要があるので A r 3変態点以 上が必須である。 なお、 熱間圧延前の圧延素材の温度は、 結晶粒径が細粒ィヒし易 いようするには、 低温にするのが望ましい。 し力 し、 仕上げ圧延温度を r単相 域にする必要があるので、 それらを考慮すると圧延開始時の圧延素材の温度はThe steel sheet for cans of the present invention preferably has a thickness of 0.2 mm or less. When the sheet thickness is 0.2 mm or less, the cold rolling ratio increases, and a steel sheet for cans having a tensile strength of 550 MPa or more can be easily obtained. Next, a method for producing a high-strength and large-extension steel plate for a can according to the present invention will be described. According to a usual method, a molten steel adjusted to the above chemical composition is prepared using a converter or the like, and the molten steel is formed into a rolled material by a continuous forming method or the like. Next, the obtained rolled material is hot-rolled. The finishing temperature must be at the Ar 3 transformation point or higher because the steel sheet must be in the r single-phase region. The temperature of the rolled material before hot rolling is preferably low so that the crystal grain size tends to be fine. Therefore, the final rolling temperature must be within the r single-phase region.
1150〜1300°Cが望ましい。 また、 結晶粒径を 7 μ m以下にして焼鈍後の鋼板強度 を高めるために、 卷取り温度を 560°C以上から 600°C以下までとする必要がある。 卷取り温度が 600°Cを超えると結晶粒径が粗大化する。 一方、 熱間圧延の卷取り 温度が 560°C未満であると、 熱延鋼板中に固溶 Nや Cが残留して、 冷間圧延後の 再結晶焼鈍時に好ましい集合組織の形成を阻害する。 1150-1300 ° C is desirable. In order to increase the strength of the steel sheet after annealing by reducing the crystal grain size to 7 μm or less, it is necessary to set the winding temperature from 560 ° C or higher to 600 ° C or lower. If the winding temperature exceeds 600 ° C, the crystal grain size becomes coarse. On the other hand, if the coiling temperature in hot rolling is lower than 560 ° C, solid solution N and C remain in the hot-rolled steel sheet and inhibit formation of a favorable texture during recrystallization annealing after cold rolling. .
次いで、 酸洗後、 80%以上の圧下率で冷間圧延を行う。 この冷間圧延により、 焼鈍後の集合組織を発達させ顕著に細粒化でき、 それと同時により均一なフェラ イト組織が得られる。 圧下率が 80%未満では、 引張強度が 550MPa以上を達成す るのが困難である。 80%以上の圧延率を確保するためには、 冷間圧延後の板厚は 0. 2mm以下となるのが望ましい。 Next, after pickling, cold rolling is performed at a rolling reduction of 80% or more. By this cold rolling, the texture after annealing can be developed and markedly refined, and at the same time, a more uniform Site organization is obtained. If the rolling reduction is less than 80%, it is difficult to achieve a tensile strength of 550MPa or more. In order to ensure a rolling reduction of 80% or more, it is desirable that the sheet thickness after cold rolling be 0.2 mm or less.
次いで、 700°C以上から 820°C以下までの温度範囲で均熱焼鈍を行う。 均熱焼 鈍温度は、 良好な加工性を確保するため、 鋼板の再結晶温度以上とする必要があ り、 かつ組織をより均一にするために、 700°C以上の温度で均熱焼鈍する必要が ある。 一方、 均熱焼鈍温度が 820°C超えでは、 焼鈍工程に支障をきたす恐れがあ る。  Next, isothermal annealing is performed in a temperature range from 700 ° C or more to 820 ° C or less. The soaking temperature must be equal to or higher than the recrystallization temperature of the steel sheet in order to ensure good workability, and soaking at a temperature of 700 ° C or more to make the structure more uniform. There is a need. On the other hand, if the soaking temperature is higher than 820 ° C, the annealing process may be affected.
