JP5874771B2 - Steel plate for cans excellent in workability and rough skin resistance and method for producing the same - Google Patents

Steel plate for cans excellent in workability and rough skin resistance and method for producing the same Download PDF

Info

Publication number
JP5874771B2
JP5874771B2 JP2014054814A JP2014054814A JP5874771B2 JP 5874771 B2 JP5874771 B2 JP 5874771B2 JP 2014054814 A JP2014054814 A JP 2014054814A JP 2014054814 A JP2014054814 A JP 2014054814A JP 5874771 B2 JP5874771 B2 JP 5874771B2
Authority
JP
Japan
Prior art keywords
less
steel plate
cans
rough skin
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014054814A
Other languages
Japanese (ja)
Other versions
JP2014208894A (en
Inventor
雄介 木俣
雄介 木俣
藤田 耕一郎
耕一郎 藤田
太郎 木津
太郎 木津
直行 ▲高▼田
直行 ▲高▼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2014054814A priority Critical patent/JP5874771B2/en
Publication of JP2014208894A publication Critical patent/JP2014208894A/en
Application granted granted Critical
Publication of JP5874771B2 publication Critical patent/JP5874771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は缶用材料に関し、加工性と耐肌荒れ性に優れた缶用鋼板およびその製造方法に関するものである。   The present invention relates to a material for cans, and relates to a steel plate for cans excellent in workability and rough skin resistance and a method for producing the same.

乾電池製造等の際に使用される、深絞り缶、DRD(Drawn and Redrawn)缶、DI(Drawn and Ironed)缶などの2ピース缶の製造に用いられる冷延鋼板には、次のような特性が要求されている。   Cold rolled steel sheets used in the production of 2-piece cans such as deep-drawn cans, DRD (Drawn and Redrawn) cans, and DI (Drawn and Ironed) cans used in dry cell manufacturing, etc. have the following characteristics: Is required.

(1)プレス加工性に優れ、加工時に割れ等の欠陥が発生しないこと。   (1) Excellent press workability and no defects such as cracks occur during processing.

(2)異方性が小さくイヤリング性に優れ、深絞り加工後の耳発生が小さいこと。   (2) The anisotropy is small, the earrings are excellent, and the occurrence of ears after deep drawing is small.

(3)プレス加工後の鋼板表面の肌荒れが小さく、仕上がり外観が良好なこと。   (3) The surface roughness of the steel sheet after pressing is small and the finished appearance is good.

このうち、(2)に関して、例えば特許文献1や特許文献2には、極低炭素鋼にNbを添加して、深絞り性とイヤリング性に優れた鋼板を得る技術が開示されている。   Among these, regarding (2), for example, Patent Document 1 and Patent Document 2 disclose a technique for obtaining a steel sheet excellent in deep drawability and earring performance by adding Nb to ultra-low carbon steel.

また、(3)に関しては、結晶粒径を小さくすることで、加工後の鋼板表面の耐肌荒れ性を改善できることが知られている。例えば、特許文献3には、細粒な低炭素鋼を用いて、成型後の表面粗さが小さい鋼板を提供する技術が開示されている。   Regarding (3), it is known that the roughness resistance of the surface of the steel sheet after processing can be improved by reducing the crystal grain size. For example, Patent Document 3 discloses a technique for providing a steel sheet having a small surface roughness after molding using fine low-carbon steel.

特開平11−315346号公報JP 11-315346 A 特開2009−155692号公報JP 2009-1555692 A 特開平10−30152号公報Japanese Patent Laid-Open No. 10-30152

しかしながら、特許文献1や特許文献2に記載の技術には、結晶粒が粗大であり、プレス加工後に肌荒れが発生するという問題や、高価なNbを用いることで鋼板コストを増大するといった問題がある。特許文献3の技術では、得られる細粒な低炭素鋼の降伏強度が高くなり、缶成型時の割れや金型寿命の低下等の加工性が問題となる。   However, the techniques described in Patent Document 1 and Patent Document 2 have problems that the crystal grains are coarse and rough skin occurs after press working, and that the cost of the steel sheet is increased by using expensive Nb. . In the technique of Patent Document 3, the yield strength of the obtained fine-grained low-carbon steel is increased, and workability such as cracking at the time of can molding and a decrease in mold life becomes a problem.

