WO2016157878A1 - Steel sheet for cans and method for manufacturing steel sheet for cans - Google Patents

Steel sheet for cans and method for manufacturing steel sheet for cans Download PDF

Info

Publication number
WO2016157878A1
WO2016157878A1 PCT/JP2016/001774 JP2016001774W WO2016157878A1 WO 2016157878 A1 WO2016157878 A1 WO 2016157878A1 JP 2016001774 W JP2016001774 W JP 2016001774W WO 2016157878 A1 WO2016157878 A1 WO 2016157878A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cans
amount
depth position
steel plate
Prior art date
Application number
PCT/JP2016/001774
Other languages
French (fr)
Japanese (ja)
Inventor
多田 雅毅
克己 小島
裕樹 中丸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2016544875A priority Critical patent/JP6028884B1/en
Priority to KR1020177027622A priority patent/KR101994914B1/en
Priority to CN201680019401.9A priority patent/CN107429360B/en
Publication of WO2016157878A1 publication Critical patent/WO2016157878A1/en
Priority to CONC2017/0009718A priority patent/CO2017009718A2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • C21D9/48Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate for cans and a method for producing a steel plate for cans.
  • the present invention relates to a steel plate for a can used as a raw material for a three-piece can formed by high-working can body processing, a two-piece can requiring pressure strength, and a method for manufacturing the same.
  • Measures to reduce the can manufacturing cost include reducing the cost of the material.
  • 2-piece cans formed by drawing even 3-piece cans mainly made of simple cylindrical molding are being used to reduce the thickness of the steel sheets used.
  • ultra-thin and hard steel plates for cans are manufactured by the Double Reduce method (hereinafter referred to as DR method) in which secondary cold rolling with a reduction rate of 20% or more is performed after annealing.
  • DR method Double Reduce method
  • a steel plate manufactured by using the DR method (hereinafter also referred to as a DR material) has a high strength, but has a feature that the total elongation is small.
  • a DR material having poor ductility as a can material formed by can body processing with a strong working degree, such as a deformed can.
  • Patent Document 1 proposes a technique for obtaining a steel sheet for high-strength cans by adding a large amount of C and N and baking and hardening.
  • the steel sheet for cans described in Patent Document 1 has a high yield stress of 550 MPa or more after the paint baking process.
  • Patent Document 2 As in Patent Document 1, high strength of about +50 MPa is realized by post-coating baking treatment.
  • Patent Document 3 proposes a steel plate that balances strength and ductility by combining precipitation strengthening with Nb carbide and refinement strengthening with Nb, Ti, and B carbonitrides.
  • Patent Document 4 proposes a method for increasing the strength by using solid solution strengthening such as Mn, P, and N.
  • Patent Document 5 the tensile strength is less than 540 MPa using precipitation strengthening by Nb, Ti, and B carbonitrides, and the deformability due to inclusions and precipitates is controlled by controlling the particle diameter of oxide inclusions.
  • Steel plates for cans that prevent deterioration and improve the formability of welds have been proposed.
  • JP 2001-107186 A Japanese Patent Laid-Open No. 11-199991 JP-A-8-325670 JP 2004-183074 A JP 2001-89828 A
  • the above-described conventional technology can produce a steel sheet that satisfies any of the strength, ductility, and corrosion resistance, but cannot produce a steel sheet that satisfies all of the requirements.
  • the method of adding a large amount of C and N described in Patent Documents 1 and 2 and increasing the strength by bake hardenability is an effective method for increasing the strength, but the solid solution C and N amount in steel Since there are many, yield elongation becomes large. And since yield elongation becomes large, the surface appearance is spoiled by generating wrinkles called stretcher strain during processing. Therefore, there is room for improvement in the techniques described in Patent Documents 1 and 2.
  • Patent Document 3 realizes high strength by precipitation strengthening and proposes a steel with a balance between strength and ductility, but does not describe the yield elongation that impairs the surface appearance. The yield elongation targeted by the invention cannot be obtained.
  • Patent Document 4 proposes an increase in strength by solid solution strengthening, but P and Mn, which are generally known as elements that inhibit corrosion resistance, are excessively added, so that there is a high risk of inhibiting corrosion resistance.
  • Patent Document 5 target strength is obtained by using precipitation and refinement strengthening of Nb, Ti and the like.
  • Patent Document 5 requires the addition of not only Ti but also Ca and REM.
  • the yield of the Ti alloy is poor as compared with the conventional method of deoxidizing with Al.
  • the present invention has been made in view of such circumstances, and provides a steel plate for cans having high strength, excellent ductility, and good corrosion resistance even for highly corrosive contents and a method for producing the same. With the goal.
  • the present inventors have conducted intensive research to solve the above problems. As a result, the following knowledge was obtained.
  • the strength can be increased without inferior in ductility by achieving solid solution strengthening with N and precipitation strengthening with Nb, Ti, and B.
  • composition of the original plate with the addition amount of elements within the range that does not affect the corrosion resistance, it shows good corrosion resistance even for highly corrosive contents.
  • the coiling temperature in the hot rolling process and the cooling rate after coiling can be adjusted appropriately to increase the strength without reducing the total elongation.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • a method for producing a steel plate for cans according to any one of [1] to [3], A hot rolling step in which the steel is rolled at a finish rolling temperature of Ar3 transformation point or higher, wound at a winding temperature of 500 to 620 ° C., and cooled at a cooling rate of 10 ° C./hr or lower after winding; After the hot rolling step, a primary cold rolling step of rolling at a rolling reduction of 80% or more, After the primary cold rolling step, an annealing step of continuous annealing at a soaking temperature of 660 to 800 ° C. and a soaking time of 55 s or less; And a secondary cold rolling step of rolling at a rolling reduction of 1 to 19% after the annealing step.
  • the present invention by increasing the strength of the steel sheet, it is possible to ensure a high strength of the can even if the welded can is made thinner. Further, due to the excellent ductility, it is possible to perform strong can barrel processing and flange processing such as can expansion processing used in welded cans.
  • the component composition is set so that the corrosion resistance is not hindered.
  • the steel plate for cans of the present invention is excellent in any of strength, ductility, and corrosion resistance.
  • the steel plate for cans according to the present invention has an excellent yield strength (hereinafter sometimes referred to as U-YP) after heat treatment at 210 ° C. for 20 minutes and a total elongation of 12% or more. Has corrosion resistance. Moreover, in the steel plate for cans of this invention, aging can also be made small.
  • U-YP yield strength
  • the upper yield strength is 480 to 700 MPa as described above, the total elongation is 12% or more, and A steel plate for cans having excellent corrosion resistance is obtained.
  • the steel plate for cans of the present invention is, by mass%, C: 0.020% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.2% or less, P: 0.00.
  • the steel sheet for cans of the present invention it is essential that the upper yield strength (480 to 700 MPa) is achieved at a predetermined level or more and the total elongation is 12% or more.
  • the C content of the steel plate for cans is important. Specifically, it is necessary to set the lower limit of the C content to 0.020%.
  • the lower limit for the C content is 0.030%.
  • the upper limit of the C content is 0.130%.
  • the upper limit of the C content is 0.080%.
  • Si 0.04% or less Si is an element that increases the strength of a steel sheet by solid solution strengthening. However, if the Si content exceeds 0.04%, the corrosion resistance is significantly impaired. Therefore, the Si content is set to 0.04% or less. Preferably, the Si content is 0.02% or less. In the present invention, since it is possible to increase the upper yield strength by adjusting elements other than Si and manufacturing conditions, it is not necessary to use solid solution strengthening by Si. For this reason, in this invention, it is not necessary to contain Si. If a preferable example on the lower limit side is given about Si content, it is 0.001% or more.
  • Mn 0.10% or more and 1.2% or less Mn increases the strength of the steel sheet by solid solution strengthening and also reduces the average ferrite grain size.
  • the effect of reducing the average ferrite grain size is noticeably produced when the Mn content is 0.10% or more.
  • the Mn content in order to ensure the target upper yield strength, the Mn content must be 0.10% or more. Therefore, the lower limit of the Mn content is 0.10%.
  • the lower limit of the Mn content is 0.20%.
  • the upper limit of the Mn content is 1.2%.
  • the upper limit of Mn content is 0.80%.
  • P 0.007% or more and 0.100% or less
  • P is an element having a large solid solution strengthening ability.
  • the P content exceeds 0.100%, the corrosion resistance is poor. For this reason, the P content is 0.100% or less.
  • the P content is preferably 0.080% or less, more preferably 0.030% or less.
  • the P content is set to 0.007% or more.
  • the steel plate for cans of the present invention has a high C and N content, and includes one or more selected from Nb, Ti, and B that form precipitates that cause slab cracking. For this reason, the slab edge tends to break in the straightening zone during continuous casting.
  • the S content is set to 0.03% or less.
  • the S content is 0.02% or less. More preferably, the S content is 0.01% or less.
  • Al 0.0010% or more and 0.10% or less
  • Increasing the Al content results in an increase in the recrystallization temperature. Therefore, it is necessary to set the annealing temperature as high as the increase in the Al content.
  • the recrystallization temperature rises due to the influence of other elements added to increase the upper yield strength, and the annealing temperature must be set high. Therefore, it is necessary to avoid the increase in the recrystallization temperature due to Al as much as possible, and the Al content is set to 0.10% or less.
  • the Al content is preferably 0.070% or less.
  • the Al content is set to 0.0010% or more from the viewpoint of inclusion control.
  • Al is preferably added as a deoxidizer, and in order to obtain this effect, the Al content is preferably 0.010% or more.
  • N 0.0120% to 0.020% or less
  • N is an element necessary for increasing solid solution strengthening. In order to exert the effect of solid solution strengthening, the N content needs to be over 0.0120%. On the other hand, when there is too much N content, it will become easy to produce a slab crack in the lower correction zone where the temperature at the time of continuous casting falls. Therefore, the N content is 0.020% or less.
  • Nb 0.010% or more and 0.050% or less
  • Nb is an element having a high carbide generating ability and precipitates fine carbides.
  • the upper yield strength increases.
  • the upper yield strength can be adjusted by the Nb content. Since this effect occurs when the Nb content is 0.010% or more, the lower limit of the Nb content is limited to 0.010%. Preferably, the lower limit is 0.015%.
  • Nb brings about an increase in recrystallization temperature. Therefore, if the Nb content exceeds 0.050%, a large amount of unrecrystallized structure is caused by continuous annealing at an annealing temperature of 660 to 800 ° C. and a soaking time of 55 s or less. It remains difficult to anneal. For this reason, the upper limit of Nb content is limited to 0.050%.
  • Ti 0.010% or more and 0.050% or less Ti is also added for the purpose of obtaining upper yield strength and yield elongation for the same reason as Nb. Since this effect occurs when the content is 0.010% or more, the lower limit is made 0.010%. Preferably the lower limit is 0.015%.
  • the upper limit is also set to 0.050% from the viewpoint of the recrystallization temperature, similarly to Nb. Preferably the upper limit is 0.030%.
  • B 0.0010% or more and 0.010% or less B has the effect of reducing yield elongation because it promotes cementite precipitation using B-based precipitates in ferrite grains as nuclei. Since this effect occurs when the content is 0.0010% or more, the lower limit is made 0.0010%. Preferably the lower limit is 0.0012%. The upper limit is made 0.010% from the viewpoint of the recrystallization temperature. Preferably the upper limit is 0.0050%.
  • the remainder other than the above components is Fe and inevitable impurities.
  • the structure has a ferrite phase, and the area ratio of the ferrite phase is 50% or more.
  • the steel plate for cans of the present invention has a ferrite phase. From the viewpoint of securing strength and ductility, the steel plate for cans of the present invention has an area ratio of ferrite phase of 50% or more.
  • the area ratio of the ferrite phase is preferably 70% or more, and more preferably 100%.
  • the area ratio of the ferrite phase is determined from the structure photograph taken by grinding a cross section parallel to the rolling direction and then corroding with a nital liquid, in the field of view at a depth of 4/8 from the steel sheet surface in the thickness direction. It is determined by dividing and dividing the area of the ferrite phase by the total area.
  • the ferrite phase of the present invention preferably has a recrystallized structure.
  • the present invention may include a rolled structure that is a high-strength non-recrystallized structure.
  • the rolled structure which is an unrecrystallized structure, appears to be black due to corrosion because the crystal grains are crushed by rolling, and the recrystallized structure is ferrite.