次いで、 表面性状を整えるために調質圧延を行うことが好ましい。 なお、 この 時の調質圧延率は、 加工硬ィヒし過ぎて伸びが低下するのを防ぐため、 1. 5%以下 が好ましい。 より好ましくは 0. 5%以上から 1. 5%以下である。  Next, it is preferable to perform temper rolling in order to adjust the surface properties. The temper rolling reduction at this time is preferably 1.5% or less in order to prevent elongation from decreasing due to excessive work hardening. More preferably, it is from 0.5% or more to 1.5% or less.
なお、 引張強度は、 成分、 熱延時のコイル卷取り温度、 均熱焼鈍温度おょぴ冷 間圧延率により目標値に制御することが可能である。 実施例 1  The tensile strength can be controlled to a target value by the components, the coil winding temperature during hot rolling, the soaking temperature, and the cold rolling reduction. Example 1
鋼の成分組成を表 1に示すように種々変化させた。 これらの各成分を含有し、 残部が Fe及ぴ不可避不純物からなる鋼を実機転炉で試作し、 鋼スラブに铸造し た。 以下、 表 2の発明例 1〜9および比較例 1〜8に示した条件に従って缶用鋼 板を作成した。  The composition of the steel was varied as shown in Table 1. A steel containing each of these components, with the balance being Fe and unavoidable impurities, was prototyped in an actual converter to produce a steel slab. Hereinafter, steel plates for cans were prepared according to the conditions shown in Inventive Examples 1 to 9 and Comparative Examples 1 to 8 in Table 2.
すなわち、 該各鋼スラブを 1200°Cで再加熱した後、 表 2の仕上げ圧延温度と 卷取り温度で熱間圧延を行った。 次いで、 酸洗して後、 表 2の圧下率で冷間圧延 して、 0. 2mmの薄鋼板を得た。 得られた薄鋼板を、 連続焼鈍炉にて表 2の加熱 速度と均熱焼鈍温度で 30秒間の均熱焼鈍を施した。 後、 常法により、 10〜; L5°C / s程度の冷却速度で冷却して缶用鋼板を得た。  That is, after each steel slab was reheated at 1200 ° C, hot rolling was performed at the finish rolling temperature and the winding temperature shown in Table 2. Next, after pickling, cold rolling was performed at the rolling reduction shown in Table 2 to obtain a 0.2 mm thin steel sheet. The obtained steel sheet was subjected to soaking in a continuous annealing furnace at the heating rate and soaking temperature shown in Table 2 for 30 seconds. Thereafter, the steel sheet was cooled at a cooling rate of about 10 to 5 LC / s by a conventional method to obtain a steel sheet for cans.
次いで、 該缶用鋼板を約 1. 5%の圧下率で調質圧延し、 通常のクロムめつきを 連続的に施して電気クロムめつき鋼板とした。 なお、 均熱焼鈍温度は、 Nb添加 量によつて調整したが表 2の値を,維持した。 得られた電気クロムめつき鋼板の結晶組織と平均結晶粒径にっ 、て調査した後、 引張試験を行い強度と伸びを評価した。 得られた結果を表 3に示す。 Subsequently, the steel sheet for cans was subjected to temper rolling at a rolling reduction of about 1.5%, and a normal chrome plating was continuously performed to obtain an electrochromic plated steel sheet. The soaking temperature was adjusted according to the amount of Nb added, but the values in Table 2 were maintained. After examining the crystal structure and average crystal grain size of the obtained electrochromic plated steel sheet, a tensile test was performed to evaluate strength and elongation. Table 3 shows the obtained results.
なお、 各試験及び調査方法は以下の通りである。  The tests and survey methods are as follows.
JIS 5号サイズの引張試験片を用いて引張試験を行い、 降伏点、 引張強度、 伸びを測定した。 また、 ロックウェル硬度も別途測定した。  A tensile test was performed using a JIS No. 5 size tensile test piece, and the yield point, tensile strength, and elongation were measured. Rockwell hardness was also measured separately.
