JP6421773B2 - Steel plate for can and manufacturing method thereof - Google Patents

Steel plate for can and manufacturing method thereof Download PDF

Info

Publication number
JP6421773B2
JP6421773B2 JP2016038202A JP2016038202A JP6421773B2 JP 6421773 B2 JP6421773 B2 JP 6421773B2 JP 2016038202 A JP2016038202 A JP 2016038202A JP 2016038202 A JP2016038202 A JP 2016038202A JP 6421773 B2 JP6421773 B2 JP 6421773B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel
tensile test
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016038202A
Other languages
Japanese (ja)
Other versions
JP2017155267A (en
Inventor
多田 雅毅
雅毅 多田
克己 小島
克己 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2016038202A priority Critical patent/JP6421773B2/en
Publication of JP2017155267A publication Critical patent/JP2017155267A/en
Application granted granted Critical
Publication of JP6421773B2 publication Critical patent/JP6421773B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高加工度の缶胴加工により成形される3ピース缶、耐圧強度を必要とする2ピース缶等の素材として用いられる缶用鋼板およびその製造方法に関するものである。   TECHNICAL FIELD The present invention relates to a steel plate for cans used as a raw material for a three-piece can formed by high-process can body processing, a two-piece can that requires pressure strength, and a method for manufacturing the same.

近年、スチール缶の需要を拡大するため、製缶コストを低減する策、異形缶のような新規缶種にスチール缶を投入する策がとられている。   In recent years, in order to increase the demand for steel cans, measures have been taken to reduce can manufacturing costs and to introduce steel cans into new can types such as deformed cans.

前記製缶コストの低減策としては、素材の低コスト化が挙げられる。絞り加工により成形される2ピース缶はもとより、単純な円筒成形が主体の3ピース缶であっても、使用する鋼板の薄肉化が進められている。   As a measure for reducing the can manufacturing cost, there is a cost reduction of the material. In addition to 2-piece cans formed by drawing, even 3-piece cans mainly made of simple cylindrical molding are being used to reduce the thickness of the steel sheets used.

ただし、単に鋼板を薄肉化すると缶体強度が低下する。したがって、再絞り缶(DRD(draw−redraw)缶)や溶接缶の缶胴部のような高強度材が用いられている箇所には、単に薄肉化したのみの鋼板を用いることができない。そこで、高強度で極薄の缶用鋼板が望まれている。   However, simply reducing the thickness of the steel sheet will reduce the strength of the can body. Therefore, it is not possible to use a thinned steel plate in a place where a high-strength material such as a redrawn can (DRD (draw-redraw) can) or a can body of a welded can is used. Therefore, a high strength and extremely thin steel plate for cans is desired.

現在、極薄で高強度な缶用鋼板は、焼鈍後に圧下率が20%以上の2次冷間圧延を施すDuble Reduce法(以下、DR法と称す)で製造されている。DR法を利用して製造した鋼板(以下、DR材とも称する)は高強度であるが、加工性が劣るという特徴がある。   At present, ultra-thin and high-strength steel sheets for cans are manufactured by a double reduction method (hereinafter referred to as DR method) in which secondary cold rolling with a rolling reduction of 20% or more is performed after annealing. A steel plate produced by using the DR method (hereinafter also referred to as a DR material) has a high strength but is characterized by poor workability.

こうした加工性劣化の欠点を回避するため、種々の加工性向上のための技術が下記特許文献に開示されている。   In order to avoid such disadvantages of workability deterioration, various techniques for improving workability are disclosed in the following patent documents.

特許文献1では、平均r値が1.0超であることを特徴とするフランジ加工性に優れる高強度缶用鋼板を得る技術が開示されている。   Patent Document 1 discloses a technique for obtaining a steel plate for high-strength cans having excellent flange workability, characterized in that the average r value is greater than 1.0.

特許文献2では、引張強度TSが390MPa以上、降伏比が80%以上、板厚が0.4mm以上、かつ板厚方向極限変形能が1.3以上であることを特徴とする曲げ加工性に優れた冷延鋼板が開示されている。   According to Patent Document 2, a cold work having excellent bending workability characterized by a tensile strength TS of 390 MPa or more, a yield ratio of 80% or more, a plate thickness of 0.4 mm or more, and a plate thickness direction ultimate deformability of 1.3 or more. A rolled steel sheet is disclosed.

特開2013−19027号公報JP 2013-19027 A 特開2010−229545号公報JP 2010-229545 A

まず、薄ゲージ化(薄肉化)するために強度確保が必要である。一方、フランジ加工により成形される缶体、ビード加工のような缶胴加工により成形される缶体や拡缶加工のような缶胴加工により成形される缶体に鋼板を用いる場合には、高延性すなわち加工性に優れた鋼を適用する必要がある。例えば、2ピース缶製造時のボトム加工、拡缶加工を代表とする3ピース缶製造時の缶胴加工およびフランジ加工において、鋼板の割れが発生しないような素材を用いる必要がある。   First, it is necessary to secure strength in order to reduce the gauge (thinner). On the other hand, when steel plates are used for can bodies formed by flange processing, can bodies formed by can body processing such as bead processing, and can bodies formed by can body processing such as can expansion processing, It is necessary to apply steel having excellent ductility, that is, workability. For example, it is necessary to use a material that does not cause cracks in a steel plate in can bottom processing and flange processing in three-piece can manufacturing, which is representative of bottom processing and can expansion processing in two-piece can manufacturing.

さらに、腐食性の強い内容物への耐性も考慮すると耐食性が良好な鋼板にする必要がある。   Furthermore, considering the resistance to highly corrosive contents, it is necessary to use a steel sheet with good corrosion resistance.

上記特性について、前述の従来技術では、全てを満足する鋼板は製造できない。   With respect to the above characteristics, the above-described conventional technology cannot produce a steel sheet that satisfies all of the requirements.

特許文献1に記載の方法では、高強度材を得るためにNb等の析出強化元素を添加したときに、再結晶粒の成長が抑制されるために焼鈍板の(111)の集積が低下して平均r値が低下すると板幅変化よりも板厚変化が大きくなり、板厚減少量が大きくなるので加工時の割れが発生しやすい。   In the method described in Patent Document 1, when a precipitation strengthening element such as Nb is added to obtain a high-strength material, the growth of recrystallized grains is suppressed, and the accumulation of (111) on the annealed plate is reduced. If the average r value decreases, the change in the plate thickness becomes larger than the change in the plate width, and the amount of reduction in the plate thickness increases.

特許文献2では、板幅方向の極限変形能について述べられておらず、フランジ加工のように周方向に拡径する加工では、幅方向の変形能が足りないためにクラック発生を抑制することが出来ない。   In Patent Document 2, the ultimate deformability in the plate width direction is not described, and in the process of expanding the diameter in the circumferential direction, such as flange processing, crack generation is suppressed because the deformability in the width direction is insufficient. I can't.