  • the crystal grains since the crystal grains are grown by recrystallization, the crystal grains look white without being corroded.
  • the ratio of N amount is set to 0.96 or less. It is considered that by making the material difference in the plate thickness direction, it is possible to achieve both excellent ductility and strength while maintaining good corrosion resistance. The greater the material difference, the better the balance between ductility and strength, and both high strength and high ductility can be achieved. Therefore, the amount of dissolved N in the region from the surface to 1/8 depth position in the plate thickness direction and the solid solution in the region from the surface to 3/8 depth position to 4/8 depth position in the plate thickness direction.
  • the ratio of N amount is preferably 0.93 or less, more preferably 0.91 or less, and even more preferably 0.89 or less.
  • the amount of solute N in the region from the surface to the depth of 1/8 in the plate thickness direction increases as the hot rolling coiling temperature decreases, and decreases as the hot rolling coiling temperature increases. Become. Further, if the cooling rate after winding is reduced, the amount of solute N in the region from the surface to the 1/8 depth position in the plate thickness direction becomes a small value.
  • the amount of solute N in the region from the surface to the 1/8 depth position in the plate thickness direction is preferably 0.0114 to 0.0190 mass%.
  • the amount of solute N in the region from the surface to the 3/8 depth position to the 4/8 depth position in the thickness direction is preferably 0.0118 to 0.0198 mass%.
  • the amount of solute N between the surface in the plate thickness direction and the depth of 1/8 of the plate thickness is extracted with 10% Br methanol to a depth of 1/8 of the plate thickness, and precipitated as AlN, BN, etc.
  • the amount of N present is analyzed, and then the amount of N deposited as AlN, BN, etc. is subtracted from the total amount of N.
  • the amount of solute N between the depth position of 3/8 and the depth position of 4/8 from the surface in the plate thickness direction is obtained after oxalic acid polishing to the depth position of 3/8 of the plate thickness. Extracted and washed, extracted with 10% Br methanol, analyzed the amount of N deposited as AlN, BN, etc., and then calculated by subtracting the amount of N deposited as AlN, BN, etc. from the total N amount To do. The total N amount is expressed by mass%, and the sample is continuously included from the surface to the depth position of 4/8 that is the center in the plate thickness direction, and 4/8 that is the center in the plate thickness direction from the surface. The average N mass% up to the depth position was calculated.
  • the upper yield strength and the total elongation after heat treatment at 210 ° C. for 20 minutes are defined.
  • the upper yield strength is set to 480 MPa or more for the plate thickness of about 0.19 mm.
  • the upper yield strength is preferably 500 MPa or more.
  • the upper yield strength is 700 MPa or less.
  • the upper yield strength of the steel plate for cans can be controlled to 480 to 700 MPa by employing the above component composition and, for example, the production conditions described later.
  • Total elongation 12% or more If the total elongation of the steel plate for cans is less than 12%, there is a risk that defects such as cracks may occur in the production of cans formed by can body processing such as can expansion processing. There is. On the other hand, if the total elongation is less than 12%, cracks may occur during flange processing of the can. Therefore, the lower limit of total elongation is 12%.
  • the total elongation is preferably 13% or more, more preferably 14% or more.
  • the total elongation can be controlled to 12% or more by setting the amount of ferrite phase as a recrystallized structure in a specific range and then setting the rolling reduction ratio of secondary cold rolling after annealing in a specific range.
  • the total elongation obtained when producing by controlling the reduction ratio of secondary cold rolling is preferably 35% or less, more preferably 25% or less.
  • the plate thickness of the steel plate for cans of the present invention is not particularly limited, but may be 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less.
  • the steel plate for cans of the present invention may further be provided with a plating layer.
  • the plating layer include an Sn plating layer, a Cr plating layer such as tin-free, an Ni plating layer, and an Sn—Ni plating layer.
  • the manufacturing method of the steel plate for cans of the present invention will be described. It is preferable that the steel plate for cans of this invention is manufactured with the manufacturing method which has a hot rolling process, a primary cold rolling process, an annealing process, and a secondary cold rolling process. Hereinafter, each manufacturing process will be described.
  • Hot rolling process is a process in which steel is rolled at a finish rolling temperature of Ar3 transformation point or higher, wound at a winding temperature of 500 to 620 ° C, and cooled at a cooling rate of 10 ° C / hr or lower after winding. It is the process of cooling.
  • Steel is obtained by melting molten steel adjusted to the above-described component composition by a known melting method using a converter or the like, and then forming a rolled material by a commonly used casting method such as a continuous casting method. It is done.
  • Hot rolled steel sheet is manufactured by hot rolling the steel obtained as described above. At the start of hot rolling, the temperature of the steel is preferably 1200 ° C. or higher.
  • the finish rolling temperature in hot rolling is set to the Ar3 transformation point or higher.
  • the Ar3 transformation point is determined at a temperature at which the volume of the sample expands due to the ⁇ ⁇ ⁇ transformation in the process of heating the sample to 1200 ° C. and then slowly cooling it with a processing for master.
  • the finish rolling temperature in the hot rolling is an important condition for securing the upper yield strength.
  • the finish rolling temperature in the hot rolling is limited to the Ar3 transformation point or higher.
  • finish rolling temperature in hot rolling is preferably in the range of Ar3 transformation point to Ar3 transformation point + 20 ° C.
  • the upper limit of finish rolling temperature is not specifically limited, It is preferable to make 980 degreeC into an upper limit for the reason of suppressing scale generation.
  • the coiling temperature in the hot rolling process is an important condition for controlling the upper yield strength and the total elongation, which are important in the present invention.
  • the minimum of coiling temperature shall be 500 degreeC.
  • the lower limit of the winding temperature is 550 ° C.
  • the upper limit of coiling temperature shall be 620 degreeC.
  • the upper limit of the coiling temperature is 600 ° C.
  • a cooling rate of 10 ° C./hr or less after winding in the hot rolling process is an important condition.
  • the cooling rate after winding exceeds 10 ° C./hr, the surface layer is rapidly cooled, so that the precipitation of AlN on the surface layer decreases, the amount of solute N increases, and the total elongation decreases.
  • the lower limit of the cooling rate is not particularly limited, but is preferably 2 ° C./hr or more from the viewpoint of the production efficiency of the steel sheet.
  • the primary cold rolling step is a step of cold rolling at a rolling reduction of 80% or more after the hot rolling step.
  • another process may be suitably included after the hot rolling process and before the primary cold rolling process, or the primary cold rolling process may be performed immediately after the hot rolling process.
  • the surface layer scale formed in the hot rolling process it is preferable to remove the surface layer scale formed in the hot rolling process.
  • the method for removing the surface scale is not particularly limited, and various methods such as chemical removal such as pickling and physical removal can be applied.
  • the rolling reduction in the primary cold rolling process is one of the important conditions in the present invention. If the rolling reduction in the primary cold rolling process is less than 80%, it is difficult to produce a steel sheet having an upper yield strength of 480 MPa or more. Furthermore, when the reduction ratio in this process is less than 80%, in order to obtain a plate thickness (about 0.17 mm) similar to that of a conventional DR material in which the reduction ratio in the secondary cold rolling process is 20% or more At least the thickness of the hot rolled sheet needs to be 0.9 mm or less. However, in operation, it is difficult to set the thickness of the hot rolled sheet to 0.9 mm or less. Therefore, the rolling reduction in this step is 80% or more.
  • the upper limit of the rolling reduction in the primary cold rolling step is not particularly limited, but a rolling reduction of 95% or less is preferable from the viewpoint of suppressing surface defects.
  • An annealing step is a step of performing continuous annealing after the primary cold rolling step at a soaking temperature of 660 to 800 ° C. and a soaking time of 55 seconds or less.
  • the unit “s” means “second”.
  • another process may be appropriately included before the annealing process after the primary cold rolling process, or the annealing process may be performed immediately after the primary cold rolling process.
  • a continuous annealing device is used for annealing.
  • the soaking temperature is set to 660 ° C. or higher.
  • the soaking temperature is set in the range of 660 to 800 ° C.
  • the soaking temperature is preferably 660 to 710 ° C, more preferably 660 to 705 ° C.
  • the soaking time is 55 s or less.
  • the soaking time is preferably 40 s or less.
  • the lower limit of the soaking time is not particularly limited, but in order to shorten the soaking time, it is necessary to increase the transport speed, so that it is difficult to stably transport without meandering. It is preferable that
  • the secondary cold rolling step is a step of cold rolling at a rolling reduction of 1 to 19% after the annealing step.
  • another process may be appropriately included before the secondary cold rolling process after the annealing process, or the secondary cold rolling process may be performed immediately after the annealing process.
  • the reduction ratio in the secondary cold rolling after annealing is the same as the normal DR material production conditions (20% or more), the strain introduced during processing increases, so the total elongation decreases.
  • the reduction ratio in the secondary cold rolling is set to 19% or less.
  • secondary cold rolling has a role of imparting surface roughness of the steel sheet, and in order to uniformly impart surface roughness to the steel sheet, the reduction ratio of secondary cold rolling needs to be 1% or more.
  • the rolling reduction in the secondary cold rolling process may be 8 to 19%.
  • the tensile test was performed using a JIS No. 5 size tensile test piece, the upper yield strength (U-YP) was measured according to JIS Z 2241, and the total elongation (El) was measured according to JIS Z 2241. The obtained results are shown in Table 3.
  • the steel plate for cans of the invention example had an area ratio of the ferrite phase of 50% or more.
  • the ferrite phase had a recrystallized structure.
  • the solute N amount in the region from the surface to 1/8 depth position in the plate thickness direction, and the solute N amount in the region from the surface 3/8 depth position to 4/8 depth position are nitrided from the total N amount It measured by the method of reducing N amount of a thing.
  • the measurement results are shown in Table 4.
  • Compressive strength After roll form, welding, neck forming, and flange forming using steel plates, a lid was wound and a blank can sample was prepared, placed in a chamber, and the pressure at which the sample was buckled after being pressurized with compressed air was measured. A buckling pressure of 0.2 MPa or more was rated as ⁇ , 0.14 to 0.13 MPa as ⁇ , and less than 0.13 MPa as x (failed).
  • Formability Wrinkles at the time of neck forming when roll forming, welding, and neck forming using a steel plate were observed. The case where there was no visual wrinkle was rated as ⁇ , the case where one fine wrinkle was seen visually was marked as ⁇ , and the case where two or more fine wrinkles were seen visually was marked as x (failed).
  • Corrosion resistance It was evaluated using an alloy tin couple (ATC) test facility used for evaluating the corrosion resistance of electroplated tin. What ATC value is less than 0.05 ⁇ A / cm 2 ⁇ , those 0.05 ⁇ 0.12 ⁇ A / cm 2 ⁇ , and a ⁇ (fail) those exceeding 0.12 ⁇ A / cm 2.
  • the present invention it is possible to obtain a steel plate for cans having high strength, excellent ductility, and good corrosion resistance even for highly corrosive contents.
  • the present invention is most suitable as a steel plate for cans centering on a three-piece can with a high degree of can body processing and a two-piece can whose bottom portion is processed by several percent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention provides a steel sheet for cans and a method for manufacturing the steel sheet for cans. The steel sheet for cans has a component composition containing, on a percentage by mass basis: 0.020-0.130% of C; not more than 0.04% of Si; 0.10-1.2% of Mn; 0.007-0.100% of P; not more than 0.03% of S; 0.0010-0.10% of Al, 0.0120-0.020% of N; one or more selected from 0.010-0.050% of Nb, 0.010-0.050% of Ti and 0.0010-0.010% of B; the balance being iron and unavoidable impurities. The steel sheet for cans has a structure including a ferrite phase where the area ratio of the ferrite phase is no less than 50%. The steel sheet for cans has upper yield strength of 480 to 700 MPa after a heating treatment at 210ºC for 20 minutes, and has a total elongation of no less than 12%. The ratio between the solute N content in a region extending from the surface to a depth of 1/8 in the thickness direction and the solute N content in a region extending from a depth of 3/8 from the surface to a depth of 4/8 satisfies formula 1. (The amount of solute N in region extending from surface to depth of 1/8 in thickness direction)/(the amount of solute N in region extending from depth of 3/8 from surface to depth of 4/8) ≤ 0.96 (formula 1)