結晶組織は、 サンプルを研磨して、 ナイタルで結晶粒界を腐食させて、 光学顕 微鏡で観察した。  The crystal structure was observed by optical microscopy by polishing the sample, corroding the crystal grain boundaries with nital.
平均結晶粒径は、 上のように観察した結晶組織について ASTMの切断法を用い て測定した。  The average crystal grain size was measured using the ASTM cutting method for the crystal structure observed as described above.
表 3より、 発明例 1〜9の鋼は、 平均結晶粒径 7 μ m以下のフェライト単相組 織となっている。 そのため、 強度おょぴ伸びの両者に優れていることがわかる。 一方、 比較例 1の鋼 jおよび比較例 5の鋼 nは、 P添加量が低いため伸ぴにつ いては発明例と同程度であるものの、 強度が劣っていることがわかる。 比較例 2 の鋼 kにおいては、 Nb添加量が低いため、 伸びについては発明例と同程度であ るものの、 強度が劣っていることがわかる。 また、 比較例 3の鋼 1においては、 鋼組織が平均結晶粒径 7 m超えであるうえ、 フェライトとパーライトの混合組 織となっているため、 高強度ではあるものの、 伸びが劣っていることがわかる。 比較例 4および 6は、 それぞれ 20%およぴ 33%もの高圧下率で調質圧延を行つ たもので、 高強度ではあるものの、 従来の D R法による製造法と同等の技術に過 ぎない。 比較例 8の引張強度は、 210°Cで 20分間焼付け塗装を行った後の値にも かかわらず 500Mpaにしかならなレ、。 実施例 2  Table 3 shows that the steels of Invention Examples 1 to 9 are ferrite single-phase structures having an average crystal grain size of 7 µm or less. Therefore, it can be seen that both strength and elongation are excellent. On the other hand, it is understood that the steel j of Comparative Example 1 and the steel n of Comparative Example 5 are inferior in strength, although the elongation is about the same as that of the invention example due to the low P content. It can be seen that the steel k of Comparative Example 2 had a small amount of Nb, so that the elongation was about the same as the invention example, but the strength was inferior. In addition, in Steel 1 of Comparative Example 3, since the steel structure has an average crystal grain size of more than 7 m and a mixed structure of ferrite and pearlite, it has high strength but inferior elongation. I understand. Comparative Examples 4 and 6 were subjected to temper rolling at high pressure reductions of 20% and 33%, respectively, and although they had high strength, they were just the same technology as the conventional DR method. . The tensile strength of Comparative Example 8 was only 500 MPa despite the value after baking at 210 ° C for 20 minutes. Example 2
鋼種を表 1の発明例 1で示した鋼 aに固定して、 製造条件の違いよる影響を検 討した。  The steel type was fixed to steel a shown in Inventive Example 1 in Table 1, and the influence of the difference in manufacturing conditions was examined.
すなわち鋼 aを用い、 かつ表 2の発明例 1、 10および 11、 および比較例 9に 示した製造条件を適用し、 他は実施例 1の記載に準じて電気クロムめつき鋼板を 得た。 得られた電気クロムめつき鋼板に対して、 実施例 1と同じ試験を行い、 結 果を表 3にまとめて示した。 That is, steel a was used, and the production conditions shown in Invention Examples 1, 10 and 11 in Table 2 and Comparative Example 9 were applied. Obtained. The same test as in Example 1 was performed on the obtained electrochrome plated steel sheet, and the results are shown in Table 3.
表 3より、 発明例 1、 10および 11の製造条件によれば、 結晶粒径が 7 / m以 下のフェライト単相,組織にできるので、 伸ぴを損なうことなく引張強度が 550MPa以上の鋼板が得られることが判る。  According to Table 3, according to the manufacturing conditions of Invention Examples 1, 10 and 11, a single-phase ferrite having a crystal grain size of 7 / m or less can be formed into a single phase, so that a steel plate having a tensile strength of 550 MPa or more without impairing elongation. Is obtained.