本発明は、かかる事情に鑑みなされたもので、高強度で、加工性および耐食性に優れた缶用鋼板およびその製造方法を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the steel plate for cans which was high intensity | strength, and was excellent in workability and corrosion resistance, and its manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。   The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.

析出強化、固溶強化、加工強化の複合的な組み合わせに着目し、Nによる固溶強化および固溶Nbのソリュートドラッグによるフェライト組織を変化させることで延性(伸び)が劣ることなく高強度化できる。   Focusing on the combined combination of precipitation strengthening, solid solution strengthening, and process strengthening, the strength can be increased without inferior ductility (elongation) by changing the solid solution strengthening by N and the ferrite structure by the solid drag of solid solution Nb. .

また、破断部における局部的な伸びを規定し、破断の起点となる破面で観察されるMnSの粒径を5μm以下とし、さらには、Nb析出物の平均粒径を100nm以下とすることで、フランジ成形などをはじめとする加工性を向上させることができる。   Further, by defining the local elongation at the fracture portion, the particle size of MnS observed on the fracture surface that is the starting point of fracture is 5 μm or less, and further the average particle size of Nb precipitates is 100 nm or less. Workability including flange molding can be improved.

また、耐食性に支障のない範囲の元素添加量で原板の成分設計を行うことで、腐食性の強い内容物に対しても耐食性を害することはない。   In addition, by designing the components of the original plate with an element addition amount within a range that does not affect the corrosion resistance, the corrosion resistance is not impaired even for highly corrosive contents.

さらに、製造方法においては、熱間圧延のスラブ加熱時の均熱時間、熱間圧延開始までの時間、仕上げ圧延の最終スタンドの圧下率等を適切に調整することで、加工性を低下させることなく高強度化できる。   Furthermore, in the manufacturing method, workability is lowered by appropriately adjusting the soaking time during slab heating in hot rolling, the time until the start of hot rolling, the rolling reduction of the final stand of finish rolling, etc. High strength can be achieved.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.020%以上0.039%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.100%以下、S:0.020%以下、Al:0.10%以下、N:0.0120%超え0.0200%以下、Nb:0.004%以上0.040%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板中のNb析出物の平均粒径が100nm以下であり、上降伏強度が460MPa以上であり、JIS.Z.2241規定の引張試験において、母材板厚をt、引張試験片の初期板幅をw、破断後の引張試験片の破面板厚をt、破断後の引張試験片の破面長さをwとしたとき、下記式(1)を満足し、さらに、破面のMnSの粒径が5μm以下である
ことを特徴とする缶用鋼板。
−(ln(t/t)+ln(w/w))≧1.10 (1)
[2]上記[1]に記載の缶用鋼板の製造方法であって、鋼スラブを、1200℃以上に加熱し、均熱時間が10分以下でスラブ加熱し、スラブ加熱炉を出てから10分以内に熱間圧延を開始し、仕上げ圧延温度が820℃以上990℃以下、仕上げ圧延の最終スタンドの圧下率が25%以下で熱間圧延し、巻取り温度が400℃以上720℃以下で巻き取る熱間圧延工程と、前記熱間圧延工程後に、酸洗し、圧下率が80%以上で圧延する一次冷間圧延工程と、前記一次冷間圧延工程後に、均熱温度が650℃以上800℃以下、均熱時間が55s以下で連続焼鈍する焼鈍工程と、前記焼鈍工程後に、1%以上19%以下の圧下率で圧延する二次冷間圧延工程とを有することを特徴とする缶用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.020% to 0.039%, Si: 0.04% or less, Mn: 0.10% to 0.60%, P: 0.100% or less, S : 0.020% or less, Al: 0.10% or less, N: 0.0120% to 0.0200% or less, Nb: 0.004% or more and 0.040% or less, the balance being Fe and inevitable It has a component composition consisting of impurities, the average grain size of Nb precipitates in the steel sheet is 100 nm or less, the upper yield strength is 460 MPa or more, JIS. Z. In the tensile test specified in 2241, the base metal plate thickness is t 0 , the initial plate width of the tensile test piece is w 0 , the fracture surface thickness of the tensile test piece after fracture is t, and the fracture surface length of the tensile test piece after fracture Is a steel plate for cans, wherein the following formula (1) is satisfied, and the particle size of MnS on the fracture surface is 5 μm or less.
− (Ln (t / t 0 ) + ln (w / w 0 )) ≧ 1.10 (1)
[2] The method for manufacturing a steel plate for cans according to [1] above, wherein the steel slab is heated to 1200 ° C. or higher, the soaking time is slab heated in 10 minutes or less, and after leaving the slab heating furnace. Hot rolling is started within 10 minutes, the hot rolling is performed at a finish rolling temperature of 820 ° C. or higher and 990 ° C. or lower, and a final rolling reduction ratio of 25% or lower, and a winding temperature of 400 ° C. or higher and 720 ° C. or lower. A primary rolling process in which the steel sheet is pickled and rolled at a reduction rate of 80% or more, and after the primary cold rolling process, the soaking temperature is 650 ° C. It is characterized by having an annealing step of continuous annealing at 800 ° C. or less and a soaking time of 55 s or less, and a secondary cold rolling step of rolling at a rolling reduction of 1% or more and 19% or less after the annealing step. Manufacturing method of steel plate for cans.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、高強度で、加工性および耐食性に優れた缶用鋼板が得られる。   According to the present invention, a steel plate for cans having high strength and excellent workability and corrosion resistance can be obtained.

さらに、本発明であれば、鋼板の高強度化により、溶接缶を薄ゲージ化しても高い缶体強度を確保することが可能となる。また、優れた加工性により、フランジ加工や溶接缶で用いられるビード加工や拡缶加工のような強い缶胴加工を行うことも可能となる。   Furthermore, according to the present invention, by increasing the strength of the steel sheet, it is possible to ensure high strength of the can even if the welded can is made thinner. In addition, because of excellent workability, it is possible to perform strong can body processing such as bead processing and can expansion processing used in flange processing and welded cans.

式(1)における、母材板厚をt、引張試験片の初期板幅をw、破断後の引張試験片の破面板厚をt、破断後の引張試験片の破面長さをwの位置関係を示す図である。In equation (1), the base material plate thickness is t 0 , the initial plate width of the tensile test piece is w 0 , the fracture surface thickness of the tensile test piece after fracture is t, and the fracture surface length of the tensile test piece after fracture is It is a figure which shows the positional relationship of w.

まず、本発明の缶用鋼板の成分組成について説明する。   First, the component composition of the steel plate for cans of this invention is demonstrated.

本発明では、固溶強化元素を含有しつつ、成分組成、析出物等を適正化することで、上降伏強度が460MPa以上の高強度と加工性および耐食性に優れた缶用鋼板が得られる。   In the present invention, a steel plate for a can having a high yield strength of 460 MPa or more, excellent workability and corrosion resistance can be obtained by optimizing the component composition, precipitates and the like while containing the solid solution strengthening element.