Description

缶用鋼板及び缶用鋼板の製造方法Steel plate for cans and method for producing steel plate for cans
 本発明は、缶用鋼板及び缶用鋼板の製造方法に関する。特に、本発明は、高加工度の缶胴加工により成形される3ピース缶、耐圧強度を必要とする2ピース缶等の素材として用いられる缶用鋼板およびその製造方法に関するものである。 The present invention relates to a steel plate for cans and a method for producing a steel plate for cans. In particular, the present invention relates to a steel plate for a can used as a raw material for a three-piece can formed by high-working can body processing, a two-piece can requiring pressure strength, and a method for manufacturing the same.
 近年、スチール缶の需要を拡大するため、製缶コストを低減する策、異形缶のような新規缶種にスチール缶を投入する策がとられている。 In recent years, in order to expand the demand for steel cans, measures have been taken to reduce can manufacturing costs and to introduce steel cans into new can types such as deformed cans.
 前記製缶コストの低減策としては、素材の低コスト化が挙げられる。絞り加工により成形される2ピース缶はもとより、単純な円筒成形が主体の3ピース缶であっても、使用する鋼板の薄肉化が進められている。 Measures to reduce the can manufacturing cost include reducing the cost of the material. In addition to 2-piece cans formed by drawing, even 3-piece cans mainly made of simple cylindrical molding are being used to reduce the thickness of the steel sheets used.
 ただし、単に鋼板を薄肉化すると缶体強度が低下する。したがって、再絞り缶(DRD缶)や溶接缶の缶胴部のような高強度材が用いられている箇所には、単に薄肉化したのみの鋼板を用いることができない。そこで、高強度で極薄の缶用鋼板が望まれている。 However, simply reducing the thickness of the steel sheet decreases the strength of the can. Therefore, it is not possible to use a steel plate that is simply thinned at a location where a high-strength material such as a redrawn can (DRD can) or a can body of a welded can is used. Therefore, a high strength and extremely thin steel plate for cans is desired.
 現在、極薄で硬質な缶用鋼板は、焼鈍後に圧下率が20%以上の2次冷間圧延を施すDuble Reduce法(以下、DR法と称す)で製造されている。DR法を利用して製造した鋼板(以下、DR材とも称する。)は高強度であるが、全伸びが小さいという特徴がある。 At present, ultra-thin and hard steel plates for cans are manufactured by the Double Reduce method (hereinafter referred to as DR method) in which secondary cold rolling with a reduction rate of 20% or more is performed after annealing. A steel plate manufactured by using the DR method (hereinafter also referred to as a DR material) has a high strength, but has a feature that the total elongation is small.
 また、異形缶のような、強い加工度の缶胴加工により成形される缶の素材として、延性に乏しいDR材を用いることは、加工性の観点から困難である。 Also, it is difficult from the viewpoint of workability to use a DR material having poor ductility as a can material formed by can body processing with a strong working degree, such as a deformed can.
 こうしたDR材の欠点を回避するため、種々の強化法を用いた高強度鋼板の製造方法が下記特許文献に提案されている。 In order to avoid the drawbacks of the DR material, methods for producing high-strength steel sheets using various strengthening methods have been proposed in the following patent documents.
 特許文献1では、C、Nを多量に添加して焼付け硬化させることで、高強度缶用鋼板を得る技術が提案されている。特許文献1に記載の缶用鋼板は、塗装焼付け処理後の降伏応力が550MPa以上と高い。また、特許文献1の缶用鋼板では、Nの添加量、熱処理で硬度を調整できるとしている。 Patent Document 1 proposes a technique for obtaining a steel sheet for high-strength cans by adding a large amount of C and N and baking and hardening. The steel sheet for cans described in Patent Document 1 has a high yield stress of 550 MPa or more after the paint baking process. Moreover, in the steel plate for cans of patent document 1, it is supposed that hardness can be adjusted with the addition amount of N and heat processing.
 特許文献2でも、特許文献1と同様に、塗装後焼付け処理によって+50MPa程度の高強度化を実現している。 In Patent Document 2, as in Patent Document 1, high strength of about +50 MPa is realized by post-coating baking treatment.
 特許文献3では、Nb炭化物による析出強化やNb、Ti、Bの炭窒化物による微細化強化を複合的に組み合わせることで、強度と延性のバランスがとれた鋼板を提案している。 Patent Document 3 proposes a steel plate that balances strength and ductility by combining precipitation strengthening with Nb carbide and refinement strengthening with Nb, Ti, and B carbonitrides.
 特許文献4では、Mn、P、N等の固溶強化を用いて高強度化する方法が提案されている。 Patent Document 4 proposes a method for increasing the strength by using solid solution strengthening such as Mn, P, and N.
 特許文献5では、Nb、Ti、Bの炭窒化物による析出強化を用いて引張強度が540MPa未満であり、酸化物系介在物の粒子径を制御することで介在物や析出物による変形能の劣化を防止し、溶接部の成形性を改善する缶用鋼板が提案されている。 In Patent Document 5, the tensile strength is less than 540 MPa using precipitation strengthening by Nb, Ti, and B carbonitrides, and the deformability due to inclusions and precipitates is controlled by controlling the particle diameter of oxide inclusions. Steel plates for cans that prevent deterioration and improve the formability of welds have been proposed.
特開2001-107186号公報JP 2001-107186 A 特開平11-199991号公報Japanese Patent Laid-Open No. 11-199991 特開平8-325670号公報JP-A-8-325670 特開2004-183074号公報JP 2004-183074 A 特開2001-89828号公報JP 2001-89828 A
 まず、薄ゲージ化(薄肉化)するために強度確保が必要である。一方、拡缶加工のような缶胴加工により成形される缶体、フランジ加工により成形される缶体に鋼板を用いる場合には、高延性の鋼を適用する必要がある。 First, it is necessary to secure strength in order to reduce the gauge (thinner). On the other hand, when a steel plate is used for a can body formed by can body processing such as can expansion processing or a can body formed by flange processing, it is necessary to apply high ductility steel.
 例えば、2ピース缶製造時のボトム加工、拡缶加工を代表とする3ピース缶製造時の缶胴加工およびフランジ加工において、鋼板の割れが発生しないように全伸びの大きい鋼板を素材として用いる必要がある。 For example, it is necessary to use a steel plate with a large total elongation as a raw material so that cracking of the steel plate does not occur in the can body processing and flange processing at the time of manufacturing the three-piece can represented by bottom processing and can expansion processing at the time of manufacturing the two-piece can There is.
 さらに、腐食性の強い内容物への耐性も考慮すると耐食性が良好な鋼板にする必要がある。そこで、耐食性を阻害する過剰な元素添加は行うことができない。 Furthermore, considering the resistance to highly corrosive contents, it is necessary to use a steel sheet with good corrosion resistance. Therefore, it is impossible to add an excessive element that inhibits the corrosion resistance.
 上記特性について、前述の従来技術では、強度、延性、耐食性の中のいずれかを満たす鋼板を製造することは可能であるが、全てを満足する鋼板は製造できない。 With regard to the above characteristics, the above-described conventional technology can produce a steel sheet that satisfies any of the strength, ductility, and corrosion resistance, but cannot produce a steel sheet that satisfies all of the requirements.
 例えば、特許文献1、2に記載のC、Nを多量に添加して焼付硬化性により強度を上昇させる方法は、強度上昇には有効な方法ではあるが、鋼中の固溶C、N量が多いことから、降伏伸びが大きくなる。そして降伏伸びが大きくなるがゆえに、加工時にストレッチャーストレインと呼ばれるシワが発生することで表面外観を損ねる。よって、特許文献1、2に記載の技術には、改善の余地がある。 For example, the method of adding a large amount of C and N described in Patent Documents 1 and 2 and increasing the strength by bake hardenability is an effective method for increasing the strength, but the solid solution C and N amount in steel Since there are many, yield elongation becomes large. And since yield elongation becomes large, the surface appearance is spoiled by generating wrinkles called stretcher strain during processing. Therefore, there is room for improvement in the techniques described in Patent Documents 1 and 2.
 特許文献3では析出強化により高強度化を実現しており、強度と延性バランスのとれた鋼が提案されているが、表面外観を損ねる降伏伸びについて記載されておらず、通常の製造方法では本発明で目標とする降伏伸びは得られない。 Patent Document 3 realizes high strength by precipitation strengthening and proposes a steel with a balance between strength and ductility, but does not describe the yield elongation that impairs the surface appearance. The yield elongation targeted by the invention cannot be obtained.
 特許文献4では、固溶強化による高強度化を提案しているが、一般に耐食性を阻害する元素として知られているP、Mnが過剰に添加されているため、耐食性を阻害する恐れが高い。 Patent Document 4 proposes an increase in strength by solid solution strengthening, but P and Mn, which are generally known as elements that inhibit corrosion resistance, are excessively added, so that there is a high risk of inhibiting corrosion resistance.
 特許文献5では、Nb、Ti等の析出、細粒化強化を用いることで目標強度を得ている。しかし、溶接部の成形性、表面性状の観点から特許文献5ではTiのみならず、Ca、REMの添加も必須である。さらに、特許文献5に記載の発明のもとでは、Alで脱酸する従来方法に比べると、Ti合金の歩留りが悪い課題が考えられる。 In Patent Document 5, target strength is obtained by using precipitation and refinement strengthening of Nb, Ti and the like. However, from the viewpoint of the formability and surface properties of the welded portion, Patent Document 5 requires the addition of not only Ti but also Ca and REM. Furthermore, under the invention described in Patent Document 5, there is a problem that the yield of the Ti alloy is poor as compared with the conventional method of deoxidizing with Al.
 本発明は、かかる事情に鑑みなされたもので、高強度で、優れた延性を有し、さらに腐食性の強い内容物に対しても耐食性が良好な缶用鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a steel plate for cans having high strength, excellent ductility, and good corrosion resistance even for highly corrosive contents and a method for producing the same. With the goal.
 本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。 The present inventors have conducted intensive research to solve the above problems. As a result, the following knowledge was obtained.
 析出強化、固溶強化、加工強化の複合的な組み合わせに着目し、Nによる固溶強化およびNb、Ti、Bによる析出強化を図ることで延性が劣ることなく高強度化できる。 Focusing on the combined combination of precipitation strengthening, solid solution strengthening, and process strengthening, the strength can be increased without inferior in ductility by achieving solid solution strengthening with N and precipitation strengthening with Nb, Ti, and B.
 また、鋼板の板厚方向表面側と中央側で固溶N量に差をつけて、優れた延性と高強度化の並立をはかれる。 Also, by making a difference in the amount of solute N between the surface side and the center side in the thickness direction of the steel sheet, excellent ductility and high strength can be arranged side by side.
 また、耐食性に支障のない範囲の元素添加量で原板の成分設計を行うことで、腐食性の強い内容物に対しても良好な耐食性を示す。 In addition, by designing the composition of the original plate with the addition amount of elements within the range that does not affect the corrosion resistance, it shows good corrosion resistance even for highly corrosive contents.
 さらに、製造方法においては、熱間圧延工程の巻き取り温度及び巻き取り後の冷却速度を適切に調整し、全伸びを低下させることなく高強度化できる。 Furthermore, in the manufacturing method, the coiling temperature in the hot rolling process and the cooling rate after coiling can be adjusted appropriately to increase the strength without reducing the total elongation.
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
 [1]質量%で、C:0.020%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.2%以下、P:0.007%以上0.100%以下、S:0.03%以下、Al:0.0010%以上0.10%以下、N:0.0120%超え0.020%以下を含有し、さらにNb:0.010%以上0.050%以下、Ti:0.010%以上0.050%以下、B:0.0010%以上0.010%以下から選ばれる一種または二種以上を含み、残部が鉄および不可避的不純物からなる成分組成を有し、組織はフェライト相を有し、該フェライト相の面積率が50%以上であり、
210℃、20分の熱処理後における、上降伏強度が480~700MPa、全伸びが12%以上であり、
板厚方向に表面~1/8深さ位置までの領域における固溶N量と、表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量の比が、下記の式1を満たす、缶用鋼板。
(板厚方向に表面~1/8深さ位置までの領域における固溶N量)/(板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量)≦0.96・・・(式1)
 [2]前記フェライト相が再結晶組織である、[1]に記載の缶用鋼板。
[1] By mass%, C: 0.020% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.2% or less, P: 0.007% or more, and 0.0. 100% or less, S: 0.03% or less, Al: 0.0010% or more and 0.10% or less, N: 0.0120% to 0.020% or less, and Nb: 0.010% or more and 0 .050% or less, Ti: 0.010% or more and 0.050% or less, B: One or two or more selected from 0.0010% or more and 0.010% or less, with the balance being iron and inevitable impurities Having a component composition, the structure has a ferrite phase, the area ratio of the ferrite phase is 50% or more,
The upper yield strength after heat treatment at 210 ° C. for 20 minutes is 480 to 700 MPa, and the total elongation is 12% or more.
The ratio of the amount of solute N in the region from the surface to 1/8 depth position in the sheet thickness direction and the amount of solute N in the region from the surface to 3/8 depth position to 4/8 depth position is as follows. A steel plate for cans that satisfies Equation 1 below.
(Solution N amount in region from surface to 1/8 depth position in plate thickness direction) / (Solution N in region from surface to 3/8 depth position to 4/8 depth position in plate thickness direction) Amount) ≦ 0.96 (Formula 1)
[2] The steel plate for cans according to [1], wherein the ferrite phase has a recrystallized structure.
 [3]前記フェライト相の面積率が70%以上である、[1]又は[2]に記載の缶用鋼板。 [3] The steel plate for cans according to [1] or [2], wherein the area ratio of the ferrite phase is 70% or more.
 [4][1]~[3]のいずれかに記載の缶用鋼板の製造方法であって、
鋼を、仕上げ圧延温度がAr3変態点以上で圧延し、巻き取り温度が500~620℃で巻き取り、巻取り後に冷却速度が10℃/hr以下で冷却する熱間圧延工程と、
前記熱間圧延工程後に、圧下率が80%以上で圧延する1次冷間圧延工程と、
前記1次冷間圧延工程後に、均熱温度が660~800℃、均熱時間が55s以下で連続焼鈍する焼鈍工程と、
前記焼鈍工程後に、圧下率が1~19%で圧延する2次冷間圧延工程と、を有する、缶用鋼板の製造方法。
[4] A method for producing a steel plate for cans according to any one of [1] to [3],
A hot rolling step in which the steel is rolled at a finish rolling temperature of Ar3 transformation point or higher, wound at a winding temperature of 500 to 620 ° C., and cooled at a cooling rate of 10 ° C./hr or lower after winding;
After the hot rolling step, a primary cold rolling step of rolling at a rolling reduction of 80% or more,
