JP5262242B2 - Manufacturing method of steel plate for can manufacturing - Google Patents

Manufacturing method of steel plate for can manufacturing Download PDF

Info

Publication number
JP5262242B2
JP5262242B2 JP2008089924A JP2008089924A JP5262242B2 JP 5262242 B2 JP5262242 B2 JP 5262242B2 JP 2008089924 A JP2008089924 A JP 2008089924A JP 2008089924 A JP2008089924 A JP 2008089924A JP 5262242 B2 JP5262242 B2 JP 5262242B2
Authority
JP
Japan
Prior art keywords
steel
temperature
manufacturing
rolling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008089924A
Other languages
Japanese (ja)
Other versions
JP2009242857A (en
Inventor
克己 小島
田中  匠
雅毅 多田
誠 荒谷
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008089924A priority Critical patent/JP5262242B2/en
Priority to CN2009801121551A priority patent/CN101983246B/en
Priority to KR1020107021619A priority patent/KR101235415B1/en
Priority to PCT/JP2009/056908 priority patent/WO2009123294A1/en
Priority to EP09726961.7A priority patent/EP2275581A4/en
Priority to TW98110593A priority patent/TWI440725B/en
Publication of JP2009242857A publication Critical patent/JP2009242857A/en
Application granted granted Critical
Publication of JP5262242B2 publication Critical patent/JP5262242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

Provided is a method of manufacturing a steel sheet for cans, where excessively high strengthening due to work hardening in cold-rolling is avoided, and thickness variation in the longitudinal direction of a steel sheet coil is inhibited, in a reduction in the steel sheet manufacturing cost by omitting the recrystallization annealing step. The steel compositions contain, in mass%, C: 0.005% or less, Mn: 0.05 to 0.5%, Al: 0.01 to 0.10%, N: 0.0010 to 0.0070%, and B: 0.15xN to 0.75xN (0.20xN to 0.97xN in atomic ratio) and further contain either or both Nb: 4xC to 20×C (0.52xC to 2.58xC in atomic ratio) and Ti: 2xC to 10×C (0.50xC to 2.51×C in atomic ratio), and the balance is Fe and inevitable impurity elements. The steel is continuously cast into a slab, the slab is hot-rolled at a finishing temperature of not higher than Ar 3 transformation point, and the hot-rolled steel sheet is subjected to coiling, pickling, and then cold-rolling at a reduction of 50 to 96%.

Description

本発明は、板厚精度の優れた製缶用鋼板の製造方法に関するもので、特に缶高さが缶胴径と同程度に絞り加工を行う用途、あるいは円筒状または角筒状に曲げて端部同士を接合して缶胴を形成したのちにフランジ加工を行う用途に適した製缶用鋼板の製造方法に関するものである。   The present invention relates to a method for manufacturing a steel plate for can making with excellent plate thickness accuracy, and particularly for applications in which the can height is drawn to the same extent as the can barrel diameter, or bent into a cylindrical or rectangular tube shape. The present invention relates to a method of manufacturing a steel plate for can making suitable for a use in which flange processing is performed after joining portions to form a can body.

飲料缶、食品缶、18リットル缶、ペール缶などの缶は、その製法(工程)から2ピース缶と3ピース缶に大別できる。
2ピース缶は、錫めっき、クロームめっき、金属酸化物被覆処理、化成処理、無機皮膜被覆処理、有機樹脂皮膜被覆処理、塗油などの処理を施した表面処理鋼板に、浅い絞り加工、DWI加工、DRD加工等の加工を施して缶底と缶胴を一体成形し、これに蓋を取りつけた2部品からなる缶である。
3ピース缶は、表面処理鋼板を円筒状または角筒状に曲げて端部同士を接合して缶胴を形成したのち、これに天蓋と底蓋を取りつけた3部品からなる缶である。
Cans such as beverage cans, food cans, 18 liter cans, and pail cans can be roughly classified into two-piece cans and three-piece cans from the manufacturing method (process).
The two-piece can is a surface drawing steel plate that has been subjected to tin plating, chrome plating, metal oxide coating treatment, chemical conversion treatment, inorganic coating coating treatment, organic resin coating coating treatment, oil coating, etc., shallow drawing and DWI processing The can is composed of two parts in which the bottom of the can and the can body are integrally formed by processing such as DRD processing and a lid is attached thereto.
A three-piece can is a three-piece can that is formed by bending a surface-treated steel plate into a cylindrical shape or a rectangular tube shape and joining end portions to form a can body, and then attaching a canopy and a bottom cover to the can body.

これらの缶は、缶コストに占める素材コストの割合が比較的高い。そのため、缶コスト低減にあたっては鋼板のコスト低減への要求が強い。ここで、鋼板の製造においては、処理工程が多いほどコストが高くなることは言うまでもない。なかでも、鋼板を高温で再結晶させる焼鈍工程は、加熱のために多くのエネルギーコストがかかるため製造コストを高める工程である。ゆえに、この工程を省略することでコスト低減を図る方法が考えられる。しかし、冷間圧延後に再結晶させない鋼板は加工硬化によって強度が過剰に高い状態にあり、製缶加工に適さない。そこで、鋼成分、熱間圧延条件を適切に制御することで適度な強度を備えた鋼板を得る方法が従来検討されてきた。   These cans have a relatively high ratio of material costs to can costs. Therefore, there is a strong demand for reducing the cost of steel sheets in reducing can costs. Here, it goes without saying that in the manufacture of a steel sheet, the cost increases as the number of processing steps increases. Especially, the annealing process which recrystallizes a steel plate at high temperature is a process which raises manufacturing cost since it requires many energy costs for heating. Therefore, a method of reducing the cost by omitting this step can be considered. However, steel sheets that are not recrystallized after cold rolling are in a state of excessively high strength due to work hardening and are not suitable for can manufacturing. In view of this, methods for obtaining a steel sheet with appropriate strength by appropriately controlling steel components and hot rolling conditions have been studied in the past.

例えば、特許文献1には極低炭素鋼に炭窒化物形成元素であるNbを添加し、熱間圧延をAr3点以下のいわゆるα領域で行い、冷間圧延した後、焼鈍を行わないことを特徴とする缶用鋼板の製造方法が開示されている。しかし、特許文献1の技術で得られる鋼板は冷間圧延ままの状態であるため延性に劣り、用途によっては十分な加工性を備えない。 For example, in Patent Document 1, Nb, which is a carbonitride-forming element, is added to ultra-low carbon steel, hot rolling is performed in a so-called α region below the Ar 3 point, and annealing is not performed after cold rolling. The manufacturing method of the steel plate for cans characterized by these is disclosed. However, since the steel sheet obtained by the technique of Patent Document 1 is in a cold rolled state, it is inferior in ductility and does not have sufficient workability depending on the application.