本発明の缶用鋼板は、質量%で、C:0.020%以上0.039%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.100%以下、S:0.020%以下、Al:0.10%以下、N:0.0120%超え0.0200%以下、Nb:0.004%以上0.040%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有する。   The steel plate for cans of the present invention is, by mass%, C: 0.020% or more and 0.039% or less, Si: 0.04% or less, Mn: 0.10% or more and 0.60% or less, P: 0.00. 100% or less, S: 0.020% or less, Al: 0.10% or less, N: 0.0120% to 0.0200% or less, Nb: 0.004% or more and 0.040% or less, the balance Has a component composition consisting of Fe and inevitable impurities.

C:0.020%以上0.039%以下
本発明の缶用鋼板においては、460MPa以上の上降伏強度を達成することが必要である。そのためにはNbを含有することで生成するNb析出物(NbC)による析出強化を利用することが重要となる。Nb析出物による析出強化を利用するためには、缶用鋼板のC含有量が重要となる。具体的には、C含有量の下限を0.020%とすることが必要である。一方、C含有量が0.039%を超えると、鉄炭化物の生成量が増加し、加工性が劣化する。このため、C含有量の上限は0.039%とする。
C: 0.020% or more and 0.039% or less In the steel plate for cans of the present invention, it is necessary to achieve an upper yield strength of 460 MPa or more. For that purpose, it is important to use precipitation strengthening by Nb precipitates (NbC) produced by containing Nb. In order to utilize precipitation strengthening by Nb precipitates, the C content of the steel plate for cans is important. Specifically, it is necessary to set the lower limit of the C content to 0.020%. On the other hand, if the C content exceeds 0.039%, the amount of iron carbide produced increases and the workability deteriorates. For this reason, the upper limit of the C content is 0.039%.

Si:0.04%以下
Siは固溶強化により鋼板を高強度化させる元素である。しかし、Si含有量が0.04%を超えると耐食性が著しく損なわれる。よって、Si含有量は0.04%以下とする。なお、本発明ではSi以外の元素や製造条件の調整により上降伏強度を高めることが可能であるため、Siによる固溶強化を利用しなくても本発明の目的の一つである高強度は達成できる。このため、本発明においてはSiを含まなくてもよい。
Si: 0.04% or less Si is an element that increases the strength of a steel sheet by solid solution strengthening. However, if the Si content exceeds 0.04%, the corrosion resistance is significantly impaired. Therefore, the Si content is set to 0.04% or less. In the present invention, since it is possible to increase the upper yield strength by adjusting elements other than Si and manufacturing conditions, the high strength, which is one of the objects of the present invention, without using the solid solution strengthening by Si is Can be achieved. For this reason, in this invention, it is not necessary to contain Si.

Mn:0.10%以上0.60%以下
Mnは固溶強化により鋼板の強度を増加させる。目標の上降伏強度を確保するにはMn含有量を0.10%以上にする必要がある。よって、Mn含有量の下限を0.10%とする。一方、Mn含有量が0.60%を超えると耐食性、表面特性が劣る。よって、Mn含有量の上限を0.60%とする。
Mn: 0.10% or more and 0.60% or less Mn increases the strength of the steel sheet by solid solution strengthening. In order to ensure the target upper yield strength, the Mn content must be 0.10% or more. Therefore, the lower limit of the Mn content is 0.10%. On the other hand, if the Mn content exceeds 0.60%, the corrosion resistance and surface characteristics are inferior. Therefore, the upper limit of the Mn content is set to 0.60%.

P:0.100%以下
Pは固溶強化能が大きい元素である。このような効果を得るためには0.007%以上含有することが好ましい。また、P含有量を0.007%未満とするには脱りん時間が大幅に上昇する。このため、P含有量は0.007%以上が好ましい。一方で、Pの含有量が0.100%を超えると耐食性が劣る。このため、P含有量は0.100%以下とする。
P: 0.100% or less P is an element having a large solid solution strengthening ability. In order to acquire such an effect, it is preferable to contain 0.007% or more. Moreover, in order to make P content less than 0.007%, dephosphorization time rises significantly. For this reason, the P content is preferably 0.007% or more. On the other hand, if the P content exceeds 0.100%, the corrosion resistance is poor. For this reason, the P content is 0.100% or less.

S:0.020%以下
本発明の缶用鋼板はN含有量が高く、また、スラブ割れの原因となる析出物を形成するNbを含むため、連続鋳造時矯正帯でスラブエッジが割れやすくなる。スラブ割れを防止する点からS含有量は0.020%以下にする。好ましくは、S含有量は0.015%以下である。より好ましくは、S含有量は0.005%以下である。
S: 0.020% or less Since the steel plate for cans of the present invention has a high N content and contains Nb that forms precipitates that cause slab cracking, the slab edge tends to crack in the straightening zone during continuous casting. . In view of preventing slab cracking, the S content is set to 0.020% or less. Preferably, the S content is 0.015% or less. More preferably, the S content is 0.005% or less.

Al:0.10%以下
Al含有量が増加すると、再結晶温度の上昇がもたらされるため、Al含有量の増加分だけ焼鈍温度を高く設定する必要がある。本発明においては、上降伏強度を増加させるために添加する他の元素の影響で再結晶温度が上昇し、焼鈍温度を高く設定しなければならない。そこで、Alによる再結晶温度の上昇を極力回避することが必要である。よって、Al含有量を0.10%以下とする。一方、Alは脱酸剤として添加することが好ましく、この効果を得るためにはAl含有量を0.001%以上とすることが好ましい。
Al: 0.10% or less Since an increase in the Al content causes an increase in the recrystallization temperature, it is necessary to set the annealing temperature higher by the increase in the Al content. In the present invention, the recrystallization temperature rises due to the influence of other elements added to increase the upper yield strength, and the annealing temperature must be set high. Therefore, it is necessary to avoid the increase in the recrystallization temperature due to Al as much as possible. Therefore, the Al content is set to 0.10% or less. On the other hand, Al is preferably added as a deoxidizer, and in order to obtain this effect, the Al content is preferably 0.001% or more.

N:0.0120%超え0.0200%以下
Nは固溶強化を増加させるために必要な元素である。固溶強化の効果を発揮させるためには、N含有量を0.0120%超えとする必要がある。一方、N含有量が多すぎると、連続鋳造時の温度が低下する下部矯正帯でスラブ割れが生じやすくなる。よって、N含有量は0.0200%以下とする。
N: 0.0120% to 0.0200% or less N is an element necessary for increasing solid solution strengthening. In order to exert the effect of solid solution strengthening, the N content needs to be over 0.0120%. On the other hand, when there is too much N content, it will become easy to produce a slab crack in the lower correction zone where the temperature at the time of continuous casting falls. Therefore, the N content is 0.0200% or less.