After the primary cold rolling step, an annealing step of continuous annealing at a soaking temperature of 660 to 800 ° C. and a soaking time of 55 s or less;
And a secondary cold rolling step of rolling at a rolling reduction of 1 to 19% after the annealing step.
 本発明によれば、高強度で、優れた延性を有し、さらに腐食性の強い内容物に対しても耐食性が良好な缶用鋼板が得られる。 According to the present invention, it is possible to obtain a steel plate for cans having high strength, excellent ductility, and good corrosion resistance even for highly corrosive contents.
 さらに、本発明であれば、鋼板の高強度化により、溶接缶を薄ゲージ化しても高い缶体強度を確保することが可能となる。また、優れた延性により、溶接缶で用いられる拡缶加工のような強い缶胴加工やフランジ加工を行うことも可能となる。 Furthermore, according to the present invention, by increasing the strength of the steel sheet, it is possible to ensure a high strength of the can even if the welded can is made thinner. Further, due to the excellent ductility, it is possible to perform strong can barrel processing and flange processing such as can expansion processing used in welded cans.
 さらに、本発明であれば、耐食性に支障を生じないように、成分組成が設定されている。その結果、本発明の缶用鋼板は、強度、延性、耐食性いずれにおいても優れる。 Furthermore, in the present invention, the component composition is set so that the corrosion resistance is not hindered. As a result, the steel plate for cans of the present invention is excellent in any of strength, ductility, and corrosion resistance.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
 本発明の缶用鋼板は、210℃、20分の熱処理後における、上降伏強度(以下、U-YPと称することもある。)が480~700MPa、全伸びが12%以上であり、優れた耐食性を有する。また、本発明の缶用鋼板では、時効性を小さくすることもできる。 The steel plate for cans according to the present invention has an excellent yield strength (hereinafter sometimes referred to as U-YP) after heat treatment at 210 ° C. for 20 minutes and a total elongation of 12% or more. Has corrosion resistance. Moreover, in the steel plate for cans of this invention, aging can also be made small.
 本発明では、析出強化元素、固溶強化元素を含有しつつ、成分組成、組織等を適正化することで、上記のように上降伏強度が480~700MPa、全伸びが12%以上、かつ、耐食性に優れた缶用鋼板が得られる。 In the present invention, by containing the precipitation strengthening element and the solid solution strengthening element, by optimizing the component composition, structure, etc., the upper yield strength is 480 to 700 MPa as described above, the total elongation is 12% or more, and A steel plate for cans having excellent corrosion resistance is obtained.
 次に、本発明の缶用鋼板の成分組成について説明する。本発明の缶用鋼板は、質量%で、C:0.020%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.2%以下、P:0.007%以上0.100%以下、S:0.03%以下、Al:0.0010%以上0.10%以下、N:0.0120%超え0.020%以下を含有し、さらにNb:0.010%以上0.050%以下、Ti:0.010%以上0.050%以下、B:0.0010%以上0.010%以下から選ばれる一種または二種以上を含み、残部が鉄および不可避的不純物からなる成分組成を有する。以下、各成分について説明する。なお、本明細書において、成分組成の説明における「%」は「質量%」を意味する。 Next, the component composition of the steel plate for cans of the present invention will be described. The steel plate for cans of the present invention is, by mass%, C: 0.020% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.2% or less, P: 0.00. 007% or more and 0.100% or less, S: 0.03% or less, Al: 0.0010% or more and 0.10% or less, N: 0.0120% to 0.020% or less, and Nb: 0 0.010% or more and 0.050% or less, Ti: 0.010% or more and 0.050% or less, B: 0.0010% or more and 0.010% or less selected from one or two or more, with the balance being iron and It has a component composition consisting of inevitable impurities. Hereinafter, each component will be described. In the present specification, “%” in the description of the component composition means “% by mass”.
 C:0.020%以上0.130%以下
本発明の缶用鋼板においては、所定以上の上降伏強度(480~700MPa)を達成すると同時に12%以上の全伸びを有することが必須である。そのためにはNb添加で生成するNbCによる析出強化、Ti添加で生成するTiCによる析出強化、B添加で生成するBNによる析出強化を利用することが重要となる。NbC、TiCによる析出強化を利用するためには、缶用鋼板のC含有量が重要となる。具体的には、C含有量の下限を0.020%とすることが必要である。好ましくは、C含有量の下限は0.030%である。一方、C含有量が0.130%を超えると、鋼の溶製中冷却過程の中で亜包晶割れを起こす。このため、C含有量の上限は0.130%とする。好ましくは、C含有量の上限は0.080%である。
C: 0.020% or more and 0.130% or less In the steel sheet for cans of the present invention, it is essential that the upper yield strength (480 to 700 MPa) is achieved at a predetermined level or more and the total elongation is 12% or more. For that purpose, it is important to use precipitation strengthening by NbC produced by addition of Nb, precipitation strengthening by TiC produced by addition of Ti, and precipitation strengthening by BN produced by addition of B. In order to utilize precipitation strengthening by NbC and TiC, the C content of the steel plate for cans is important. Specifically, it is necessary to set the lower limit of the C content to 0.020%. Preferably, the lower limit for the C content is 0.030%. On the other hand, if the C content exceeds 0.130%, subperitectic cracking occurs during the cooling process during steel melting. For this reason, the upper limit of the C content is 0.130%. Preferably, the upper limit of the C content is 0.080%.
 Si:0.04%以下
Siは固溶強化により鋼板を高強度化させる元素である。しかし、Si含有量が0.04%を超えると耐食性が著しく損なわれる。よって、Si含有量は0.04%以下とする。好ましくは、Si含有量は0.02%以下である。なお、本発明ではSi以外の元素や製造条件の調整により上降伏強度を高めることが可能であるため、Siによる固溶強化を利用する必要はない。このため、本発明においてはSiを含まなくてもよい。Si含有量について、あえて下限側の好ましい例をあげるなら、0.001%以上である。
Si: 0.04% or less Si is an element that increases the strength of a steel sheet by solid solution strengthening. However, if the Si content exceeds 0.04%, the corrosion resistance is significantly impaired. Therefore, the Si content is set to 0.04% or less. Preferably, the Si content is 0.02% or less. In the present invention, since it is possible to increase the upper yield strength by adjusting elements other than Si and manufacturing conditions, it is not necessary to use solid solution strengthening by Si. For this reason, in this invention, it is not necessary to contain Si. If a preferable example on the lower limit side is given about Si content, it is 0.001% or more.
 Mn:0.10%以上1.2%以下
Mnは固溶強化により鋼板の強度を増加させ、フェライト平均結晶粒径も小さくする。フェライト平均結晶粒径を小さくする効果が顕著に生じるのはMn含有量が0.10%以上である。また、目標の上降伏強度を確保するにはMn含有量を0.10%以上にする必要がある。よって、Mn含有量の下限を0.10%とする。好ましくは、Mn含有量の下限は0.20%である。一方、Mn含有量が1.2%を超えると耐食性、表面特性が劣る。よって、Mn含有量の上限を1.2%とする。好ましくは、Mn含有量の上限は0.80%である。
Mn: 0.10% or more and 1.2% or less Mn increases the strength of the steel sheet by solid solution strengthening and also reduces the average ferrite grain size. The effect of reducing the average ferrite grain size is noticeably produced when the Mn content is 0.10% or more. Moreover, in order to ensure the target upper yield strength, the Mn content must be 0.10% or more. Therefore, the lower limit of the Mn content is 0.10%. Preferably, the lower limit of the Mn content is 0.20%. On the other hand, if the Mn content exceeds 1.2%, the corrosion resistance and surface properties are inferior. Therefore, the upper limit of the Mn content is 1.2%. Preferably, the upper limit of Mn content is 0.80%.
 P:0.007%以上0.100%以下
Pは固溶強化能が大きい元素ではある。しかし、Pの含有量が0.100%を超えると耐食性が劣る。このため、P含有量は0.100%以下とする。P含有量は好ましくは0.080%以下であり、より好ましくは0.030%以下である。また、P含有量を0.007%未満とするには脱りん時間が大幅に上昇する。このため、P含有量は0.007%以上とする。
P: 0.007% or more and 0.100% or less P is an element having a large solid solution strengthening ability. However, if the P content exceeds 0.100%, the corrosion resistance is poor. For this reason, the P content is 0.100% or less. The P content is preferably 0.080% or less, more preferably 0.030% or less. Moreover, in order to make P content less than 0.007%, dephosphorization time rises significantly. For this reason, the P content is set to 0.007% or more.
 S:0.03%以下
本発明の缶用鋼板はC、N含有量が高く、また、スラブ割れの原因となる析出物を形成するNb、Ti、Bから選ばれる一種または二種以上を含むため、連続鋳造時矯正帯でスラブエッジが割れやすくなる。スラブ割れを防止する点からS含有量は0.03%以下にする。好ましくはS含有量は0.02%以下である。より好ましくは、S含有量は0.01%以下である。
S: 0.03% or less The steel plate for cans of the present invention has a high C and N content, and includes one or more selected from Nb, Ti, and B that form precipitates that cause slab cracking. For this reason, the slab edge tends to break in the straightening zone during continuous casting. In view of preventing slab cracking, the S content is set to 0.03% or less. Preferably, the S content is 0.02% or less. More preferably, the S content is 0.01% or less.
 Al:0.0010%以上0.10%以下
Al含有量を増加すると、再結晶温度の上昇がもたらされるため、Al含有量の増加分だけ焼鈍温度を高く設定する必要がある。本発明においては、上降伏強度を増加させるために添加する他の元素の影響で再結晶温度が上昇し、焼鈍温度を高く設定しなければならない。そこで、Alによる再結晶温度の上昇を極力回避することが必要であり、Al含有量を0.10%以下とする。Al含有量は好ましくは0.070%以下である。一方、固溶Nを完全に除去するのは困難であるため、介在物制御の観点から、Al含有量を0.0010%以上とする。なお、Alは脱酸剤として添加することが好ましく、この効果を得るためにはAl含有量を0.010%以上とすることが好ましい。
Al: 0.0010% or more and 0.10% or less Increasing the Al content results in an increase in the recrystallization temperature. Therefore, it is necessary to set the annealing temperature as high as the increase in the Al content. In the present invention, the recrystallization temperature rises due to the influence of other elements added to increase the upper yield strength, and the annealing temperature must be set high. Therefore, it is necessary to avoid the increase in the recrystallization temperature due to Al as much as possible, and the Al content is set to 0.10% or less. The Al content is preferably 0.070% or less. On the other hand, since it is difficult to completely remove the solid solution N, the Al content is set to 0.0010% or more from the viewpoint of inclusion control. Al is preferably added as a deoxidizer, and in order to obtain this effect, the Al content is preferably 0.010% or more.
 N:0.0120%超え0.020%以下
Nは固溶強化を増加させるために必要な元素である。固溶強化の効果を発揮させるためには、N含有量を0.0120%超えとする必要がある。一方、N含有量が多すぎると、連続鋳造時の温度が低下する下部矯正帯でスラブ割れが生じやすくなる。よって、N含有量は0.020%以下とする。
N: 0.0120% to 0.020% or less N is an element necessary for increasing solid solution strengthening. In order to exert the effect of solid solution strengthening, the N content needs to be over 0.0120%. On the other hand, when there is too much N content, it will become easy to produce a slab crack in the lower correction zone where the temperature at the time of continuous casting falls. Therefore, the N content is 0.020% or less.
 Nb:0.010%以上0.050%以下
Nbは炭化物生成能の高い元素であり、微細な炭化物を析出させる。これにより、上降伏強度が上昇する。本発明では、Nb含有量によって上降伏強度を調整することができる。Nb含有量が0.010%以上のときにこの効果が生じるため、Nb含有量の下限は0.010%に限定する。好ましくは、下限は0.015%である。一方、Nbは再結晶温度の上昇をもたらすので、Nb含有量が0.050%を超えると、660~800℃の焼鈍温度、55s以下の均熱時間での連続焼鈍では未再結晶組織が多量に残存するなど、焼鈍し難くなる。このため、Nb含有量の上限を0.050%に限定する。
Nb: 0.010% or more and 0.050% or less Nb is an element having a high carbide generating ability and precipitates fine carbides. As a result, the upper yield strength increases. In the present invention, the upper yield strength can be adjusted by the Nb content. Since this effect occurs when the Nb content is 0.010% or more, the lower limit of the Nb content is limited to 0.010%. Preferably, the lower limit is 0.015%. On the other hand, Nb brings about an increase in recrystallization temperature. Therefore, if the Nb content exceeds 0.050%, a large amount of unrecrystallized structure is caused by continuous annealing at an annealing temperature of 660 to 800 ° C. and a soaking time of 55 s or less. It remains difficult to anneal. For this reason, the upper limit of Nb content is limited to 0.050%.
 Ti:0.010%以上0.050%以下
TiについてもNbと同様の理由で上降伏強度、降伏伸びを得ることを目的として添加する。0.010%以上含有するときにこの効果が生じるので、下限を0.010%とする。好ましくは下限は0.015%である。上限についてもNbと同様に、再結晶温度の観点から0.050%とする。好ましくは上限は0.030%である。
Ti: 0.010% or more and 0.050% or less Ti is also added for the purpose of obtaining upper yield strength and yield elongation for the same reason as Nb. Since this effect occurs when the content is 0.010% or more, the lower limit is made 0.010%. Preferably the lower limit is 0.015%. The upper limit is also set to 0.050% from the viewpoint of the recrystallization temperature, similarly to Nb. Preferably the upper limit is 0.030%.
 B:0.0010%以上0.010%以下
Bはフェライト粒内のB系析出物を核としてセメンタイト析出を促進させるため、降伏伸びを小さくする効果を示す。0.0010%以上含有するときにこの効果が生じるので、下限を0.0010%とする。好ましくは下限は0.0012%である。上限については再結晶温度の観点から0.010%とする。好ましくは上限は0.0050%である。
B: 0.0010% or more and 0.010% or less B has the effect of reducing yield elongation because it promotes cementite precipitation using B-based precipitates in ferrite grains as nuclei. Since this effect occurs when the content is 0.0010% or more, the lower limit is made 0.0010%. Preferably the lower limit is 0.0012%. The upper limit is made 0.010% from the viewpoint of the recrystallization temperature. Preferably the upper limit is 0.0050%.
 上記成分以外の残部はFeおよび不可避的不純物とする。 The remainder other than the above components is Fe and inevitable impurities.
 次に本発明の缶用鋼板の組織について説明する。 Next, the structure of the steel plate for cans of the present invention will be described.
 組織はフェライト相を有し、該フェライト相の面積率が50%以上
本発明の缶用鋼板はフェライト相を有する。強度と延性確保の観点から、本発明の缶用鋼板ではフェライト相の面積率が50%以上である。好ましくはフェライト相の面積率が70%以上であり、より好ましくは100%である。フェライト相の面積率は圧延方向に平行な断面を研摩後にナイタル液で腐食して撮影した組織写真より、板厚方向に鋼板表面から4/8深さ位置の視野において圧延加工組織とフェライト相を分別して、フェライト相の面積を全面積で割算することで求める。