本発明は上記のような従来技術の課題を解決し、加工性と耐肌荒れ性に優れた缶用鋼板およびその製造方法を提供することを目的とする。   An object of the present invention is to solve the above-described problems of the prior art and to provide a steel plate for cans excellent in workability and rough skin resistance and a method for producing the same.

本発明者らは、上記課題を解決するために鋭意研究を重ねた。その結果、以下の点を見出し、本発明を完成するに至った。   The inventors of the present invention have made extensive studies to solve the above problems. As a result, the following points were found and the present invention was completed.

第一に、低炭素鋼にBを添加して、AlNの代わりにBNを析出させることで、製造された鋼板は同じフェライト平均結晶粒径のB無添加鋼と比べて軟質となり、優れた加工性を有する。   First, by adding B to low-carbon steel and precipitating BN instead of AlN, the produced steel sheet becomes softer than B-free steel having the same ferrite average crystal grain size, and excellent processing Have sex.

第二に、低炭素鋼中のC量とB量、熱延条件、冷圧率(冷間圧延時の圧下率)、焼鈍条件を選択し組み合わせることによって、フェライト結晶粒径が小さくなり、加工後の耐肌荒れ性に優れる。   Secondly, by selecting and combining C and B contents in low carbon steel, hot rolling conditions, cold pressure ratio (rolling ratio during cold rolling), and annealing conditions, the ferrite crystal grain size becomes smaller and processed. Excellent resistance to rough skin afterwards.

以上の知見に基づけば、耐肌荒れ性に優れ、かつ軟質で加工性に優れた缶用鋼板を得ることが可能となる。より具体的には、本発明は以下のものを提供する。   Based on the above knowledge, it is possible to obtain a steel plate for cans which is excellent in rough skin resistance, soft and excellent in workability. More specifically, the present invention provides the following.

(1)成分組成として、質量%で、C:0.010〜0.050%、Si:0.03%以下、Mn:0.30%以下、P:0.02%以下、S:0.02%以下、Al:0.04%以下、N:0.004%以下、B:0.0010〜0.0025%、残部がFe及び不可避的不純物からなり、フェライト平均結晶粒径が10.0μm以下、降伏強度が280MPa以下、粒径が80nm以上であるBN析出物と、粒径が50nm以下であるAlN析出物とを含み、前記BN析出物の含有量が、前記AlN析出物の含有量以上であることを特徴とする加工性と耐肌荒れ性に優れた缶用鋼板。   (1) As component composition, C: 0.010 to 0.050%, Si: 0.03% or less, Mn: 0.30% or less, P: 0.02% or less, S: 0.0. 02% or less, Al: 0.04% or less, N: 0.004% or less, B: 0.0010 to 0.0025%, the balance is made of Fe and inevitable impurities, and the average grain size of ferrite is 10.0 μm Hereinafter, including a BN precipitate having a yield strength of 280 MPa or less and a particle size of 80 nm or more, and an AlN precipitate having a particle size of 50 nm or less, the content of the BN precipitate is the content of the AlN precipitate. A steel plate for cans with excellent processability and rough skin resistance, characterized by the above.

(2)表面にめっき皮膜を有することを特徴とする(1)に記載の加工性と耐肌荒れ性に優れた缶用鋼板。   (2) The steel plate for cans having excellent workability and rough skin resistance as described in (1), having a plating film on the surface.