Nb:0.004%以上0.040%以下
Nbは炭化物生成能の高い元素であり、微細な炭化物を析出させる。これにより、上降伏強度が上昇する。本発明では、Nb含有量によって上降伏強度を調整することができる。Nb含有量が0.004%以上のときにこの効果が生じるため、Nb含有量の下限は0.004%に限定する。一方、Nbは再結晶温度の上昇をもたらすので、Nb含有量が0.040%を超えると、650〜800℃の焼鈍温度、55s以下の均熱時間での連続焼鈍では未再結晶組織が多量に残存する。このため、Nb含有量の上限を0.040%に限定する。
Nb: 0.004% or more and 0.040% or less Nb is an element having a high carbide generating ability and precipitates fine carbides. As a result, the upper yield strength increases. In the present invention, the upper yield strength can be adjusted by the Nb content. Since this effect occurs when the Nb content is 0.004% or more, the lower limit of the Nb content is limited to 0.004%. On the other hand, Nb increases the recrystallization temperature. Therefore, when the Nb content exceeds 0.040%, a large amount of non-recrystallized structure is caused by continuous annealing at an annealing temperature of 650 to 800 ° C. and a soaking time of 55 s or less. Remain. For this reason, the upper limit of Nb content is limited to 0.040%.

上記以外の残部はFeおよび不可避的不純物とする。   The balance other than the above is Fe and inevitable impurities.

次に本発明の缶用鋼板について説明する。   Next, the steel plate for cans of the present invention will be described.

鋼板中のNb析出物の平均粒径が100nm以下
Nb析出物は単独で析出するタイプと、MnSを核として複合的に析出するタイプが存在する。MnSを核として複合的に析出するタイプは、MnS近傍のボイドの発生を促進するので成形性を劣化させる。平均粒径が100nmを超える場合は、MnSを核として複合的に析出しているため、鋼板中のNb析出物の平均粒径は100nm以下にする。
The average particle size of Nb precipitates in the steel sheet is 100 nm or less. There are two types of Nb precipitates, one is a single precipitate and the other is a compound that precipitates in a complex manner using MnS as a nucleus. The type in which MnS is used as a core to precipitate together promotes the generation of voids in the vicinity of MnS, thus degrading the formability. When the average particle diameter exceeds 100 nm, since MnS is used as the core and the compound is precipitated, the average particle diameter of Nb precipitates in the steel sheet is set to 100 nm or less.

なお、鋼板中のNb析出物の平均粒径は、鋼板の断面を電解研磨し、透過型電子顕微鏡 (TEM) を用いて板厚の中央部で、面積2.79μmの視野を5万倍で5視野観察し、観察された全てのNb析出物の粒径を平均して平均粒径を算出した。また、焼鈍条件の均熱温度800℃以下かつ均熱時間を55秒以下に制御することにより、鋼板中のNb析出物の平均粒径を100nm以下にできる。 The average grain size of Nb precipitates in the steel sheet is 50,000 times the field of view of 2.79 μm 2 at the center of the plate thickness by electropolishing the cross section of the steel sheet and using a transmission electron microscope (TEM). The average particle size was calculated by averaging the particle sizes of all the observed Nb precipitates. Moreover, the average particle diameter of the Nb precipitate in a steel plate can be made into 100 nm or less by controlling soaking temperature of 800 degreeC or less of annealing conditions, and soaking time to 55 seconds or less.

上降伏強度が460MPa以上
溶接缶のデント強度、2ピース缶の耐圧強度を確保するために、上降伏強度を460MPa以上とする。上記成分組成を採用するとともに、例えば後述する製造条件を採用することで、缶用鋼板の上降伏強度を460MPa以上に制御することができる。
The upper yield strength is 460 MPa or more in order to ensure the dent strength of the welded can and the pressure resistance of the two-piece can. While adopting the above component composition, for example, by employing the manufacturing conditions described later, the upper yield strength of the steel plate for cans can be controlled to 460 MPa or more.

JIS.Z.2241規定の引張試験において、母材板厚をt、引張試験片の初期板幅をw、破断後の引張試験片の破面板厚をt、破断後の引張試験片の破面長さをwとしたとき、下記式(1)を満足する。なお、図1に、これらの位置関係を図示する。
−(ln(t/t)+ln(w/w))≧1.10 (1)
−(ln(t/t)+ln(w/w))≧1.10のとき、成形時の破断に至るまでの局部的な延びが良好となる。
JIS. Z. In the tensile test specified in 2241, the base metal plate thickness is t 0 , the initial plate width of the tensile test piece is w 0 , the fracture surface thickness of the tensile test piece after fracture is t, and the fracture surface length of the tensile test piece after fracture The following expression (1) is satisfied, where is w. FIG. 1 illustrates these positional relationships.
− (Ln (t / t 0 ) + ln (w / w 0 )) ≧ 1.10 (1)
When − (ln (t / t 0 ) + ln (w / w 0 )) ≧ 1.10, the local elongation until the fracture at the time of molding is good.

缶用鋼板のように板厚が極端に薄い材料で引張試験を行うと引張試験片の標点間で均一に変形が進行せず、標点間における伸びと、破断部近傍における局部的な伸びが異なる現象が生じる。加工性(成形性)の評価は、加工後にクラックが発生しているかいないかが重要となる。このクラック発生に至るまでの評価は、従来の引張試験の標点間の伸びでは正しく行うことが出来ず、局部的な伸びを表す−(ln(t/t)+ln(w/w))を用いることで評価することが可能となる。この式のうち破断時の板厚方向のひずみはln(t/t)で、破断時の板幅方向ひずみはln(w/w)で表すことができる。この式は、破断部における局部的な伸びを示しており、缶の成形におけるクラック発生を評価することが出来る。すなわち、上記式の対応した局部的な伸びを評価し、1.10以上とすることで、加工性が良好となる。 When a tensile test is performed with an extremely thin material such as a steel plate for cans, deformation does not progress uniformly between the marks on the tensile test piece, and the elongation between the marks and the local elongation near the fractured part. A different phenomenon occurs. In the evaluation of workability (formability), it is important whether cracks are generated after processing. The evaluation up to the occurrence of this crack cannot be performed correctly with the elongation between the gauge points of the conventional tensile test, and represents a local elongation-(ln (t / t 0 ) + ln (w / w 0 ). ) Can be used for evaluation. In this formula, the strain in the plate thickness direction at break can be expressed as ln (t / t 0 ), and the strain in the plate width direction at break can be expressed as ln (w / w 0 ). This formula indicates local elongation at the fracture portion, and the occurrence of cracks in can molding can be evaluated. That is, the local elongation corresponding to the above formula is evaluated, and when it is 1.10 or more, workability is improved.