こうした点を改善する技術として、特許文献2には極低炭素鋼に炭窒化物形成元素であるNb、Tiを添加し、熱間圧延をAr3点以下で行い、冷間圧延した後、低温焼鈍を行うことで延性を改善する技術が開示されている。ここでいう低温焼鈍とは再結晶が生じない温度で行うものであるため、加熱のためのエネルギーコストは低減される。
また、特許文献3では極低炭素鋼に炭窒化物形成元素であるNb、Ti、Zr、V、Bを添加し、熱間圧延をAr3点以下で行い、冷間圧延した後、再結晶温度以下の温度で焼鈍を行う技術が開示されている。
特開平4−280926号広報 特開平8−41549号広報 特開平6−248339号広報
As a technique for improving such a point, Patent Document 2 adds Nb and Ti as carbonitride-forming elements to ultra-low carbon steel, performs hot rolling at Ar 3 points or less, performs cold rolling, A technique for improving ductility by annealing is disclosed. The low temperature annealing referred to here is performed at a temperature at which recrystallization does not occur, so that the energy cost for heating is reduced.
In Patent Document 3, carbon nitride-forming elements Nb, Ti, Zr, V, and B are added to ultra-low carbon steel, hot rolling is performed at an Ar 3 point or less, cold rolling, and then recrystallization. A technique for performing annealing at a temperature below the temperature is disclosed.
JP-A-4-280926 JP-A-8-41549 JP-A-6-248339

特許文献1から3の背景技術で共通する特徴は、鋼に極低炭素鋼を用いる、さらには炭窒化物形成元素を添加する、熱間圧延をAr点以下の温度で行うことである。しかし、こうした条件で製造した鋼板では、鋼板コイル長手方向での板厚均一性が劣るという問題があった。また、特許文献2と特許文献3で行われている冷間圧延後の焼鈍は、実施例によれば400℃超の温度で行われ、従来の再結晶焼鈍と比較して比較的低い温度で行われてはいるものの、尚高温での処理であり、加熱に必要なエネルギーコストを十分に低減するには不十分であった。 A feature common to the background arts of Patent Documents 1 to 3 is that hot rolling is performed at a temperature of 3 or less points of Ar using ultra-low carbon steel as a steel and further adding a carbonitride-forming element. However, the steel plate manufactured under these conditions has a problem that the plate thickness uniformity in the longitudinal direction of the steel plate coil is inferior. Further, the annealing after cold rolling performed in Patent Document 2 and Patent Document 3 is performed at a temperature higher than 400 ° C. according to the Examples, and at a relatively low temperature as compared with the conventional recrystallization annealing. Although it has been carried out, it is still a treatment at a high temperature, which is insufficient to sufficiently reduce the energy cost required for heating.

本発明は、かかる事情に鑑みなされたもので、再結晶焼鈍工程を省略することで鋼板製造コストの低減を図るにあたり、冷間圧延での加工硬化による過剰な高強度化を避け、鋼板コイルの長手方向での板厚変動を抑制するとともに、再結晶焼鈍工程の省略によるコスト低減効果を最大限に発揮させる製缶用鋼板の製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in order to reduce the steel sheet manufacturing cost by omitting the recrystallization annealing step, avoid excessive strengthening due to work hardening in cold rolling, It aims at providing the manufacturing method of the steel plate for can manufacturing which suppresses the plate | board thickness fluctuation | variation in a longitudinal direction, and exhibits the cost reduction effect by omission of a recrystallization annealing process to the maximum.

本発明の要旨は以下のとおりである。
[1]鋼成分が、質量%で、C:0.005%以下、Mn:0.05〜0.5%、Al:0.01〜0.12%、N:0.0010〜0.0070%、B:0.15×N〜0.75×N(原子比では、0.20×N〜0.97×N)を含み、さらに、Nb:4×C〜20×C(原子比では、0.52×C〜2.58×C)、Ti:2×C〜10×C(原子比では、0.50×C〜2.51×C)の1種または2種を含み、残部がFeおよび不可避的不純物元素からなる鋼を、連続鋳造によりスラブとし、Ar3変態点以下の仕上温度で熱間圧延を行い、巻取り、酸洗した後、50〜96%の圧下率で冷間圧延することを特徴とする製缶用鋼板の製造方法。
[2]前記[1]において、前記巻取りを640〜750 ℃の温度で行うことを特徴とする製缶用鋼板の製造方法。
[3]前記[1]または[2]において、前記冷間圧延後、150〜400 ℃の温度で熱処理を行うことを特徴とする製缶用鋼板の製造方法。
The gist of the present invention is as follows.
[1] Steel component is mass%, C: 0.005% or less, Mn: 0.05 to 0.5%, Al: 0.01 to 0.12%, N: 0.0010 to 0.0070 %, B: 0.15 × N to 0.75 × N (in atomic ratio, 0.20 × N to 0.97 × N), and Nb: 4 × C to 20 × C (in atomic ratio) 0.52 × C to 2.58 × C), Ti: 2 × C to 10 × C (in atomic ratio, 0.50 × C to 2.51 × C) Made of Fe and unavoidable impurity elements is made into a slab by continuous casting, hot rolled at a finishing temperature below the Ar 3 transformation point, wound, pickled, and then cooled at a reduction rate of 50 to 96%. A method for producing a steel plate for can making, characterized by performing hot rolling.
[2] A method for producing a steel plate for can making according to [1], wherein the winding is performed at a temperature of 640 to 750 ° C.
[3] The method for producing a steel plate for canning according to [1] or [2], wherein heat treatment is performed at a temperature of 150 to 400 ° C. after the cold rolling.

なお、本発明において、鋼の成分を示す%は、すべて質量%である。   In the present invention, the percentages indicating the steel components are all mass%.

本発明によれば、再結晶焼鈍工程を省略することで鋼板製造コストの低減が達成される。そして、鋼板コイルの長手方向での板厚変動を抑制した鋼板が得られる。
以上のように、鋼板コイルの長手方向での板厚変動を抑制した鋼板が再結晶焼鈍を省略して得られることにより、従来よりも低コストの鋼板製造が可能となり、缶体そのもののコスト低減にも寄与することができる。
According to the present invention, the steel sheet manufacturing cost can be reduced by omitting the recrystallization annealing step. And the steel plate which suppressed the board thickness fluctuation | variation in the longitudinal direction of a steel plate coil is obtained.
As described above, the steel sheet that suppresses fluctuations in the plate thickness in the longitudinal direction of the steel sheet coil can be obtained by omitting recrystallization annealing, making it possible to manufacture steel sheets at a lower cost than before, and reducing the cost of the can itself. Can also contribute.

