JP6210177B2 - Steel plate for can and manufacturing method thereof - Google Patents

Steel plate for can and manufacturing method thereof Download PDF

Info

Publication number
JP6210177B2
JP6210177B2 JP2017509237A JP2017509237A JP6210177B2 JP 6210177 B2 JP6210177 B2 JP 6210177B2 JP 2017509237 A JP2017509237 A JP 2017509237A JP 2017509237 A JP2017509237 A JP 2017509237A JP 6210177 B2 JP6210177 B2 JP 6210177B2
Authority
JP
Japan
Prior art keywords
less
steel plate
steel sheet
cans
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017509237A
Other languages
Japanese (ja)
Other versions
JPWO2016157761A1 (en
Inventor
雄介 木俣
雄介 木俣
船川 義正
義正 船川
直行 ▲高▼田
直行 ▲高▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2016157761A1 publication Critical patent/JPWO2016157761A1/en
Application granted granted Critical
Publication of JP6210177B2 publication Critical patent/JP6210177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Description

本発明は缶用鋼板およびその製造方法に関し、特に、加工性に優れ、表面外観において、耐肌荒れ性に優れると共に縞状欠陥を抑制した缶用鋼板およびその製造方法に関するものである。   The present invention relates to a steel plate for cans and a method for producing the same, and more particularly to a steel plate for cans having excellent workability, excellent surface roughness in surface appearance, and striped defects and a method for producing the same.

深絞り缶、DRD(Drawn and Redrawn)缶、DI(Drawn and Ironed)缶などの2ピース缶に用いられる冷延鋼板には、いくつかの特性が要求されている。具体的には、(1)加工時に割れ等の欠陥が発生せず、プレス加工性(以下、単に加工性とも記す。)に優れていること、(2)プレス加工後の鋼板表面の肌荒れが小さく、ストレッチャーストレイン(以下、縞状欠陥とも記す。)が発生せずに、仕上がり外観が良好であることが要求されている。   Several properties are required for cold-rolled steel sheets used in two-piece cans such as deep-drawn cans, DRD (Drawn and Redrawn) cans, and DI (Drawn and Ironed) cans. Specifically, (1) no defects such as cracks occur during processing, excellent press workability (hereinafter also referred to simply as workability), and (2) rough surface of the steel sheet after press processing. There is a demand for a small, stretcher strain (hereinafter also referred to as a stripe defect) and a good finished appearance.

このうち、(1)の加工性に関しては、鋼板の降伏強度(YP)の低下、伸び(El)やr値の上昇が有効である。また、(2)に関しては、鋼板組織の結晶粒径を小さくすることで加工後の鋼板表面の耐肌荒れ性を向上させることがよく知られている。このような要求に対し、例えば特許文献1や特許文献2では極低炭素鋼にTiやNbを添加し、降伏強度(YP)を低くし、加工性を向上させた鋼板が提案されている。また、特許文献3では、結晶粒が細粒である低炭素鋼を用いることで、加工後の表面粗さを小さくした鋼板が提案されている。   Among these, regarding the workability of (1), it is effective to decrease the yield strength (YP), increase the elongation (El) and the r value of the steel sheet. As for (2), it is well known that the surface roughness of the steel sheet after processing is improved by reducing the crystal grain size of the steel sheet structure. In response to such a demand, for example, Patent Document 1 and Patent Document 2 propose a steel sheet in which Ti or Nb is added to an ultra-low carbon steel, yield strength (YP) is lowered, and workability is improved. Moreover, in patent document 3, the steel plate which made small the surface roughness after a process is proposed by using the low carbon steel whose crystal grain is a fine grain.

特許第3548314号公報Japanese Patent No. 3548314 特開2009−155692号公報JP 2009-1555692 A 特開平10−30152号公報Japanese Patent Laid-Open No. 10-30152

しかしながら、特許文献1や特許文献2に記載されている技術のように、TiやNbを添加し、固溶Cを完全に析出固定させた極低炭素鋼は、結晶粒が粗大であり、優れた加工性を有するが、プレス加工後に肌荒れが発生し、耐肌荒れ性に劣るという問題がある。また、特許文献3で得られる低炭素鋼は、結晶粒が細粒で降伏強度(YP)が高く、缶成形時の割れにより加工性に劣るという問題がある。このように、加工性に対しては結晶粒径の粗大化が有効であり、耐肌荒れ性に対しては結晶粒径の細粒化が有効となり、従来、双方を満足することは困難であった。また、従来の技術では、表面外観として、縞状欠陥の抑制も十分ではなかった。   However, like the techniques described in Patent Document 1 and Patent Document 2, the ultra-low carbon steel in which Ti or Nb is added and solid solution C is completely precipitated and fixed has coarse crystal grains and is excellent. However, there is a problem that rough skin occurs after press working and the rough skin resistance is poor. Moreover, the low carbon steel obtained by patent document 3 has a problem that a crystal grain is fine and yield strength (YP) is high, and it is inferior to workability by the crack at the time of can molding. Thus, coarsening of the crystal grain size is effective for workability, and fine grain size is effective for rough skin resistance. Conventionally, it has been difficult to satisfy both. It was. Moreover, in the prior art, the suppression of stripe defects was not sufficient as the surface appearance.

本発明の目的は、上記の課題を解決し、加工性に優れ、表面外観において耐肌荒れ性に優れると共に縞状欠陥を抑制した缶用鋼板およびその製造方法を提供するものである。   The object of the present invention is to solve the above-mentioned problems, and to provide a steel plate for cans which has excellent workability, excellent surface roughness in surface appearance and suppresses striped defects, and a method for producing the same.

本発明者らは、上述した問題を解決し、加工性の向上、耐肌荒れ性の向上および縞状欠陥の抑制の全てを実現した缶用鋼板を開発すべく鋭意研究を重ねた。前述の通り、加工性の向上には結晶粒径の粗大化による降伏強度(YP)の低下が有効である。また、耐肌荒れ性の向上には結晶粒径の細粒化が有効である。この特徴は一見相反するが、降伏強度(YP)に影響する結晶粒径は鋼板の全領域の結晶粒径であるのに対し、耐肌荒れ性に影響する結晶粒径は鋼板の表層付近の結晶粒径であることに着目した。そこで本発明者らは、焼鈍による再結晶前の鋼板原板(焼鈍前の鋼板)表層の相当転位密度を制御することによって結晶粒径の板厚方向分布を制御することが可能であることを見出した。   The inventors of the present invention have made extensive studies to solve the above-described problems and to develop a steel plate for a can that can achieve all of improvement of workability, improvement of rough skin resistance, and suppression of striped defects. As described above, a reduction in yield strength (YP) due to coarsening of the crystal grain size is effective for improving workability. Further, it is effective to reduce the crystal grain size in order to improve the rough skin resistance. Although this feature is contradictory at first glance, the crystal grain size that affects the yield strength (YP) is the crystal grain size in the entire region of the steel sheet, whereas the crystal grain size that affects the rough skin resistance is a crystal near the surface layer of the steel sheet. We focused on the particle size. Therefore, the present inventors have found that it is possible to control the distribution of crystal grain size in the plate thickness direction by controlling the equivalent dislocation density of the surface layer of the original steel plate before annealing (steel plate before annealing). It was.