(3)(1)に記載の加工性と耐肌荒れ性に優れた缶用鋼板の製造方法であって、質量%で、C:0.010〜0.050%、Si:0.03%以下、Mn:0.30%以下、P:0.02%以下、S:0.02%以下、Al:0.04%以下、N:0.004%以下、B:0.0010〜0.0025%、残部がFe及び不可避的不純物からなる成分組成を有する連続鋳造鋼片を1100℃以上に加熱し、850℃以上の温度で仕上げ圧延を行い、540〜590℃の温度で巻き取り、圧下率70〜90%で冷間圧延し、550℃〜再結晶開始温度の通過時間が5秒以内となる条件で昇温して650℃〜750℃の温度で連続焼鈍を施し、伸張率1.0〜2.0%で調質圧延を行なうことを特徴とする加工性と耐肌荒れ性に優れた缶用鋼板の製造方法。   (3) A method for producing a steel plate for cans having excellent workability and rough skin resistance as described in (1), wherein C: 0.010 to 0.050% and Si: 0.03% or less in mass%. Mn: 0.30% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.04% or less, N: 0.004% or less, B: 0.0010 to 0.0025 %, The continuous cast steel slab having a composition composed of Fe and inevitable impurities is heated to 1100 ° C. or higher, finish-rolled at a temperature of 850 ° C. or higher, wound at a temperature of 540 to 590 ° C., and the reduction ratio Cold-rolled at 70 to 90%, heated at a temperature of 550 ° C. to the recrystallization start temperature within 5 seconds, and subjected to continuous annealing at a temperature of 650 to 750 ° C. Steel plate for cans with excellent workability and rough skin resistance, characterized by temper rolling at ~ 2.0% Manufacturing method.

(4)前記調質圧延後に、表面にめっきを施すことを特徴とする(3)に記載の加工性と耐肌荒れ性に優れた缶用鋼板の製造方法。   (4) The method for producing a steel plate for a can excellent in workability and skin roughness resistance according to (3), wherein the surface is plated after the temper rolling.

本発明の缶用鋼板は、乾電池用、食品缶用等、いずれの種類の缶の製造にも好ましく適用できる。また、缶用鋼板は、冷延鋼板、めっき鋼板等いずれでもよい。   The steel plate for cans of the present invention can be preferably applied to the production of any type of can such as for dry batteries and food cans. The steel plate for cans may be a cold rolled steel plate or a plated steel plate.

本発明により得られる缶用鋼板によれば、従来より軟質であり、かつ結晶粒径が小さいことから、従来鋼では両立することができなかった加工性と耐肌荒れ性の両立を実現できる。   According to the steel plate for cans obtained according to the present invention, since it is softer than before and the crystal grain size is smaller, it is possible to realize both workability and rough skin resistance that cannot be achieved with conventional steel.

また、本発明の缶用鋼板は高価なNbを使用しないので、低コストで製造可能でありながら、加工性及び耐肌荒れ性に優れる。   Moreover, since the steel plate for cans of this invention does not use expensive Nb, it can be manufactured at a low cost, and is excellent in workability and rough skin resistance.

粒径(フェライト平均結晶粒径)と降伏強度との関係を示す図である。It is a figure which shows the relationship between a particle size (ferrite average crystal grain size) and yield strength. B添加鋼中のBNを示す図である。It is a figure which shows BN in B addition steel. B無添加鋼中のAlNを示す図である。It is a figure which shows AlN in B additive-free steel.

以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。   Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.

先ず、本発明を完成するに至った経緯を説明する。発明者らはフェライト結晶粒を粗大化させることなく鋼板を軟質化するためには、鋼板の析出強化の程度を低減させることが有効であると考え、低炭素鋼へのB添加による軟質化を検討した。   First, how the present invention was completed will be described. The inventors consider that it is effective to reduce the degree of precipitation strengthening of the steel sheet in order to soften the steel sheet without coarsening the ferrite crystal grains, and the softening by adding B to the low carbon steel is considered. investigated.

表1に示す成分の低炭素熱延鋼板を研削により板厚2.0mmに揃え、冷間圧延により板厚0.25mmの冷延板とした。冷延板に600〜750℃で連続焼鈍を施した。   Low carbon hot rolled steel sheets having the components shown in Table 1 were aligned to a thickness of 2.0 mm by grinding, and cold rolled sheets having a thickness of 0.25 mm were formed by cold rolling. The cold rolled sheet was subjected to continuous annealing at 600 to 750 ° C.