以下、本発明について詳細に説明する。
本発明者らは、炭窒化物形成元素を添加した極低炭素鋼をAr3点以下の温度で熱間圧延しさらに冷間圧延した際の鋼板コイル長手方向での板厚変動について検討を行うことで、本発明を完成するに至った。以下に本発明を詳細に説明する。
Hereinafter, the present invention will be described in detail.
The inventors of the present invention investigate the thickness variation in the longitudinal direction of the steel sheet coil when hot rolling a cold carbon steel added with a carbonitride-forming element at a temperature of 3 points or less and further cold rolling. Thus, the present invention has been completed. The present invention is described in detail below.

まず、鋼成分の限定理由についてそれぞれ述べる。
C:0.005%以下
本発明は再結晶焼鈍工程を省略することでコスト低減を図る製缶用鋼板の製造方法である。ただし、冷間圧延後に再結晶させない鋼板は加工硬化によって強度が過剰に高い状態にあり、かつ、延性にも劣るために製缶加工に適さない。そこで、鋼自体に予め強度の低い鋼を用いる必要がある。そのために、鋼成分として固溶強化能が高い炭素を低減した極低炭素鋼を用いる必要がある。Cが0.005%超えであると、冷間圧延後において強度が過剰に高く延性にも劣る状態となり、製缶加工に適さない。よって、Cの含有量は0.005%以下とする。好ましくは、0.003%以下である。尚、鋼自体に予め強度の低い鋼を用いることからすればCの含有量は低いほど望ましいが、Cの含有量を低減するためには脱炭操作に時間を要して製造コストの上昇をまねく。よって、C含有量の下限は0.0005%以上が好ましく、より好ましくは0.0015%以上である。
Mn:0.05〜0.5%
Mn含有量が0.05%未満では、S含有量を低下させたとしてもいわゆる熱間脆性を回避することが困難で、表面割れ等の問題を生ずることがある。一方、0.50%を超えると、変態点が低下しすぎて、変態点以下の圧延を行った場合に望ましい組織を得ることが困難となる。従って、Mn含有量は0.05%以上0.50%以下とする。なお、加工性を特に重要視する場合は0.20%以下とするのが好ましい。
S:0.008%以下(好適条件)
Sは特に本発明の鋼板特性に影響を及ぼすことはない。しかし、S量が0.008%超えになると、N量が0.0044%を超えて添加される場合、多量に発生したMnSを析出核にして窒化物および炭窒化物であるBN,Nb(C,N),AlNが析出し熱間延性を低下させる。したがって、S量は0.008%以下とすることが望ましい。
Al:0.01〜0.12%
Al量が0.01%未満では脱酸効果が十分に得られない。また、NとAlNを形成することにより鋼中の固溶Nを減少させる効果も十分に得られなくなる。一方、0.12%を超えるとこれらの効果が飽和するのに加え、アルミナ等の介在物を生じやすくなる。よって、Al量は0.01%以上0.12%以下とする。
N:0.0010〜0.0070%
Nを0.0010%未満にすると、鋼板の製造コストが上昇し、安定的な製造も困難になる。また、本発明では、後述のようにBとNの比が重要であるが、N量が少ないと、BとNの比を一定範囲に保つためのB量の制御が困難になる。一方、Nが0.0070%超えでは、鋼の熱間延性が劣化する。これは、N量が0.0070%より大きくなると、BN,Nb(N,C),AlNなどの窒化物および炭窒化物が析出することで脆化が起るためで、特に連続鋳造時にスラブ割れが発生する危険性が増す。スラブ割れが発生すると、スラブ割れの部分についてコーナー部の切断やグラインダーでの研削作業の工程が必要となり、多くの労力とコストがかかるために生産性を大きく阻害する。よって、N量は0.0010%以上0.0070%以下とする。好ましくは、0.0044%以下である。
B:0.15×N〜0.75×N
Bは、本発明において鋼板の特性に対して大きな影響力をもつ重要な元素である。
本発明は再結晶焼鈍工程を省略することでコスト低減を図る製缶用鋼板の製造方法であるため、(1)鋼に極低炭素鋼を用い、(2)炭窒化物形成元素を添加し、(3)熱間圧延をAr点以下の温度で行う。しかし、こうした条件で製造した鋼板では、鋼板コイル長手方向での板厚均一性が劣るという問題があった。そこで、本発明では、この現象に関して詳細に検討した結果、鋼にBを適量添加することで、鋼板コイル長手方向での板厚均一性を良好に保てるとの知見に至った。これは、以下の機構に基づくものであると考えられる。まず、鋼板コイル長手方向での板厚の不均一性は、熱間圧延鋼板の段階で発生していた。これは、炭窒化物形成元素を添加した極低炭素鋼は、Ar点においてオーステナイトからフェライトに変態する際に変形抵抗が不連続に変化するため、熱間圧延スタンド間で変態が生じると、スタンド間張力、圧延荷重の変動が生じ、結果、板厚の変動をもたらすと考えられる。Bを添加することでこのような変形抵抗の不連続な変化が抑制され、板厚均一性が改善すると考えられる。つまり、本発明で重要な点は、Bの添加量を適切に規定し変形抵抗の不連続な変化が抑制することにある。検討の結果、Bの添加量はBNを形成するNの添加量と適切な関係で添加することが必要で、こうした効果を得るためには質量比で0.15×N以上のBの添加が必要であることがわかった。一方、質量%で0.75×N以上のBを添加すると上記の効果が飽和することに加え、コストの上昇を招く。よって、Bの添加量は0.15×N〜0.75×N(原子比では、0.20×N〜0.97×N)とする。
Nb:4×C〜20×C(原子比では、0.52×C〜2.58×C)、Ti:2×C〜10×C(原子比では、0.50×C〜2.51×C)の1種または2種
Nbは炭窒化物形成元素であり、鋼中のC、Nを析出物として固定することで鋼の強度を低下させる効果がある。その効果を十分に発揮させるために、質量比で4×C以上の添加量が必要である。一方、Nb添加量が多すぎると、固溶Cを減少させる働きが飽和することに加え、Nbは高価であることから生産コストも上昇する。そのため、Nb量を20×C以下に抑える必要がある。よって、Nb量は質量比で4×C〜20×C(原子比では0.52×C〜2.58×C)の範囲とする。
Tiは炭窒化物形成元素であり、鋼中のC、Nを析出物として固定することで鋼の強度を低下させる効果がある。その効果を十分に発揮させるために、質量比で2×C以上の添加量が必要である。一方、Ti添加量が多すぎると、固溶Cを減少させる働きが飽和することに加え、Tiは高価であることから生産コストも上昇する。そのため、Ti量を10×C以下に抑える必要がある。よって、Ti量は質量比で2×C〜10×C(原子比では0.50×C〜2.51×C)の範囲とする。
First, the reasons for limiting the steel components will be described.
C: 0.005% or less
This invention is a manufacturing method of the steel plate for cans which aims at cost reduction by omitting a recrystallization annealing process. However, steel sheets that are not recrystallized after cold rolling are in an excessively high strength state due to work hardening and are inferior in ductility, and are not suitable for can manufacturing. Therefore, it is necessary to use steel having low strength in advance for the steel itself. Therefore, it is necessary to use an ultra-low carbon steel in which carbon having a high solid solution strengthening ability is reduced as a steel component. If C is more than 0.005%, the strength becomes excessively high after cold rolling and the ductility is inferior, and it is not suitable for can manufacturing. Therefore, the C content is 0.005% or less. Preferably, it is 0.003% or less. In addition, if steel with low strength is used in advance for steel itself, the lower the content of C, the better. However, in order to reduce the C content, it takes time for decarburization operation and increases the manufacturing cost. Much. Therefore, the lower limit of the C content is preferably 0.0005% or more, more preferably 0.0015% or more.
Mn: 0.05 to 0.5%
If the Mn content is less than 0.05%, it is difficult to avoid so-called hot brittleness even if the S content is reduced, and problems such as surface cracks may occur. On the other hand, if it exceeds 0.50%, the transformation point is too low, and it becomes difficult to obtain a desired structure when rolling below the transformation point. Therefore, the Mn content is 0.05% or more and 0.50% or less. In addition, when the workability is particularly important, the content is preferably 0.20% or less.
S: 0.008% or less (preferred conditions)
S does not particularly affect the steel sheet characteristics of the present invention. However, when the amount of S exceeds 0.008%, when the amount of N exceeds 0.0044%, a large amount of generated MnS is used as a precipitation nucleus to form nitrides and carbonitrides BN, Nb ( C, N), AlN precipitates, reducing the hot ductility. Therefore, the S amount is desirably 0.008% or less.
Al: 0.01 to 0.12%
If the Al content is less than 0.01%, a sufficient deoxidation effect cannot be obtained. Moreover, the effect of reducing the solid solution N in steel by forming N and AlN cannot be sufficiently obtained. On the other hand, if it exceeds 0.12%, these effects are saturated, and inclusions such as alumina tend to be generated. Therefore, the Al content is set to 0.01% or more and 0.12% or less.
N: 0.0010 to 0.0070%
If N is less than 0.0010%, the manufacturing cost of the steel sheet increases and stable manufacturing becomes difficult. In the present invention, the ratio of B and N is important as will be described later. However, if the amount of N is small, it becomes difficult to control the amount of B in order to keep the ratio of B and N within a certain range. On the other hand, if N exceeds 0.0070%, the hot ductility of steel deteriorates. This is because when N content exceeds 0.0070%, nitrides such as BN, Nb (N, C), AlN, and carbonitrides precipitate, resulting in embrittlement. Increased risk of cracking. When a slab crack occurs, a process of cutting a corner part and a grinding work with a grinder is necessary for the slab cracked part, and a lot of labor and cost are required, which greatly impedes productivity. Therefore, the N amount is set to be 0.0010% or more and 0.0070% or less. Preferably, it is 0.0044% or less.
B: 0.15 × N to 0.75 × N
B is an important element having a great influence on the properties of the steel sheet in the present invention.
Since the present invention is a method for manufacturing a steel plate for can making to reduce costs by omitting the recrystallization annealing step, (1) using ultra-low carbon steel for steel, and (2) adding a carbonitride-forming element. (3) Hot rolling is performed at a temperature of 3 or less Ar. However, the steel plate manufactured under these conditions has a problem that the plate thickness uniformity in the longitudinal direction of the steel plate coil is inferior. Therefore, in the present invention, as a result of examining this phenomenon in detail, the inventors have come to the knowledge that the plate thickness uniformity in the longitudinal direction of the steel plate coil can be kept well by adding an appropriate amount of B to the steel. This is considered to be based on the following mechanism. First, the non-uniformity of the plate thickness in the longitudinal direction of the steel plate coil occurred at the stage of the hot rolled steel plate. This is because the deformation resistance changes discontinuously when transforming from austenite to ferrite at the Ar 3 point in the ultra-low carbon steel to which the carbonitride-forming element is added. It is thought that fluctuations in tension between the stands and rolling load occur, resulting in fluctuations in sheet thickness. It is considered that the addition of B suppresses such discontinuous changes in deformation resistance and improves the thickness uniformity. That is, the important point in the present invention is to appropriately define the amount of B added and suppress discontinuous changes in deformation resistance. As a result of the study, it is necessary to add B in an appropriate relationship with the amount of N that forms BN. To obtain such an effect, addition of B of 0.15 × N or more in mass ratio is required. I found it necessary. On the other hand, addition of 0.75 × N or more of B in mass% causes the above effect to be saturated and causes an increase in cost. Therefore, the addition amount of B shall be 0.15 * N-0.75 * N (atomic ratio 0.20 * N-0.97 * N).
Nb: 4 × C to 20 × C (atomic ratio, 0.52 × C to 2.58 × C), Ti: 2 × C to 10 × C (atomic ratio, 0.50 × C to 2.51 1 type or 2 types Nb of xC) is a carbonitride forming element, and has an effect of reducing the strength of steel by fixing C and N in the steel as precipitates. In order to exhibit the effect sufficiently, an addition amount of 4 × C or more is necessary in terms of mass ratio. On the other hand, if the amount of Nb added is too large, the function of reducing the solute C is saturated, and Nb is expensive, so the production cost also increases. Therefore, it is necessary to suppress the Nb amount to 20 × C or less. Therefore, the amount of Nb is in the range of 4 × C to 20 × C in terms of mass ratio (0.52 × C to 2.58 × C in terms of atomic ratio).
Ti is a carbonitride-forming element and has an effect of reducing the strength of steel by fixing C and N in the steel as precipitates. In order to exhibit the effect sufficiently, an addition amount of 2 × C or more is necessary in terms of mass ratio. On the other hand, if the amount of Ti added is too large, the function of reducing the solute C is saturated, and the production cost is increased because Ti is expensive. Therefore, it is necessary to suppress the Ti amount to 10 × C or less. Therefore, the amount of Ti is in the range of 2 × C to 10 × C in terms of mass ratio (0.50 × C to 2.51 × C in terms of atomic ratio).