図1は、焼鈍による再結晶前の鋼板原板表層の相当転位密度と、焼鈍後の鋼板の表層平均結晶粒径および全厚平均結晶粒径の関係を示す。鋼板原板表層の相当転位密度の測定は後述する方法に従った。図1に示すように、鋼板原板表層の相当転位密度が増加するに従い、焼鈍後の鋼板の表層平均結晶粒径(図中、単に表層平均結晶粒径と記す。)は顕著に低下するのに対し、焼鈍後の鋼板の全厚平均結晶粒径(図中、単に全厚平均結晶粒径と記す。)はほとんど変化しない。更に鋼板原板表層の高い相当転位密度は焼鈍時の再結晶を促進させ、前述したTiやNbを添加した極低炭素鋼板で問題となる未再結晶粒の残存を抑制し、焼鈍後の鋼板表面の縞状欠陥を抑制する。従って、鋼板原板表層の相当転位密度を増加させることにより、降伏強度(YP)が低く加工性に優れ、表面外観において耐肌荒れ性に優れると共に縞状欠陥を抑制した鋼板を得ることが可能となる。   FIG. 1 shows the relationship between the equivalent dislocation density of the steel sheet surface layer before recrystallization by annealing, the surface layer average crystal grain size and the total thickness average crystal grain size of the steel sheet after annealing. The measurement of the equivalent dislocation density of the steel sheet surface layer was performed according to the method described later. As shown in FIG. 1, as the equivalent dislocation density of the steel sheet surface layer increases, the surface average grain size of the steel sheet after annealing (in the figure, simply referred to as the surface average grain size) significantly decreases. On the other hand, the total thickness average grain size of the steel sheet after annealing (in the figure, simply referred to as the total thickness average grain size) hardly changes. Furthermore, the high equivalent dislocation density on the surface layer of the steel plate promotes recrystallization during annealing, suppresses the remaining non-recrystallized grains that are problematic in the ultra-low carbon steel plate added with Ti and Nb described above, and the steel plate surface after annealing. Suppresses striped defects. Therefore, by increasing the equivalent dislocation density of the steel sheet surface layer, it is possible to obtain a steel sheet having low yield strength (YP), excellent workability, excellent surface roughness in the surface appearance, and having suppressed stripe defects. .

本発明は、このような知見に基づきなされたものであり、その要旨は次のとおりである。
[1]質量%で、C:0.0010%以上0.0050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、Ti:0.01%以上0.06%以下および/またはNb:0.01%以上0.04%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板表面において未再結晶粒の占める面積率が0.10%以下、鋼板表面から深さ50μmまでの組織における平均結晶粒径d1と全厚の平均結晶粒径d2とがd1≦0.8×d2の関係を満たし、かつd2が11.0μm以上である缶用鋼板。
[2]前記成分組成として、更に、質量%で、B:0.0003%以上0.0030%以下を含有する前記[1]に記載の缶用鋼板。
[3]鋼板表面にめっき皮膜が形成された前記[1]または[2]に記載の缶用鋼板。
[4]板厚が0.1mm以上0.6mm以下である前記[1]〜[3]のいずれか1つに記載の缶用鋼板。
[5]前記[1]〜[4]のいずれか1つに記載の缶用鋼板の製造方法であり、
鋼スラブを加熱温度:1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻取り、酸洗、冷間圧延後、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度ρが1.0×1015−2以上である鋼板に対して550℃以上700℃以下の焼鈍を行う缶用鋼板の製造方法。
This invention is made | formed based on such knowledge, The summary is as follows.
[1] By mass%, C: 0.0010% to 0.0050%, Si: 0.03% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.02% In the following, Al: 0.01% or more and 0.10% or less, N: 0.004% or less, Ti: 0.01% or more and 0.06% or less and / or Nb: 0.01% or more and 0.0. Containing no more than 04%, with the balance being composed of Fe and inevitable impurities,
The area ratio of the non-recrystallized grains on the steel sheet surface is 0.10% or less, and the average crystal grain diameter d1 and the average crystal grain diameter d2 of the total thickness in the structure from the steel sheet surface to a depth of 50 μm are d1 ≦ 0.8 ×. A steel plate for cans satisfying the relationship of d2 and d2 of 11.0 μm or more.
[2] The steel plate for cans according to [1], further containing B: 0.0003% or more and 0.0030% or less in terms of mass% as the component composition.
[3] The steel plate for cans according to [1] or [2], wherein a plating film is formed on the surface of the steel plate.
[4] The steel plate for cans according to any one of [1] to [3], wherein the plate thickness is 0.1 mm or more and 0.6 mm or less.
[5] A method for producing a steel plate for cans according to any one of [1] to [4],
The steel slab is heated at a heating temperature of 1000 ° C. to 1300 ° C., hot-rolled at a finish rolling temperature of 800 ° C. to 1000 ° C., wound at a temperature of 600 ° C. to 700 ° C., pickled, and cold-rolled. Thereafter, the steel sheet for cans that is annealed at 550 ° C. or more and 700 ° C. or less with respect to a steel sheet having an equivalent dislocation density ρ of 1.0 × 10 15 m −2 or more in the depth direction from the surface of the steel sheet before annealing. Manufacturing method.

ここで、前記相当転移密度ρは、14.4ε/bから算出される(εは鋼板の不均一歪を表し、bは2.5×10−10mである。)。Here, the equivalent transition density ρ is calculated from 14.4ε 2 / b 2 (ε represents a non-uniform strain of the steel sheet, and b is 2.5 × 10 −10 m).

本発明によれば、降伏強度(YP)が低く加工性に優れ、更に表面外観において、耐肌荒れ性に優れると共に縞状欠陥を抑制した缶用鋼板を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the steel plate for cans which has low yield strength (YP), is excellent in workability, is excellent in surface roughness, and has excellent anti-skin roughness and suppresses stripe defects.

焼鈍による再結晶前の鋼板原板表層の相当転移密度と焼鈍後の鋼板の平均結晶粒径(焼鈍後の鋼板の全厚平均結晶粒径および表層平均結晶粒径)との関係を示すグラフである。It is a graph which shows the relationship between the equivalent transition density of the steel plate surface layer before recrystallization by annealing and the average crystal grain size of the steel plate after annealing (total thickness average crystal grain size and surface layer average crystal grain size of the steel plate after annealing) .

本発明に係る缶用鋼板は、質量%で、C:0.0010%以上0.0050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、Ti:0.01%以上0.06%以下および/またはNb:0.01%以上0.04%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、鋼板表面の未再結晶粒の占める面積率が0.10%以下、鋼板表面から深さ50μmまでの組織における平均結晶粒径d1と全厚の平均結晶粒径d2とがd1≦0.8×d2の関係を満たし、d2が11.0μm以上である。以下、本発明の缶用鋼板について説明する。   The steel plate for cans according to the present invention is in mass%, C: 0.0010% or more and 0.0050% or less, Si: 0.03% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.01% or more and 0.10% or less, N: 0.004% or less, Ti: 0.01% or more and 0.06% or less and / or Nb: 0 0.01% or more and 0.04% or less, and the balance is composed of Fe and inevitable impurities, the area ratio of unrecrystallized grains on the steel sheet surface is 0.10% or less, The average crystal grain size d1 and the average crystal grain size d2 of the entire thickness satisfy the relationship of d1 ≦ 0.8 × d2, and d2 is 11.0 μm or more. Hereinafter, the steel plate for cans of the present invention will be described.

[成分組成]
まず、本発明に係る缶用鋼板の成分組成について説明する。なお、以下において成分量の%表示は、特にことわらない限り質量%を意味する。
[Ingredient composition]
First, the component composition of the steel plate for cans which concerns on this invention is demonstrated. In the following, “%” of the component amount means “% by mass” unless otherwise specified.

<C:0.0010%以上0.0050%以下>
Cは0.0010%未満となるとフェライト結晶粒の過度な粗大化を招くため、C含有量の下限は0.0010%とする。また、C含有量が0.0050%を超えると降伏強度が上昇し、絞り成形時の加工性が低下するため、C含有量の上限は0.0050%とする。よって、C含有量を0.0010%以上0.0050%以下とする。好ましくは、C含有量は0.0015%以上とする。好ましくは、C含有量は0.0040%以下とする。
<C: 0.0010% or more and 0.0050% or less>
If C is less than 0.0010%, the ferrite crystal grains are excessively coarsened, so the lower limit of the C content is 0.0010%. On the other hand, when the C content exceeds 0.0050%, the yield strength increases and the workability at the time of draw forming decreases, so the upper limit of the C content is set to 0.0050%. Therefore, the C content is set to 0.0010% or more and 0.0050% or less. Preferably, the C content is 0.0015% or more. Preferably, the C content is 0.0040% or less.