破面のMnSの粒径が5μm以下
MnSは破断部の表面でよく見られ、延性破面においてはディンプルと呼ばれる凹みで観察される。このMnS近傍でボイドが発生し破断に至るため、MnSの粒径が大きくなるとボイドも大きくなり、加工度が小さい段階で破断する。破面で観察されるMnSの粒径(最大粒径)が5μm超えであると、介在物が破断の起点となる。よって、破面のMnSの粒径(最大粒径)は5μm以下とする。
破面のMnSの粒径は上降伏強度を測定したあとの破断面の板厚の全幅において500倍にて走査型電子顕微鏡 (SEM) を用いて観察を行い、画像で観察されるMnS析出物を目視で大きい方から10個の選定して各最大粒径を測定し、最も大きなMnSの粒径を最大粒径としたまた、スラブ加熱時の均熱時間、熱間圧延開始時間を制御することにより、−(ln(t/t)+ln(w/w))≧1.10、MnSの粒径を5μm以下とすることができる。
The particle size of MnS on the fracture surface is 5 μm or less. MnS is often observed on the surface of the fractured portion, and is observed in a dent called a dimple on the ductile fracture surface. Since voids are generated in the vicinity of MnS and breakage occurs, voids increase as the particle size of MnS increases, and fracture occurs when the degree of processing is small. When the particle size (maximum particle size) of MnS observed on the fracture surface exceeds 5 μm, the inclusions become the starting point of the fracture. Therefore, the particle size (maximum particle size) of MnS on the fracture surface is 5 μm or less.
The MnS grain size of the fracture surface is observed with a scanning electron microscope (SEM) at 500 times the full width of the thickness of the fracture surface after measuring the upper yield strength. Visually select the 10 largest particles and measure the maximum particle size, and set the largest MnS particle size to the maximum particle size. Also control the soaking time during slab heating and the hot rolling start time. Accordingly, − (ln (t / t 0 ) + ln (w / w 0 )) ≧ 1.10 and the particle diameter of MnS can be set to 5 μm or less.

板厚が0.4mm以下(好適条件)
現在、製缶コストの低減を目的として、鋼板の薄肉化が進められている。しかしながら、鋼板の薄肉化、すなわち、鋼板板厚の低減に伴って、缶体強度の低下が懸念される。これに対して、本発明の缶用鋼板は、板厚が薄い場合でも、缶体強度を低下させることない。板厚が薄い場合に、高延性かつ高強度という本発明の効果が顕著にでる。この点から、板厚は0.4mm以下とすることが好ましい。より好ましくは0.3mm以下、さらに好ましくは0.2mm以下である。
Plate thickness is 0.4mm or less (preferred condition)
Currently, steel sheets are being made thinner in order to reduce can manufacturing costs. However, there is a concern that the strength of the can may be reduced as the thickness of the steel plate is reduced, that is, as the steel plate thickness is reduced. On the other hand, the steel plate for cans of the present invention does not reduce the strength of the can even when the plate thickness is thin. When the plate thickness is thin, the effects of the present invention, such as high ductility and high strength, are significant. From this point, the plate thickness is preferably 0.4 mm or less. More preferably, it is 0.3 mm or less, More preferably, it is 0.2 mm or less.

次に、本発明の缶用鋼板の製造方法について説明する。
本発明の缶用鋼板の製造方法は、上記成分組成からなる鋼スラブを、1200℃以上に加熱し、均熱時間が10分以下でスラブ加熱し、スラブ加熱炉を出てから10分以内に熱間圧延を開始し、仕上げ圧延温度が820℃以上990℃以下、仕上げ圧延の最終スタンドの圧下率が25%以下で熱間圧延し、巻取り温度が400℃以上720℃以下で巻き取る熱間圧延工程と、熱間圧延工程後に、酸洗し、圧下率が80%以上で圧延する一次冷間圧延工程と、一次冷間圧延工程後に、均熱温度が650℃以上800℃以下、均熱時間が55s以下で連続焼鈍する焼鈍工程と、焼鈍工程後に、1%以上19%以下の圧下率で圧延する二次冷間圧延工程とを有する。
Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
The manufacturing method of the steel plate for cans of this invention heats the steel slab which consists of the said component composition to 1200 degreeC or more, slab heats in 10 minutes or less, and within 10 minutes after leaving a slab heating furnace. Heat that starts hot rolling, is hot-rolled at a finish rolling temperature of 820 ° C. or higher and 990 ° C. or lower, a final rolling reduction ratio of 25% or lower, and wound at a winding temperature of 400 ° C. or higher and 720 ° C. or lower. After the cold rolling process and the hot rolling process, pickling and rolling at a reduction rate of 80% or more, and after the primary cold rolling process, the soaking temperature is 650 ° C. or higher and 800 ° C. or lower, It has the annealing process which continuously anneals with a heat time of 55 s or less, and the secondary cold rolling process rolled at a rolling reduction of 1% or more and 19% or less after the annealing process.

圧延素材となる鋼について説明する。鋼は、上述の成分組成に調整された溶鋼を、転炉等を用いた公知の溶製方法により溶製し、次に連続鋳造法等の通常用いられる鋳造方法で圧延素材とすることで得られる。   The steel used as a rolling material will be described. Steel is obtained by melting molten steel adjusted to the above-described component composition by a known melting method using a converter or the like, and then forming a rolled material by a commonly used casting method such as a continuous casting method. It is done.

熱間圧延工程
熱間圧延の圧延開始時には、鋼の温度を1200℃以上にする。また、鋼の加熱コストとの低減と、加熱炉の耐久性維持のため均熱温度は1250℃以下が望ましい。
スラブ加熱時の均熱時間は、本発明で重要となる加工性を得る上で重要な条件である。均熱時間が10分を超えた場合、MnSの粒径が大きくなり加工性が低下する。このためスラブ加熱時の均熱時間は10分以下とする。
また、スラブ加熱炉を出てから熱間圧延を開始するまで10分以上経過すると、MnSの粒径が大きくなり加工性が低下する。このため、スラブが加熱炉を出てから10分以内に熱間圧延を開始する。
Hot rolling process At the start of hot rolling, the temperature of the steel is set to 1200 ° C or higher. In addition, the soaking temperature is desirably 1250 ° C. or lower in order to reduce the heating cost of the steel and to maintain the durability of the heating furnace.
The soaking time during slab heating is an important condition for obtaining the workability important in the present invention. When the soaking time exceeds 10 minutes, the particle size of MnS increases and the workability decreases. For this reason, the soaking time at the time of slab heating shall be 10 minutes or less.
In addition, when 10 minutes or more elapses from the exit of the slab heating furnace to the start of hot rolling, the particle size of MnS increases and the workability deteriorates. For this reason, hot rolling is started within 10 minutes after the slab leaves the heating furnace.

熱間圧延における仕上げ圧延温度は820℃以上990℃以下とする。熱間圧延における仕上げ圧延温度は、上降伏強度を確保する上で重要因子となる。仕上げ温度が820℃未満では、オーステナイト+フェライト(γ+α)の2相域熱延により粒成長し、冷間圧延し焼鈍した後の結晶粒が粗大化する。その結果、上降伏強度が低下する。よって、熱間圧延における仕上げ圧延温度は820℃以上とする。一方、スケール発生を抑制するという理由から、990℃を上限とする。   The finish rolling temperature in the hot rolling is 820 ° C. or higher and 990 ° C. or lower. The finish rolling temperature in hot rolling is an important factor in securing the upper yield strength. When the finishing temperature is less than 820 ° C., grains grow by two-phase region hot rolling of austenite + ferrite (γ + α), and the crystal grains after cold rolling and annealing become coarse. As a result, the upper yield strength decreases. Therefore, the finish rolling temperature in the hot rolling is set to 820 ° C. or higher. On the other hand, the upper limit is set to 990 ° C. for the purpose of suppressing the generation of scale.