なお、上記以外の残部はFe及び不可避的不純物からなる。不可避的不純物として、例えば、以下の元素を本発明の作用効果を害さない範囲で含有してもよい。
Si:0.020 %以下
Si含有量が0.020 %を超えると、鋼板の表面性状が劣化し、表面処理鋼板として望ましくないばかりでなく、鋼が硬化して熱間圧延工程が困難化する。従って、Si含有量は0.020 %以下が好ましい。
P:0.020 %以下
P含有量の低減により、加工性の改善と耐食性の改善効果が得られるが、過度の低減は、製造コストの増加につながるため、これらの兼ね合いから、P含有量は0.020 %以下が好ましい。
上記成分の他に、Cr、Cu等の不可避的不純物が含まれるが、これらの成分は特に本発明の鋼板特性に影響を及ぼすことがないため、その他の特性に影響がない範囲で適宜含むことができる。また、鋼板の特性に悪影響を及ぼさない範囲で、上記以外の元素の添加を行なうこともできる。
The remainder other than the above consists of Fe and inevitable impurities. As the unavoidable impurities, for example, the following elements may be contained within a range that does not impair the effects of the present invention.
Si: 0.020% or less When the Si content exceeds 0.020%, the surface properties of the steel sheet are deteriorated, which is not desirable as a surface-treated steel sheet, and the steel is hardened to make the hot rolling process difficult. . Accordingly, the Si content is preferably 0.020% or less.
P: 0.020% or less By reducing the P content, workability and corrosion resistance can be improved. However, excessive reduction leads to an increase in manufacturing cost. 0.020% or less is preferable.
In addition to the above components, unavoidable impurities such as Cr and Cu are included, but these components do not particularly affect the steel sheet characteristics of the present invention, so that they are appropriately included within a range that does not affect other characteristics. Can do. Moreover, elements other than those described above can be added within a range that does not adversely affect the properties of the steel sheet.