一方、 比較例 9の製造条件では、 フェライトの平均結晶粒径が 10〃 mを超え て、 伸びは優れているものの強度が劣ってしまう事が判る。 また比較例 7におい ては、 高強度ではあるものの、 焼鈍前後に急速加熱、 急速冷却する必要があり、 従来の設備で製造するのは困難である。  On the other hand, under the manufacturing conditions of Comparative Example 9, the average crystal grain size of the ferrite exceeds 10 μm, indicating that the elongation is excellent but the strength is inferior. In Comparative Example 7, although high in strength, rapid heating and rapid cooling before and after annealing are required, and it is difficult to manufacture with conventional equipment.
また、 これらの鋼板に対して絞り加工すると、 本発明の鋼板の表面性状は良好 で、 肌荒れも認められない。 一方、 フェライトの平均結晶粒径が 10/ mを超え た比較例では、 肌荒れが認められた。  When these steel sheets are drawn, the steel sheets of the present invention have good surface properties and no rough surface. On the other hand, in Comparative Examples in which the average crystal grain size of ferrite exceeded 10 / m, rough skin was observed.
本発明例によれば、 焼鈍工程後の調質圧延の圧下率が 1. 5%以下で、 目標の引 張強度が確実に達成できることも判る。 According to the example of the present invention, it can be seen that the target tensile strength can be reliably achieved when the reduction ratio of the temper rolling after the annealing step is 1.5% or less.
鋼種 C Si Mn P S N Nb Al 発明例 1 a 0.05 0.01 0.5 0.04 0.01 0.006 0.03 0.01 発明例 2 b 0.05 0.01 1.0 0.04 0.01 0.006 0.03. 0.01 発明例 3 c 0.05 0.01 0.5 0.075 0.01 0.006 0.03 0.01 発明例 4 d 0.05 0.01 0.5 0.04 0.01 0.006 0.05 0.01 発明例 5. β 0.05 0.2 0.5 0.04 0.01 0.006 0.03 0.01 発明例 6 f 0.04 0.01 1.0 0.075 0.01 0.006 0.03 0,01 発明例 7 g 0.04 0.01 1.0 0.075 0.01 0.01 0.03 0.01 発明例 8 h 0.04 0.01 1.0 0.01 0.01 0.006 0.03 0.01 発明例 9 i 0.04 0.01 1.0 0.075 0.01 0.002 0.05 0.01 比較例 1 j 0.05 0.01 0.5 0.008 0.01 0.006 0.03 0.01 比較例 2 k 0.05 0.01 0.5 0.04 0.01 0.006 0 0.01 比較例 3 1 0.15 0.01 0.5 0.01 0.01 0.002 0.03 0.01 比較例 4 m 0.005 一 0.5 0.01 - 0.006 0 0.002 比較例 5 n 0.1 1 0.01 0.55 0.005 0.005 0.0015 0.025 0.055 比較例 6 o 0.05 0.005 0.25 0.01 0.009 0.0035 一 0.001 比較例 7 P 0.1 0,01 0.5 0.01 0.01 0.003 - 0.03 比較例 8 9 0.0095 0.02 0.25 0.009 0.007 0.0095 0.007 0.002 Steel type C Si Mn PSN Nb Al Invention example 1 a 0.05 0.01 0.5 0.04 0.01 0.006 0.03 0.01 Invention example 2 b 0.05 0.01 1.0 0.04 0.01 0.006 0.03.0.01 Invention example 3 c 0.05 0.01 0.5 0.075 0.01 0.006 0.03 0.01 Invention example 4 d 0.05 0.01 0.5 0.04 0.01 0.006 0.05 0.01 Inventive example 5.β 0.05 0.2 0.5 0.04 0.01 0.006 0.03 0.01 Inventive example 6 f 0.04 0.01 1.0 0.075 0.01 0.006 0.03 0,01 Inventive example 7 g 0.04 0.01 1.0 0.075 0.01 0.01 0.03 0.01 Inventive example 8 h 0.04 0.01 1.0 0.01 0.01 0.006 0.03 0.01 Invention 9 i 0.04 0.01 1.0 0.075 0.01 0.002 0.05 0.01 Comparative 1 j 0.05 0.01 0.5 0.008 0.01 0.006 0.03 0.01 Comparative 2 k 0.05 0.01 0.5 0.04 0.01 0.006 0 0.01 Comparative 3 1 0.15 0.01 0.5 0.01 0.01 0.002 0.03 0.01 Comparative example 4 m 0.005 1 0.5 0.01-0.006 0 0.002 Comparative example 5 n 0.1 1 0.01 0.55 0.005 0.005 0.0015 0.025 0.055 Comparative example 6 o 0.05 0.005 0.25 0.01 0.009 0.0035 1 0.001 Comparative example 7 P 0.1 0,01 0.5 0.01 0.01 0.003-0.03 Comparative Example 8 9 0.0095 0.02 0.25 0.009 0.007 0.0095 0.007 0.002