熱間圧延工程における巻取り温度は400℃以上720℃以下とする。巻取り温度が400℃未満では、ランナウトテーブルで過剰に急冷されるために幅方向の温度分布が不均一になる。これは幅方向の形状不良の起因となり、冷間圧延後に中伸びや耳波と呼ばれる形状不良が発生する。このため、巻取り温度の下限は400℃とする。巻取り温度の上限は、スケール発生を抑制するという理由で720℃とする。   The coiling temperature in the hot rolling process is 400 ° C. or more and 720 ° C. or less. When the coiling temperature is less than 400 ° C., the temperature distribution in the width direction becomes non-uniform because the runout table is excessively cooled. This causes a shape defect in the width direction, and a shape defect called middle elongation or ear wave occurs after cold rolling. For this reason, the minimum of coiling temperature shall be 400 degreeC. The upper limit of the winding temperature is set to 720 ° C. for the purpose of suppressing the generation of scale.

一次冷間圧延工程
一次冷間圧延工程の前にスケールを除去するために酸洗を行う。酸洗方法は特に限定しない。鋼板の表層スケールが除去できればよく、通常行われる方法により酸洗することができる。また、酸洗以外の方法でスケールを除去してもよい。
Primary cold rolling process Pickling is performed to remove scale before the primary cold rolling process. The pickling method is not particularly limited. What is necessary is just to be able to remove the surface layer scale of the steel sheet, and pickling can be performed by a usual method. Moreover, you may remove a scale by methods other than pickling.

一次冷間圧延での圧下率は80%以上とする。圧下率が80%未満では、上降伏強度が460MPa以上の鋼板を製造することは困難である。さらに、本工程での圧下率を80%未満とした場合、2次冷間圧延の圧下率を20%以上とした従来のDR材並みの板厚(0.17mm程度)を得るためには、少なくとも熱延板の板厚を0.9mm以下にまでする必要がある。しかし、操業上、熱延板の板厚を0.9mm以下とすることは困難である。従って、本工程での圧下率は80%以上とする。
なお、熱間圧延工程後一次冷間圧延工程前に適宜他の工程が含まれても良い。また、熱間圧延工程の直後に酸洗を行わずに1次冷間圧延工程を行っても良い。
The reduction ratio in the primary cold rolling is 80% or more. If the rolling reduction is less than 80%, it is difficult to produce a steel plate having an upper yield strength of 460 MPa or more. Furthermore, when the reduction rate in this step is less than 80%, in order to obtain a plate thickness (about 0.17 mm) comparable to that of a conventional DR material in which the reduction rate of secondary cold rolling is 20% or more, At least the thickness of the hot-rolled sheet needs to be 0.9 mm or less. However, in operation, it is difficult to set the thickness of the hot rolled sheet to 0.9 mm or less. Therefore, the rolling reduction in this step is 80% or more.
In addition, another process may be appropriately included after the hot rolling process and before the primary cold rolling process. Moreover, you may perform a primary cold rolling process, without performing pickling immediately after a hot rolling process.

焼鈍工程
均熱温度は650℃以上800℃以下とする。鋼板の組織をより均一にするためには、均熱温度を650℃以上にする。一方、均熱温度が800℃超えの条件で連続焼鈍するには、鋼板の破断を防止するために極力搬送速度を落とす必要があり、生産性が低下する。好ましくは、660℃以上760℃以下である。
均熱時間は55s以下とする。均熱時間が55s超えになるような速度では、生産性を確保できないため、均熱時間は55s以下とする。一方、均熱時間を短くするためには、搬送速度を速くすることが必要で蛇行させずに安定的搬送することが難しくなるため、10s以上とすることが好ましい。
The soaking temperature in the annealing process is 650 ° C. or higher and 800 ° C. or lower. In order to make the structure of the steel sheet more uniform, the soaking temperature is set to 650 ° C. or higher. On the other hand, in order to perform continuous annealing under conditions where the soaking temperature exceeds 800 ° C., it is necessary to reduce the conveying speed as much as possible in order to prevent the steel sheet from being broken, and productivity is lowered. Preferably, it is 660 degreeC or more and 760 degreeC or less.
The soaking time is 55 s or less. Since productivity cannot be secured at a speed at which the soaking time exceeds 55 s, the soaking time is set to 55 s or less. On the other hand, in order to shorten the soaking time, it is necessary to increase the conveyance speed, and it is difficult to stably convey without meandering.

均熱処理後に急冷処理を行うことができる。例えば、均熱温度から冷却停止温度:250〜400℃までの平均冷却速度:30℃/s以上150℃/s未満で行うことで、高延性と高強度を両立することがより一層可能となる。
なお、焼鈍には連続焼鈍装置を用いる。また、一次次冷間圧延工程後焼鈍工程前に適宜他の工程が含まれても良いし、一次冷間圧延工程の直後に焼鈍工程を行っても良い。
A rapid cooling treatment can be performed after the soaking. For example, by carrying out at an average cooling rate from the soaking temperature to the cooling stop temperature: 250 to 400 ° C .: 30 ° C./s or more and less than 150 ° C./s, it becomes possible to further achieve both high ductility and high strength. .
In addition, a continuous annealing apparatus is used for annealing. Moreover, another process may be appropriately included before the annealing process after the primary cold rolling process, or the annealing process may be performed immediately after the primary cold rolling process.

二次冷間圧延工程
圧下率は1〜19%とする。焼鈍後の二次冷間圧延での圧下率を通常のDR材製造条件と同様(20%以上)にすると、加工時に導入される歪が多くなるため−(ln(t/t)+ln(w/w))が低下する。−(ln(t/t)+ln(w/w))≧1.10を確保する必要があるため、2次冷間圧延での圧下率は19%以下とする。また、2次冷間圧延には鋼板の表面粗さ付与の役割があり、均一に鋼板に表面粗さを付与するために二次冷間圧延の圧下率は1%以上にする必要がある。好ましくは、8〜19%である。
なお、焼鈍工程後二次冷間圧延工程前に適宜他の工程が含まれても良いし、焼鈍工程の直後に二次冷間圧延工程を行っても良い。
Secondary cold rolling step The rolling reduction is 1 to 19%. If the reduction ratio in the secondary cold rolling after annealing is the same as the normal DR material production conditions (20% or more), the strain introduced during processing increases, so − (ln (t / t 0 ) + ln ( w / w 0 )) decreases. Since it is necessary to ensure − (ln (t / t 0 ) + ln (w / w 0 )) ≧ 1.10, the reduction ratio in the secondary cold rolling is set to 19% or less. In addition, secondary cold rolling has a role of imparting surface roughness of the steel sheet, and in order to uniformly impart the surface roughness to the steel sheet, the reduction ratio of secondary cold rolling needs to be 1% or more. Preferably, it is 8 to 19%.
In addition, another process may be appropriately included before the secondary cold rolling process after the annealing process, or the secondary cold rolling process may be performed immediately after the annealing process.