次に、製造条件についての限定理由について述べる。
本発明の製缶用鋼板は、上記化学成分範囲に調整された鋼を、連続鋳造によりスラブとし、Ar3 変態点以下の仕上温度で熱間圧延を行い、巻取り、酸洗した後、50〜96%の圧下率で冷間圧延ことにより得られる。好ましくは、前記巻取りを640〜750 ℃の巻き取り温度で行う。さらに好ましくは、前記冷間圧延後、150〜400 ℃の温度で熱処理を行う。これらについて以下に詳細に説明する。
熱間圧延条件
熱間圧の仕上温度:Ar3変態点以下
熱間圧延の仕上温度は本発明において重要な要件である。本発明で規定した成分の鋼をAr3 変態点以下の仕上温度で熱間圧延を行うことにより、製缶加工に耐える鋼板材質を得ることができる。これは、Ar3変態点以下の熱間圧延を行うことで、熱延鋼板の粒径が十分に粗大となり、冷間圧延での加工硬化が抑制されて冷間圧延後の強度が過剰とならないためであると考えられる。
なお、Ar3 変態点は、熱間圧延時の加工および熱履歴を再現した加工熱処理試験を実施した際の、Ar3変態に伴う体積変化が生じる温度として求めることができる。本発明で規定した鋼成分のAr3変態点は概ね900℃付近であり、仕上温度はこれより低い温度であればよいが、確実にこれを達成するには860℃以下とすることが望ましい。
Next, the reasons for limiting the manufacturing conditions will be described.
The steel sheet for can manufacturing according to the present invention is a steel slab adjusted to the above chemical composition range, made into a slab by continuous casting, hot rolled at a finishing temperature not higher than the Ar 3 transformation point, wound, pickled, It can be obtained by cold rolling at a reduction of ~ 96%. Preferably, the winding is performed at a winding temperature of 640 to 750 ° C. More preferably, after the cold rolling, heat treatment is performed at a temperature of 150 to 400 ° C. These will be described in detail below.
Hot rolling conditions Hot pressure finishing temperature: Ar 3 transformation point or less The hot rolling finishing temperature is an important requirement in the present invention. By subjecting the steel of the component defined in the present invention to hot rolling at a finishing temperature not higher than the Ar 3 transformation point, a steel plate material that can withstand canning can be obtained. This is because by hot rolling below the Ar 3 transformation point, the grain size of the hot-rolled steel sheet becomes sufficiently coarse, work hardening in cold rolling is suppressed, and the strength after cold rolling does not become excessive. This is probably because of this.
The Ar 3 transformation point can be determined as a temperature at which a volume change associated with the Ar 3 transformation occurs when a thermomechanical test that reproduces the processing and thermal history during hot rolling is performed. The Ar 3 transformation point of the steel component defined in the present invention is about 900 ° C. and the finishing temperature may be lower than this, but it is desirable to make it 860 ° C. or lower in order to achieve this reliably.