<Si:0.03%以下>
Siは、意図的に含有しない場合にも、不純物成分として鋼中に残留し鋼板の耐食性およびめっきの密着性を劣化させる元素であり、良好な耐食性を確保するためには、Si含有量は0.03%以下とする。好ましくは、Si含有量は0.02%以下とする。
<Si: 0.03% or less>
Even if Si is not intentionally contained, it is an element that remains in the steel as an impurity component and degrades the corrosion resistance and plating adhesion of the steel sheet. In order to ensure good corrosion resistance, the Si content is 0. 0.03% or less. Preferably, the Si content is 0.02% or less.

<Mn:0.3%以下>
Mnは、鋼中SをMnSとして析出させることによってスラブの熱間割れを防止する。Sを析出固定するために、Mnを0.1%以上含有することが望ましい。また、Mnは固溶強化元素であり、降伏強度の上昇により絞り成形時の加工性を低下させるため、Mn含有量の上限は0.3%とする。
<Mn: 0.3% or less>
Mn prevents hot cracking of the slab by precipitating S in the steel as MnS. In order to precipitate and fix S, it is desirable to contain 0.1% or more of Mn. Further, Mn is a solid solution strengthening element, and the workability at the time of drawing is reduced by increasing the yield strength, so the upper limit of the Mn content is 0.3%.

<P:0.02%以下>
Pは固溶強化元素であり、降伏強度の上昇により絞り成形時の加工性を低下させる。また、Niめっきの密着性を低下させる元素であり、P含有量は0.02%以下とする。
<P: 0.02% or less>
P is a solid solution strengthening element, and decreases the workability at the time of drawing by increasing the yield strength. Moreover, it is an element which reduces the adhesiveness of Ni plating, P content shall be 0.02% or less.

<S:0.02%以下>
Sは、スラブの熱間割れ防止の観点から極力少ないほうが好ましく、S含有量は0.02%以下とする。
<S: 0.02% or less>
S is preferably as small as possible from the viewpoint of preventing hot cracking of the slab, and the S content is 0.02% or less.

<Al:0.01%以上0.10%以下>
Alは、0.01%以上含有することで鋼中のNと結合してAlNを形成し、固溶Nを低減することで鋼板の時効による降伏強度(YP)の上昇を抑制する。一方、Al含有量が0.10%を超えるとアルミナ等の介在物が生じやすくなり、加工後の欠陥発生率が増加する。そのため、0.10%以下とする。したがって、Al含有量を0.01%以上0.10%以下とする。Al含有量としては、0.02%以上が好ましい。また、Al含有量としては0.08%以下が好ましく、0.07%以下がより好ましい。
<Al: 0.01% or more and 0.10% or less>
When Al is contained in an amount of 0.01% or more, it combines with N in the steel to form AlN, and by reducing the solid solution N, an increase in yield strength (YP) due to aging of the steel sheet is suppressed. On the other hand, when the Al content exceeds 0.10%, inclusions such as alumina are likely to occur, and the defect occurrence rate after processing increases. Therefore, it is 0.10% or less. Therefore, the Al content is set to 0.01% or more and 0.10% or less. The Al content is preferably 0.02% or more. Moreover, as Al content, 0.08% or less is preferable and 0.07% or less is more preferable.

<N:0.004%以下>
Nは、AlやBと窒化物を形成し、無害化される傾向にあるが、N含有量は可能な限り少ないほうが好ましく、0.004%以下とする。好ましくは、N含有量は0.003%以下とする。
<N: 0.004% or less>
N forms a nitride with Al or B and tends to be harmless, but the N content is preferably as low as possible, and is 0.004% or less. Preferably, the N content is 0.003% or less.

<Ti:0.01%以上0.06%以下および/またはNb:0.01%以上0.04%以下>
Tiは鋼中のCやNを析出固定させ、鋼板の耐時効性を向上させる。0.01%未満ではその効果が十分でなく、時効劣化を招き、0.06%超えでは著しく再結晶温度が増加することにより未再結晶粒が残存しやすくなる。したがって、Tiを含有する場合には、Ti含有量は0.01%以上0.06%以下とする。Tiを含有する場合のTi含有量としては、0.01%以上0.05%以下が好ましく、0.01%以上0.04%以下がより好ましい。
<Ti: 0.01% to 0.06% and / or Nb: 0.01% to 0.04%>
Ti precipitates and fixes C and N in the steel and improves the aging resistance of the steel sheet. If the content is less than 0.01%, the effect is not sufficient, and aging deterioration is caused. If the content exceeds 0.06%, the recrystallization temperature is remarkably increased, so that unrecrystallized grains tend to remain. Therefore, when Ti is contained, the Ti content is 0.01% or more and 0.06% or less. When Ti is contained, the Ti content is preferably 0.01% or more and 0.05% or less, and more preferably 0.01% or more and 0.04% or less.

Nbは鋼中のCを析出固定させ、鋼板の耐時効性を向上させる。0.01%未満ではその効果が十分でなく、時効劣化を招き、0.04%超えでは著しく再結晶温度が増加することにより未再結晶粒が残存しやすくなる。したがって、Nbを含有する場合には、Nb含有量は0.01%以上0.04%以下とする。Nbを含有する場合のNb含有量としては、0.01%以上0.03%以下が好ましく、0.01%以上0.02%以下がより好ましい。   Nb precipitates and fixes C in the steel and improves the aging resistance of the steel sheet. If it is less than 0.01%, the effect is not sufficient, and aging deterioration is caused. If it exceeds 0.04%, the recrystallization temperature is remarkably increased, so that unrecrystallized grains tend to remain. Therefore, when Nb is contained, the Nb content is set to 0.01% or more and 0.04% or less. When Nb is contained, the Nb content is preferably 0.01% or more and 0.03% or less, and more preferably 0.01% or more and 0.02% or less.

以上の成分以外の残部は、Fe及び不可避的不純物である。また、本発明においては、Bは必須成分ではないが、必要に応じて以下の範囲で含有することができる。   The balance other than the above components is Fe and inevitable impurities. In the present invention, B is not an essential component, but can be contained in the following range as required.

<B:0.0003%以上0.0030%以下>
Bは、Alと同様に鋼中のNと結合してBNを形成し、固溶N量を低減することで時効による降伏強度(YP)の上昇を抑制する。また、鋼中のNを、AlNとなる前にBNとして析出させることにより、巻取り後の熱延鋼板の幅方向、長手方向の組織の均一性を高める作用を有している。従って、必要に応じて、Bを含有するようにする。しかしながら、B含有量が0.0003%未満では上記作用を発揮させにくくなる場合がある。また、B含有量が0.0030%を超えると、上記作用が飽和したり、固溶Bが増加して深絞り性の劣化を招いたりする場合がある。よって、B含有量は、0.0003%以上0.0030%以下とすることが好ましい。B含有量としては0.0005%以上がより好ましい。また、B含有量としては0.0020%以下がより好ましい。
[組織]
本発明の缶用鋼板の組織は、特に限定されないが、フェライトを主相として含むことが好ましい。前記主相とは、フェライトを、面積率で90%以上含むことを意味し、面積率で95%以上含むことが好ましく、面積率で98%以上含むことがより好ましく、面積率で100%であってもよい。フェライト以外の残部としてはベイナイトが挙げられる。
<B: 0.0003% or more and 0.0030% or less>
B, like Al, binds to N in steel to form BN, and reduces the amount of solid solution N, thereby suppressing an increase in yield strength (YP) due to aging. Moreover, it has the effect | action which improves the uniformity of the structure | tissue of the width direction of a hot-rolled steel plate after winding, and a longitudinal direction by precipitating N in steel as BN before becoming AlN. Therefore, B is contained if necessary. However, if the B content is less than 0.0003%, it may be difficult to exert the above effect. On the other hand, if the B content exceeds 0.0030%, the above action may be saturated, or the solid solution B may increase, resulting in deterioration of deep drawability. Therefore, the B content is preferably 0.0003% or more and 0.0030% or less. The B content is more preferably 0.0005% or more. Further, the B content is more preferably 0.0020% or less.
[Organization]
Although the structure of the steel plate for cans of this invention is not specifically limited, It is preferable that a ferrite is included as a main phase. The main phase means that ferrite is contained in an area ratio of 90% or more, preferably 95% or more in area ratio, more preferably 98% or more in area ratio, and 100% in area ratio. There may be. The balance other than ferrite includes bainite.