焼鈍後のサンプルに伸長率1.5%の調質圧延を行った。これらの鋼板について、組織観察写真からJIS G0551に基づく切断法によりフェライト平均結晶粒径を測定した。また、調質圧延後の鋼板について、JIS13号Bのハーフサイズ試験片を用いた引張試験により降伏強度の測定を行い評価した。これらの結果を図1に示す(縦軸は降伏強度、横軸は(粒径(フェライト平均結晶粒径))−1/2であり、グラフの上側の目盛はフェライト平均結晶粒径を表す)。B添加鋼は降伏強度が低く、同じフェライト平均結晶粒径で比較してB無添加鋼に比べ約20MPa軟質化していることが確認された。B添加鋼がB無添加鋼に比べ軟質となったのは、窒化析出物の違いが原因である。B添加鋼では粗大なBNが析出し(図2)、B無添加鋼では微細なAlNが析出する(図3)。析出物径が大きいほど析出強化の程度は小さくなるため、B添加鋼は軟質となった。 The annealed sample was subjected to temper rolling with an elongation of 1.5%. About these steel plates, the ferrite average crystal grain size was measured by the cutting method based on JIS G0551 from the structure observation photograph. Moreover, about the steel plate after temper rolling, the yield strength was measured and evaluated by the tensile test using the half size test piece of JIS13B. These results are shown in FIG. 1 (the vertical axis is the yield strength, the horizontal axis is (grain size (ferrite average crystal grain size)) −1/2 , and the scale on the upper side of the graph represents the ferrite average crystal grain size) . It was confirmed that the B-added steel had a low yield strength and was softened by about 20 MPa as compared with the B-free steel compared with the same average ferrite grain size. The reason why the B-added steel is softer than the B-free steel is due to the difference in nitrided precipitates. Coarse BN precipitates in the B-added steel (FIG. 2), and fine AlN precipitates in the B-free steel (FIG. 3). The larger the precipitate diameter, the smaller the degree of precipitation strengthening, so the B-added steel became softer.

続いて本発明の詳細を説明する。成分組成の含有量を表す「%」は「質量%」を意味する。   Next, the details of the present invention will be described. “%” Representing the content of the component composition means “mass%”.

C:0.010〜0.050%
Cの含有量が0.010%未満になるとフェライト結晶粒の粗大化を招く結果、フェライト平均結晶粒径が大きくなり過ぎる。このため、Cの含有量の下限を0.010%とする。また、Cの含有量が0.050%を超えると絞り加工性が低下する。このため、Cの含有量の上限を0.050%とする。Cの含有量の好ましい範囲は0.016〜0.040%である。
C: 0.010 to 0.050%
If the C content is less than 0.010%, the ferrite crystal grains become coarse, and as a result, the ferrite average crystal grain size becomes too large. For this reason, the minimum of content of C is made into 0.010%. On the other hand, if the C content exceeds 0.050%, the drawing processability decreases. For this reason, the upper limit of the C content is 0.050%. A preferable range of the C content is 0.016 to 0.040%.

Si:0.03%以下
Siは意図的な添加を行わない場合にも、不純物成分として鋼中に残留し鋼板の耐食性およびめっきの密着性を劣化させる元素である。良好な耐食性を確保するために、Siの含有量を0.03%以下とする。Siの含有量の好ましい範囲は0.02%以下である。
Si: 0.03% or less Si is an element that remains in the steel as an impurity component even when intentional addition is not performed, and deteriorates the corrosion resistance of the steel sheet and the adhesion of the plating. In order to ensure good corrosion resistance, the Si content is set to 0.03% or less. A preferable range of the Si content is 0.02% or less.