The structure has a ferrite phase, and the area ratio of the ferrite phase is 50% or more. The steel plate for cans of the present invention has a ferrite phase. From the viewpoint of securing strength and ductility, the steel plate for cans of the present invention has an area ratio of ferrite phase of 50% or more. The area ratio of the ferrite phase is preferably 70% or more, and more preferably 100%. The area ratio of the ferrite phase is determined from the structure photograph taken by grinding a cross section parallel to the rolling direction and then corroding with a nital liquid, in the field of view at a depth of 4/8 from the steel sheet surface in the thickness direction. It is determined by dividing and dividing the area of the ferrite phase by the total area.
 全伸びを12%以上とする観点から、本発明のフェライト相は、好ましくは再結晶組織である。本発明は、再結晶組織の他、高強度な未再結晶組織である圧延加工組織を含んでもよい。ナイタル液で腐食して撮影した組織写真(光学顕微鏡観察)では、未再結晶組織である圧延加工組織は圧延加工により結晶粒が潰された組織で腐食のため黒く見え、再結晶組織であるフェライト相は再結晶により結晶粒が成長しているため結晶粒は腐食されずに真っ白く見える。 From the viewpoint of setting the total elongation to 12% or more, the ferrite phase of the present invention preferably has a recrystallized structure. In addition to the recrystallized structure, the present invention may include a rolled structure that is a high-strength non-recrystallized structure. In the microstructure photograph (observed with an optical microscope) taken by corrosion with a night liquid, the rolled structure, which is an unrecrystallized structure, appears to be black due to corrosion because the crystal grains are crushed by rolling, and the recrystallized structure is ferrite. In the phase, since the crystal grains are grown by recrystallization, the crystal grains look white without being corroded.
 (板厚方向に表面~1/8深さ位置までの領域における固溶N量)/(板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量)≦0.96
板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域の固溶N量を増やして上降伏強度をより上昇させることができる。一方、板厚方向に表面~1/8深さ位置までの領域では固溶N量を減らして軟質とし良好な全伸びを得ることができる。これらより、板厚方向に表面~1/8深さ位置までの領域における固溶N量と、板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量の比を0.96以下とする。板厚方向で材質差をつけることで、良好な耐食性を保ちつつ、延性と強度を極めて優れた状態で両立させることができると考えられる。材質差は大きいほど延性と強度のバランスに優れ、高強度でかつ高延性を両立することができる。このため、板厚方向に表面~1/8深さ位置までの領域における固溶N量と、板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量の比は、好ましくは0.93以下であり、より好ましくは0.91以下であり、さらにより好ましくは0.89以下である。板厚方向に表面~1/8深さ位置までの領域における固溶N量は、熱延の巻き取り温度を低くすれば大きな値になり、熱延の巻き取り温度を高くすれば小さな値になる。また、巻き取り後の冷却速度を小さくすれば、板厚方向に表面~1/8深さ位置までの領域における固溶N量は小さな値になる。
(Solution N amount in region from surface to 1/8 depth position in plate thickness direction) / (Solution N in region from surface to 3/8 depth position to 4/8 depth position in plate thickness direction) Amount) ≤ 0.96
The upper yield strength can be further increased by increasing the amount of solute N in the region from the surface to the 3/8 depth position to the 4/8 depth position in the thickness direction. On the other hand, in the region from the surface to the 1 / 8th depth position in the plate thickness direction, the amount of dissolved N can be reduced to make it soft and to obtain good total elongation. From these, the solid solution N amount in the region from the surface to 1/8 depth position in the plate thickness direction and the solid solution in the region from the surface 3/8 depth position to 4/8 depth position in the plate thickness direction. The ratio of N amount is set to 0.96 or less. It is considered that by making the material difference in the plate thickness direction, it is possible to achieve both excellent ductility and strength while maintaining good corrosion resistance. The greater the material difference, the better the balance between ductility and strength, and both high strength and high ductility can be achieved. Therefore, the amount of dissolved N in the region from the surface to 1/8 depth position in the plate thickness direction and the solid solution in the region from the surface to 3/8 depth position to 4/8 depth position in the plate thickness direction. The ratio of N amount is preferably 0.93 or less, more preferably 0.91 or less, and even more preferably 0.89 or less. The amount of solute N in the region from the surface to the depth of 1/8 in the plate thickness direction increases as the hot rolling coiling temperature decreases, and decreases as the hot rolling coiling temperature increases. Become. Further, if the cooling rate after winding is reduced, the amount of solute N in the region from the surface to the 1/8 depth position in the plate thickness direction becomes a small value.
 板厚方向に表面~1/8深さ位置までの領域における固溶N量は、好ましくは0.0114~0.0190質量%である。板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量は、好ましくは、0.0118~0.0198質量%である。 The amount of solute N in the region from the surface to the 1/8 depth position in the plate thickness direction is preferably 0.0114 to 0.0190 mass%. The amount of solute N in the region from the surface to the 3/8 depth position to the 4/8 depth position in the thickness direction is preferably 0.0118 to 0.0198 mass%.
 板厚方向の表面から板厚の1/8の深さまでの間の固溶N量は、板厚の1/8の深さまで、10%Brメタノールで抽出し、AlN、BN等として析出しているN量を分析し、その後、トータルのN量からAlN、BN等として析出しているN量を減じて算出する。 The amount of solute N between the surface in the plate thickness direction and the depth of 1/8 of the plate thickness is extracted with 10% Br methanol to a depth of 1/8 of the plate thickness, and precipitated as AlN, BN, etc. The amount of N present is analyzed, and then the amount of N deposited as AlN, BN, etc. is subtracted from the total amount of N.
 板厚方向に表面から3/8の深さ位置から4/8の深さ位置までの間の固溶N量は、板厚の3/8の深さ位置までシュウ酸研磨を実施した後、引き出して洗浄し、10%Brメタノールで抽出し、AlN、BN等として析出しているN量を分析し、その後、トータルのN量からAlN、BN等として析出しているN量を減じて算出する。トータルN量は質量%で表され、表面から板厚方向の中心である4/8の深さ位置まで連続的に含まれるサンプルを用いて、表面から板厚方向の中心である4/8の深さ位置までの平均N質量%を算出した。 The amount of solute N between the depth position of 3/8 and the depth position of 4/8 from the surface in the plate thickness direction is obtained after oxalic acid polishing to the depth position of 3/8 of the plate thickness. Extracted and washed, extracted with 10% Br methanol, analyzed the amount of N deposited as AlN, BN, etc., and then calculated by subtracting the amount of N deposited as AlN, BN, etc. from the total N amount To do. The total N amount is expressed by mass%, and the sample is continuously included from the surface to the depth position of 4/8 that is the center in the plate thickness direction, and 4/8 that is the center in the plate thickness direction from the surface. The average N mass% up to the depth position was calculated.
 本発明では、210℃、20分の熱処理後における、上降伏強度および全伸びを規定する。
 上降伏強度:480~700MPa
0.19mm程度の板厚材について、溶接缶のデント強度、2ピース缶の耐圧強度を確保するために、上降伏強度を480MPa以上とする。上降伏強度は、好ましくは500MPa以上である。一方、700MPa超えの上降伏強度を得ようとすると多量の元素添加が必要となる。多量の元素添加は本発明の缶用鋼板の耐食性を阻害するおそれがある。そこで、上降伏強度は700MPa以下とする。上記成分組成を採用するとともに、例えば後述する製造条件を採用することで、缶用鋼板の上降伏強度を480~700MPaに制御することができる。
In the present invention, the upper yield strength and the total elongation after heat treatment at 210 ° C. for 20 minutes are defined.
Upper yield strength: 480 to 700 MPa
In order to ensure the dent strength of the welding can and the pressure strength of the two-piece can, the upper yield strength is set to 480 MPa or more for the plate thickness of about 0.19 mm. The upper yield strength is preferably 500 MPa or more. On the other hand, in order to obtain an upper yield strength exceeding 700 MPa, a large amount of element needs to be added. Addition of a large amount of element may hinder the corrosion resistance of the steel plate for cans of the present invention. Therefore, the upper yield strength is 700 MPa or less. The upper yield strength of the steel plate for cans can be controlled to 480 to 700 MPa by employing the above component composition and, for example, the production conditions described later.
 全伸び:12%以上
缶用鋼板の全伸びが12%を下回ると、例えば、拡缶加工のような缶胴加工により成形される缶の製造においてクラックなどの割れ発生等の不具合が発生するおそれがある。また、全伸びが12%を下回ると、缶のフランジ加工時にクラックが発生するおそれがある。従って、全伸びの下限は12%とする。全伸びは好ましくは13%以上であり、より好ましくは14%以上である。例えば、再結晶組織であるフェライト相の量を特定の範囲とした後、焼鈍後の2次冷間圧延の圧下率を特定の範囲にすることにより全伸び12%以上に制御することができる。2次冷間圧延の圧下率制御で製造する場合に得られる全伸びは、好ましくは35%以下であり、より好ましくは25%以下である。
Total elongation: 12% or more If the total elongation of the steel plate for cans is less than 12%, there is a risk that defects such as cracks may occur in the production of cans formed by can body processing such as can expansion processing. There is. On the other hand, if the total elongation is less than 12%, cracks may occur during flange processing of the can. Therefore, the lower limit of total elongation is 12%. The total elongation is preferably 13% or more, more preferably 14% or more. For example, the total elongation can be controlled to 12% or more by setting the amount of ferrite phase as a recrystallized structure in a specific range and then setting the rolling reduction ratio of secondary cold rolling after annealing in a specific range. The total elongation obtained when producing by controlling the reduction ratio of secondary cold rolling is preferably 35% or less, more preferably 25% or less.
 本発明の缶用鋼板の板厚は特に限定されないが、0.4mm以下としてよく、0.3mm以下としてよく、0.2mm以下としてよい。 The plate thickness of the steel plate for cans of the present invention is not particularly limited, but may be 0.4 mm or less, 0.3 mm or less, or 0.2 mm or less.
 本発明の缶用鋼板には、更にめっき層が備えられてもよい。該めっき層として、例えば、Snめっき層、ティンフリーなどのCrめっき層、Niめっき層、Sn-Niめっき層等がある。 The steel plate for cans of the present invention may further be provided with a plating layer. Examples of the plating layer include an Sn plating layer, a Cr plating layer such as tin-free, an Ni plating layer, and an Sn—Ni plating layer.
 次に本発明の缶用鋼板の製造方法について説明する。本発明の缶用鋼板は、熱間圧延工程と、1次冷間圧延工程と、焼鈍工程と、2次冷間圧延工程とを有する製造方法で製造されることが好ましい。以下、各製造工程について説明する。 Next, the manufacturing method of the steel plate for cans of the present invention will be described. It is preferable that the steel plate for cans of this invention is manufactured with the manufacturing method which has a hot rolling process, a primary cold rolling process, an annealing process, and a secondary cold rolling process. Hereinafter, each manufacturing process will be described.
 熱間圧延工程
熱間圧延工程とは、鋼を、仕上げ圧延温度がAr3変態点以上で圧延し、巻き取り温度が500~620℃で巻き取り、巻取り後に冷却速度が10℃/hr以下で冷却する工程である。
Hot rolling process The hot rolling process is a process in which steel is rolled at a finish rolling temperature of Ar3 transformation point or higher, wound at a winding temperature of 500 to 620 ° C, and cooled at a cooling rate of 10 ° C / hr or lower after winding. It is the process of cooling.
 圧延素材となる鋼について説明する。鋼は、上述の成分組成に調整された溶鋼を、転炉等を用いた公知の溶製方法により溶製し、次に連続鋳造法等の通常用いられる鋳造方法で圧延素材とすることで得られる。 The steel used as a rolling material will be explained. Steel is obtained by melting molten steel adjusted to the above-described component composition by a known melting method using a converter or the like, and then forming a rolled material by a commonly used casting method such as a continuous casting method. It is done.
 上記により得られた鋼に対して熱間圧延を施し、熱延鋼板を製造する。熱間圧延の圧延開始時には、鋼の温度を1200℃以上にするのが好ましい。 鋼 Hot rolled steel sheet is manufactured by hot rolling the steel obtained as described above. At the start of hot rolling, the temperature of the steel is preferably 1200 ° C. or higher.
 また、熱間圧延における仕上げ圧延温度はAr3変態点以上とする。本発明においてAr3変態点は加工フォーマスターでサンプルを1200℃に加熱後に徐冷する過程でサンプルの体積がγ→α変態によりで膨張した温度で求める。熱間圧延における仕上げ圧延温度は、上降伏強度を確保する上で重要条件となる。仕上げ圧延温度がAr3変態点未満では、γ+αの2相域熱延により粒成長し、冷間圧延し、焼鈍した後の結晶粒が粗大化するため、上降伏強度が低下する。よって、熱間圧延における仕上げ圧延温度はAr3変態点以上に限定する。熱間圧延における仕上げ圧延温度(仕上圧延終了温度)は、好ましくは、Ar3変態点~Ar3変態点+20℃の範囲内である。なお、仕上げ圧延温度の上限は特に限定されないが、スケール発生を抑制するという理由で980℃を上限とすることが好ましい。 Also, the finish rolling temperature in hot rolling is set to the Ar3 transformation point or higher. In the present invention, the Ar3 transformation point is determined at a temperature at which the volume of the sample expands due to the γ → α transformation in the process of heating the sample to 1200 ° C. and then slowly cooling it with a processing for master. The finish rolling temperature in the hot rolling is an important condition for securing the upper yield strength. When the finish rolling temperature is lower than the Ar3 transformation point, the grain yields by the two-phase hot rolling of γ + α, and the crystal grains after cold rolling and annealing are coarsened, so that the upper yield strength is lowered. Therefore, the finish rolling temperature in the hot rolling is limited to the Ar3 transformation point or higher. The finish rolling temperature in hot rolling (finish rolling finishing temperature) is preferably in the range of Ar3 transformation point to Ar3 transformation point + 20 ° C. In addition, although the upper limit of finish rolling temperature is not specifically limited, It is preferable to make 980 degreeC into an upper limit for the reason of suppressing scale generation.