<鋼板表面の未再結晶粒の占める面積率が0.10%以下>
未再結晶粒は再結晶粒に比べ硬質であり、変形能が異なることによりプレス加工後に縞模様の表面欠陥(以下、縞状欠陥とも記す。)の発生を招く。縞状欠陥に対しては鋼板表面の未再結晶粒の存在が問題となるため、再結晶焼鈍後の鋼板表面の未再結晶粒の占める面積率を0.10%以下とすることで、プレス加工後の外観に優れた缶用鋼板を得ることができる。再結晶焼鈍後の鋼板表面の未再結晶粒の占める面積率を求めるには、鋼板の表面を観察し、組織全体に対する未再結晶組織の占める割合(面積率)を求めて、これを未再結晶粒の占める面積率とすればよい。なお、鋼板内部に存在する未再結晶粒は表面外観には影響しないため特に規定はしないが、過度に存在すると降伏強度(YP)が著しく上昇しプレス成形時に割れなどの成形不良を引き起こすため、極力少ないほうが好ましい。また、再結晶焼鈍後の鋼板表面の未再結晶粒の占める面積率は、焼鈍による再結晶前の鋼板表面から深さ50μmまでの相当転位密度を制御することによって調整することができる。
<The area ratio occupied by non-recrystallized grains on the steel sheet surface is 0.10% or less>
Non-recrystallized grains are harder than recrystallized grains, and due to their different deformability, striped surface defects (hereinafter also referred to as stripe defects) are generated after press working. Since the presence of non-recrystallized grains on the steel sheet surface becomes a problem for striped defects, the area ratio of the non-recrystallized grains on the steel sheet surface after recrystallization annealing is reduced to 0.10% or less, A steel plate for cans having an excellent appearance after processing can be obtained. In order to obtain the area ratio of the non-recrystallized grains on the surface of the steel sheet after recrystallization annealing, the surface of the steel sheet is observed and the ratio (area ratio) of the non-recrystallized structure to the entire structure is obtained. The area ratio occupied by crystal grains may be used. The non-recrystallized grains present inside the steel sheet do not specifically define because they do not affect the surface appearance. It is preferable that the amount is as small as possible. Moreover, the area ratio which the non-recrystallized grain accounts on the steel plate surface after recrystallization annealing can be adjusted by controlling the equivalent dislocation density from the steel plate surface before recrystallization by annealing to a depth of 50 μm.

<鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)と全厚平均結晶粒径(d2)がd1≦0.8×d2の関係を満たし、かつd2が11.0μm以上>
鋼板表層の結晶粒径が大きいほど、プレス加工後に肌荒れが発生しやすく、耐肌荒れ性に劣り、鋼板全域(全厚)の結晶粒径が大きいほど降伏強度が低く加工性に優れる。本発明では、鋼板表層の結晶粒径を表す鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)と、鋼板の全厚の平均結晶粒径(d2、以下、全厚平均結晶粒径と記す。)とについて、d1≦0.8×d2とすることで、鋼板表層付近の結晶粒径を微細にし、その他の鋼板表層以外の領域の結晶粒径は粗大とすることで加工性と耐肌荒れ性の双方を優れたものにすることができる。
<The average crystal grain size (d1) and the total thickness average crystal grain size (d2) in the structure from the steel sheet surface to a depth of 50 μm satisfy the relationship of d1 ≦ 0.8 × d2 and d2 is 11.0 μm or more>
The larger the crystal grain size of the steel sheet surface layer, the more likely it is that the surface becomes rough after press working, and the poor surface roughness resistance is obtained. In the present invention, the average crystal grain size (d1) in the structure from the steel sheet surface to the depth of 50 μm representing the crystal grain size of the steel sheet surface layer, and the average crystal grain size of the total thickness of the steel sheet (d2, hereinafter referred to as total thickness average crystal grain) In the case of d1 ≦ 0.8 × d2, the crystal grain size in the vicinity of the steel plate surface layer is made fine, and the crystal grain size in the region other than the steel plate surface layer is made coarse so that the workability is improved. And excellent resistance to rough skin.

鋼板の全厚平均結晶粒径(d2)が11.0μm未満では、降伏強度(YP)が高く、加工性に劣るため、d2は11.0μm以上とする。   When the total thickness average crystal grain size (d2) of the steel sheet is less than 11.0 μm, the yield strength (YP) is high and the workability is inferior, so d2 is set to 11.0 μm or more.

また、鋼板表層の平均結晶粒径、すなわち鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)の上限は特に規定しないが、結晶粒が粗大である場合に、後述するプレス後の表面粗さRaの規定を満たしにくくなるため、d1は10μm以下であることが好ましい。d1/d2の下限値は、特に限定されないが、硬度差による表面剥離の点から、0.3以上が好ましい。   Moreover, although the upper limit of the average crystal grain size of the steel sheet surface layer, that is, the average crystal grain size (d1) in the structure from the steel sheet surface to the depth of 50 μm is not particularly specified, when the crystal grains are coarse, D1 is preferably 10 μm or less because it is difficult to satisfy the definition of the surface roughness Ra. The lower limit of d1 / d2 is not particularly limited, but is preferably 0.3 or more from the viewpoint of surface peeling due to a difference in hardness.

ここで、上記の平均結晶粒径は、JIS G0551に基づく切断法により平均結晶粒径を測定することで得られるものである。なお、本発明の缶用鋼板の組織が、フェライトを主相とする場合、上記の平均結晶粒径は、JIS G0551に基づく切断法によりフェライト平均結晶粒径を測定することで得られるものである。また、鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)は、焼鈍による再結晶前の鋼板表面から深さ50μmまでの相当転位密度を制御することによって調整することができる。また、全厚平均結晶粒径(d2)は焼鈍温度や鋼板成分を変化させることによって調整することができる。   Here, the average crystal grain size is obtained by measuring the average crystal grain size by a cutting method based on JIS G0551. When the structure of the steel sheet for cans of the present invention has ferrite as the main phase, the above average crystal grain size is obtained by measuring the ferrite average crystal grain size by a cutting method based on JIS G0551. . The average crystal grain size (d1) in the structure from the steel sheet surface to a depth of 50 μm can be adjusted by controlling the equivalent dislocation density from the steel sheet surface before the recrystallization by annealing to a depth of 50 μm. The total thickness average crystal grain size (d2) can be adjusted by changing the annealing temperature and the steel plate components.