表 2 Table 2
Figure imgf000014_0001
Figure imgf000014_0001
*:調質圧延の圧下率が 20%  *: 20% reduction in temper rolling
**:調質圧延の圧下率が 33%  **: Temper rolling reduction of 33%
焼鈍後の冷却速度は 1 000°C/s Cooling rate after annealing is 1 000 ° C / s
表 3 鋼種 降伏点 引張強度 ロックウェル硬度 伸び 平均結晶粒 Table 3 Steel grade Yield point Tensile strength Rockwell hardness Elongation Average grain size
(MPa) (MPa) HR30T (%) (j! m) 発明例 1 a 510 550 一 23 F* 5 発明例 2 b 500 570 - 20 F 5 発明例 3 c 520 570 - 20 F 5 発明例 4 d 500 550 - 21 F 4 発明例 5' Θ 490 560 - 21 F 5 発明例 6 f 550 600 - 19 F 5 発明例 7 g 490 560 - 17 F 5.5 発明例 8 h 500 560 一 13 F 5 発明例 9 i 490 550 - 13 F - 3.5 発明例 10 a 500 570 - 20 F 4.0 発明例 11 a 480 550 - 23 F 5.0 比較例 1 j 450 500 一 26 F 5.5 比較例 2 k 430 390 - 17 F 10 比較例 3 I 500 600 - 10 F+P * * , 10 比較例 4 m - - 73 ― - 一 比較例 5 n 480 510 一 32 F 3.5 比較例 6 o -- 590 73 一 一 7 比較例 7 P 360 610 - 33 一 - 比較例 8 q -' 500* * * 70 - 一 一 比較例 9 a 420 500 一 32 F 12.0  (MPa) (MPa) HR30T (%) (j! M) Invention example 1 a 510 550-23 F * 5 Invention example 2 b 500 570-20 F 5 Invention example 3 c 520 570-20 F 5 Invention example 4 d 500 550-21 F 4 Invention 5 'Θ 490 560-21 F 5 Invention 6 f 550 600-19 F 5 Invention 7 g 490 560-17 F 5.5 Invention 8 h 500 560 113 F 5 Invention 9 i 490 550-13 F-3.5 Invention example 10 a 500 570-20 F 4.0 Invention example 11 a 480 550-23 F 5.0 Comparative example 1 j 450 500-26 F 5.5 Comparative example 2 k 430 390-17 F 10 Comparative example 3 I 500 600-10 F + P * *, 10 Comparative example 4 m--73--Comparative example 5 n 480 510-32 F 3.5 Comparative example 6 o-590 73 1-1 7 Comparative example 7 P 360 610 -33 one-Comparative example 8 q-'500 * * * 70-One comparative example 9 a 420 500 one 32 F 12.0
*:フェライト相  *: Ferrite phase
**:パーライト相  **: Pearlite phase
***: 210°Cで 20分間焼付け塗装した後の弓 I張強度 ***: Bow I tension strength after baking at 210 ° C for 20 minutes
産業上の利用可能性 Industrial applicability
本発明により、 引張強度が 550MPa以上で伸びが 10%超の缶用鋼板と、 その製 造方法が提供される。 この鋼板は、 DRD缶や溶接缶などの胴部のような箇所にも 適用可能である。 該鋼板は、 多くの元素を用いて固溶強化し、 さらに Nbによる 析出強化および細粒ィ匕強化を複合的に組み合わせて強度を上昇させたものである。 よって、 焼鈍工程後の調質圧延は圧下率 1. 5%以下で、 目標の引張強度が確実に 達成できる。 また、 Cや Nの含有量も抑えているので、 歪時効による降伏伸びの 懸念もない。 よって、 該鋼板は、 ぶりき鋼板や電気クロムめつき鋼板等の表面処 理鋼板に好適な薄鋼板として広く社会に貢献できる。  According to the present invention, a steel sheet for cans having a tensile strength of 550 MPa or more and an elongation of more than 10% and a method for producing the same are provided. This steel sheet can also be applied to parts such as the trunk of DRD cans and welded cans. The steel sheet is solid-solution-strengthened by using a number of elements, and is further increased in strength by combining precipitation strengthening with Nb and fine-grained stiffening. Therefore, the temper rolling after the annealing step can achieve the target tensile strength reliably with a reduction of 1.5% or less. Also, since the contents of C and N are suppressed, there is no concern about yield elongation due to strain aging. Therefore, the steel sheet can widely contribute to society as a thin steel sheet suitable for a surface-treated steel sheet such as a tinned steel sheet or an electrochrome plated steel sheet.

