JP5811686B2 - Steel plate for high-strength can and manufacturing method thereof - Google Patents

Steel plate for high-strength can and manufacturing method thereof Download PDF

Info

Publication number
JP5811686B2
JP5811686B2 JP2011180141A JP2011180141A JP5811686B2 JP 5811686 B2 JP5811686 B2 JP 5811686B2 JP 2011180141 A JP2011180141 A JP 2011180141A JP 2011180141 A JP2011180141 A JP 2011180141A JP 5811686 B2 JP5811686 B2 JP 5811686B2
Authority
JP
Japan
Prior art keywords
rolling
strength
temperature
less
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011180141A
Other languages
Japanese (ja)
Other versions
JP2012107315A (en
Inventor
祐介 中川
祐介 中川
幹人 須藤
幹人 須藤
多田 雅毅
雅毅 多田
克己 小島
克己 小島
岩佐 浩樹
浩樹 岩佐
飛山 洋一
洋一 飛山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2011180141A priority Critical patent/JP5811686B2/en
Publication of JP2012107315A publication Critical patent/JP2012107315A/en
Application granted granted Critical
Publication of JP5811686B2 publication Critical patent/JP5811686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、飲料品や食品の容器材料として用いられる3ピース缶胴材および天地蓋材である缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for cans which is a three-piece can body material and a top cover material used as a container material for beverages and foods, and a method for producing the same.

近年、缶用鋼板としてのスチール缶の需要を拡大するため、製缶コストの低減がとられている。製缶コストの低減策としては、素材の低コスト化が挙げられ、絞り加工を行う2ピース缶はもとより、単純な円筒成形が主体の3ピース缶であっても、使用する鋼板の薄肉化が進められている。   In recent years, in order to expand the demand for steel cans as steel plates for cans, reduction of can manufacturing costs has been taken. As a measure to reduce can manufacturing costs, the cost of materials can be reduced, and not only two-piece cans that are drawn, but also three-piece cans mainly made of simple cylindrical molding, the use of thinner steel sheets can be achieved. It is being advanced.

しかし、単に鋼板を薄肉化すると缶体強度が低下するので、溶接缶の缶胴部のような高強度材が用いられている箇所には薄肉化した鋼板を用いることができない。そのため、溶接缶の缶胴部などに対しては、高強度で極薄の缶用鋼板が望まれている。   However, simply reducing the thickness of the steel sheet reduces the strength of the can body, so that the thinned steel sheet cannot be used in places where a high-strength material such as the can body of a welded can is used. Therefore, high strength and extremely thin steel plates for cans are desired for can bodies of welded cans.

缶体強度に及ぼす機械特性として、YPおよびTSのほかに溶接した円筒体の張り剛性、すなわちヤング率が大きく影響する。つまり、薄肉化のため、高YP、高TS、高ヤング率の缶用鋼板が必要となる。   In addition to YP and TS, the mechanical properties that affect the strength of the can body are greatly influenced by the stiffness of the welded cylinder, that is, the Young's modulus. In other words, steel plates for cans with high YP, high TS, and high Young's modulus are required for thinning.

鉄のヤング率と結晶方位とは強い相関があり、<111>が圧延面に垂直な集合組織(γファイバー)の集積を高めると、全方位のヤング率が上昇し、理想的には約220GPaとなることが分かっている。また、<110>が圧延方向に平行な集合組織(αファイバー)は圧延方向から90°方向のヤング率を高め、特に{112}<110>方位の集積を高めることで、理想的には約280GPaのヤング率を達成可能である。鋼材の結晶方位が、特定の方位への配向を有さない場合、即ち集合組織がランダムである鋼板のヤング率は、約205GPaである。しかしながら、実際に缶用鋼板で高ヤング率を志向した技術は存在しない。   There is a strong correlation between the Young's modulus of iron and the crystal orientation. When <111> increases the accumulation of texture (γ fibers) perpendicular to the rolling surface, the Young's modulus in all directions increases, ideally about 220 GPa. I know that In addition, the texture (α fiber) in which <110> is parallel to the rolling direction increases the Young's modulus in the 90 ° direction from the rolling direction, especially by increasing the accumulation of the {112} <110> orientation. A Young's modulus of 280 GPa can be achieved. When the crystal orientation of the steel material does not have an orientation in a specific orientation, that is, the Young's modulus of the steel plate having a random texture is about 205 GPa. However, there is actually no technology aimed at high Young's modulus in steel plates for cans.

現在、極薄で高YPかつ高TSである缶用鋼板は、焼鈍後に2次冷延を施すDouble Reduce法(以下、DR法と称すことがある)で製造されている。しかし、DR法は、熱延、冷延、焼鈍、二次冷延と、通常の焼鈍までの工程に比べて1工程多いのでその分コストが高くなる。従って、DR法で製造された缶用鋼板においてはコストダウンが要望されており、DR工程を省略すべく、各種強化元素を添加して再結晶焼鈍工程までで製造する方法が提案されている。   Currently, steel plates for cans that are ultrathin, high YP and high TS are manufactured by the Double Reduce method (hereinafter sometimes referred to as DR method) in which secondary cold rolling is performed after annealing. However, since the DR method has one more process than the processes up to normal rolling, such as hot rolling, cold rolling, annealing, and secondary cold rolling, the cost increases accordingly. Therefore, the steel sheet for cans manufactured by the DR method is demanded to reduce the cost, and a method of adding various strengthening elements to the recrystallization annealing process in order to omit the DR process has been proposed.

例えば、特許文献1および特許文献2では、再結晶焼鈍を行うことで高r値および小さい異方性を特徴とする鋼板を提供している。このような異方性が小さい鋼板は、耳発生をできるだけ抑制すべき絞り缶等には適している。   For example, Patent Document 1 and Patent Document 2 provide a steel sheet characterized by a high r value and small anisotropy by performing recrystallization annealing. Such a steel plate having a small anisotropy is suitable for a drawn can or the like that should suppress the occurrence of ears as much as possible.

しかし、小さい異方性をそれほど必要としない鋼板については、冷間圧延後、必ずしも再結晶焼鈍を行う必要はない。
過去に、冷間圧延まで一切熱処理を行わないアズロール鋼板や再結晶完了温度以下での熱処理による回復により延性を回復した鋼板の検討が行われている。これらは強化元素を添加しないため耐食性への影響を懸念する必要がなく、飲料缶および食缶として安心して使用することができる。
したがって、小さい異方性を必要とせず高強度である鋼板を製造しようとする場合は、再結晶完了温度以下での回復焼鈍を行う方法は有効であり、以下のような技術が提案されている。
However, a steel sheet that does not require a small amount of anisotropy does not necessarily need to be recrystallized after cold rolling.
In the past, studies have been made on an as-rolled steel sheet that is not subjected to any heat treatment until cold rolling, or a steel sheet that has recovered its ductility by a heat treatment at a temperature lower than the recrystallization completion temperature. Since these do not contain reinforcing elements, there is no need to worry about the effect on corrosion resistance, and they can be used with confidence as beverage cans and food cans.
Therefore, when trying to produce a high strength steel sheet that does not require small anisotropy, a method of performing recovery annealing below the recrystallization completion temperature is effective, and the following techniques have been proposed. .

特許文献3では、Ar3変態点以下で仕上げ圧延を行い、高温巻取りして、熱延後の結晶粒径を50μm以上とした後、85〜90%の圧下率で冷間圧延を行い、450〜580℃の連続焼鈍を行って、TSが530〜570MPaでElが6〜8%の鋼板を得る技術を開示している。   In Patent Document 3, finish rolling is performed at an Ar3 transformation point or less, high-temperature winding is performed, the crystal grain size after hot rolling is set to 50 μm or more, cold rolling is performed at a rolling reduction of 85 to 90%, and 450 A technique is disclosed in which a steel sheet having TS of 530 to 570 MPa and El of 6 to 8% is obtained by performing continuous annealing at ˜580 ° C.

特許文献4では、熱延時にAr3変態点以下で仕上げ圧延を行い、85%以下の圧下率で冷間圧延を行った後、200℃から500℃の範囲で10分間熱処理することで、YSが640MPaの鋼板を得る技術を開示している。   In Patent Document 4, YS is obtained by performing finish rolling below the Ar3 transformation point at the time of hot rolling, performing cold rolling at a reduction rate of 85% or less, and then heat-treating at 200 to 500 ° C. for 10 minutes. A technique for obtaining a 640 MPa steel sheet is disclosed.

特許文献5では、冷間圧延をした後400℃以上再結晶温度以下で焼鈍することで、ロックウェル硬さ(HR30T)で70程度を得る技術が開示されている。   Patent Document 5 discloses a technique for obtaining a Rockwell hardness (HR30T) of about 70 by performing cold rolling and annealing at 400 ° C. or higher and a recrystallization temperature or lower.