さらに、詳細な機構は不明であるが、Ar変態点以下での合計圧下率が40%以上かつ最終圧下率が25%以上とすることで、組織の均一性が優れ、材質安定性が高まる。これをさらに高めるには、合計圧下率を50%以上かつ最終圧下率を30%以上とすることが好ましい。
尚、仕上圧延機入側温度は950 ℃以下とすることにより、熱間圧延を確実にAr3 変態点以下とすることができる上、組織の均一化を図ることができるため、本発明においてはより好ましい。詳細な機構については十分に解明できていないが、仕上げ圧延開始直前のオーステナイト粒径が関係しているものと推定される。スケール疵発生防止の観点から、920 ℃以下にすることがさらに望ましい。
巻取温度:640 〜 750℃(好適条件)
巻取温度は、次工程である酸洗・冷間圧延に支障をきたさないように設定することが必要である。即ち、750 ℃を超える温度で巻き取った場合は、鋼板のスケール厚みが顕著に増大し、酸洗時の脱スケール性が悪化することに加え、鋼板自身の高温強度の低下に伴い、コイルの変形などの問題が生ずる場合がある。一方、640 ℃未満だと、巻取り後の保熱効果が充分でなく、熱延鋼板の粒径が十分に粗大化し難くなる。
酸洗
巻取後の熱延鋼板は、冷間圧延を行う前にスケール除去のため、酸洗を施す。酸洗は常法にしたがって行えばよい。
酸洗後の冷間圧延条件:圧下率50〜96%
酸洗後の冷間圧延は、圧下率を50〜96%とする。圧下率が50%未満だと、結晶組織の不均一となることから、製缶加工を行った際に変形が不均一となり、製品の表面に肌荒れが生じる。また、この冷間圧延は、鋼板の形状・粗度の調整という作用も果たすため、概ね50%以上の圧下を行うことがこれらの点においても必須な条件となる。また、上限は、必要とされる製品の強度と厚み、熱間圧延・冷間圧延の設備能力に依存するものであるが、96%を超えて圧延することは局部延性の劣化も回避することは困難となるので、極めて特殊な用途以外には適用できない。
冷間圧延後の熱処理温度:150〜400 ℃(好適条件)
冷間圧延後に熱処理を行う場合、熱処理の温度は150 〜400 ℃とする。本発明の成分では再結晶温度は概ね730℃以上であるため、150〜400℃では再結晶は起きないが、本発明で規定したC、Nb、N、Bの量的な関係により、上記温度範囲で熱処理を行うことで強度の低下と延性の改善を図ることができる。この現象は、比較的低い温度で軟化が生じることから、こうした温度で拡散が進行しやすいC、Nなどの固溶元素と冷間圧延で導入された転位の相互作用に起因する現象であると考えられる。つまり、本発明で規定したC、Nb、Ti、N、Bの量的な関係によりフェライト相での固溶C、Nが理想的な状態となっていることで、比較的低温で強度の低下と延性の改善が得られるものと考える。特に本発明で規定したBの添加条件による影響が大きく、BとNがBNを形成して固溶Nが低下すること、固溶Bが粒界に偏析することにより粒界へのC、Nの偏析を妨げること、マトリクス中で冷間圧延によって導入された転位をC、Nが固着していた状態から熱処理により固着が開放されること、これらにより強度の低下と延性の改善が得られたものと考えられる。このような改善効果が期待できる下限の温度は150 ℃である。一方、温度が400℃以上となると、冷間圧延での歪エネルギー蓄積の大きな一部の結晶粒で優先的に回復が進行しはじめ、製缶加工を行った際に変形が不均一となり、製品の表面に肌荒れが生じる。これより、冷間圧延後の熱処理温度を150〜400℃とする。なお、強度、延性を安定して得るためには200 〜350 ℃の範囲が好ましい。尚、熱処理時間については、本発明で推定される元素から固溶元素が転位を離脱するのに十分は時間であればよく、特に限定しないが、概ね10〜90sの範囲にすることが好ましい。
Further, although the detailed mechanism is unknown, the uniformity of the structure is excellent and the material stability is improved by setting the total rolling ratio below 40% and the final rolling ratio to 25% or more at the Ar 3 transformation point or lower. . In order to further increase this, it is preferable that the total rolling reduction is 50% or more and the final rolling reduction is 30% or more.
In addition, in the present invention, the temperature at the entrance of the finishing mill is 950 ° C. or less, so that the hot rolling can be surely made the Ar 3 transformation point or less and the structure can be made uniform. More preferred. Although the detailed mechanism has not been fully elucidated, it is presumed that the austenite grain size immediately before the start of finish rolling is related. From the viewpoint of preventing generation of scale flaws, it is more desirable to set the temperature to 920 ° C. or lower.
Winding temperature: 640 to 750 ° C. (preferred conditions)
The coiling temperature needs to be set so as not to hinder the pickling / cold rolling as the next step. That is, when the coil is wound at a temperature exceeding 750 ° C., the scale thickness of the steel sheet is remarkably increased, and the descalability during pickling is deteriorated. Problems such as deformation may occur. On the other hand, when the temperature is lower than 640 ° C., the heat retaining effect after winding is not sufficient, and the particle diameter of the hot-rolled steel sheet is not sufficiently coarsened.
The hot-rolled steel sheet after pickling is subjected to pickling for scale removal before cold rolling. Pickling may be performed according to a conventional method.
Cold rolling conditions after pickling: reduction rate of 50 to 96%
In cold rolling after pickling, the rolling reduction is 50 to 96%. If the rolling reduction is less than 50%, the crystal structure becomes non-uniform, so that when the can-making process is performed, the deformation becomes non-uniform and the surface of the product becomes rough. In addition, since this cold rolling also serves to adjust the shape and roughness of the steel sheet, it is an essential condition in these respects to perform reduction of approximately 50% or more. The upper limit depends on the required strength and thickness of the product and the hot / cold rolling equipment capacity, but rolling over 96% avoids deterioration of local ductility. Can not be applied except for very special purposes.
Heat treatment temperature after cold rolling: 150 to 400 ° C. (preferred conditions)
When heat treatment is performed after cold rolling, the heat treatment temperature is set to 150 to 400 ° C. In the components of the present invention, the recrystallization temperature is generally 730 ° C. or higher, so recrystallization does not occur at 150 to 400 ° C., but the above temperature is determined by the quantitative relationship of C, Nb, N, and B defined in the present invention. By performing the heat treatment in the range, the strength can be lowered and the ductility can be improved. Since this phenomenon is softened at a relatively low temperature, it is a phenomenon caused by the interaction between a solid solution element such as C and N, which is likely to diffuse at such a temperature, and a dislocation introduced by cold rolling. Conceivable. In other words, due to the quantitative relationship of C, Nb, Ti, N, and B defined in the present invention, the solid solution C and N in the ferrite phase is in an ideal state, so that the strength decreases at a relatively low temperature. It is thought that improvement of ductility can be obtained. In particular, the influence of the addition condition of B specified in the present invention is large, and B and N form BN to lower the solid solution N, and the solid solution B segregates at the grain boundary, so that C, N The segregation of the steel was prevented, the dislocations introduced by cold rolling in the matrix were released from the state where C and N were fixed, and the fixing was released by heat treatment, and these resulted in a decrease in strength and an improvement in ductility. It is considered a thing. The lower limit temperature at which such an improvement effect can be expected is 150 ° C. On the other hand, when the temperature is 400 ° C. or higher, recovery starts preferentially with some crystal grains with large strain energy accumulation in cold rolling, and the deformation becomes non-uniform when the can manufacturing process is performed. The surface of the skin becomes rough. From this, the heat processing temperature after cold rolling shall be 150-400 degreeC. In addition, in order to acquire intensity | strength and ductility stably, the range of 200-350 degreeC is preferable. The heat treatment time is not particularly limited as long as it is sufficient for the solid solution element to dissociate the dislocation from the element estimated in the present invention, but is preferably in the range of about 10 to 90 s.

以下、実施例について説明する。
表1に示す種々の鋼を溶製してスラブとし、加熱温度1100〜1250℃で加熱した後、表1に示す仕上げ温度で熱間圧延し、巻取り温度680℃で巻き取った。次いで、酸洗した後、圧延率90%で冷間圧延した。
以上により得られた鋼板に対して、板厚変動を評価した。板厚変動は、冷間圧延後の板厚を冷間圧延設備に設置したX線板厚計により鋼板コイル長手の全長について測定し、平均板厚に対する変動率で評価し、変動率は製品として許容できる±3%以下のものを合格として○で示し、±3%超えのものを不合格として×で示した。
また、表1において、熱間圧延の仕上げ温度は本発明で規定したAr3変態点以下であるものを○、本発明で除外したAr3変態点超えであるものを×とした。
以上により得られた結果を条件と併せて表1に示す。
Examples will be described below.
Various steels shown in Table 1 were melted to form slabs, heated at a heating temperature of 1100 to 1250 ° C., hot-rolled at the finishing temperature shown in Table 1, and wound up at a winding temperature of 680 ° C. Next, after pickling, cold rolling was performed at a rolling rate of 90%.
The plate thickness fluctuation | variation was evaluated with respect to the steel plate obtained by the above. Sheet thickness fluctuation is measured with the X-ray plate thickness meter installed in the cold rolling equipment for the total length of the steel sheet coil length, and evaluated by the rate of change relative to the average plate thickness. Those acceptable ± 3% or less are indicated as “good” as acceptable, and those exceeding ± 3% are indicated as “bad” as unacceptable.
Moreover, in Table 1, the finishing temperature of hot rolling was set to ○ when the temperature was lower than or equal to the Ar 3 transformation point defined in the present invention, and x was set to exceed the Ar 3 transformation point excluded in the present invention.
The results obtained as described above are shown in Table 1 together with the conditions.