以上により、本発明の缶用鋼板が得られる。なお、本発明では、二次冷間圧延後に、さらに種々の工程を行うことが可能である。例えば、本発明の缶用鋼板に対して、さらに鋼板表面にさらにめっき層を有していてもよい。めっき層としては、Snめっき層、ティンフリー等のCrめっき層、Niめっき層、Sn−Niめっき層などである。また、塗装焼付け処理工程、フィルムラミネート等の工程を行ってもよい。   By the above, the steel plate for cans of this invention is obtained. In the present invention, various processes can be further performed after the secondary cold rolling. For example, with respect to the steel plate for cans of this invention, you may have a plating layer further on the steel plate surface. Examples of the plating layer include a Sn plating layer, a tin plating layer such as a tin plating layer, a Ni plating layer, and a Sn—Ni plating layer. Moreover, you may perform processes, such as a coating baking process and a film lamination.

表1に示す成分組成を含有し、残部がFe及び不可避不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを1200℃で再加熱した後、熱間圧延し、巻取った。次いで、通常の方法にて酸洗後、一次冷間圧延し、薄鋼板を製造した。得られた薄鋼板に対して、加熱速度15℃/secで加熱して連続焼鈍を行った。次いで、冷却後、二次冷間圧延を施し、通常のSnめっきを連続的に施して、片面付着量11.2g/mのSnめっき鋼板(ぶりき)を得た。なお、詳細な製造条件を表2に示す。表2における「母材板厚t」はSnめっき層を含まない厚さである。 Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated at 1200 ° C., and then hot rolled and wound up. Then, after pickling by a normal method, primary cold rolling was performed to produce a thin steel plate. The obtained thin steel sheet was heated at a heating rate of 15 ° C./sec for continuous annealing. Next, after cooling, secondary cold rolling was performed, and normal Sn plating was continuously performed to obtain a Sn-plated steel sheet (cover) with a single-side adhesion amount of 11.2 g / m 2 . Detailed production conditions are shown in Table 2. “Base material plate thickness t 0 ” in Table 2 is a thickness not including the Sn plating layer.

以上により得られたSnめっき鋼板(ぶりき)に対して、210℃、20分の塗装焼付け処理に相当する熱処理を行った後、引張試験を行い上降伏強度を測定した。また、耐圧強度、成形性を調査した。測定方法、調査方法は以下の通りである。   The Sn-plated steel sheet (cover) obtained as described above was subjected to a heat treatment corresponding to a coating baking process at 210 ° C. for 20 minutes, and then a tensile test was performed to measure the upper yield strength. In addition, pressure strength and formability were investigated. The measurement method and survey method are as follows.

引張試験
圧延方向に対して平行方向を引張方向とするJIS 5号引張試験片(JIS Z 2201)を採取し、210℃で10分間の塗装焼付相当処理を施した後、JIS Z 2241の規定に準拠した引張試験を引張速度10mm/分で行って、上降伏強度(U−YP:upper yield point)を測定した。
Tensile test JIS No. 5 tensile test piece (JIS Z 2201) with the direction parallel to the rolling direction as the tensile direction is collected, subjected to paint baking equivalent treatment at 210 ° C for 10 minutes, and then stipulated in JIS Z 2241 A compliant tensile test was performed at a tensile speed of 10 mm / min, and an upper yield point (U-YP) was measured.

耐圧強度
圧延方向を曲げ方向として巻幅が5mmになるようにロールフォーム加工し、円筒状の両端を電気抵抗溶接でシーム溶接し、ネック成形、フランジ成形を行い、次いで、蓋を巻き締めて空缶サンプルを作成した。得られた空缶サンプルを、チャンバーに入れ、圧縮空気で加圧し、加圧後にサンプルが座屈した圧力を測定した。座屈時の圧力が0.20MPa以上を合格(◎)、0.20 MPa未満0.13MPa以上を合格(○)、0.13MPa未満を不合格(×)とした。
Roll forming is performed so that the winding width is 5 mm with the pressure-resistant strength rolling direction as the bending direction, both ends of the cylindrical shape are seam welded by electric resistance welding, neck forming and flange forming are performed, and then the lid is wound and empty A can sample was made. The obtained empty can sample was put into a chamber, pressurized with compressed air, and the pressure at which the sample buckled after pressurization was measured. When the buckling pressure is 0.20 MPa or more, the pass (合格), less than 0.20 MPa, 0.13 MPa or more is passed (◯), and less than 0.13 MPa is rejected (x).

成形性
圧延方向を曲げ方向として巻幅が5mmになるようにロールフォーム加工、円筒状の両端を電気抵抗溶接でシーム溶接し、ネック成形を行い、次いで、フランジ成形を行い、ワレを目視にて観察した。全くワレが無い場合を合格(○)、目視で微細なワレが1箇所以上見られる場合を不合格(×)とした。
Formability Roll-form processing so that the rolling direction is the bending direction and the winding width is 5 mm, both ends of the cylindrical shape are seam welded by electric resistance welding, neck forming is performed, then flange forming is performed, and the crack is visually observed Observed. The case where there was no crack at all was acceptable (◯), and the case where one or more fine cracks were observed visually was regarded as unacceptable (x).

耐食性
焼鈍後のサンプルに片面付着量11.2g/mのSnめっきを施し、Snめっきが薄くなって穴状に観察される部位の個数を計測した。光学顕微鏡50 倍において測定面積2.7mm2で観察を行った。個数が20個以下の場合を○、21個以上の場合を×とした。
The sample after corrosion-resistant annealing was subjected to Sn plating with an adhesion amount of 11.2 g / m 2 on one side, and the number of sites where the Sn plating was thinned and observed as holes was measured. Observation was carried out at a measurement area of 2.7 mm 2 with an optical microscope of 50 ×. The case where the number was 20 or less was marked as ◯, and the case where the number was 21 or more was marked as x.

Figure 0006421773
Figure 0006421773

Figure 0006421773
Figure 0006421773

表2より、本発明例では、良好な耐食性を有し、高強度で、加工性に優れた缶用鋼板が得られていた。   From Table 2, in the present invention examples, steel plates for cans having good corrosion resistance, high strength and excellent workability were obtained.

本発明によれば、高強度で、優れた加工性を有し、さらに耐食性が良好な缶用鋼板が得られる。本発明は、高加工度の缶胴加工を伴う3ピース缶、ボトム部が数%加工される2ピース缶を中心に缶用鋼板として最適である。   According to the present invention, a steel plate for cans having high strength, excellent workability, and good corrosion resistance can be obtained. The present invention is most suitable as a steel plate for cans centering on a three-piece can with a high degree of can body processing and a two-piece can whose bottom portion is processed by several percent.