特許文献6では、特許文献5と同じ組成の鋼でAr3変態点以下の温度で少なくとも50%以上の熱間圧延をし、50%以上の圧下率で冷間圧延を行った後、400℃以上再結晶温度以下で焼鈍することで、ロックウェル硬さ65程度の鋼を得る技術が開示されている。なお、ここでいう再結晶温度とは再結晶率が10%の組織になる温度のことを指している。   In Patent Document 6, the steel having the same composition as Patent Document 5 is hot-rolled at least 50% at a temperature below the Ar3 transformation point, cold-rolled at a reduction ratio of 50% or more, and then 400 ° C or more. A technique for obtaining steel having a Rockwell hardness of about 65 by annealing at a recrystallization temperature or lower is disclosed. The recrystallization temperature here refers to the temperature at which the recrystallization rate becomes 10%.

特許文献7では、熱延時にAr3変態点以下での合計圧下率を40%以上で仕上げ圧延を行い、50%以上の圧下率で冷間圧延を行った後350〜650℃の短時間で焼鈍することで、YSが540MPa〜700MPaの鋼を得る技術を開示している。   In Patent Document 7, finish rolling is performed at 40% or more of the total rolling reduction below the Ar3 transformation point during hot rolling, and cold rolling is performed at a rolling reduction of 50% or more, and then annealing is performed in a short time of 350 to 650 ° C. By doing so, YS discloses a technology for obtaining steel of 540 MPa to 700 MPa.

一方、高ヤング率を目的とする鋼板は、厚板(特許文献8)や自動車用鋼板(特許文献9)において衝撃吸収エネルギーを高める目的で様々な製造方法が提供されている。
特許文献8では、一方向からの圧延に加え、直角方向からも圧延することで集合組織を制御し、圧延方向および圧延方向から90°方向のヤング率を高めた厚鋼板を得る技術を開示している。
特許文献9では、成分と熱間圧延時の温度および上下ロールの異周速差を最適化し、効果的にせん断層へひずみを導入し、圧延方向のヤング率が220GPa以上で、かつ穴広げ性に優れた自動車用鋼板を得る技術を開示している。
On the other hand, as for the steel sheet aiming at high Young's modulus, various manufacturing methods are provided for the purpose of increasing impact absorption energy in a thick plate (Patent Document 8) and an automotive steel sheet (Patent Document 9).
In Patent Document 8, in addition to rolling from one direction, the texture is controlled by rolling from a right angle direction, and a technique for obtaining a thick steel plate with an increased Young's modulus in the 90 ° direction from the rolling direction and the rolling direction is disclosed. ing.
Patent Document 9 optimizes the component and temperature during hot rolling and the difference between different peripheral speeds of the upper and lower rolls, effectively introduces strain into the shear layer, has a Young's modulus in the rolling direction of 220 GPa or more, and expandability Discloses a technology for obtaining an automotive steel plate excellent in the above.

特開2001-107186号公報JP 2001-107186 特開2005-336610号公報JP 2005-336610 A 特開昭48-92221号公報Japanese Patent Laid-Open No. 48-92221 特開平8-269568公報JP-A-8-269568 特開平6-248338号公報JP-A-6-248338 特開平6-248339号公報JP-A-6-248339 特開平8-41549号公報JP-A-8-41549 特開平4-147917号公報Japanese Patent Laid-Open No. 4-147917 特開2009-19265号公報JP2009-19265

しかしながら、上記従来技術は、いずれも問題点を抱えている。   However, all of the above conventional techniques have problems.

例えば、特許文献3、特許文献4、特許文献6、特許文献7では、熱延時にAr3変態点以下で仕上げ圧延を行う必要がある。確かにAr3変態点以下で仕上げ圧延を行うと、熱延材のフェライト粒径は大きくなり、特許文献3で示されている第3図のように熱延後の鋼の強度は低下するので、鋼自体の強度を低下させる方法として有効である。しかし、中央部より冷却速度の速いエッジ部は仕上げ圧延時の温度が低くなる傾向があり、仕上げ圧延時に導入された歪が再結晶や回復で解放されずにエッジ部の強度を高くする傾向がある。そのため、中央部とエッジ部の強度差が大きくなり、幅方向に均一な熱延板が得られにくいことから、現状の操業で均一なものを得ることは困難である。   For example, in Patent Document 3, Patent Document 4, Patent Document 6, and Patent Document 7, it is necessary to perform finish rolling below the Ar3 transformation point during hot rolling. Certainly, when finish rolling below the Ar3 transformation point, the ferrite grain size of the hot-rolled material increases, and the strength of the steel after hot rolling decreases as shown in Fig. 3 shown in Patent Document 3, It is effective as a method for reducing the strength of steel itself. However, the edge part, which has a faster cooling rate than the center part, tends to have a lower temperature during finish rolling, and the strain introduced during finish rolling tends to increase the strength of the edge part without being released by recrystallization or recovery. is there. For this reason, the difference in strength between the center portion and the edge portion becomes large, and it is difficult to obtain a uniform hot-rolled sheet in the width direction, so it is difficult to obtain a uniform one in the current operation.

特許文献4では、冷間圧延後200〜500℃で10分間以上焼鈍して歪をとることでYSが640〜680MPaの鋼を得ている。しかし、連続焼鈍炉で10分間以上焼鈍をするとなるとラインスピードを低速にしなければならず、生産性を著しく低下させる。   In Patent Document 4, steel having a YS of 640 to 680 MPa is obtained by annealing at 200 to 500 ° C. for 10 minutes or more after cold rolling and taking strain. However, if annealing is performed for 10 minutes or longer in a continuous annealing furnace, the line speed must be lowered, and the productivity is significantly reduced.

特許文献5や特許文献6では400℃以上再結晶温度以下で焼鈍することを特徴としているが、得られる鋼の強度はロックウェル硬さで65〜70程度であり、本発明で目的としている強度レベルの鋼を得るためには焼鈍温度を低下する必要がある。そのため、通常の缶用材料で製造している焼鈍温度では得ることができないため、焼鈍サイクルを別途設ける必要があり、生産性が低下する。   Patent Document 5 and Patent Document 6 are characterized by annealing at 400 ° C. or more and a recrystallization temperature or less, but the strength of the steel obtained is about 65 to 70 in Rockwell hardness, which is the intended strength in the present invention. In order to obtain the steel of the level, it is necessary to lower the annealing temperature. Therefore, since it cannot obtain at the annealing temperature manufactured with the normal can material, it is necessary to provide an annealing cycle separately, and productivity falls.

特許文献8では、圧延方向を途中で直角に変更しているが、薄鋼板では鋼片を一方向に圧延し鋼帯とした後、連続焼鈍ラインやめっきラインを通板する製造方法が一般的である。よって、圧延の方向を途中で変更する製造方法は現実的ではない。   In Patent Document 8, the rolling direction is changed to a right angle in the middle, but for thin steel plates, a steel strip is rolled in one direction to form a steel strip, and then a continuous annealing line or plating line is generally used. It is. Therefore, the manufacturing method which changes the direction of rolling in the middle is not realistic.

特許文献9では、熱間圧延時に圧延温度の制御や上下ロールの周速差を利用することでせん断層へのひずみを導入することで集合組織の制御を行っており、製造時に生産能率ダウンなどの問題が発生する。   In Patent Document 9, the texture is controlled by introducing strain to the shear layer by utilizing the control of the rolling temperature during hot rolling and the peripheral speed difference between the upper and lower rolls. Problems occur.

本発明は、かかる事情に鑑みなされたもので、例えば溶接缶等に適用され、特に強度と一方向の高ヤング率が要求される缶用鋼板に好適に用いられ、薄肉化して使用しても溶接缶の耐圧強度を高く保つことが可能な高強度な缶用鋼板およびその製造方法を提案することを目的とする。   The present invention has been made in view of such circumstances, and is applied to, for example, welded cans, and is particularly suitable for steel plates for cans that require high strength and high Young's modulus in one direction. An object of the present invention is to propose a high-strength steel plate for cans that can keep the pressure strength of the weld can high and a method for manufacturing the steel plate.

上記に示したように、DR法では、強度は上昇するものの伸びが著しく劣化し、強度と伸びのバランスが悪化する。そのため高強度化に伴い、製缶工程のフランジ加工にて伸びの不足による破断が発生するなど問題がある。また、固溶強化および析出強化のような方法は、冷間圧延時に薄肉化のエネルギーを多大に使用するため生産能率が大幅にダウンするなどの問題がある。   As shown above, in the DR method, although the strength is increased, the elongation is remarkably deteriorated, and the balance between the strength and the elongation is deteriorated. For this reason, there is a problem that a breakage due to insufficient elongation occurs in the flange processing in the can manufacturing process as the strength is increased. In addition, methods such as solid solution strengthening and precipitation strengthening have a problem that the production efficiency is significantly reduced because the energy for thinning is used greatly during cold rolling.