 熱間圧延工程における巻取り温度は、本発明で重要となる上降伏強度、全伸びを制御する上で重要な条件である。巻取り温度を500℃未満にすると、表層が早く冷却されるため、表層のAlN量が少なくなり、表層の固溶N量が増加する。このため、巻き取り温度の下限は500℃とする。好ましくは、巻取り温度の下限は、550℃である。一方、巻取り温度が620℃を超えると、固溶強化のために添加したNがAlNとなって中央層に析出して、固溶N量が低下し、その結果、上降伏強度が低下する。このため、巻取り温度の上限を620℃とする。好ましくは、巻取り温度の上限は、600℃である。 The coiling temperature in the hot rolling process is an important condition for controlling the upper yield strength and the total elongation, which are important in the present invention. When the coiling temperature is less than 500 ° C., the surface layer is cooled quickly, so the amount of AlN in the surface layer decreases and the amount of solid solution N in the surface layer increases. For this reason, the minimum of coiling temperature shall be 500 degreeC. Preferably, the lower limit of the winding temperature is 550 ° C. On the other hand, when the coiling temperature exceeds 620 ° C., N added for solid solution strengthening becomes AlN and precipitates in the central layer, so that the amount of solid solution N decreases, and as a result, the upper yield strength decreases. . For this reason, the upper limit of coiling temperature shall be 620 degreeC. Preferably, the upper limit of the coiling temperature is 600 ° C.
 熱間圧延工程における巻取り後の冷却速度10℃/hr以下は重要な条件である。巻取り後の冷却速度は10℃/hrを超えると、表層が急冷されることで表層のAlN析出が減り固溶N量が増え全伸びが低下する。一方、冷却速度の下限は特に限定されないが、鋼板の製造効率の観点から2℃/hr以上が好ましい。 A cooling rate of 10 ° C./hr or less after winding in the hot rolling process is an important condition. When the cooling rate after winding exceeds 10 ° C./hr, the surface layer is rapidly cooled, so that the precipitation of AlN on the surface layer decreases, the amount of solute N increases, and the total elongation decreases. On the other hand, the lower limit of the cooling rate is not particularly limited, but is preferably 2 ° C./hr or more from the viewpoint of the production efficiency of the steel sheet.
 1次冷間圧延工程
1次冷間圧延工程は、熱間圧延工程後に、圧下率が80%以上で冷間圧延する工程である。なお、熱間圧延工程後1次冷間圧延工程前に適宜他の工程が含まれても良いし、熱間圧延工程の直後に1次冷間圧延工程を行っても良い。
Primary cold rolling step The primary cold rolling step is a step of cold rolling at a rolling reduction of 80% or more after the hot rolling step. In addition, another process may be suitably included after the hot rolling process and before the primary cold rolling process, or the primary cold rolling process may be performed immediately after the hot rolling process.
 例えば、熱間圧延工程で形成された表層スケールを除去することが好ましい。表層スケールの除去の方法は特に限定するものではないが、例えば、酸洗のような化学的な除去や、物理的な除去等種々の方法が適用できる。 For example, it is preferable to remove the surface layer scale formed in the hot rolling process. The method for removing the surface scale is not particularly limited, and various methods such as chemical removal such as pickling and physical removal can be applied.
 1次冷間圧延工程における圧下率は、本発明において重要な条件の一つである。1次冷間圧延工程での圧下率が80%未満では、上降伏強度が480MPa以上の鋼板を製造することは困難である。さらに、本工程での圧下率を80%未満とした場合、2次冷間圧延工程の圧下率を20%以上とした従来のDR材並みの板厚(0.17mm程度)を得るためには、少なくとも熱延板の板厚を0.9mm以下にまでする必要がある。しかし、操業上、熱延板の板厚を0.9mm以下とすることは困難である。従って、本工程での圧下率は80%以上とする。1次冷間圧延工程における圧下率の上限は特に限定しないが、表面欠陥抑制の観点から圧下率95%以下が好ましい。 The rolling reduction in the primary cold rolling process is one of the important conditions in the present invention. If the rolling reduction in the primary cold rolling process is less than 80%, it is difficult to produce a steel sheet having an upper yield strength of 480 MPa or more. Furthermore, when the reduction ratio in this process is less than 80%, in order to obtain a plate thickness (about 0.17 mm) similar to that of a conventional DR material in which the reduction ratio in the secondary cold rolling process is 20% or more At least the thickness of the hot rolled sheet needs to be 0.9 mm or less. However, in operation, it is difficult to set the thickness of the hot rolled sheet to 0.9 mm or less. Therefore, the rolling reduction in this step is 80% or more. The upper limit of the rolling reduction in the primary cold rolling step is not particularly limited, but a rolling reduction of 95% or less is preferable from the viewpoint of suppressing surface defects.
 焼鈍工程
焼鈍工程とは、1次冷間圧延工程後に、均熱温度が660~800℃、均熱時間が55s以下で連続焼鈍する工程である。ここで、単位「s」は「秒」を意味する。なお、1次冷間圧延工程後焼鈍工程前に適宜他の工程が含まれても良いし、1次冷間圧延工程の直後に焼鈍工程を行っても良い。
Annealing Step An annealing step is a step of performing continuous annealing after the primary cold rolling step at a soaking temperature of 660 to 800 ° C. and a soaking time of 55 seconds or less. Here, the unit “s” means “second”. In addition, another process may be appropriately included before the annealing process after the primary cold rolling process, or the annealing process may be performed immediately after the primary cold rolling process.
 焼鈍には連続焼鈍装置を用いる。鋼板の組織をより均一にするためには、均熱温度を660℃以上にする。一方、均熱温度が800℃超えの条件で連続焼鈍するためには、鋼板の破断を防止するために極力搬送速度を落とす必要があり、生産性が低下する。以上の点から、均熱温度を660~800℃の範囲とする。均熱温度は好ましくは660~710℃であり、より好ましくは660~705℃である。 A continuous annealing device is used for annealing. In order to make the structure of the steel plate more uniform, the soaking temperature is set to 660 ° C. or higher. On the other hand, in order to perform continuous annealing under conditions where the soaking temperature exceeds 800 ° C., it is necessary to reduce the conveying speed as much as possible in order to prevent breakage of the steel sheet, and productivity is lowered. From the above points, the soaking temperature is set in the range of 660 to 800 ° C. The soaking temperature is preferably 660 to 710 ° C, more preferably 660 to 705 ° C.
 均熱時間が55s超えになるような速度では、生産性を確保できないため、均熱時間は55s以下とする。均熱時間は40s以下が好ましい。均熱時間の下限は特に限定されないが、均熱時間を短くするためには、搬送速度を速くすることが必要なため蛇行させずに安定的搬送することが難しくなるという理由で、10sを下限とすることが好ましい。 Since the productivity cannot be secured at a speed where the soaking time exceeds 55 s, the soaking time is 55 s or less. The soaking time is preferably 40 s or less. The lower limit of the soaking time is not particularly limited, but in order to shorten the soaking time, it is necessary to increase the transport speed, so that it is difficult to stably transport without meandering. It is preferable that
 2次冷間圧延工程
2次冷間圧延工程とは、上記焼鈍工程後に、圧下率が1~19%で冷間圧延する工程である。なお、焼鈍工程後2次冷間圧延工程前に適宜他の工程が含まれても良いし、焼鈍工程の直後に2次冷間圧延工程を行っても良い。
Secondary cold rolling step The secondary cold rolling step is a step of cold rolling at a rolling reduction of 1 to 19% after the annealing step. In addition, another process may be appropriately included before the secondary cold rolling process after the annealing process, or the secondary cold rolling process may be performed immediately after the annealing process.
 焼鈍後の2次冷間圧延での圧下率を通常のDR材製造条件と同様(20%以上)にすると、加工時に導入される歪が多くなるため全伸びが低下する。本発明では極薄材で全伸び12%以上を確保する必要があるため、2次冷間圧延での圧下率は19%以下とする。また、2次冷間圧延には鋼板の表面粗さ付与の役割があり、均一に鋼板に表面粗さを付与するために2次冷間圧延の圧下率は1%以上にする必要がある。2次冷間圧延工程での圧下率は8~19%としても良い。 If the reduction ratio in the secondary cold rolling after annealing is the same as the normal DR material production conditions (20% or more), the strain introduced during processing increases, so the total elongation decreases. In the present invention, since it is necessary to ensure a total elongation of 12% or more with an ultrathin material, the reduction ratio in the secondary cold rolling is set to 19% or less. In addition, secondary cold rolling has a role of imparting surface roughness of the steel sheet, and in order to uniformly impart surface roughness to the steel sheet, the reduction ratio of secondary cold rolling needs to be 1% or more. The rolling reduction in the secondary cold rolling process may be 8 to 19%.
 2次冷間圧延工程後について
本発明の製造方法では、2次冷間圧延後においても、種々の工程を行いうる。例えば、めっき工程、塗装焼付け処理工程、フィルムラミネート等の工程を行ってもよい。
After the secondary cold rolling process In the production method of the present invention, various processes can be performed even after the secondary cold rolling process. For example, you may perform processes, such as a plating process, a paint baking process, and a film lamination.
 表1に示す成分組成を含有し、残部がFe及び不可避的不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを再加熱した後、熱間圧延し、巻取った。次いで、酸洗後、1次冷間圧延し、薄鋼板を製造した。得られた薄鋼板を、加熱速度15℃/secで加熱し表2に記載の均熱条件で連続焼鈍を行った。次いで、冷却後、二次冷間圧延を施し、通常のSnめっきを連続的に施して、ぶりきを得た。なお、詳細な製造条件を表2に示す。表2における「最終板厚」はSnめっき層を含まない厚さである。 Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated, then hot rolled and wound up. Then, after pickling, primary cold rolling was performed to produce a thin steel plate. The obtained thin steel plate was heated at a heating rate of 15 ° C./sec and subjected to continuous annealing under the soaking conditions described in Table 2. Then, after cooling, secondary cold rolling was performed, and normal Sn plating was continuously performed to obtain a tinplate. Detailed production conditions are shown in Table 2. “Final plate thickness” in Table 2 is a thickness not including the Sn plating layer.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上により得られたSnめっき鋼板(ぶりき)に対して、210℃、20分の塗装焼付け処理に相当する熱処理を行った後、引張試験を行い上降伏強度及び全伸びを測定し、また、フェライト相の結晶組織についても調査した。測定方法、調査方法は以下の通りである。 For the Sn-plated steel sheet (cover) obtained as described above, after performing a heat treatment corresponding to a coating baking process at 210 ° C. for 20 minutes, a tensile test is performed to measure the upper yield strength and the total elongation. The crystal structure of the ferrite phase was also investigated. The measurement method and survey method are as follows.
 引張試験は、JIS5号サイズの引張試験片を用いて行い、JIS Z 2241により上降伏強度(U-YP)を測定し、JIS Z 2241により全伸び(El)を測定した。得られた結果を表3に示す。 The tensile test was performed using a JIS No. 5 size tensile test piece, the upper yield strength (U-YP) was measured according to JIS Z 2241, and the total elongation (El) was measured according to JIS Z 2241. The obtained results are shown in Table 3.
 結晶組織は、サンプルを研磨して、ナイタルで結晶粒界を腐食させて、光学顕微鏡で観察した。結晶組織を観察したところ、発明例の缶用鋼板はいずれもフェライト相の面積率が50%以上であった。なお、該フェライト相は再結晶組織であった。 The crystal structure was observed with an optical microscope by polishing the sample, corroding the crystal grain boundary with nital. When the crystal structure was observed, the steel plate for cans of the invention example had an area ratio of the ferrite phase of 50% or more. The ferrite phase had a recrystallized structure.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 板厚方向に表面~1/8深さ位置までの領域における固溶N量、表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量をトータルN量から窒化物のN量を減じる方法で測定した。測定結果を表4に示した。 The solute N amount in the region from the surface to 1/8 depth position in the plate thickness direction, and the solute N amount in the region from the surface 3/8 depth position to 4/8 depth position are nitrided from the total N amount It measured by the method of reducing N amount of a thing. The measurement results are shown in Table 4.
 耐圧強度:鋼板を用いてロールフォーム、溶接、ネック成形、フランジ成形後に蓋を巻き締めて空缶サンプルを作成後、チャンバーに入れ、圧縮空気で加圧後にサンプルが座屈した圧力を測定した。座屈時の圧力が0.2MPa以上を◎、0.14~0.13MPaを○、0.13MPa未満を×(不合格)とした。 Compressive strength: After roll form, welding, neck forming, and flange forming using steel plates, a lid was wound and a blank can sample was prepared, placed in a chamber, and the pressure at which the sample was buckled after being pressurized with compressed air was measured. A buckling pressure of 0.2 MPa or more was rated as ◎, 0.14 to 0.13 MPa as ◯, and less than 0.13 MPa as x (failed).
 成形性:鋼板を用いてロールフォーム、溶接、ネック成形したときのネック成形時のシワを観察した。目視で全くシワが無い場合を◎、目視で微細なシワが1箇所見られる場合を○、目視で微細なシワが2箇所以上見られる場合を×(不合格)とした。 Formability: Wrinkles at the time of neck forming when roll forming, welding, and neck forming using a steel plate were observed. The case where there was no visual wrinkle was rated as 、, the case where one fine wrinkle was seen visually was marked as ○, and the case where two or more fine wrinkles were seen visually was marked as x (failed).
 耐食性:電気めっきブリキの耐食性評価に用いられているアロイ・ティン・カップル(ATC)試験設備を用いて評価した。ATC値が0.05μA/cm未満のものを◎、0.05~0.12μA/cmのものを○、0.12μA/cmを超えるものを×(不合格)とした。 Corrosion resistance: It was evaluated using an alloy tin couple (ATC) test facility used for evaluating the corrosion resistance of electroplated tin. What ATC value is less than 0.05μA / cm 2 ◎, those 0.05 ~ 0.12μA / cm 2 ○, and a × (fail) those exceeding 0.12μA / cm 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明によれば、高強度で、優れた延性を有し、さらに腐食性の強い内容物に対しても耐食性が良好な缶用鋼板が得られる。本発明は、高加工度の缶胴加工を伴う3ピース缶、ボトム部が数%加工される2ピース缶を中心に缶用鋼板として最適である。 According to the present invention, it is possible to obtain a steel plate for cans having high strength, excellent ductility, and good corrosion resistance even for highly corrosive contents. The present invention is most suitable as a steel plate for cans centering on a three-piece can with a high degree of can body processing and a two-piece can whose bottom portion is processed by several percent.