Claims

1 . 重量%で、 C: 0. 04〜0. 1%、 N: 0. 002〜0. 012%、 Mn: 0. 5〜1. 5%、 P: 0. 01〜0. 15%、 Si: 0. 01〜0. 5%、 Nb: 0. 025超〜 0, 1%、 A1: 0. 01%以下、 S:1. In% by weight, C: 0.004 to 0.1%, N: 0.002 to 0.012%, Mn: 0.5 to 1.5%, P: 0.01 to 0.15%, Si: 0.01 to 0.5%, Nb: more than 0.025 to 0.1%, A1: 0.01% or less, S:
0. 01%以下を含有し、 残部が Fe及び不可避的不純物からなり、 かつ平均結晶粒 径が 7〃 m以下のフェライト単相組織から実質的になる缶用鋼板。 A steel sheet for cans containing 0.01% or less, the balance being Fe and unavoidable impurities, and substantially consisting of a ferrite single phase structure with an average crystal grain size of 7〃m or less.
2. 重量0 /。で、 C: 0. 04〜0. 1%、 N: 0. 002〜0. 012%、 Mn: 0. 5〜: 1. 5%、 P: 0. 01〜0. 15%、 Si: 0. 01〜0. 5%、 Nb: 0. 025超〜 0. 1% 、 A1: 0. 01%以下、 S 嘖 2. Weight 0 /. C: 0.004 to 0.1%, N: 0.002 to 0.012%, Mn: 0.5 to: 1.5%, P: 0.01 to 0.15%, Si: 0 .01 ~ 0.5%, Nb: more than 0.025 ~ 0.1%, A1: 0.01% or less, S
0. 01%以下を含有し、 残部が Fe及ぴ不可避的不純物からなる鋼を、 Ar3変態点以 上の仕上げ温度で熱間圧延し、 560〜600の°Cの卷取り温度で卷取り、 酸洗し、 次い で、 80%以上の圧下率で冷間圧延を行った後に、 700〜820°Cの温度で均熱焼鈍を 行う缶用鋼板の製造方法。 囲 A steel containing 0.01% or less and the balance consisting of Fe and inevitable impurities is hot-rolled at a finishing temperature above the Ar 3 transformation point and wound at a winding temperature of 560 to 600 ° C. A method for producing a steel sheet for cans in which pickling is performed, then cold rolling is performed at a rolling reduction of 80% or more, and then isothermal annealing is performed at a temperature of 700 to 820 ° C. Enclosure
3 . 重量0/。で、 C: 0. 04〜0. 1%、 N: 0. 002〜0. 012%、 Mn: 0. 5〜1. 5%、 P: 0. 010〜0. 15%、 Si: 0. 01〜0. 5%、 Nb: 0. 025〜0. 1%、 A1: 0. 01%以下、 S: 0. 01%以下を含有し、 残部が Fe及び不可避的不純物からなり、 実質的にフェラ ィト単相組織であり、 フェライト平均結晶粒径が 7〃 m以下、 板厚 0. 2腿以下で あることを特徴とする高強度高延性な缶用鋼板。 3. Weight 0 /. And C: 0.004 to 0.1%, N: 0.002 to 0.012%, Mn: 0.5 to 1.5%, P: 0.010 to 0.15%, Si: 0.1. 01-0.5%, Nb: 0.025-0.1%, A1: 0.01% or less, S: 0.01% or less, with the balance being essentially Fe and unavoidable impurities A high-strength, high-ductility steel sheet for cans, which has a ferrite single-phase structure, an average ferrite grain size of 7 µm or less, and a sheet thickness of 0.2 or less.
PCT/JP2005/008399 2004-04-27 2005-04-26 Steel sheet for can and method for production thereof WO2005103316A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP05736903A EP1741800A1 (en) 2004-04-27 2005-04-26 Steel sheet for can and method for production thereof
MXPA06012304A MXPA06012304A (en) 2004-04-27 2005-04-26 Steel sheet for can and method for production thereof.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-131537 2004-04-27
JP2004131537 2004-04-27