そこで、本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。
回復焼鈍で強度を低下させて目的の強度を得ることを前提に、成分組成、製造条件の適正化を検討した。その結果、Ar3変態点以上の温度で仕上げ圧延を行うことで鋼帯幅方向の中央部とエッジ部で強度差がない均一な熱延鋼板が得られること、520〜700℃の温度で焼鈍を行うことで、回復段階で目的の強度レベルまで低下させ、さらに、圧延組織を残存させ集合組織を形成しαファイバーの集積を高めることで圧延方向から0°と90°方向で高ヤング率を有する鋼板が得られることを知見した。これらは本発明の特徴であり、主要な要件である。
Therefore, the present inventors have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
On the premise that the target strength is obtained by reducing the strength by recovery annealing, optimization of the component composition and manufacturing conditions was studied. As a result, by performing finish rolling at a temperature equal to or higher than the Ar3 transformation point, it is possible to obtain a uniform hot-rolled steel sheet with no difference in strength between the central part and the edge part in the steel strip width direction, and annealing at a temperature of 520 to 700 ° C. By doing so, it has a high Young's modulus in the 0 ° and 90 ° directions from the rolling direction by lowering it to the target strength level in the recovery stage, and further increasing the accumulation of α fibers by leaving the rolled structure to form a textured structure. It has been found that a steel plate can be obtained. These are features of the present invention and are major requirements.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.003%以下、Si:0.02%以下、Mn:0.05〜0.60%、P:0.02%以下、S:0.02%以下、Al:0.01〜0.10%、N: 0.0010〜0.0050%、Nb:0.001〜0.05%、B:0.0005〜0.002%を含有し、残部はFeおよび不可避的不純物からなり、板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0であり、圧延方向から90°方向の引張強度が550〜800MPa、圧延方向から90°方向のヤング率が230GPa以上であることを特徴とする高強度缶用鋼板。
[2]質量%で、C:0.003%以下、Si:0.02%以下、Mn:0.05〜0.60%、P:0.02%以下、S:0.02%以下、Al:0.01〜0.10%、N: 0.0010〜0.0050%、Nb:0.001〜0.05%、B:0.0005〜0.002%を含有し、残部はFeおよび不可避的不純物からなり、板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0であり、圧延方向の引張強度が550〜750MPa、圧延方向から90°方向の引張強度が550〜800MPaであり、圧延方向のヤング率が210GPa以上、圧延方向から90°方向のヤング率が230GPa以上であることを特徴とする高強度缶用鋼板。
[3]圧延方向の全伸びが5%以上、かつ、圧延方向から90°方向の全伸びが2%以上であることを特徴とする前記[1]または[2]に記載の高強度缶用鋼板。
[4]曲げ半径比r/t≧0.5(r:曲げ半径[mm]、t:鋼板板厚[mm])を満足することを特徴とする前記[1]〜[3]のいずれか一項に記載の高強度缶用鋼板。
[5]前記[1]または[2]に記載の化学成分を有する鋼を連続鋳造によりスラブとし、粗圧延し、850〜960℃の熱間仕上圧延温度で熱間圧延を行った後、550〜750℃の温度で巻き取り、酸洗し、80%以上の圧延率で冷間圧延を行い、引き続き、520〜700℃の温度で焼鈍を行い、調質圧延を行うことを特徴とする高強度缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.003% or less, Si: 0.02% or less, Mn: 0.05 to 0.60%, P: 0.02% or less, S: 0.02% or less, Al: 0.01 to 0.10%, N: 0.0010 to 0.0050 %, Nb: 0.001 to 0.05%, B: 0.0005 to 0.002%, the balance is made of Fe and inevitable impurities, and ({112} <110> orientation accumulated strength) / ({ 111} <112> orientation strength) ≧ 1.0, tensile strength in the 90 ° direction from the rolling direction is 550 to 800 MPa, and Young's modulus in the 90 ° direction from the rolling direction is 230 GPa or more. Steel plate for cans.
[2] By mass%, C: 0.003% or less, Si: 0.02% or less, Mn: 0.05 to 0.60%, P: 0.02% or less, S: 0.02% or less, Al: 0.01 to 0.10%, N: 0.0010 to 0.0050 %, Nb: 0.001 to 0.05%, B: 0.0005 to 0.002%, the balance is made of Fe and inevitable impurities, and ({112} <110> orientation accumulated strength) / ({ 111} <112> orientation strength) ≧ 1.0, the tensile strength in the rolling direction is 550 to 750 MPa, the tensile strength in the 90 ° direction from the rolling direction is 550 to 800 MPa, and the Young's modulus in the rolling direction is 210 GPa or more, A steel plate for high-strength cans having a Young's modulus in the 90 ° direction from the rolling direction of 230 GPa or more.
[3] For high-strength cans according to [1] or [2], wherein the total elongation in the rolling direction is 5% or more and the total elongation in the 90 ° direction from the rolling direction is 2% or more. steel sheet.
[4] Any one of [1] to [3] above, wherein a bending radius ratio r / t ≧ 0.5 (r: bending radius [mm], t: steel plate thickness [mm]) is satisfied. The steel plate for high strength cans described in 1.
[5] The steel having the chemical composition described in [1] or [2] is formed into a slab by continuous casting, rough-rolled, hot-rolled at a hot finish rolling temperature of 850 to 960 ° C, and then 550 Winding at a temperature of ~ 750 ° C, pickling, cold rolling at a rolling rate of 80% or more, followed by annealing at a temperature of 520-700 ° C and temper rolling Manufacturing method of steel plate for strength can.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、圧延方向で550〜750MPa、圧延方向から90°方向で550〜800MPaの引張強度を有し、圧延方向で210Gpa、圧延方向から90°方向で230GPa以上の高ヤング率を有し、さらには、圧延方向の全伸びが5%以上かつ圧延方向から90°方向の全伸びが2%以上有する缶用鋼板が得られる。   According to the present invention, it has a tensile strength of 550 to 750 MPa in the rolling direction, 550 to 800 MPa in the 90 ° direction from the rolling direction, and has a high Young's modulus of 210 GPa in the rolling direction and 230 GPa or more in the 90 ° direction from the rolling direction. Furthermore, a steel plate for cans having a total elongation in the rolling direction of 5% or more and a total elongation in the 90 ° direction of 90 ° from the rolling direction of 2% or more is obtained.

さらに、本発明の製造方法は、極低炭素鋼にNbとBを添加することにより再結晶開始温度が上昇しているために、通常の低炭素缶用鋼板と同じ温度域で回復焼鈍が可能となり、エネルギーコストを削減することが可能となる。その結果、生産性を阻害することなく、上記缶用鋼板を製造することが可能となる。   Furthermore, since the recrystallization start temperature is increased by adding Nb and B to the ultra-low carbon steel, the production method of the present invention allows recovery annealing in the same temperature range as a normal steel plate for low carbon cans. Thus, the energy cost can be reduced. As a result, the steel sheet for cans can be produced without impeding productivity.

さらに、本発明では、焼鈍温度による強度変化が小さい温度域で焼鈍を行うため、焼鈍温度にばらつきが生じても幅方向に均一な強度レベルの缶用鋼板が得られる。   Furthermore, in the present invention, since annealing is performed in a temperature range in which the strength change due to the annealing temperature is small, a steel plate for cans having a uniform strength level in the width direction can be obtained even if the annealing temperature varies.

そして、本発明の缶用鋼板は、薄肉化しても耐圧強度が確保できる溶接缶に使用可能であり高ヤング率によりさらなる薄肉化が可能となる。さらに、高ヤング率化の効果としてスプリングバックが小さくなり、優れたロールフォーミング性を有する。延性が従来DR材よりも優れており、特に溶接缶のフランジ成形や曲げ加工において成形性に優れる。   And the steel plate for cans of this invention can be used for the welding can which can ensure pressure-resistant strength, even if it thins, and the further thinning is attained by high Young's modulus. Furthermore, as an effect of increasing the Young's modulus, the spring back is reduced and the roll forming property is excellent. The ductility is superior to that of conventional DR materials, and it is particularly excellent in formability in flange forming and bending of welded cans.

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、引張強度(以下、TSと称することがある)が圧延方向で550〜750MPa、圧延方向から90°方向で550〜800MPaであり、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)の値が1.0以上と集合組織を制御することで、圧延方向で210Gpa、圧延方向から90°方向で230GPa以上の高ヤング率とした缶用鋼板である。そして、このような缶用鋼板は、850〜960℃の熱間仕上圧延温度で熱間仕上圧延を行い、550〜750℃の温度で巻き取った後、酸洗し、80%以上の圧延率で冷間圧延を行い、520〜700℃の温度で焼鈍を行うことで製造可能となる。これらは、本発明の最も重要な要件である。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention has a tensile strength (hereinafter sometimes referred to as TS) of 550 to 750 MPa in the rolling direction, 550 to 800 MPa in the 90 ° direction from the rolling direction, and ({112} <110> orientation By controlling the texture with a value of (accumulation strength) / (accumulation strength of {111} <112> orientation) of 1.0 or more, the Young's modulus is 210 GPa in the rolling direction and 230 GPa or more in the 90 ° direction from the rolling direction. It is a steel plate for cans. And such steel plates for cans are hot finish rolled at a hot finish rolling temperature of 850 to 960 ° C., wound at a temperature of 550 to 750 ° C., pickled, and a rolling rate of 80% or more. It can be manufactured by performing cold rolling at 520 and annealing at a temperature of 520 to 700 ° C. These are the most important requirements of the present invention.