Claims (4)

  1.  質量%で、C:0.020%以上0.130%以下、Si:0.04%以下、Mn:0.10%以上1.2%以下、P:0.007%以上0.100%以下、S:0.03%以下、Al:0.0010%以上0.10%以下、N:0.0120%超え0.020%以下を含有し、さらにNb:0.010%以上0.050%以下、Ti:0.010%以上0.050%以下、B:0.0010%以上0.010%以下から選ばれる一種または二種以上を含み、残部が鉄および不可避的不純物からなる成分組成を有し、
     組織はフェライト相を有し、該フェライト相の面積率が50%以上であり、
     210℃、20分の熱処理後における、上降伏強度が480~700MPa、全伸びが12%以上であり、
     板厚方向に表面~1/8深さ位置までの領域における固溶N量と、表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量の比が、下記の式1を満たす、缶用鋼板。
    (板厚方向に表面~1/8深さ位置までの領域における固溶N量)/(板厚方向に表面から3/8深さ位置~4/8深さ位置までの領域における固溶N量)≦0.96・・・(式1)
    In mass%, C: 0.020% or more and 0.130% or less, Si: 0.04% or less, Mn: 0.10% or more and 1.2% or less, P: 0.007% or more and 0.100% or less S: 0.03% or less, Al: 0.0010% or more and 0.10% or less, N: 0.0120% or more and 0.020% or less, and Nb: 0.010% or more and 0.050% Hereinafter, a component composition comprising Ti: 0.010% or more and 0.050% or less, B: one or more selected from 0.0010% or more and 0.010% or less, with the balance being iron and inevitable impurities. Have
    The structure has a ferrite phase, the area ratio of the ferrite phase is 50% or more,
    The upper yield strength after heat treatment at 210 ° C. for 20 minutes is 480 to 700 MPa, and the total elongation is 12% or more.
    The ratio of the amount of solute N in the region from the surface to 1/8 depth position in the sheet thickness direction and the amount of solute N in the region from the surface to 3/8 depth position to 4/8 depth position is as follows. A steel plate for cans that satisfies Equation 1 below.
    (Solution N amount in region from surface to 1/8 depth position in plate thickness direction) / (Solution N in region from surface to 3/8 depth position to 4/8 depth position in plate thickness direction) Amount) ≦ 0.96 (Formula 1)
  2.  前記フェライト相が再結晶組織である、請求項1に記載の缶用鋼板。 The steel plate for cans according to claim 1, wherein the ferrite phase has a recrystallized structure.
  3.  前記フェライト相の面積率が70%以上である、請求項1又は2に記載の缶用鋼板。 The steel plate for cans according to claim 1 or 2, wherein the area ratio of the ferrite phase is 70% or more.
  4.  請求項1~3のいずれかに記載の缶用鋼板の製造方法であって、
     鋼を、仕上げ圧延温度がAr3変態点以上で圧延し、巻き取り温度が500~620℃で巻き取り、巻取り後に冷却速度が10℃/hr以下で冷却する熱間圧延工程と、
     前記熱間圧延工程後に、圧下率が80%以上で圧延する1次冷間圧延工程と、
     前記1次冷間圧延工程後に、均熱温度が660~800℃、均熱時間が55s以下で連続焼鈍する焼鈍工程と、
     前記焼鈍工程後に、圧下率が1~19%で圧延する2次冷間圧延工程と、を有する、缶用鋼板の製造方法。
    A method for producing a steel plate for cans according to any one of claims 1 to 3,
    A hot rolling step in which the steel is rolled at a finish rolling temperature of Ar3 transformation point or higher, wound at a winding temperature of 500 to 620 ° C., and cooled at a cooling rate of 10 ° C./hr or lower after winding;
    After the hot rolling step, a primary cold rolling step of rolling at a rolling reduction of 80% or more,
    After the primary cold rolling step, an annealing step of continuous annealing at a soaking temperature of 660 to 800 ° C. and a soaking time of 55 s or less;
    And a secondary cold rolling step of rolling at a rolling reduction of 1 to 19% after the annealing step.
PCT/JP2016/001774 2015-03-31 2016-03-28 Steel sheet for cans and method for manufacturing steel sheet for cans WO2016157878A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016544875A JP6028884B1 (en) 2015-03-31 2016-03-28 Steel plate for cans and method for producing steel plate for cans
KR1020177027622A KR101994914B1 (en) 2015-03-31 2016-03-28 Steel sheet for can and method for manufacturing the same
CN201680019401.9A CN107429360B (en) 2015-03-31 2016-03-28 The manufacturing method of steel plate for tanks and steel plate for tanks
CONC2017/0009718A CO2017009718A2 (en) 2015-03-31 2017-09-27 Steel sheet for a can and method of manufacturing it