Figure 0005262242
Figure 0005262242

表1より、本発明例では、板厚変動が±3%以下であり、鋼板コイルの長手方向での板厚変動を抑制した鋼板が得られているのがわかる。すなわち、本発明の第1の課題である板圧変動の抑制は、表1に示すように請求項1で規定する条件を満足することにより解決できているのがわかる。   From Table 1, it can be seen that in the examples of the present invention, the plate thickness variation is ± 3% or less, and a steel plate in which the plate thickness variation in the longitudinal direction of the steel plate coil is suppressed is obtained. That is, it can be seen that suppression of plate pressure fluctuation, which is the first problem of the present invention, can be solved by satisfying the conditions defined in claim 1 as shown in Table 1.

表2に示す種々の鋼を溶製してスラブとし、加熱温度1100〜1250℃で加熱した後、仕上げ温度をAr3変態点以下である820℃で熱間圧延し、表2に示す巻取り温度で巻き取った。次いで、酸洗し、表2に示す圧延率で冷間圧延した。
以上により得られた鋼板に対して、板厚変動を評価した。板厚変動は、冷間圧延後の板厚を冷間圧延設備に設置したX線板厚計により鋼板コイル長手の全長について測定し、平均板厚に対する変動率で評価した。評価結果を表2に示す。変動率は製品として許容できる±3%以下のものを合格として○で示し、±3%超えのものを不合格として×で示した。
次いで、上記鋼板に対して、表2に示す熱処理温度で30sの熱処理を行った。その後、2種の表面処理を行った。一方は表面にCrめっきを行ったティンフリースチール(以下、TFSと称す)としさらにPET樹脂フィルムをラミネートした。もう一方は、表面にSnめっきを行ったぶりきとした。
TFSにPET樹脂フィルムをラミネートしたものは、絞り比2.2のDRD缶に加工し、缶胴部および缶底部で肌荒れを目視判定で評価した。評価は、優、良、不可の限度見本との比較で行った。ここで、優は肌荒れが生じないもの、良は肌荒れが若干生じるが実用上の許容範囲であるもの、不可は肌荒れが実用上許容できないレベルで生じたものである。評価結果は優を○、良を△、不可を×とした。得られた結果を表2に示す。
また、ぶりきとしたものは直径52mmの溶接缶とし、拡張率6%および8%のフランジ加工を行い、フランジ割れの発生を評価した。評価結果は、6%および8%のフランジ加工で割れが生じないものを○、8%のフランジ加工で割れが生じても、6%では割れが乗じないものを△、6%および8%のいずれでもフランジ加工で割れが生じたものを×とした。得られた結果を表2に示す。
Various steels shown in Table 2 were melted to form slabs, heated at a heating temperature of 1100 to 1250 ° C., then hot-rolled at 820 ° C., which is below the Ar 3 transformation point, and wound up as shown in Table 2. Winded up at temperature. Next, pickling was performed, and cold rolling was performed at a rolling rate shown in Table 2.
The plate thickness fluctuation | variation was evaluated with respect to the steel plate obtained by the above. The plate thickness variation was evaluated by measuring the plate thickness after cold rolling with respect to the average plate thickness by measuring the full length of the steel plate coil with an X-ray plate thickness meter installed in the cold rolling facility. The evaluation results are shown in Table 2. Fluctuations are indicated by ○ when the product is acceptable within ± 3% or less, and marked by × when the product exceeds ± 3%.
Next, the steel plate was heat-treated at a heat treatment temperature shown in Table 2 for 30 s. Thereafter, two types of surface treatments were performed. One was tin-free steel (hereinafter referred to as TFS) with Cr plating on the surface, and a PET resin film was laminated. The other was tinplate with Sn plating on the surface.
The TFS laminated with a PET resin film was processed into a DRD can with a drawing ratio of 2.2, and the skin roughness was evaluated by visual judgment at the can body and bottom. The evaluation was made by comparing with a limit sample of excellent, good and impossible. Here, “excellent” indicates that the rough skin does not occur, “good” indicates that the rough skin is slightly generated but is in a practically acceptable range, and “unsatisfactory” indicates that the rough skin occurs at a level that is practically unacceptable. In the evaluation results, “Excellent” means “Good”, “Good” means “No”, and “No” means “No”. The obtained results are shown in Table 2.
In addition, the cover was a 52 mm diameter welded can, and flanges with expansion rates of 6% and 8% were subjected to evaluation of the occurrence of flange cracks. The evaluation results are as follows: 6% and 8% flange processing with no cracking, 8% flange processing with cracking, 6% with no cracking △, 6% and 8% In any case, the case where cracking occurred in the flange processing was marked with x. The obtained results are shown in Table 2.

Figure 0005262242
Figure 0005262242

表2より、本発明の第1の課題である板圧変動の抑制は請求項1で規定する条件を満足することにより解決できている。また、実缶成型において、肌荒れ、フランジ割れは許容できる水準となっている。
そして、さらに、請求項2および請求項3に規定した条件を満足することにより、実缶成型においての肌荒れ、フランジ割れの抑制はより一層良好となっているのがわかる。
From Table 2, suppression of plate pressure fluctuation, which is the first problem of the present invention, can be solved by satisfying the conditions defined in claim 1. In actual can molding, rough skin and flange cracking are at acceptable levels.
Furthermore, it can be seen that, by satisfying the conditions defined in claims 2 and 3, the suppression of rough skin and flange cracking in actual can molding is further improved.

本発明は食缶や飲料缶として最適である。そして、これら以外にも、本発明で想定されているような有機樹脂フィルムラミネート鋼板を素材として従来のDI成形を用いて、フィルムの損傷を回避し、缶体の抜き取り性が要求される用途にも好適に使用される。   The present invention is most suitable as a food can or a beverage can. And besides these, using organic resin film laminated steel plate as envisioned in the present invention as a raw material, using conventional DI molding, avoiding damage to the film, for applications where can body pullability is required Are also preferably used.