本発明の缶用鋼板の成分組成について説明する。
C: 0.003%以下
本発明の缶用鋼板は、冷間圧延で導入される歪で高強度化し、焼鈍温度は再結晶開始温度以下とし焼鈍後に圧延組織を残存させてDR材並みの強度を確保することを特徴とする。さらに効率的に生産するためには再結晶温度を上昇させ、C量を低減する必要がある。延性に関しても、Cが多すぎると缶成形時に必要な局部延性を十分に得ることができなくなる。また、残存固溶炭素量が増加すると、製缶の最終工程である巻き締め部の伸びフランジ成形時に割れを生じたり、加工硬化量についても大きくなるためネック加工やフランジ加工をする際にしわが発生したりする恐れがある。以上より、C含有量は0.003%以下とする。
The component composition of the steel plate for cans of this invention is demonstrated.
C: 0.003% or less The steel plate for cans of the present invention is strengthened by the strain introduced by cold rolling, and the annealing temperature is kept below the recrystallization start temperature, and the rolled structure remains after annealing to ensure the same strength as DR material. It is characterized by doing. In order to produce more efficiently, it is necessary to raise the recrystallization temperature and reduce the C content. Regarding the ductility, too much C cannot provide sufficient local ductility required during can molding. In addition, if the amount of residual solute carbon increases, cracks will occur during stretch flange molding of the tightened part, which is the final process of can manufacturing, and wrinkles will occur when performing neck processing and flange processing because the amount of work hardening will also increase. There is a risk of doing. Therefore, the C content is 0.003% or less.

Si:0.02%以下
Siは固溶強化により鋼の強度を増加させる元素であるが、多量に添加するとめっき性を損ない、耐食性が著しく低下する。よって、Si含有量は0.02%以下とする。
Si: 0.02% or less
Si is an element that increases the strength of steel by solid solution strengthening, but if added in a large amount, the plating property is impaired and the corrosion resistance is remarkably lowered. Therefore, the Si content is 0.02% or less.

Mn:0.05%〜0.60%
Mn含有量が0.05%を下回ると、S含有量を低下させた場合でも、熱間脆性を回避することが困難となり、熱間圧延時に表面割れ等の問題が生じる。よって、Mnの下限は0.05%とする。一方、Mnは固溶強化により鋼の強度を増加させ、結晶粒径を小さくする。しかしながら、JIS G 3303に規定されたとりべ分析値やアメリカ合衆国材料試験協会規格(ASTM)のとりべ分析値において、通常の食品容器に用いられるぶりき原板のMn量上限は0.60%以下と規定されている。0.60%を超えると、表面へ濃化してMn酸化物を生成し、耐食性に悪影響を及ぼす。このため、Mn含有量の上限は0.60%とする。
Mn: 0.05% to 0.60%
If the Mn content is less than 0.05%, it becomes difficult to avoid hot brittleness even when the S content is reduced, and problems such as surface cracks occur during hot rolling. Therefore, the lower limit of Mn is set to 0.05%. On the other hand, Mn increases the strength of steel by solid solution strengthening and reduces the crystal grain size. However, in the ladle analysis value specified in JIS G 3303 and the ladle analysis value of the American Society for Testing and Materials (ASTM), the upper limit of Mn content for tin plate used for ordinary food containers is defined as 0.60% or less. ing. If it exceeds 0.60%, it concentrates on the surface and produces Mn oxide, which adversely affects the corrosion resistance. For this reason, the upper limit of the Mn content is 0.60%.

P:0.02%以下
Pは、多量に添加すると、鋼の硬質化、耐食性の低下を引き起こす。また過度に低減してもその効果が飽和することに加え、製造コストの上昇につながるため望ましくない。よって、P含有量の上限は0.02%とする。
P: 0.02% or less
When P is added in a large amount, it causes hardening of the steel and deterioration of corrosion resistance. Moreover, even if it reduces too much, in addition to the effect being saturated, it leads to an increase in manufacturing cost, which is not desirable. Therefore, the upper limit of the P content is 0.02%.

S:0.02%以下
Sは、鋼中でMnと結合してMnSを形成し、多量に析出することで鋼の熱間延性を低下させる。よって、Sの上限は0.02%とする。
S: 0.02% or less
S combines with Mn in steel to form MnS and precipitates in large quantities, thereby reducing the hot ductility of the steel. Therefore, the upper limit of S is 0.02%.

Al:0.01〜0.10%
Alは、脱酸剤として添加される元素である。また、NとAlNを形成することにより、鋼中の固溶Nを減少させる効果を有する。しかし、Alの含有量が0.01%未満では、十分な脱酸効果や固溶N低減効果が得られない。一方、0.10%を超えると、上記効果が飽和するだけでなく、製造コストが上昇することや表面欠陥の発生率が増大するなどの問題が生ずる。よって、Al含有量は0.01%以上0.10%以下とする。
Al: 0.01-0.10%
Al is an element added as a deoxidizer. Moreover, by forming N and AlN, it has the effect of reducing the solute N in the steel. However, if the Al content is less than 0.01%, a sufficient deoxidizing effect or solute N reducing effect cannot be obtained. On the other hand, if it exceeds 0.10%, not only the above effects are saturated, but also problems such as an increase in manufacturing cost and an increase in the occurrence rate of surface defects occur. Therefore, the Al content is 0.01% or more and 0.10% or less.

N:0.0010〜0.0050%
Nは、AlやNb等と結合し窒化物や炭窒化物を形成し熱間延性を害するため、少ないほど好ましい。また、Nは固容強化元素の一つであり、多量に添加すると鋼の硬質化につながり伸びが著しく低下して成形性を悪化させる。よってN量の上限は0.0050%とする。一方、Nを安定して0.0010%未満とするのは難しく、製造コストも上昇する。よって、N含有量は0.0010%以上0.0050%以下とする。
N: 0.0010-0.0050%
N is preferably as small as possible because it combines with Al, Nb or the like to form nitrides or carbonitrides and impairs hot ductility. N is one of the solidity strengthening elements, and if added in a large amount, it leads to hardening of the steel, and the elongation is remarkably lowered to deteriorate the formability. Therefore, the upper limit of N amount is 0.0050%. On the other hand, it is difficult to stably make N less than 0.0010%, and the manufacturing cost also increases. Therefore, the N content is set to be 0.0010% or more and 0.0050% or less.

Nb:0.001〜0.05%
Nbは炭化物生成能の高い元素であり、生成された炭化物による粒界のピン止めによって再結晶温度が上昇する。従って、Nb添加量を変化させることで、鋼の再結晶温度を変えて、随時目的の温度で焼鈍することが可能となる。また、焼鈍温度を随時変えられることで鋼種が異なる他の鋼板と焼鈍の機会を合わせることもでき、生産性の面から非常に効率的である。しかし、0.05%超えで含有すると、再結晶温度が高くなりすぎて、CAL通板性が低下する。また、炭化物の析出強化により目標の強度より高くなる。よって、Nb含有量は0.05%以下とする。基本的に、本発明では鋼板強度の高くなる元素は添加しないが、Nbについては焼鈍温度の観点から添加する必要があり、0.05%以下であれば、むしろ添加量を調整することでNbの析出強化を利用して所望の強度にすることが可能である。また、Nb添加は、溶接時の再結晶を抑制することで、溶接強度が低下するのを防止することにも有効である。一方、Nb含有量が0.001%未満では、上記の効果を発揮することができないため、0.001%を下限とする。
Nb: 0.001 ~ 0.05%
Nb is an element having a high carbide-forming ability, and the recrystallization temperature rises due to pinning of grain boundaries by the generated carbide. Therefore, by changing the amount of Nb added, it is possible to change the recrystallization temperature of the steel and perform annealing at the target temperature as needed. Also, by changing the annealing temperature as needed, it is possible to match the chance of annealing with other steel plates of different steel types, which is very efficient from the viewpoint of productivity. However, if the content exceeds 0.05%, the recrystallization temperature becomes too high and the CAL threadability is lowered. Moreover, it becomes higher than a target intensity | strength by precipitation strengthening of a carbide | carbonized_material. Therefore, the Nb content is 0.05% or less. Basically, in the present invention, an element that increases the strength of the steel sheet is not added, but Nb needs to be added from the viewpoint of the annealing temperature, and if it is 0.05% or less, the precipitation of Nb is rather adjusted by adjusting the addition amount. It is possible to use reinforcement to achieve the desired strength. Further, the addition of Nb is also effective in preventing a decrease in welding strength by suppressing recrystallization during welding. On the other hand, if the Nb content is less than 0.001%, the above effect cannot be exhibited, so 0.001% is made the lower limit.