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015071649 2015-03-31
JP2015-071649 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016157878A1 true WO2016157878A1 (en) 2016-10-06

Family

ID=57005566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001774 WO2016157878A1 (en) 2015-03-31 2016-03-28 Steel sheet for cans and method for manufacturing steel sheet for cans

Country Status (7)

Country Link
JP (1) JP6028884B1 (en)
KR (1) KR101994914B1 (en)
CN (1) CN107429360B (en)
CO (1) CO2017009718A2 (en)
MY (1) MY173780A (en)
TW (1) TWI617677B (en)
WO (1) WO2016157878A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059196A (en) * 2016-10-04 2018-04-12 Jfeスチール株式会社 High strength ultrathin steel sheet and manufacturing method therefor
WO2019088044A1 (en) * 2017-10-31 2019-05-09 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2020261965A1 (en) * 2019-06-24 2020-12-30 Jfeスチール株式会社 Steel sheet for can, and method for manufacturing same
CN113242909A (en) * 2018-12-20 2021-08-10 杰富意钢铁株式会社 Steel sheet for can and method for producing same
JPWO2021167023A1 (en) * 2020-02-21 2021-08-26
CN113748220A (en) * 2019-03-29 2021-12-03 杰富意钢铁株式会社 Steel sheet for can and method for producing same
EP3845678A4 (en) * 2018-08-30 2022-01-19 JFE Steel Corporation Steel sheet for can, and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350737A (en) * 2004-06-11 2005-12-22 Nippon Steel Corp Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP2008214658A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Steel sheet for can, hot rolled steel sheet used for base material therefor, and their manufacturing method
JP2009007607A (en) * 2007-06-27 2009-01-15 Nippon Steel Corp Steel sheet for extrathin vessel
JP2013028842A (en) * 2011-07-29 2013-02-07 Jfe Steel Corp Steel plate for high strength high workability can and method for manufacturing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08246060A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Production of steel sheet for can
JPH08325670A (en) 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
JP3769914B2 (en) 1998-01-06 2006-04-26 Jfeスチール株式会社 Steel plate for cans with excellent aging resistance and bake hardenability
JP4051778B2 (en) 1998-10-08 2008-02-27 Jfeスチール株式会社 Steel plate for cans suitable for 3-piece cans with good surface properties
JP4244486B2 (en) 1999-08-05 2009-03-25 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof
JP3887009B2 (en) 2002-12-05 2007-02-28 東洋鋼鈑株式会社 Steel plate for thinned deep-drawn ironing can and manufacturing method thereof
JP5526483B2 (en) * 2008-03-19 2014-06-18 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof
BRPI0911139B1 (en) * 2008-04-03 2018-03-13 Jfe Steel Corporation HIGH RESISTANCE STEEL PLATE FOR CAN AND METHOD FOR PRODUCTION
CN102301025B (en) * 2009-01-30 2014-06-25 杰富意钢铁株式会社 Corrosion resistant steel for crude oil tank, manufacturing method therefor, and crude oil tank
CN103014483B (en) * 2011-09-26 2015-12-02 宝山钢铁股份有限公司 The secondary cold-rolling plate of high extension and manufacture method thereof
CN104245985B (en) * 2012-04-06 2017-08-11 杰富意钢铁株式会社 High-strength high-processability steel plate and its manufacture method
JP5854134B2 (en) * 2012-06-06 2016-02-09 Jfeスチール株式会社 3-piece can body and manufacturing method thereof
JP6274302B2 (en) * 2014-10-28 2018-02-07 Jfeスチール株式会社 Steel plate for 2-piece can and manufacturing method thereof
US10837076B2 (en) * 2014-11-12 2020-11-17 Jfe Steel Corporation Steel sheet for cans and method for manufacturing steel sheet for cans
WO2016157760A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005350737A (en) * 2004-06-11 2005-12-22 Nippon Steel Corp Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP2008214658A (en) * 2007-02-28 2008-09-18 Jfe Steel Kk Steel sheet for can, hot rolled steel sheet used for base material therefor, and their manufacturing method
JP2009007607A (en) * 2007-06-27 2009-01-15 Nippon Steel Corp Steel sheet for extrathin vessel
JP2013028842A (en) * 2011-07-29 2013-02-07 Jfe Steel Corp Steel plate for high strength high workability can and method for manufacturing the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059196A (en) * 2016-10-04 2018-04-12 Jfeスチール株式会社 High strength ultrathin steel sheet and manufacturing method therefor
WO2019088044A1 (en) * 2017-10-31 2019-05-09 Jfeスチール株式会社 High-strength steel sheet and method for producing same
JP6569840B1 (en) * 2017-10-31 2019-09-04 Jfeスチール株式会社 High strength steel plate and manufacturing method thereof
TWI672383B (en) * 2017-10-31 2019-09-21 日商杰富意鋼鐵股份有限公司 High-strength steel plate and manufacturing method thereof
US11913087B2 (en) 2017-10-31 2024-02-27 Jfe Steel Corporation High-strength steel sheet and method for producing same
EP3845678A4 (en) * 2018-08-30 2022-01-19 JFE Steel Corporation Steel sheet for can, and method for producing same
CN113242909A (en) * 2018-12-20 2021-08-10 杰富意钢铁株式会社 Steel sheet for can and method for producing same
EP3901300A4 (en) * 2018-12-20 2022-04-27 JFE Steel Corporation Steel plate for can and method for producing same
CN115821158A (en) * 2018-12-20 2023-03-21 杰富意钢铁株式会社 Steel sheet for can and method for producing same
CN113748220A (en) * 2019-03-29 2021-12-03 杰富意钢铁株式会社 Steel sheet for can and method for producing same
JP6881696B1 (en) * 2019-06-24 2021-06-02 Jfeスチール株式会社 Steel sheet for cans and its manufacturing method
WO2020261965A1 (en) * 2019-06-24 2020-12-30 Jfeスチール株式会社 Steel sheet for can, and method for manufacturing same
JPWO2021167023A1 (en) * 2020-02-21 2021-08-26
WO2021167023A1 (en) * 2020-02-21 2021-08-26 Jfeスチール株式会社 Sheet steel and method for manufacturing sheet steel
JP7014341B2 (en) 2020-02-21 2022-02-01 Jfeスチール株式会社 Steel plate and steel plate manufacturing method

Also Published As

Publication number Publication date
MY173780A (en) 2020-02-20
KR101994914B1 (en) 2019-07-01
TW201702404A (en) 2017-01-16
TWI617677B (en) 2018-03-11
CN107429360A (en) 2017-12-01
CO2017009718A2 (en) 2018-02-28
JPWO2016157878A1 (en) 2017-04-27
CN107429360B (en) 2019-06-25
KR20170121277A (en) 2017-11-01
JP6028884B1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5712479B2 (en) Steel plate for cans excellent in rough skin resistance and method for producing the same
JP2009263789A (en) High strength steel sheet for vessel, and method for producing the same
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
TWI643964B (en) Two-piece can steel plate and manufacturing method thereof
JP6540769B2 (en) High strength ultra thin steel plate and method of manufacturing the same
JP2010150571A (en) Method for manufacturing steel sheet for can-making
TWI721696B (en) Steel plate for tank and manufacturing method thereof
JP6699310B2 (en) Cold rolled steel sheet for squeezer and method for manufacturing the same
JP6191807B1 (en) Steel plate for can and manufacturing method thereof
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
JP2005350737A (en) Thin steel sheet for can provided with strong can body strength and press workability and its production method
JP6361553B2 (en) Steel plate for high workability and high strength can and manufacturing method thereof
JP6881696B1 (en) Steel sheet for cans and its manufacturing method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016544875

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: NC2017/0009718

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20177027622

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771766

Country of ref document: EP

Kind code of ref document: A1