[プレス加工後の表面粗さRaが0.7μm以下]
プレス加工後の鋼板の表面粗さRaが小さいほど、耐肌荒れ性に優れる。特に、本発明の缶用鋼板では、プレス加工後の表面粗さRaが0.7μm以下であると、耐肌荒れ性を優れたものにすることができる。そのため、本発明の缶用鋼板では、プレス加工後の表面粗さRaを0.7μm以下とすることが好ましい。ここで、表面粗さRaは、算術平均粗さRaであり、JIS B0601:’01に基づいて、触針式粗さ測定器を用いて測定することができる。また、プレス加工後の表面粗さRaは焼鈍前の鋼板の鋼板表面から深さ方向に50μmまでの相当転位密度を変化させることによって調整することができる。
[Surface roughness Ra after press working is 0.7 μm or less]
The smaller the surface roughness Ra of the steel sheet after press working, the better the skin resistance. In particular, in the steel sheet for cans of the present invention, when the surface roughness Ra after press working is 0.7 μm or less, the rough skin resistance can be improved. Therefore, in the steel plate for cans of this invention, it is preferable that surface roughness Ra after press work shall be 0.7 micrometer or less. Here, the surface roughness Ra is an arithmetic average roughness Ra, and can be measured using a stylus type roughness measuring instrument based on JIS B0601: '01. Further, the surface roughness Ra after the press working can be adjusted by changing the equivalent dislocation density up to 50 μm in the depth direction from the steel plate surface of the steel plate before annealing.

[めっき皮膜]
本発明の缶用鋼板にめっき皮膜を施す場合、鋼板の表面処理としてSnめっき、Niめっき、Crめっき等を施してもよい。さらに化成処理を施してもよいし、ラミネート等の有機皮膜を形成してもよい。
[Plating film]
When a plating film is applied to the steel plate for cans of the present invention, Sn plating, Ni plating, Cr plating, or the like may be applied as the surface treatment of the steel plate. Furthermore, chemical conversion treatment may be performed, or an organic film such as a laminate may be formed.

<板厚が0.1mm以上0.6mm以下>
本発明の缶用鋼板は、板厚が0.1mm以上0.6mm以下である場合、加工性と耐肌荒れ性の双方を向上させるという効果が顕著に得られる。そのため、板厚を0.1mm以上0.6mm以下とすることが好ましい。より好ましくは、板厚は、0.1mm以上0.4mm以下である。本発明では、所望の板厚は、冷間圧延率を変化させることにより調整することができる。
<Plate thickness is 0.1mm to 0.6mm>
When the steel plate for cans of the present invention has a thickness of 0.1 mm or more and 0.6 mm or less, the effect of improving both the workability and the rough skin resistance can be remarkably obtained. Therefore, the plate thickness is preferably set to 0.1 mm or more and 0.6 mm or less. More preferably, the plate thickness is 0.1 mm or more and 0.4 mm or less. In the present invention, the desired plate thickness can be adjusted by changing the cold rolling rate.

[製造方法]
続いて、本発明の缶用鋼板の製造方法について説明する。本発明の缶用鋼板の製造方法では、前述した成分組成からなるスラブを、加熱温度:1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻取り、酸洗、冷間圧延後、焼鈍前の鋼板の鋼板表面から深さ方向に50μmまでの相当転位密度ρが1.0×1015−2以上である鋼板に対して550℃以上700℃以下の焼鈍を行う。
[Production method]
Then, the manufacturing method of the steel plate for cans of this invention is demonstrated. In the method for producing a steel plate for cans of the present invention, a slab having the above-described component composition is heated at a heating temperature of 1000 ° C. to 1300 ° C. and hot-rolled at a finish rolling temperature of 800 ° C. to 1000 ° C., 600 The equivalent dislocation density ρ is 1.0 × 10 15 m −2 or more up to 50 μm in the depth direction from the steel sheet surface of the steel sheet before annealing after pickling, cold rolling, and cold rolling at a temperature of ≧ 700 ° C. A certain steel plate is annealed at 550 ° C. or more and 700 ° C. or less.

<1000℃以上1300℃以下の温度でスラブ加熱>
本発明において、鋼素材の溶製方法は特に限定されず、転炉、電気炉等、公知の溶製方法を採用することができる。また、溶製後、偏析等の問題から連続鋳造法によりスラブ(鋼素材)とするのが好ましいが、造塊−分塊圧延法、薄スラブ連鋳法等、公知の鋳造方法でスラブとしても良い。得られたスラブを、粗圧延した後又は直接熱間仕上げ圧延機に装入し、熱間圧延を行う。スラブ加熱温度は後述の仕上げ圧延温度確保の観点から1000℃以上とする。スラブ加熱温度が1300℃を超えると、窒化物が多量に発生し、焼鈍後未再結晶粒の残存を招き、降伏強度が上昇する。そのため、スラブ加熱温度は1300℃以下とする。
<Slab heating at a temperature of 1000 ° C to 1300 ° C>
In the present invention, the method for melting the steel material is not particularly limited, and a known melting method such as a converter or an electric furnace can be employed. In addition, after melting, it is preferable to use a slab (steel material) by a continuous casting method because of problems such as segregation, but it may also be used as a slab by a known casting method such as an ingot-bundling rolling method or a thin slab continuous casting method. good. The obtained slab is subjected to hot rolling after rough rolling or directly into a hot finish rolling mill. Slab heating temperature shall be 1000 degreeC or more from a viewpoint of ensuring the finishing rolling temperature mentioned later. When the slab heating temperature exceeds 1300 ° C., a large amount of nitride is generated, causing unrecrystallized grains to remain after annealing, and yield strength is increased. Therefore, slab heating temperature shall be 1300 degrees C or less.

<800℃以上1000℃以下の仕上げ圧延温度で熱間圧延>
熱間圧延では、必要に応じて粗圧延を行った後、仕上げ圧延温度800℃以上1000℃以下で仕上げ圧延を行う。仕上げ圧延温度が800℃を下回ると、鋼板原板の組織が不均一になり、加工性や表面外観が劣化する。そのため、仕上げ圧延温度は800℃以上とする。また、1000℃を超えて圧延するとスケール疵などの原因となり表面外観を損ねる。そのため、仕上げ圧延温度は1000℃以下とする。
<Hot rolling at a finish rolling temperature of 800 ° C to 1000 ° C>
In hot rolling, after rough rolling is performed as necessary, finish rolling is performed at a finish rolling temperature of 800 ° C. or higher and 1000 ° C. or lower. When the finish rolling temperature is lower than 800 ° C., the structure of the steel sheet original plate becomes non-uniform, and the workability and surface appearance deteriorate. Therefore, the finish rolling temperature is 800 ° C. or higher. Moreover, if it rolls over 1000 degreeC, it will cause a scale flaw and the surface appearance will be impaired. Therefore, finish rolling temperature shall be 1000 degrees C or less.

<600℃以上700℃以下の温度で巻取り>
巻取り温度が600℃を下回ると、析出物が十分に析出せず、固溶Cや固溶Nが増加し降伏強度が上昇する。さらに時効劣化により更なる降伏強度の上昇が起こる。このため、巻取り温度は600℃以上とする。また、巻取り温度が700℃を超えると表層のスケールが成長して表面欠陥の原因となりやすい。このため、巻取り温度は700℃以下とする。
<Winding at a temperature of 600 ° C to 700 ° C>
When the coiling temperature is lower than 600 ° C., precipitates are not sufficiently precipitated, so that solid solution C and solid solution N increase and yield strength increases. Furthermore, a further increase in yield strength occurs due to aging deterioration. For this reason, the coiling temperature is set to 600 ° C. or higher. On the other hand, when the coiling temperature exceeds 700 ° C., the scale of the surface layer grows and tends to cause surface defects. For this reason, winding temperature shall be 700 degrees C or less.

<焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015−2以上に制御>
巻取り後、酸洗、冷間圧延、洗浄をしてから、焼鈍を行うが、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015−2以上とすることで、焼鈍後の鋼板表層の結晶粒を微細とすることができる。より好ましくは1.0×1016−2以上とする。また、前記相当転位密度の上限値は、特に限定されないが、表面剥離の防止の観点から、1.0×1018−2以下であることが好ましい。
<Controlling the equivalent dislocation density from the surface of the steel sheet before annealing to 50 μm in the depth direction to 1.0 × 10 15 m −2 or more>
After winding, pickling, cold rolling, and cleaning, and then annealing, the equivalent dislocation density from the surface of the steel plate before annealing to 50 μm in the depth direction is 1.0 × 10 15 m −2 or more. By making it into, the crystal grain of the steel plate surface layer after annealing can be made fine. More preferably, it is 1.0 × 10 16 m −2 or more. The upper limit of the equivalent dislocation density is not particularly limited, but is preferably 1.0 × 10 18 m −2 or less from the viewpoint of preventing surface peeling.

焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015−2以上とする方法は特に規定されるものではない。しかし、冷延鋼板を製造する際に通常行われている50〜95%程度の冷延圧下率の範囲では鋼板表層に1.0×1015−2以上の相当転位密度を得ることは難しい。焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度を1.0×1015−2以上とする方法としては、例えば冷間圧延後の冷延鋼板にショットブラスト処理又は高強度ブラシによるひずみ付与処理を施す方法が挙げられる。また、前記相当転位密度を1.0×1015−2以上とする別の方法としては、冷間圧延最終段または冷間圧延後の冷延鋼板に、高粗度ロールによる低圧下率での追加圧延を施す方法が挙げられる。前記高粗度ロールとしては、例えば、ロール粗さRaが2.0〜10.0μmのロールを用いることができる。また、前記低圧下率での追加圧延は、例えば、圧下率0.1〜10%で行うことができる。The method for setting the equivalent dislocation density from the surface of the steel sheet before annealing to 50 μm in the depth direction to 1.0 × 10 15 m −2 or more is not particularly specified. However, it is difficult to obtain an equivalent dislocation density of 1.0 × 10 15 m −2 or more in the steel sheet surface layer in the range of the cold rolling reduction ratio of about 50 to 95% that is normally performed when manufacturing a cold rolled steel sheet. . As a method of setting the equivalent dislocation density from the surface of the steel sheet before annealing to 50 μm in the depth direction to 1.0 × 10 15 m −2 or more, for example, shot blasting or high strength is applied to the cold-rolled steel sheet after cold rolling. A method of applying a strain imparting process with a brush can be mentioned. Further, as another method of setting the equivalent dislocation density to 1.0 × 10 15 m −2 or more, the cold rolling steel sheet after the cold rolling final stage or after cold rolling is applied at a low pressure reduction rate by a high roughness roll. The method of performing additional rolling is mentioned. As the high roughness roll, for example, a roll having a roll roughness Ra of 2.0 to 10.0 μm can be used. Further, the additional rolling at the low pressure reduction rate can be performed at a reduction rate of 0.1 to 10%, for example.

〔相当転位密度〕
相当転位密度は以下の方法によって測定することができる。焼鈍前の各々の鋼板から、10mm×10mmの試験片を採取し、試験片の裏面から板厚50μmとなるまで研磨を行った後、フッ酸にて裏面表層の研磨歪層を除去する。この試験片を用いてX線回折実験を行い、鋼板の(110)、(211)、(220)結晶面のピークの半値幅を求める。この半値幅を用いてWilliamson−Hall法により試験片の不均一歪εを求める。この不均一歪εを、非特許文献1(中島ら「X線回折を利用した転位密度の評価法」、CAMP−ISIJ、Vol.17、2004、p.396)中に記載の式:ρ=14.4ε/bに代入し、相当転位密度ρを求める。なお、bは、バーガースベクトルの大きさ(m)であり、bの値は2.5×10−10mである。
[Equivalent dislocation density]
The equivalent dislocation density can be measured by the following method. A 10 mm × 10 mm test piece is sampled from each steel plate before annealing, polished from the back surface of the test piece to a plate thickness of 50 μm, and then the polishing strain layer on the back surface layer is removed with hydrofluoric acid. An X-ray diffraction experiment is performed using this test piece, and the half width of the peak of the (110), (211), (220) crystal plane of the steel sheet is obtained. Using this half width, the non-uniform strain ε of the test piece is obtained by the Williamson-Hall method. This inhomogeneous strain ε is expressed by the formula described in Non-Patent Document 1 (Nakashima et al. “Method of evaluating dislocation density using X-ray diffraction”, CAMP-ISIJ, Vol. 17, 2004, p. 396): ρ = Substituting for 14.4ε 2 / b 2 , the equivalent dislocation density ρ is obtained. Note that b is the size (m) of the Burgers vector, and the value of b is 2.5 × 10 −10 m.

<550℃以上700℃以下の温度で焼鈍>
焼鈍は、連続焼鈍炉、箱焼鈍炉のいずれを用いた方法で行われても良い。焼鈍温度が550℃未満では、鋼板表層に高い相当転位密度を導入したとしても、未再結晶粒が残存する恐れがある。一方、700℃を超える高温度域で焼鈍を行うと、結晶粒が非常に粗大になり、プレス後に肌荒れの発生を招き、耐肌荒れ性に劣る。そのため、焼鈍温度は550℃以上700℃以下とする。焼鈍温度は570℃以上680℃以下がより好ましい。
<Annealing at a temperature of 550 ° C to 700 ° C>
The annealing may be performed by a method using either a continuous annealing furnace or a box annealing furnace. When the annealing temperature is less than 550 ° C., unrecrystallized grains may remain even if a high equivalent dislocation density is introduced into the steel sheet surface layer. On the other hand, if annealing is performed in a high temperature range exceeding 700 ° C., the crystal grains become very coarse, causing the occurrence of rough skin after pressing, resulting in poor skin resistance. Therefore, annealing temperature shall be 550 degreeC or more and 700 degrees C or less. The annealing temperature is more preferably 570 ° C. or higher and 680 ° C. or lower.

<めっき処理>
焼鈍後、めっき処理を行ってもよい。めっき処理を行う場合、鋼板の表面処理としてSnめっき、Niめっき、Crめっき等を施してもよい。さらに化成処理を施してもよいし、ラミネート等の有機皮膜を形成してもよい。めっき処理後、表面粗度の調整などのため調質圧延を行うことが好ましい。この際、調質圧延の圧延率(伸長率)は、0.5%〜1.5%程度とすることが好ましい。
<Plating treatment>
After annealing, a plating process may be performed. When performing a plating process, you may give Sn plating, Ni plating, Cr plating etc. as surface treatment of a steel plate. Furthermore, chemical conversion treatment may be performed, or an organic film such as a laminate may be formed. After the plating treatment, it is preferable to perform temper rolling for adjusting the surface roughness. At this time, the rolling rate (elongation rate) of the temper rolling is preferably about 0.5% to 1.5%.

以上、説明した本発明の缶用鋼板は、降伏強度が低く、加工性に優れ、表面外観において、耐肌荒れ性に優れると共に、縞状欠陥が抑制される。本発明の缶用鋼板は、例えば2ピース缶用として適用することができる。   As mentioned above, the steel plate for cans of the present invention described above has low yield strength, excellent workability, excellent surface roughness resistance in the surface appearance, and striped defects are suppressed. The steel plate for cans of the present invention can be applied, for example, for a two-piece can.

以下、本発明の実施例について説明する。   Examples of the present invention will be described below.

まず、表1に示す成分組成からなる溶鋼を、真空脱ガス処理後、連続鋳造によりスラブとした。次いで上記スラブを1250℃で加熱し、スケール除去後、板厚40mmまで粗圧延した。次いで、スケール除去装置で鋼板表層を冷却した後、3.2mm厚まで仕上げ圧延し、所定の温度でコイルに巻き取った。   First, the molten steel having the composition shown in Table 1 was made into a slab by continuous casting after vacuum degassing treatment. Next, the slab was heated at 1250 ° C., scale-removed, and then roughly rolled to a plate thickness of 40 mm. Next, the steel sheet surface layer was cooled with a scale removing device, and then finish-rolled to a thickness of 3.2 mm and wound around a coil at a predetermined temperature.