B:0.0005〜0.002%
Bは再結晶温度を上昇させる元素である。従って、Nb添加と同様の理由でBを添加する。しかし、過剰に添加すると熱間圧延時にオーステナイト域での再結晶を阻害し圧延荷重を大きくしなければならないため、上限は0.002%とする。また、0.0005%未満では再結晶温度を上昇させることはできないので、0.0005%を下限とする。
B: 0.0005-0.002%
B is an element that raises the recrystallization temperature. Therefore, B is added for the same reason as Nb addition. However, if added in excess, recrystallization in the austenite region must be inhibited during hot rolling and the rolling load must be increased, so the upper limit is made 0.002%. Further, if it is less than 0.0005%, the recrystallization temperature cannot be increased, so 0.0005% is made the lower limit.

残部はFeおよび不可避不純物とする。   The balance is Fe and inevitable impurities.

次に、本発明の缶用鋼板の機械的性質について説明する。   Next, the mechanical properties of the steel plate for cans of the present invention will be described.

集合組織:板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0
本発明では再結晶粒が発生しない圧延組織とするため、<110>が圧延方向に平行な集合組織、いわゆるαファイバーが発達した組織とする。特に{112}<110>方位の集積が高まると圧延方向と圧延方向から90°方向のヤング率が高まる。この{112}<110>方位は、冷間圧延時の圧延率が90%付近となるときに、顕著に発達する圧延集合組織である。
一方、再結晶時には、{112}<110>方位の集積は減少し、{554}<225>方位およびγファイバーである{111}<112>方位が発達する。
よって、冷間圧延時の圧延率を高めて{112}<110>方位の集積を高め、その後、{111}<112>方位が高まる再結晶現象を発生しない温度域で焼鈍することで、圧延方向と圧延方向から90°方向のヤング率が高い鋼板を得ることができる。
Texture: ({112} <110> orientation accumulation strength) / ({111} <112> orientation accumulation strength) ≧ 1.0 at the center of the plate thickness
In the present invention, in order to obtain a rolled structure in which recrystallized grains are not generated, <110> is a texture that is parallel to the rolling direction, that is, a structure in which a so-called α fiber is developed. In particular, when the accumulation of {112} <110> orientation increases, the Young's modulus in the 90 ° direction from the rolling direction and the rolling direction increases. This {112} <110> orientation is a rolling texture that develops remarkably when the rolling rate during cold rolling is around 90%.
On the other hand, at the time of recrystallization, the accumulation of {112} <110> orientation decreases, and the {554} <225> orientation and the {111} <112> orientation which is a γ fiber develop.
Therefore, by increasing the rolling rate during cold rolling to increase the accumulation of {112} <110> orientation, and then annealing in a temperature range that does not cause the recrystallization phenomenon that the {111} <112> orientation increases, A steel sheet having a high Young's modulus in the 90 ° direction from the direction and the rolling direction can be obtained.

以上より、本発明では、板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0となるよう集合組織を制御し、圧延方向のヤング率が210GPa以上、圧延方向から90°方向のヤング率が230GPa以上の鋼板を得ることとする。   As described above, in the present invention, in the central portion of the plate thickness, the texture is controlled so that ({112} <110> orientation accumulated strength) / ({111} <112> orientation accumulated strength) ≧ 1.0. A steel sheet having a Young's modulus in the direction of 210 GPa or more and a Young's modulus in the 90 ° direction from the rolling direction of 230 GPa or more is obtained.

なお、上記({112}<110>方位の集積強度)/({111}<112>方位の集積強度)は、減厚加工および歪除去を目的とした化学研磨(シュウ酸エッチング)を行い、次いで研磨した板厚1/2の位置にてX線回折装置を用いて集合組織を測定し、評価することができる。詳細は実施例に後述する。   The above ({112} <110> orientation accumulation strength) / ({111} <112> orientation accumulation strength) is performed by chemical polishing (oxalic acid etching) for the purpose of thickness reduction and strain removal, Next, the texture can be measured and evaluated using an X-ray diffractometer at the position of the polished plate thickness 1/2. Details will be described later in Examples.

引張強度
引張強度は、蓋の耐圧強度や缶の突き刺し強度および缶体強度を確保するために必要である。また、本発明は、DR法で製造された缶用鋼板のコストダウンとしてDR工程の省略を可能にするものである。そして、本発明では、再結晶現象が発生しない温度域で回復により圧延組織を軟化させて強度をコントロールし、従来DR材相当の機械特性が得られるため、現行のDR8〜9として使用されている用途に対し、代替が可能とする。よって、DR8〜9相当の強度として、引張強度は、圧延方向で550〜750MPa、圧延方向から90°方向で550〜800MPaとする。
なお、引張強度は、「JIS Z 2241」に示される金属材料引張試験方法により測定することができる。
Tensile strength Tensile strength is necessary to ensure the pressure resistance of the lid, the piercing strength of the can and the strength of the can body. In addition, the present invention enables the omission of the DR process as a cost reduction of the steel plate for cans produced by the DR method. And in the present invention, the strength is controlled by softening the rolled structure by recovery in the temperature range where the recrystallization phenomenon does not occur, and mechanical properties equivalent to conventional DR materials can be obtained, so it is used as the current DR8-9. Substitution is possible for the application. Therefore, as the strength corresponding to DR8-9, the tensile strength is 550-750 MPa in the rolling direction and 550-800 MPa in the 90 ° direction from the rolling direction.
The tensile strength can be measured by a metal material tensile test method shown in “JIS Z 2241”.

圧延方向のヤング率が210GPa以上、圧延方向から90°方向のヤング率が230GPa以上
本発明の缶用鋼板は、溶接缶の缶胴部に好適に用いられる。圧延方向のヤング率が210GPa以上、圧延方向から90°方向のヤング率を230GPa以上として、溶接缶胴の周方向が圧延方向から0°および90°方向となるように適用することで、薄肉化された鋼板でも缶体強度を確保できる。従来の缶用鋼板は210GPa未満であるため、溶接缶胴に圧延方向から0°および90°方向のどちらに適用しても従来以上の缶体の剛性が得られ、缶体強度をアップさせることができる。以上より、圧延方向のヤング率が210GPa以上、圧延方向から90°方向のヤング率が230GPa以上とする。
The steel sheet for cans of the present invention having a Young's modulus in the rolling direction of 210 GPa or more and a Young's modulus in the 90 ° direction of 230 GPa or more from the rolling direction is suitably used for the can body of a welded can. Thinning is achieved by applying the Young's modulus in the rolling direction to 210 GPa or more, the Young's modulus in the 90 ° direction from the rolling direction to 230 GPa or more, and the circumferential direction of the welded can body to be 0 ° and 90 ° from the rolling direction. The can body strength can be secured even with the steel plate made. Conventional steel plates for cans are less than 210GPa, so that the can body rigidity can be improved and the can body strength can be improved by applying the welding can body to either the 0 ° or 90 ° direction from the rolling direction. Can do. From the above, the Young's modulus in the rolling direction is 210 GPa or more, and the Young's modulus in the 90 ° direction from the rolling direction is 230 GPa or more.

全伸び:圧延方向:5%以上、圧延方向から90°方向:2%以上(好適条件)
溶接缶のフランジ成形性など曲げ成形をされる用途については従来以上に全伸びが求められる。特にフランジ割れの発生率と全伸びは相関がある。本発明では、圧延まま組織を回復現象により歪みを開放し従来のDR材以上の延性を得ることとし、従来のDR材の全伸びが2%未満であることを考慮すると、全伸びは少なくとも2%以上とする。圧延方向の全伸びを5%以上、圧延方向から90°方向の全伸びを2%以上とすることでフランジ割れ発生率を従来以下に低減することができる。
Total elongation: Rolling direction: 5% or more, 90 ° direction from rolling direction: 2% or more (preferred conditions)
For bend forming applications such as the flange formability of welded cans, total elongation is required more than before. In particular, there is a correlation between the incidence of flange cracking and total elongation. In the present invention, the rolled structure is freed from strain by the recovery phenomenon to obtain ductility higher than that of the conventional DR material, and considering that the total elongation of the conventional DR material is less than 2%, the total elongation is at least 2 % Or more. By setting the total elongation in the rolling direction to 5% or more and the total elongation in the 90 ° direction from the rolling direction to 2% or more, the incidence of flange cracking can be reduced to a conventional level.