Claims (2)

質量%で、C:0.020%以上0.039%以下、Si:0.04%以下、Mn:0.10%以上0.60%以下、P:0.100%以下、S:0.020%以下、Al:0.10%以下、N:0.0120%超え0.0200%以下、Nb:0.004%以上0.040%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板中のNb析出物の平均粒径が100nm以下であり、
上降伏強度が460MPa以上であり、
JIS.Z.2241規定の引張試験において、母材板厚をt、引張試験片の初期板幅をw、破断後の引張試験片の破面板厚をt、破断後の引張試験片の破面長さをwとしたとき、下記式(1)を満足し、さらに、破面のMnSの粒径が5μm以下である
ことを特徴とする缶用鋼板。
−(ln(t/t)+ln(w/w))≧1.10 (1)
In mass%, C: 0.020% to 0.039%, Si: 0.04% or less, Mn: 0.10% to 0.60%, P: 0.100% or less, S: 0.00. 020% or less, Al: 0.10% or less, N: 0.0120% to 0.0200% or less, Nb: 0.004% or more and 0.040% or less, with the balance being Fe and inevitable impurities Having an ingredient composition;
The average particle size of Nb precipitates in the steel sheet is 100 nm or less,
The upper yield strength is 460 MPa or more,
JIS. Z. In the tensile test specified in 2241, the base metal plate thickness is t 0 , the initial plate width of the tensile test piece is w 0 , the fracture surface thickness of the tensile test piece after fracture is t, and the fracture surface length of the tensile test piece after fracture Is a steel plate for cans, wherein the following formula (1) is satisfied, and the particle size of MnS on the fracture surface is 5 μm or less.
− (Ln (t / t 0 ) + ln (w / w 0 )) ≧ 1.10 (1)
請求項1に記載の缶用鋼板の製造方法であって、
鋼スラブを、1200℃以上に加熱し、均熱時間が10分以下でスラブ加熱し、スラブ加熱炉を出てから10分以内に熱間圧延を開始し、仕上げ圧延温度が820℃以上990℃以下、仕上げ圧延の最終スタンドの圧下率が25%以下で熱間圧延し、巻取り温度が400℃以上720℃以下で巻き取る熱間圧延工程と、
前記熱間圧延工程後に、酸洗し、圧下率が80%以上で圧延する一次冷間圧延工程と、
前記一次冷間圧延工程後に、均熱温度が650℃以上800℃以下、均熱時間が55s以下で連続焼鈍する焼鈍工程と、
前記焼鈍工程後に、1%以上19%以下の圧下率で圧延する二次冷間圧延工程
とを有することを特徴とする缶用鋼板の製造方法。
It is a manufacturing method of the steel plate for cans according to claim 1,
Steel slab is heated to 1200 ° C or higher, soaking time is slab heated for 10 minutes or less, hot rolling is started within 10 minutes after leaving the slab heating furnace, and finish rolling temperature is 820 ° C to 990 ° C. Hereinafter, a hot rolling step of rolling at a rolling reduction of 400 ° C. or more and 720 ° C. or less with a rolling reduction at a final stand of finish rolling of 25% or less,
After the hot rolling step, pickling and primary cold rolling step of rolling at a reduction rate of 80% or more,
After the primary cold rolling step, an annealing step in which the soaking temperature is 650 ° C. or more and 800 ° C. or less, and the soaking time is 55 s or less, and continuous annealing,
A secondary cold rolling step of rolling at a rolling reduction of 1% or more and 19% or less after the annealing step.
JP2016038202A 2016-02-29 2016-02-29 Steel plate for can and manufacturing method thereof Active JP6421773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016038202A JP6421773B2 (en) 2016-02-29 2016-02-29 Steel plate for can and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016038202A JP6421773B2 (en) 2016-02-29 2016-02-29 Steel plate for can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2017155267A JP2017155267A (en) 2017-09-07
JP6421773B2 true JP6421773B2 (en) 2018-11-14

Family

ID=59809265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016038202A Active JP6421773B2 (en) 2016-02-29 2016-02-29 Steel plate for can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6421773B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY196226A (en) * 2018-08-30 2023-03-23 Jfe Steel Corp Steel Sheet for Cans and Method of Producing Same
EP4108796A4 (en) * 2020-02-17 2023-02-15 Nippon Steel Corporation Steel sheet for can, and method for producing same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10280095A (en) * 1997-04-10 1998-10-20 Nippon Steel Corp Steel sheet for two-piece container excellent in wrinkle resistance at necking diameter reduction, and its production
JP3663918B2 (en) * 1998-07-02 2005-06-22 Jfeスチール株式会社 Steel plate for cans having excellent shape maintainability and method for producing the same
JP3752140B2 (en) * 2000-10-03 2006-03-08 株式会社神戸製鋼所 Al-Mg-Si Al alloy plate with excellent bending workability
JP4486414B2 (en) * 2004-06-11 2010-06-23 新日本製鐵株式会社 Thin steel plate for cans with strong can body strength and good press workability and method for producing the same
JP4634959B2 (en) * 2006-04-24 2011-02-16 新日本製鐵株式会社 Ultra-thin steel plate and manufacturing method thereof
TW200827460A (en) * 2006-08-11 2008-07-01 Nippon Steel Corp DR steel sheet and manufacturing method thereof
JP5423092B2 (en) * 2009-03-27 2014-02-19 Jfeスチール株式会社 Steel plate for cans with excellent surface properties after drawing and ironing and method for producing the same
CN102286688A (en) * 2010-06-21 2011-12-21 宝山钢铁股份有限公司 Steel for high-hardness tin plating primitive plate and manufacture method thereof
JP5924044B2 (en) * 2011-03-17 2016-05-25 Jfeスチール株式会社 Steel plate for aerosol can bottom having high pressure strength and excellent workability, and method for producing the same

Also Published As

Publication number Publication date
JP2017155267A (en) 2017-09-07

Similar Documents

Publication Publication Date Title
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP2009263789A (en) High strength steel sheet for vessel, and method for producing the same
JP2010043349A (en) Steel sheet for high-strength container, and method for manufacturing therefor
JP6540769B2 (en) High strength ultra thin steel plate and method of manufacturing the same
JP5854134B2 (en) 3-piece can body and manufacturing method thereof
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
JP6813132B2 (en) Steel sheet for cans and its manufacturing method
JP6191807B1 (en) Steel plate for can and manufacturing method thereof
JP5076872B2 (en) Steel plate for can and manufacturing method thereof
JP6361553B2 (en) Steel plate for high workability and high strength can and manufacturing method thereof
JP5463720B2 (en) Cold rolled steel sheet for can steel sheet, steel sheet for can and manufacturing method thereof
JP6421772B2 (en) Manufacturing method of steel sheet for cans
JP6881696B1 (en) Steel sheet for cans and its manufacturing method
JP6809619B2 (en) Steel sheet for cans and its manufacturing method
JP6627745B2 (en) Steel plate for can and method for producing the same
JP6210177B2 (en) Steel plate for can and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170922

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20180502

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20180509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181001

R150 Certificate of patent or registration of utility model

Ref document number: 6421773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250