Claims (3)

鋼成分が、質量%で、C:0.005%以下、Mn:0.05〜0.5%、Al:0.01〜0.12%、N:0.0010〜0.0070%、B:0.15×N〜0.75×N(原子比では、0.20×N〜0.97×N)を含み、さらに、Nb:4×C〜20×C(原子比では、0.52×C〜2.58×C)、Ti:2×C〜10×C(原子比では、0.50×C〜2.51×C)の1種または2種を含み、残部がFeおよび不可避的不純物元素からなる鋼を、連続鋳造によりスラブとし、Ar3変態点以下の仕上温度で熱間圧延を行い、巻取り、酸洗した後、50〜96%の圧下率で冷間圧延することを特徴とする製缶用鋼板の製造方法。 Steel component is mass%, C: 0.005% or less, Mn: 0.05 to 0.5%, Al: 0.01 to 0.12%, N: 0.0010 to 0.0070%, B : 0.15 × N to 0.75 × N (atomic ratio, 0.20 × N to 0.97 × N), and Nb: 4 × C to 20 × C (atomic ratio, 0. 52 × C to 2.58 × C), Ti: 2 × C to 10 × C (in atomic ratio, 0.50 × C to 2.51 × C), including one or two, with the balance being Fe and Steel consisting of inevitable impurity elements is made into a slab by continuous casting, hot rolled at a finishing temperature below the Ar 3 transformation point, wound, pickled, and then cold rolled at a reduction rate of 50 to 96%. A method for producing a steel plate for can making, characterized in that. 前記巻取りを640〜750 ℃の温度で行うことを特徴とする請求項1に記載の製缶用鋼板の製造方法。   The said winding is performed at the temperature of 640-750 degreeC, The manufacturing method of the steel plate for cans of Claim 1 characterized by the above-mentioned. 前記冷間圧延後、150〜400 ℃の温度で熱処理を行うことを特徴とする請求項1または2に記載の製缶用鋼板の製造方法。   The method for producing a steel plate for can manufacturing according to claim 1 or 2, wherein heat treatment is performed at a temperature of 150 to 400 ° C after the cold rolling.
JP2008089924A 2008-03-31 2008-03-31 Manufacturing method of steel plate for can manufacturing Active JP5262242B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008089924A JP5262242B2 (en) 2008-03-31 2008-03-31 Manufacturing method of steel plate for can manufacturing
CN2009801121551A CN101983246B (en) 2008-03-31 2009-03-27 Method for producing cmanufacturing steel sheet
KR1020107021619A KR101235415B1 (en) 2008-03-31 2009-03-27 Method for producing can manufacturing steel sheet
PCT/JP2009/056908 WO2009123294A1 (en) 2008-03-31 2009-03-27 Method for producing can manufacturing steel sheet
EP09726961.7A EP2275581A4 (en) 2008-03-31 2009-03-27 Method for producing can manufacturing steel sheet
TW98110593A TWI440725B (en) 2008-03-31 2009-03-31 Manufacturing method of steel sheet for cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008089924A JP5262242B2 (en) 2008-03-31 2008-03-31 Manufacturing method of steel plate for can manufacturing

Publications (2)

Publication Number Publication Date
JP2009242857A JP2009242857A (en) 2009-10-22
JP5262242B2 true JP5262242B2 (en) 2013-08-14

Family

ID=41135661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008089924A Active JP5262242B2 (en) 2008-03-31 2008-03-31 Manufacturing method of steel plate for can manufacturing

Country Status (6)

Country Link
EP (1) EP2275581A4 (en)
JP (1) JP5262242B2 (en)
KR (1) KR101235415B1 (en)
CN (1) CN101983246B (en)
TW (1) TWI440725B (en)
WO (1) WO2009123294A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY171370A (en) 2014-05-30 2019-10-10 Jfe Steel Corp Steel sheet for cans and manufacturing method thereof
WO2016157760A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
CN107429348B (en) * 2015-03-27 2019-05-10 杰富意钢铁株式会社 Steel plate for tanks and its manufacturing method
KR102353731B1 (en) * 2019-12-20 2022-01-19 주식회사 포스코 Formable blackplate and manufacturing method the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3023385B2 (en) 1991-03-11 2000-03-21 川崎製鉄株式会社 Manufacturing method of steel sheet for cans
JPH06248339A (en) * 1993-02-26 1994-09-06 Nippon Steel Corp Production of steel sheet for vessel with high rigidity
JP3596037B2 (en) * 1994-08-01 2004-12-02 Jfeスチール株式会社 Manufacturing method of steel plate for can-making
JP3422852B2 (en) * 1994-09-14 2003-06-30 新日本製鐵株式会社 Manufacturing method of steel sheet for cans
JPH08127816A (en) * 1994-10-28 1996-05-21 Nippon Steel Corp Production of starting steel sheet for vessel, excellent in wrinkling resistance
JPH08176673A (en) * 1994-12-21 1996-07-09 Kawasaki Steel Corp Production of steel sheet for can
JPH08246060A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Production of steel sheet for can
JPH08269568A (en) * 1995-03-30 1996-10-15 Kawasaki Steel Corp Production of steel sheet for can making excellent in flange formability
JPH1150211A (en) * 1997-08-05 1999-02-23 Kawasaki Steel Corp Thick cold rolled steel plate excellent in deep drawing workability and its production
EP1741800A1 (en) * 2004-04-27 2007-01-10 JFE Steel Corporation Steel sheet for can and method for production thereof
WO2006100796A1 (en) * 2005-03-24 2006-09-28 Jfe Steel Corporation Flexible sheet steel for can and process for producing the same

Also Published As

Publication number Publication date
EP2275581A4 (en) 2015-09-02
EP2275581A1 (en) 2011-01-19
KR20100122941A (en) 2010-11-23
KR101235415B1 (en) 2013-02-20
TWI440725B (en) 2014-06-11
CN101983246A (en) 2011-03-02
CN101983246B (en) 2013-11-27
TW200948984A (en) 2009-12-01
JP2009242857A (en) 2009-10-22
WO2009123294A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
EP3138936B1 (en) High-strength steel sheet and production method therefor
US20140174609A1 (en) Method for manufacturing a high-strength steel sheet for a can
JP5712479B2 (en) Steel plate for cans excellent in rough skin resistance and method for producing the same
JP5272714B2 (en) Manufacturing method of steel plate for can manufacturing
JP2009263789A (en) High strength steel sheet for vessel, and method for producing the same
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP5076544B2 (en) Manufacturing method of steel sheet for cans
WO2016157878A1 (en) Steel sheet for cans and method for manufacturing steel sheet for cans
JP4943244B2 (en) Steel sheet for ultra-thin containers
JP5262242B2 (en) Manufacturing method of steel plate for can manufacturing
JP5811686B2 (en) Steel plate for high-strength can and manufacturing method thereof
CN109440004B (en) Steel sheet for can and method for producing same
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH093547A (en) Production of high strength steel sheet for can
CN109385569A (en) A kind of high rigidity cold rolling electroplating tin steel plate and its production method
JP2000087147A (en) Production of extra-thin steel sheet for two-piece can excellent in intra-plane anisotropy and uniformity of intra-plane anisotropy in coil
JPH1088233A (en) Production of steel sheet for can
JP3596036B2 (en) Manufacturing method of steel plate for can-making
JP2003013146A (en) Manufacturing method for very thin high-strength steel sheet for two-piece can
JP4135434B2 (en) Hot-rolled steel sheet and manufacturing method thereof
JP2021155849A (en) Steel plate for can and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5262242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250