曲げ半径比r/t≧0.5(r:曲げ半径[mm]、t:鋼板板厚[mm])(好適条件)
曲げ加工性は、一般的に曲げ半径と鋼板板厚の比で評価される。r/t≧0.5とすることで180°曲げ加工しても割れが発生せず、曲げ特性に優れることになる。蓋に使用されるプルタブは開缶時にスコア(切れ目)を破壊するまで変形しないことが必要とされ、高い鋼板強度や端面を曲げ加工などで剛性を確保している。またPC、ゲーム機器、家電製品などの内部に使用されるシャーシは、成形や固定のネジ止め部などで曲げ加工が行われる。曲げ特性に優れる本発明をプルタブや電子部品のシャーシに適用することで、従来DR材より割れ発生率を低減できる。
Bending radius ratio r / t ≧ 0.5 (r: bending radius [mm], t: steel plate thickness [mm]) (preferred condition)
The bending workability is generally evaluated by the ratio between the bending radius and the steel plate thickness. By setting r / t ≧ 0.5, cracking does not occur even when bending by 180 °, and the bending characteristics are excellent. The pull tab used for the lid is required not to be deformed until the score (cut) is broken when the can is opened, and high rigidity is ensured by bending the end face of the steel plate. In addition, chassis used inside PCs, game machines, home appliances, etc. are bent by molding or fixing screws. By applying the present invention, which has excellent bending properties, to pull tabs and chassis of electronic components, the crack generation rate can be reduced as compared with conventional DR materials.

次に、本発明の缶用鋼板の製造方法について説明する。
本発明の缶用鋼板は、上記組成からなる鋼を連続鋳造によりスラブとし、粗圧延し、850〜960℃の熱間仕上圧延温度で熱間圧延を行った後、550〜750℃の温度で巻き取り、酸洗し、80%以上の圧延率で冷間圧延を行い、引き続き、520〜700℃の温度で焼鈍を行い、調質圧延を行うことで製造される。
Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
The steel plate for cans according to the present invention is a slab formed by continuous casting of steel having the above composition, roughly rolled, hot rolled at a hot finish rolling temperature of 850 to 960 ° C, and then at a temperature of 550 to 750 ° C. It is manufactured by winding, pickling, performing cold rolling at a rolling rate of 80% or more, subsequently annealing at a temperature of 520 to 700 ° C., and performing temper rolling.

転炉等を用いた通常公知の溶製方法により溶製することができる。また、連続鋳造法等の通常用いられる鋳造方法で圧延素材とする。この時、スラブ再加熱温度:1050〜1300℃が好ましい。熱間圧延前のスラブ再加熱温度は、特に条件は規定しないが、加熱温度が高すぎると製品表面の欠陥や、エネルギーコストが上昇するなどの問題が発生する場合がある。一方、低すぎると、最終仕上圧延温度の確保が難しくなる。   It can be melted by a generally known melting method using a converter or the like. Moreover, it is set as a rolling raw material by the casting methods used normally, such as a continuous casting method. At this time, the slab reheating temperature is preferably 1050 to 1300 ° C. The slab reheating temperature before hot rolling is not particularly limited, but if the heating temperature is too high, problems such as product surface defects and increased energy costs may occur. On the other hand, if it is too low, it will be difficult to ensure the final finish rolling temperature.

熱間圧延により、熱延板とする。圧延開始時には、圧延素材が、1250℃以上になるのが好ましい。
熱間仕上圧延温度:850〜960℃
熱間仕上圧延温度は、熱延鋼板の結晶粒微細化や析出物分布の均一性の観点から、Ar3変態点以上とする。一方、仕上圧延温度が高すぎても、圧延後のγ粒粒成長がより激しく起こり、それに伴う粗大γ粒により変態後のα粒の粗大化を招く。具体的には、仕上圧延温度は850〜960℃の範囲とする。850℃より低い場合は、Ar3変態点以下の圧延となり、α粒の粗大化を招く。よって、仕上圧延温度を850℃以上960℃以下、好ましくは870℃以上930℃以下とする。
巻取温度550〜750℃
巻取温度が550℃より低い温度域では硬化するもののフェライトの粗大粒と微細粒が混在し、材質が不均一となる。一方、750℃よりも高くなると、鋼板のスケール厚みが顕著に増大し、次工程の酸洗時の脱スケール性が悪化する可能性がある。よって、550℃以上750℃以下とする。さらに、圧延方向の全伸びが5%以上かつ圧延方向から90°方向の全伸びが2%以上、または、曲げ半径比r/t≧0.5(r:曲げ半径[mm]、t:鋼板板厚[mm])とするためには、熱延板の結晶粒を粗大にする必要があり、巻取温度は580℃以上750℃以下が好ましい。続く酸洗工程は、表層スケールが除去できればよく、特に条件は規定しない。
A hot-rolled sheet is obtained by hot rolling. At the start of rolling, the rolled material is preferably 1250 ° C. or higher.
Hot finish rolling temperature: 850-960 ° C
The hot finish rolling temperature is set to be equal to or higher than the Ar3 transformation point from the viewpoint of grain refinement of the hot rolled steel sheet and uniformity of precipitate distribution. On the other hand, even if the finish rolling temperature is too high, γ grain growth after rolling occurs more vigorously, and the accompanying coarse γ grains cause coarsening of the α grains after transformation. Specifically, the finish rolling temperature is in the range of 850 to 960 ° C. When the temperature is lower than 850 ° C., the rolling becomes below the Ar3 transformation point, which leads to coarsening of α grains. Therefore, the finish rolling temperature is 850 ° C. or higher and 960 ° C. or lower, preferably 870 ° C. or higher and 930 ° C. or lower.
Winding temperature 550 ~ 750 ℃
In the temperature range where the coiling temperature is lower than 550 ° C., although hardened, coarse and fine ferrite grains are mixed and the material becomes non-uniform. On the other hand, when the temperature is higher than 750 ° C., the scale thickness of the steel sheet is remarkably increased, and the descaling property at the time of pickling in the next process may be deteriorated. Therefore, it is set to 550 ° C. or higher and 750 ° C. or lower. Further, the total elongation in the rolling direction is 5% or more and the total elongation in the 90 ° direction from the rolling direction is 2% or more, or the bending radius ratio r / t ≧ 0.5 (r: bending radius [mm], t: steel plate thickness [Mm]), it is necessary to make the crystal grains of the hot-rolled sheet coarse, and the winding temperature is preferably 580 ° C. or higher and 750 ° C. or lower. The subsequent pickling process is not particularly limited as long as the surface scale can be removed.

次いで、冷間圧延、焼鈍、調質圧延を行う。
圧延率:80%以上
冷間圧延の圧延率が80%未満の場合は、焼鈍後に目的の強度に達しない。さらに、板厚方向での組織の不均一が原因と考えられる材質面での劣化が顕著となる。また、{112}<110>方位の集合組織を形成する点からも圧延率は80%以上とする。好ましくは、85%以上である。
焼鈍温度:520〜700℃
焼鈍は、520〜700℃の温度域で行う。本発明における焼鈍の目的は、冷間圧延で導入した歪により鋼板の強度が高くなっている状態から、歪取り焼鈍を行うことで目標の強度まで低下させることである。520℃未満では、十分に歪みが解放されず、また目標の強度よりも高くなるため、520℃を下限とする。一方、温度が高すぎると再結晶が開始して、軟化しすぎて目標の強度が得られないことや、{112}<110>方位の集積が減少して{111}<112>方位が集積するため、700℃を上限とする。このように、焼鈍温度は、集合組織を{112}<110>方位に集積させ、材質強度およびヤング率を規定の範囲に確保する点から重要な要素であり、好ましくは520℃以上700℃以下である。さらに、圧延方向の全伸びが5%以上かつ圧延方向から90°方向の全伸びが2%以上、または、曲げ半径比r/t≧0.5(r:曲げ半径[mm]、t:鋼板板厚[mm])とするためには、鋼板の歪みを多く開放することが必要であり、550℃以上700℃以下が好ましい。圧延方向の全伸びが5%以上かつ圧延方向から90°方向の全伸びが2%以上の特性を得る点からは、より好ましくは570℃以上700℃以下である。曲げ半径比r/t≧0.5(r:曲げ半径[mm]、t:鋼板板厚[mm])の特性を得る点からは、より好ましくは590℃以上700℃以下である。焼鈍方法は材質の均一性と高い生産性の観点から連続焼鈍法が好ましい。焼鈍時の均熱時間は生産性の観点から、10秒以上、90秒以下とすることが好ましい。
調質圧延は、目標の表面仕上げが達成可能な条件であれば圧延条件については特に規定しない。
Next, cold rolling, annealing, and temper rolling are performed.
Rolling ratio: 80% or more When the rolling ratio of cold rolling is less than 80%, the desired strength is not reached after annealing. Furthermore, the deterioration in the material surface considered to be caused by the non-uniformity of the structure in the plate thickness direction becomes remarkable. Further, the rolling rate is 80% or more from the viewpoint of forming a texture of {112} <110> orientation. Preferably, it is 85% or more.
Annealing temperature: 520-700 ° C
Annealing is performed in a temperature range of 520 to 700 ° C. The purpose of annealing in the present invention is to reduce the strength of the steel sheet to the target strength by performing strain relief annealing from the state where the strength of the steel sheet is increased by the strain introduced by cold rolling. If it is less than 520 ° C., the strain is not released sufficiently and becomes higher than the target strength, so 520 ° C. is the lower limit. On the other hand, if the temperature is too high, recrystallization will start and the target strength will not be obtained due to softening too much, or the accumulation of {112} <110> orientation will decrease and the {111} <112> orientation will accumulate. Therefore, the upper limit is 700 ° C. As described above, the annealing temperature is an important factor in that the texture is accumulated in the {112} <110> orientation, and the material strength and Young's modulus are ensured within a specified range, preferably 520 ° C. or more and 700 ° C. or less. It is. Further, the total elongation in the rolling direction is 5% or more and the total elongation in the 90 ° direction from the rolling direction is 2% or more, or the bending radius ratio r / t ≧ 0.5 (r: bending radius [mm], t: steel plate thickness [Mm]), it is necessary to release a large amount of distortion of the steel sheet, and it is preferably 550 ° C. or higher and 700 ° C. or lower. From the viewpoint of obtaining the characteristics that the total elongation in the rolling direction is 5% or more and the total elongation in the 90 ° direction from the rolling direction is 2% or more, it is more preferably 570 ° C. or more and 700 ° C. or less. From the point of obtaining the characteristics of the bending radius ratio r / t ≧ 0.5 (r: bending radius [mm], t: steel plate thickness [mm]), it is more preferably 590 ° C. or more and 700 ° C. or less. The annealing method is preferably a continuous annealing method from the viewpoint of material uniformity and high productivity. The soaking time during annealing is preferably 10 seconds or more and 90 seconds or less from the viewpoint of productivity.
In the temper rolling, the rolling conditions are not particularly defined as long as the target surface finish can be achieved.