Publications (1)

Publication Number Publication Date
WO2005103316A1 true WO2005103316A1 (en) 2005-11-03

Family

ID=35197009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/008399 WO2005103316A1 (en) 2004-04-27 2005-04-26 Steel sheet for can and method for production thereof

Country Status (5)

Country Link
EP (1) EP1741800A1 (en)
CN (1) CN1946866A (en)
MX (1) MXPA06012304A (en)
TW (1) TW200540284A (en)
WO (1) WO2005103316A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766800A (en) * 2011-05-05 2012-11-07 上海梅山钢铁股份有限公司 Steel for hard tinplate bottle caps and production method thereof
CN103649353A (en) * 2011-07-12 2014-03-19 杰富意钢铁株式会社 Steel sheet for can and process for producing same
WO2016031234A1 (en) * 2014-08-29 2016-03-03 Jfeスチール株式会社 Steel sheet for cans and method for producing same
JP6191807B1 (en) * 2016-02-29 2017-09-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5162924B2 (en) 2007-02-28 2013-03-13 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5135868B2 (en) 2007-04-26 2013-02-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5526483B2 (en) 2008-03-19 2014-06-18 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof
JP5262242B2 (en) * 2008-03-31 2013-08-14 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
WO2012077628A1 (en) 2010-12-06 2012-06-14 新日本製鐵株式会社 Steel sheet for bottom covers of aerosol cans and method for producing same
WO2013167572A1 (en) 2012-05-08 2013-11-14 Tata Steel Ijmuiden Bv Automotive chassis part made from high strength formable hot rolled steel sheet
JP6052476B1 (en) 2015-03-25 2016-12-27 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
CN105112776A (en) * 2015-08-25 2015-12-02 上海梅山钢铁股份有限公司 Phosphorus-containing low-carbon cold-rolled hard tin-plated steel plate and production method thereof
KR101899681B1 (en) * 2016-12-22 2018-09-17 주식회사 포스코 Ultra high strength cold rolled steel sheet having high yield ratio and method for manufacturing the same
MX2021002226A (en) * 2018-08-30 2021-05-27 Jfe Steel Corp Steel sheet for can, and method for producing same.
JP6813132B2 (en) * 2018-12-20 2021-01-13 Jfeスチール株式会社 Steel sheet for cans and its manufacturing method
WO2020203470A1 (en) * 2019-03-29 2020-10-08 Jfeスチール株式会社 Steel plate for can and method for manufacturing same
EP4108796A4 (en) 2020-02-17 2023-02-15 Nippon Steel Corporation Steel sheet for can, and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337049A (en) * 1991-05-13 1992-11-25 Kawasaki Steel Corp Cold rolled steel sheet for can manufacturing having high strength and superior workability and its production
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04337049A (en) * 1991-05-13 1992-11-25 Kawasaki Steel Corp Cold rolled steel sheet for can manufacturing having high strength and superior workability and its production
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102766800A (en) * 2011-05-05 2012-11-07 上海梅山钢铁股份有限公司 Steel for hard tinplate bottle caps and production method thereof
CN103649353A (en) * 2011-07-12 2014-03-19 杰富意钢铁株式会社 Steel sheet for can and process for producing same
WO2016031234A1 (en) * 2014-08-29 2016-03-03 Jfeスチール株式会社 Steel sheet for cans and method for producing same
JP5939368B1 (en) * 2014-08-29 2016-06-22 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP6191807B1 (en) * 2016-02-29 2017-09-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
WO2017150066A1 (en) * 2016-02-29 2017-09-08 Jfeスチール株式会社 Steel sheet for cans and manufacturing method therefor
US10941456B2 (en) 2016-02-29 2021-03-09 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same