次いで、巻取り後の鋼板を酸洗し、冷間圧延した。前記冷間圧延後、一部のサンプルは、相当転移密度を調整するために、ロール粗さRa=2.1〜7.4μmのロールを用いて追加圧延を施し、0.4mm厚(冷間圧延率:87%)とした。追加圧延は圧延率5%で実施した。また、前記冷間圧延後、別の一部のサンプルについては、ショットブラスト処理(ショット条件:スチールショット(平均粒径0.5mm)を圧力0.5MPaで300秒吹きつけ)を施した。なお、全てのサンプルは最終板厚が0.4mmとなるように前段での冷間圧延率を調整した。冷延板は前処理として脱脂、酸洗した後、連続焼鈍ラインで焼鈍し、伸長率1.0%の調質圧延を行った。   Next, the steel sheet after winding was pickled and cold-rolled. After the cold rolling, some samples were subjected to additional rolling using a roll having a roll roughness Ra = 2.1 to 7.4 μm in order to adjust the equivalent transition density, and the thickness was 0.4 mm (cold). Rolling rate: 87%). Additional rolling was performed at a rolling rate of 5%. Further, after the cold rolling, another part of the sample was subjected to shot blasting (shot condition: steel shot (average particle size 0.5 mm) was sprayed at a pressure of 0.5 MPa for 300 seconds). In addition, all the samples adjusted the cold rolling rate in a front | former stage so that final board thickness might be set to 0.4 mm. The cold-rolled sheet was degreased and pickled as a pretreatment, and then annealed in a continuous annealing line, and temper rolled with an elongation rate of 1.0%.

上記の相当転移密度は、前述の方法に従って測定した。得られた鋼板については機械特性評価、結晶粒径測定を行った。表2に得られた鋼板の表面粗さRa(μm)を併せて示した。   The equivalent transition density was measured according to the method described above. The obtained steel sheet was subjected to mechanical property evaluation and crystal grain size measurement. Table 2 also shows the surface roughness Ra (μm) of the steel sheet obtained.

機械特性評価では、引張試験により、降伏強度(YP)、引張強度(TS)および伸び(El)を評価した。引張特性は、JIS Z2201記載の5号試験片に加工した後、JIS Z2241記載の試験方法に従って行った。結晶粒径はJIS G0551に基づく切断法によりフェライト平均結晶粒径を測定した。   In the mechanical property evaluation, yield strength (YP), tensile strength (TS), and elongation (El) were evaluated by a tensile test. Tensile properties were measured according to the test method described in JIS Z2241, after being processed into a No. 5 test piece described in JIS Z2201. As for the crystal grain size, the ferrite average crystal grain size was measured by a cutting method based on JIS G0551.

更に、鋼板から100mm径の円形ブランクを採取して、これを5段階の多段絞り成型で14mm径の円筒状に成型した後、触針式粗さ測定器を用いて缶胴部の表面粗さRaを測定し、加工性(成形性)の評価と、表面外観の評価として耐肌荒れ性の評価と縞状欠陥の抑制性の評価を行った。加工性の評価は200個の絞り成型を行い、割れや疵など不良の発生しなかったものを○、発生したものを×とした。耐肌荒れ性の評価は缶胴部の表面粗さRaが0.5μm未満を◎、0.5μm以上0.7μm以下を○、0.7μm超えを×とした。縞状欠陥の抑制性の評価は、加工後の表面に縞状などの欠陥が発生したものを×とし、それ以外を○とした。   Further, a 100 mm diameter circular blank is sampled from the steel sheet, formed into a 14 mm diameter cylindrical shape by five-stage multistage drawing, and then the surface roughness of the can body using a stylus type roughness measuring instrument. Ra was measured, and the evaluation of workability (formability) and the evaluation of surface appearance were evaluated for the rough skin resistance and the suppression of stripe defects. The evaluation of workability was performed by drawing 200 pieces, and the case where no defects such as cracks and wrinkles occurred was evaluated as ◯, and the case where the defects were generated was evaluated as ×. The evaluation of the rough skin resistance was evaluated as ◎ when the surface roughness Ra of the can body portion was less than 0.5 μm, ◯ when 0.5 μm or more and 0.7 μm or less, and × when 0.7 μm or more. In the evaluation of the suppression of striped defects, those in which defects such as stripes occurred on the processed surface were evaluated as x, and the others were evaluated as ◯.

上記の製造条件及び評価結果を表2に示す。   The production conditions and evaluation results are shown in Table 2.

Figure 0006210177
Figure 0006210177

Figure 0006210177
Figure 0006210177

本発明例は加工性に優れ、表面外観において、耐肌荒れ性に優れると共に縞状欠陥を抑制でき、缶用鋼板として適した性能を有していた。一方、比較例では加工性、表面外観の少なくとも一方が劣っていた。具体的には、試料A4、B3は、鋼板表面の未再結晶粒の占める面積率が0.10%を超えており、鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)と全厚平均結晶粒径(d2)とについて、d1/d2が0.8を超えていたため、表面外観において、耐肌荒れ性に劣り、縞状欠陥が発生した。   The examples of the present invention were excellent in workability, were excellent in surface roughness, were able to suppress striped defects, and had performance suitable as steel plates for cans. On the other hand, in the comparative example, at least one of workability and surface appearance was inferior. Specifically, in Samples A4 and B3, the area ratio of unrecrystallized grains on the steel sheet surface exceeds 0.10%, and the average crystal grain size (d1) in the structure from the steel sheet surface to a depth of 50 μm Since d1 / d2 exceeded 0.8 with respect to the total thickness average crystal grain size (d2), the surface appearance was inferior in skin roughness resistance, and striped defects were generated.

また、試料C3は、鋼板表面の未再結晶粒の占める面積率が0.10%を超えており、全厚平均結晶粒径(d2)が11.0μm未満であったため、加工性に劣り、縞状欠陥が発生した。試料D1は、用いた鋼のC含有量が0.0050質量%を超えており、鋼板表面の未再結晶粒の占める面積率が0.10%を超えており、全厚平均結晶粒径(d2)が11.0μm未満であるため、加工性に劣っていた。   Sample C3 had an area ratio of non-recrystallized grains on the steel sheet surface exceeding 0.10%, and the total thickness average crystal grain size (d2) was less than 11.0 μm. Striped defects occurred. In the sample D1, the C content of the steel used exceeds 0.0050 mass%, the area ratio occupied by unrecrystallized grains on the steel sheet surface exceeds 0.10%, and the total thickness average crystal grain size ( Since d2) was less than 11.0 μm, the workability was poor.

また、試料E1は、用いた鋼のC含有量が0.0010質量%未満であり、鋼板表面の未再結晶粒の占める面積率が0.10%を超えていたため、加工性と耐肌荒れ性の双方に劣っていた。試料F1は、用いた鋼のMn含有量が0.3質量%を超えており、鋼板表面の未再結晶粒の占める面積率が0.10%を超えていたため、加工性に劣っていた。
Sample E1 had a C content of less than 0.0010 mass% of the steel used, and the area ratio of non-recrystallized grains on the steel sheet surface exceeded 0.10%, so that workability and rough skin resistance were increased. It was inferior to both. In Sample F1, the Mn content of the steel used exceeded 0.3% by mass, and the area ratio of non-recrystallized grains on the steel plate surface exceeded 0.10%, so that the workability was poor.