表1に示す成分組成を含有し、残部はFeおよび不可避的不純物からなる鋼を溶製し、鋼スラブを得た。得られた鋼スラブを1250℃で再加熱した後、仕上げ圧延温度を870〜890℃、巻取り温度を560〜680℃の範囲で熱間圧延を行った。次いで、酸洗後、82.6%〜91.3%の圧延率で冷間圧延して、板厚0.20〜0.30mmの鋼板を製造した。
得られた鋼板を、連続焼鈍炉にて焼鈍温度500〜750℃、焼鈍時間30sで(回復)焼鈍を行い、No1〜13については伸張率が1.5%以下となるように調質圧延を施した。No14〜15については圧延率25%で二次圧延を行った。なお、詳細な製造条件を表2に示す。
A steel slab was obtained by melting steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities. The obtained steel slab was reheated at 1250 ° C., and then hot rolled at a finish rolling temperature of 870 to 890 ° C. and a winding temperature of 560 to 680 ° C. Next, after pickling, the steel sheet was cold-rolled at a rolling rate of 82.6% to 91.3% to produce a steel plate having a thickness of 0.20 to 0.30 mm.
The obtained steel sheet was subjected to (recovery) annealing at an annealing temperature of 500 to 750 ° C. and an annealing time of 30 s in a continuous annealing furnace, and temper rolling was performed so that the elongation ratio of No1 to 13 was 1.5% or less. . For No. 14 to 15, secondary rolling was performed at a rolling rate of 25%. Detailed production conditions are shown in Table 2.

Figure 0005811686
Figure 0005811686

Figure 0005811686
Figure 0005811686

以上により得られた鋼板に対して、引張試験を行った。引張試験は、JIS5号サイズの引張試験片を用いて行い、引張強度を評価した。ヤング率はJIS Z2254で規定している固有振動法により、共振周波数から算出した。
集合組織の評価は、減厚加工および歪除去を目的とした化学研磨(シュウ酸エッチング)を行い研磨した板厚1/2の位置にて測定した。測定にはX線回折装置を使用し、Schulzの反射法により(110)、(200)、(211)、(222)極点図を作成した。これらの極点図から結晶方位分布関数(ODF:Orientation Distribution Function)を算出し、Euler空間(Bunge方式)のΨ2=45°断面を作図した。この時、ゴーストの影響を除くために奇数項の計算も行った。
また、長さ100mm×巾20mmに鋼板を調整し、180°曲げ加工する試験を実施した。曲げ半径を変化させて試験を行い、曲げ部の鋼板断面で割れが発生しない最小曲げ半径を明らかにし、その曲げ半径比r/t(r:曲げ半径[mm]、t:鋼板板厚[mm])を求めた。曲げ半径比r/tが0.5以上を○、0.5未満を×とした。
A tensile test was performed on the steel sheet obtained as described above. The tensile test was performed using a JIS5 size tensile test piece and the tensile strength was evaluated. The Young's modulus was calculated from the resonance frequency by the natural vibration method specified in JIS Z2254.
The texture was measured at the position of 1/2 the thickness of the polished plate by chemical polishing (oxalic acid etching) for the purpose of thickness reduction and strain removal. An X-ray diffractometer was used for the measurement, and (110), (200), (211), and (222) pole figures were created by the Schulz reflection method. A crystal orientation distribution function (ODF) was calculated from these pole figures, and a Ψ2 = 45 ° section of Euler space (Bunge method) was drawn. At this time, in order to remove the influence of the ghost, the odd term was also calculated.
In addition, a test was conducted in which a steel plate was adjusted to a length of 100 mm × width of 20 mm and bent 180 °. The test was carried out while changing the bending radius, and the minimum bending radius at which no cracks occurred in the cross section of the steel plate at the bending portion was clarified. The bending radius ratio r / t (r: bending radius [mm], t: steel plate thickness [mm] ]). The bending radius ratio r / t was 0.5 or more, and less than 0.5 was x.

以上により得られた結果を表3に示す。   The results obtained as described above are shown in Table 3.

Figure 0005811686
Figure 0005811686

表3より、本発明例(No2〜5、No11〜13)は、圧延方向(以下、RD(Rolling Direction)と称する)の引張強度が550〜750MPaかつ圧延方向から90°方向(以下、TD (Transverse Direction)と称する)の引張強度が550〜800MPaであり、かつ({112}<110>方位の集積強度)/({111}<112>方位の集積強度)の値が1.0以上であり、RDのヤング率210GPa以上かつTDのヤング率が230GPa以上である。また、曲げ半径比r/tが0.5以上を確保できており、180°曲げを行った場合に割れが発生せず曲げ特性が優れているのがわかる。
一方、比較例(No1)は焼鈍温度が本発明範囲を下回り、回復が進まずTDの引張強度が過剰である。また、比較例(No6、8および9)は焼鈍温度が本発明範囲を上回り、再結晶開始温度を上回っているため再結晶粒が発生し、引張強度が不足している。比較例(No10)は、Nbが無添加であり、かつC量が本発明範囲を上回っており、また、比較例(No7)はBが添加されていないため、再結晶温度が上昇していない。そのため、本発明の焼鈍温度範囲内にもかかわらず、本発明の範囲の引張強度に達していない。No14および15は既存技術であるDR法で製造したDR材であるが、引張強度は本発明範囲内となるものの、二次圧延を施すことで延性が劣化している。また完全に再結晶を完了させているため、αファイバー集合組織が集積しておらずヤング率はRD、TDともに本発明範囲外である。
From Table 3, the present invention examples (No 2 to 5, No 11 to 13) have a tensile strength in the rolling direction (hereinafter referred to as RD (Rolling Direction)) of 550 to 750 MPa and a 90 ° direction from the rolling direction (hereinafter referred to as TD ( (Transverse Direction)) is tensile strength of 550 to 800 MPa, and (integrated strength of {112} <110> orientation) / (integrated strength of {111} <112> orientation) is 1.0 or more, Young's modulus of RD is 210 GPa or more and Young's modulus of TD is 230 GPa or more. Further, the bending radius ratio r / t can be secured to 0.5 or more, and it can be seen that when bending by 180 °, cracking does not occur and bending characteristics are excellent.
On the other hand, in the comparative example (No. 1), the annealing temperature is below the range of the present invention, the recovery does not progress, and the tensile strength of TD is excessive. In the comparative examples (Nos. 6, 8 and 9), the annealing temperature exceeds the range of the present invention and exceeds the recrystallization start temperature, so that recrystallized grains are generated and the tensile strength is insufficient. In Comparative Example (No10), Nb is not added and the amount of C exceeds the range of the present invention, and in Comparative Example (No7), B is not added, so the recrystallization temperature does not increase. . Therefore, the tensile strength within the range of the present invention is not reached despite the annealing temperature range of the present invention. Nos. 14 and 15 are DR materials manufactured by the DR method, which is an existing technology, but the tensile strength is within the range of the present invention, but the ductility is deteriorated by performing secondary rolling. Further, since the recrystallization is completely completed, the α fiber texture is not accumulated, and the Young's modulus is outside the scope of the present invention for both RD and TD.