Also Published As

Publication number Publication date
EP1741800A1 (en) 2007-01-10
MXPA06012304A (en) 2007-01-17
TW200540284A (en) 2005-12-16
CN1946866A (en) 2007-04-11

Similar Documents

Publication Publication Date Title
WO2005103316A1 (en) Steel sheet for can and method for production thereof
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
US7534312B2 (en) Steel plate exhibiting excellent workability and method for producing the same
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
JP5582274B2 (en) Cold-rolled steel sheet, electrogalvanized cold-rolled steel sheet, hot-dip galvanized cold-rolled steel sheet, alloyed hot-dip galvanized cold-rolled steel sheet, and production methods thereof
JP2009545676A (en) High manganese-type high-strength steel sheet with excellent impact characteristics and manufacturing method thereof
WO2001098552A1 (en) Thin steel sheet and method for production thereof
WO2008105524A1 (en) Steel sheet for cans, hot-rolled steel sheet to be used as the base metal and processes for production of both
WO2017164139A1 (en) High-strength hot-dip galvanized steel sheet and method for manufacturing same
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
KR102485003B1 (en) High strength plated steel sheet having excellent formability and surface property, and manufacturing method for the same
JPH0835039A (en) Steel sheet for can manufacturing, excellent in baking hardenability and aging resistance and having high strength and high workability, and its production
JP4094498B2 (en) Deep drawing high strength cold-rolled steel sheet and method for producing the same
JP4513434B2 (en) High-strength cold-rolled steel sheet with excellent material uniformity in the coil and manufacturing method thereof
JP2978007B2 (en) High tensile strength steel sheet for deep drawing excellent in surface treatment property and method for producing the same
KR102484992B1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing the same
KR102379444B1 (en) Steel sheet having excellent formability and strain hardening rate and method for manufacturing thereof
JP2003089847A (en) Hot rolled steel sheet having excellent stretch flanging workability, galvanized steel sheet, and their production method
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet
JP3471407B2 (en) Manufacturing method of hot rolled steel sheet with excellent workability
KR20220064621A (en) High-strength hot-dip galvanized steel sheet with excellent formability and process for producing same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005736903

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580012815.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: PA/a/2006/012304

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005736903

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2005736903

Country of ref document: EP