Claims (8)

質量%で、C:0.0010%以上0.0050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、Ti:0.01%以上0.06%以下および/またはNb:0.01%以上0.04%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
鋼板表面の未再結晶粒の占める面積率が0.10%以下、鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)と全厚平均結晶粒径(d2)とがd1≦0.8×d2の関係を満たし、かつd2が11.0μm以上である缶用鋼板。
In mass%, C: 0.0010% or more and 0.0050% or less, Si: 0.03% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.02% or less, Al : 0.01% to 0.10%, N: 0.004% or less, Ti: 0.01% to 0.06% and / or Nb: 0.01% to 0.04% And the balance has a component composition consisting of Fe and inevitable impurities,
The area ratio of the non-recrystallized grains on the steel sheet surface is 0.10% or less, and the average crystal grain diameter (d1) and the total thickness average crystal grain diameter (d2) in the structure from the steel sheet surface to a depth of 50 μm are d1 ≦ 0. Steel plate for cans satisfying the relationship of 8 × d2 and d2 being 11.0 μm or more.
前記成分組成として、更に、質量%で、B:0.0003%以上0.0030%以下を含有する請求項1に記載の缶用鋼板。   The steel plate for cans according to claim 1, further comprising, by mass%, B: 0.0003% or more and 0.0030% or less as the component composition. 鋼板表面にめっき皮膜が形成された請求項1または2に記載の缶用鋼板。   The steel plate for cans according to claim 1 or 2, wherein a plating film is formed on the surface of the steel plate. 板厚が0.1mm以上0.6mm以下である請求項1〜3のいずれか1項に記載の缶用鋼板。   The steel plate for cans according to any one of claims 1 to 3, wherein the plate thickness is 0.1 mm or more and 0.6 mm or less. 質量%で、C:0.0010%以上0.0050%以下、Si:0.03%以下、Mn:0.3%以下、P:0.02%以下、S:0.02%以下、Al:0.01%以上0.10%以下、N:0.004%以下を含有し、Ti:0.01%以上0.06%以下および/またはNb:0.01%以上0.04%以下を含有し、残部がFeおよび不可避的不純物からなる成分組成からなる鋼スラブを加熱温度:1000℃以上1300℃以下で加熱し、800℃以上1000℃以下の仕上げ圧延温度で熱間圧延し、600℃以上700℃以下の温度で巻取り、酸洗、冷間圧延後、焼鈍前の鋼板の表面から深さ方向に50μmまでの相当転位密度ρが1.0×1015−2以上である鋼板に対して550℃以上700℃以下の焼鈍を行う、鋼板表面の未再結晶粒の占める面積率が0.10%以下、鋼板表面から深さ50μmまでの組織における平均結晶粒径(d1)と全厚平均結晶粒径(d2)とがd1≦0.8×d2の関係を満たし、かつd2が11.0μm以上である、缶用鋼板の製造方法。
ここで、前記相当転移密度ρは、14.4ε/bから算出される(εは鋼板の不均一歪を表し、bは2.5×10−10mである。)。
In mass%, C: 0.0010% or more and 0.0050% or less, Si: 0.03% or less, Mn: 0.3% or less, P: 0.02% or less, S: 0.02% or less, Al : 0.01% to 0.10%, N: 0.004% or less, Ti: 0.01% to 0.06% and / or Nb: 0.01% to 0.04% A steel slab having a composition comprising Fe and inevitable impurities as a balance , heated at a heating temperature of 1000 ° C. to 1300 ° C., hot-rolled at a finish rolling temperature of 800 ° C. to 1000 ° C., 600 The equivalent dislocation density ρ from the surface of the steel sheet after annealing, pickling, cold rolling, and before annealing to 50 μm in the depth direction is 1.0 × 10 15 m −2 or more. performs the following annealed 550 ° C. or higher 700 ° C. relative to the steel plate, the steel plate The average crystal grain size (d1) and the total thickness average crystal grain size (d2) in the structure from the surface of the steel sheet to the depth of 50 μm are d1 ≦ 0. The manufacturing method of the steel plate for cans which satisfy | fills the relationship of 8xd2, and d2 is 11.0 micrometers or more .
Here, the equivalent transition density ρ is calculated from 14.4ε 2 / b 2 (ε represents a non-uniform strain of the steel sheet, and b is 2.5 × 10 −10 m).
前記成分組成として、更に、質量%で、B:0.0003%以上0.0030%以下を含有する、請求項5に記載の缶用鋼板の製造方法。The manufacturing method of the steel plate for cans according to claim 5 which contains B: 0.0003% or more and 0.0030% or less by mass% as said ingredient composition. 前記焼鈍を行った後、めっき処理を行う、請求項5または6に記載の缶用鋼板の製造方法。The manufacturing method of the steel plate for cans according to claim 5 or 6 which performs plating processing after performing said annealing. 前記缶用鋼板の板厚が0.1mm以上0.6mm以下である、請求項5〜7のいずれか1項に記載の缶用鋼板の製造方法。The manufacturing method of the steel plate for cans of any one of Claims 5-7 whose plate | board thickness of the said steel plate for cans is 0.1 mm or more and 0.6 mm or less.
JP2017509237A 2015-03-27 2016-03-14 Steel plate for can and manufacturing method thereof Active JP6210177B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015066386 2015-03-27
JP2015066386 2015-03-27
PCT/JP2016/001411 WO2016157761A1 (en) 2015-03-27 2016-03-14 Steel sheet for can and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2016157761A1 JPWO2016157761A1 (en) 2017-07-06
JP6210177B2 true JP6210177B2 (en) 2017-10-11

Family

ID=57006605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017509237A Active JP6210177B2 (en) 2015-03-27 2016-03-14 Steel plate for can and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP6210177B2 (en)
CN (1) CN107429348B (en)
WO (1) WO2016157761A1 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310150A (en) * 1996-05-22 1997-12-02 Kawasaki Steel Corp Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JP2000054070A (en) * 1998-08-05 2000-02-22 Kawasaki Steel Corp Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture
EP1669472B1 (en) * 1998-12-07 2008-02-27 JFE Steel Corporation High strength cold rolled steel sheet and method for manufacturing the same
JP4835015B2 (en) * 2004-03-25 2011-12-14 Jfeスチール株式会社 Steel plate for soft can and method for producing the same
JP5044952B2 (en) * 2006-03-23 2012-10-10 Jfeスチール株式会社 Cold-rolled steel sheet for chemical conversion treatment and production method thereof
JP5076872B2 (en) * 2007-12-21 2012-11-21 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JP5262242B2 (en) * 2008-03-31 2013-08-14 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
JP5794004B2 (en) * 2011-07-12 2015-10-14 Jfeスチール株式会社 Steel sheet for high strength can excellent in flange workability and manufacturing method thereof

Also Published As

Publication number Publication date
WO2016157761A1 (en) 2016-10-06
CN107429348B (en) 2019-05-10
CN107429348A (en) 2017-12-01
JPWO2016157761A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
JP5217197B2 (en) Cold-rolled steel sheet with excellent earring properties and method for producing the same
KR101941067B1 (en) Material for cold-rolled stainless steel sheet
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP6428986B1 (en) Cold-rolled steel sheet for drawn cans and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP2019183267A (en) Hot rolled steel sheet excellent in scale adhesion and manufacturing method therefor
JP6137436B2 (en) Steel plate for can and manufacturing method thereof
JP6699310B2 (en) Cold rolled steel sheet for squeezer and method for manufacturing the same
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
KR20160146905A (en) Steel sheet for cans and manufacturing method thereof
JP6361553B2 (en) Steel plate for high workability and high strength can and manufacturing method thereof
JP6210177B2 (en) Steel plate for can and manufacturing method thereof
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
TW201732054A (en) Steel sheet for cans and manufacturing method therefor
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
JP4760455B2 (en) Cold rolled steel sheet having high average r value and small in-plane anisotropy and method for producing the same
JP2007211337A (en) Cold-rolled steel sheet having excellent strain-aging resistance and low in-plane anisotropy and method for manufacture thereof
JP6070616B2 (en) Manufacturing method of hot-rolled steel sheet
CN113950536B (en) Steel sheet for can and method for producing same
JP6627745B2 (en) Steel plate for can and method for producing the same
JP2014218695A (en) Alloyed hot-dip galvanized steel sheet and method of producing the same
JPH0457745B2 (en)
JPH10237548A (en) Manufacture of cold rolled steel sheet excellent in formability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170308

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170308

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170828

R150 Certificate of patent or registration of utility model

Ref document number: 6210177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250