Claims (5)

質量%で、C:0.003%以下、Si:0.02%以下、Mn:0.05〜0.60%、P:0.02%以下、S:0.02%以下、Al:0.01〜0.10%、N: 0.0010〜0.0050%、Nb:0.001〜0.05%、B:0.0005〜0.002%を含有し、残部はFeおよび不可避的不純物からなり、
板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0であり、
圧延方向から90°方向の引張強度が550〜800MPa、圧延方向から90°方向のヤング率が230GPa以上であることを特徴とする高強度缶用鋼板。
In mass%, C: 0.003% or less, Si: 0.02% or less, Mn: 0.05 to 0.60%, P: 0.02% or less, S: 0.02% or less, Al: 0.01 to 0.10%, N: 0.0010 to 0.0050%, Nb : 0.001 to 0.05%, B: 0.0005 to 0.002%, the balance consists of Fe and inevitable impurities,
In the central portion of the plate thickness, ({112} <110> orientation accumulated strength) / ({111} <112> orientation accumulated strength) ≧ 1.0,
A steel plate for high-strength cans having a tensile strength in the 90 ° direction from the rolling direction of 550 to 800 MPa and a Young's modulus in the 90 ° direction from the rolling direction of 230 GPa or more.
質量%で、C:0.003%以下、Si:0.02%以下、Mn:0.05〜0.60%、P:0.02%以下、S:0.02%以下、Al:0.01〜0.10%、N: 0.0010〜0.0050%、Nb:0.001〜0.05%、B:0.0005〜0.002%を含有し、残部はFeおよび不可避的不純物からなり、
板厚中央部において、({112}<110>方位の集積強度)/({111}<112>方位の集積強度)≧1.0であり、
圧延方向の引張強度が550〜750MPa、圧延方向から90°方向の引張強度が550〜800MPaであり、
圧延方向のヤング率が210GPa以上、圧延方向から90°方向のヤング率が230GPa以上であることを特徴とする高強度缶用鋼板。
In mass%, C: 0.003% or less, Si: 0.02% or less, Mn: 0.05 to 0.60%, P: 0.02% or less, S: 0.02% or less, Al: 0.01 to 0.10%, N: 0.0010 to 0.0050%, Nb : 0.001 to 0.05%, B: 0.0005 to 0.002%, the balance consists of Fe and inevitable impurities,
In the central portion of the plate thickness, ({112} <110> orientation accumulated strength) / ({111} <112> orientation accumulated strength) ≧ 1.0,
The tensile strength in the rolling direction is 550 to 750 MPa, the tensile strength in the 90 ° direction from the rolling direction is 550 to 800 MPa,
A steel plate for high-strength cans having a Young's modulus in the rolling direction of 210 GPa or more and a Young's modulus in the 90 ° direction from the rolling direction of 230 GPa or more.
圧延方向の全伸びが5%以上、かつ、圧延方向から90°方向の全伸びが2%以上であることを特徴とする請求項1または2に記載の高強度缶用鋼板。   The steel sheet for high-strength cans according to claim 1 or 2, wherein the total elongation in the rolling direction is 5% or more and the total elongation in the 90 ° direction from the rolling direction is 2% or more. 曲げ半径比r/t≧0.5(r:曲げ半径[mm]、t:鋼板板厚[mm])を満足することを特徴とする請求項1〜3のいずれか一項に記載の高強度缶用鋼板。   The high-strength can according to any one of claims 1 to 3, wherein a bending radius ratio r / t ≧ 0.5 (r: bending radius [mm], t: steel plate thickness [mm]) is satisfied. Steel plate. 請求項1〜4のいずれか一項に記載の高強度缶用鋼板の製造方法であって、鋼を連続鋳造によりスラブとし、粗圧延し、850〜960℃の熱間仕上圧延温度で熱間圧延を行った後、550〜750℃の温度で巻き取り、酸洗し、80%以上の圧延率で冷間圧延を行い、引き続き、520〜700℃の温度で焼鈍を行い、調質圧延を行うことを特徴とする高強度缶用鋼板の製造方法。 It is a manufacturing method of the steel plate for high intensity | strength cans as described in any one of Claims 1-4 , Comprising : Steel is made into a slab by continuous casting, rough rolling, and it is hot at the hot finishing rolling temperature of 850-960 degreeC. After rolling, it is wound at a temperature of 550 to 750 ° C., pickled, cold rolled at a rolling rate of 80% or more, and subsequently annealed at a temperature of 520 to 700 ° C. A method for producing a steel plate for a high-strength can characterized by being performed.
JP2011180141A 2010-10-18 2011-08-22 Steel plate for high-strength can and manufacturing method thereof Active JP5811686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180141A JP5811686B2 (en) 2010-10-18 2011-08-22 Steel plate for high-strength can and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010233208 2010-10-18
JP2010233208 2010-10-18
JP2011180141A JP5811686B2 (en) 2010-10-18 2011-08-22 Steel plate for high-strength can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012107315A JP2012107315A (en) 2012-06-07
JP5811686B2 true JP5811686B2 (en) 2015-11-11

Family

ID=46493218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180141A Active JP5811686B2 (en) 2010-10-18 2011-08-22 Steel plate for high-strength can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5811686B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5712771B2 (en) * 2011-04-28 2015-05-07 新日鐵住金株式会社 Steel sheet with excellent Young's modulus in the direction perpendicular to rolling and method for producing the same
TWI504760B (en) 2012-11-07 2015-10-21 Jfe Steel Corp Steel sheet for 3-piece can and manufacturing method thereof
EP3000906B1 (en) 2013-07-17 2018-03-14 JFE Steel Corporation Steel sheet for can and method for manufacturing same
MY179722A (en) 2014-03-28 2020-11-11 Jfe Steel Corp Steel sheet for can and method for manufacturing the same
US10301702B2 (en) 2014-05-30 2019-05-28 Jfe Steel Corporation Steel sheet for cans and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248339A (en) * 1993-02-26 1994-09-06 Nippon Steel Corp Production of steel sheet for vessel with high rigidity
JPH06248338A (en) * 1993-02-26 1994-09-06 Nippon Steel Corp Production of starting sheet for vessel
JP3898954B2 (en) * 2001-06-05 2007-03-28 新日本製鐵株式会社 Ferritic thin steel sheet with excellent shape freezing property and manufacturing method thereof
JP5058508B2 (en) * 2005-11-01 2012-10-24 新日本製鐵株式会社 Low yield ratio type high Young's modulus steel plate, hot dip galvanized steel plate, alloyed hot dip galvanized steel plate and steel pipe, and production method thereof
JP5076544B2 (en) * 2007-02-21 2012-11-21 Jfeスチール株式会社 Manufacturing method of steel sheet for cans
JP5076872B2 (en) * 2007-12-21 2012-11-21 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5272714B2 (en) * 2008-12-24 2013-08-28 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing

Also Published As

Publication number Publication date
JP2012107315A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5076544B2 (en) Manufacturing method of steel sheet for cans
JP5811686B2 (en) Steel plate for high-strength can and manufacturing method thereof
WO2012144213A1 (en) Steel sheet for can with high barrel-part buckling strength under external pressure and with excellent formability and excellent surface properties after forming, and process for producing same
CN111406124A (en) High-strength cold-rolled steel sheet and method for producing same
JP5272714B2 (en) Manufacturing method of steel plate for can manufacturing
JP4900179B2 (en) Manufacturing method of steel plate for can
JP5453747B2 (en) Stainless cold-rolled steel sheet excellent in punching processability and manufacturing method thereof
JP6153627B2 (en) Steel plate for cans
JP6066023B1 (en) Hot-rolled steel sheet, full-hard cold-rolled steel sheet, and hot-rolled steel sheet manufacturing method
JP5076872B2 (en) Steel plate for can and manufacturing method thereof
JP5217617B2 (en) Ferritic stainless steel cold-rolled steel sheet and manufacturing method thereof
JP5713146B2 (en) Steel plate for 3-piece can and manufacturing method thereof
CN107541663A (en) A kind of beverage can ferrostan and its production method
JP6361553B2 (en) Steel plate for high workability and high strength can and manufacturing method thereof
JP5262242B2 (en) Manufacturing method of steel plate for can manufacturing
JP5000452B2 (en) Steel plate for 3-piece can with high strength and excellent expand formability and manufacturing method thereof
JP5000467B2 (en) Steel plate for 3-piece can with high strength and excellent expandability and manufacturing method
JP2007204800A (en) Steel sheet for soft can and its production method
WO2015146136A1 (en) Steel sheet for can and process for producing same
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP2007009271A (en) Steel sheet having low anisotropy, and manufacturing method therefor
JP5076871B2 (en) Hot rolled mother board for steel plate for cans
KR102587650B1 (en) Steel sheet for cans and method of producing same
JP2016529394A (en) Hot-rolled steel sheet with excellent workability and aging resistance and method for producing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150907

R150 Certificate of patent or registration of utility model

Ref document number: 5811686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250