Mn:0.30%以下
Mnは鋼中のSをMnSとして析出させることによってスラブの熱間割れを防止する。Sを析出固定するためには、Mnの含有量を0.1%以上にすることが好ましい。ただし、Mnは強化元素であり、本発明では軟質な特性を得るためにMn含有量の上限を0.30%とする。
Mn: 0.30% or less Mn prevents hot cracking of the slab by precipitating S in the steel as MnS. In order to precipitate and fix S, the Mn content is preferably set to 0.1% or more. However, Mn is a strengthening element. In the present invention, the upper limit of the Mn content is set to 0.30% in order to obtain soft characteristics.

P:0.02%以下
Pはフェライト粒界に偏析して粒界を脆化させ、絞り成形時の加工性を低下させる。また、Pはめっきの密着性を低下させる元素である。したがって、Pの含有量は極力少ない方が好ましく、本発明では0.02%以下とする。
P: 0.02% or less P segregates at the ferrite grain boundaries, embrittles the grain boundaries, and lowers the workability during drawing. P is an element that lowers the adhesion of plating. Therefore, the content of P is preferably as small as possible, and in the present invention, it is 0.02% or less.

S:0.02%以下
Sの含有量は、スラブの熱間割れ防止の観点から極力少ないほうが好ましい。したがって、Sの含有量は0.02%以下とする。
S: 0.02% or less The content of S is preferably as small as possible from the viewpoint of preventing hot cracking of the slab. Therefore, the S content is 0.02% or less.

Al:0.04%以下
Alが、sol.Al量として、0.04%を超えるとAlNの析出が増え、鋼板の硬質化を招く。したがってAlの含有量は0.04%以下とする。好ましいAlの含有量は0.03%以下とする。
Al: 0.04% or less Al is sol. If the amount of Al exceeds 0.04%, precipitation of AlN increases, leading to hardening of the steel sheet. Therefore, the Al content is 0.04% or less. The preferable Al content is 0.03% or less.

N:0.004%以下
NはBNとして析出し無害化される傾向にあるが、あまり多量だと固溶Nが多く残存し、無害化できないため、Nの含有量は0.004%以下とする。好ましいNの含有量は0.003%以下とする。
N: 0.004% or less N tends to be deposited and detoxified as BN, but if it is too much, a large amount of solid solution N remains and cannot be rendered harmless, so the N content is 0.004% or less. To do. The preferable N content is 0.003% or less.

B:0.0010〜0.0025%
Bは本発明の重要な元素であり、Bの含有量は0.0010〜0.0025%の範囲とする。Bは固溶Nと反応しBN析出物(本明細書において「BN」という場合がある)を形成するが、Bの含有量が上記範囲より少ないとAlN析出物(本明細書において「AlN」という場合がある)が析出し鋼板は硬質化する。また、Bの含有量が上記範囲を超えると異方性が増大し、成形性が劣化する。好ましいBの含有量は0.0012〜0.0020%とする。
B: 0.0010 to 0.0025%
B is an important element of the present invention, and the B content is in the range of 0.0010 to 0.0025%. B reacts with solute N to form a BN precipitate (sometimes referred to as “BN” in the present specification). However, if the content of B is less than the above range, an AlN precipitate (hereinafter referred to as “AlN” in the present specification). In some cases) and the steel plate becomes hard. On the other hand, if the B content exceeds the above range, the anisotropy increases and the moldability deteriorates. The preferable B content is 0.0012 to 0.0020%.

なお、残部はFe及び不可避的不純物である。   The balance is Fe and inevitable impurities.

続いて、本発明の缶用鋼板の組織及び性質について説明する。   Next, the structure and properties of the steel plate for cans of the present invention will be described.

フェライト平均結晶粒径が10.0μm以下
フェライト平均結晶粒径が大きいと缶加工後の表面の肌荒れ性が劣化する傾向にある。具体的には、フェライト平均結晶粒径が10.0μmを超えると表面の肌荒れ性が劣化する。このため、フェライト平均結晶粒径は10.0μmを超えないものとする。フェライト平均結晶粒径が5.0μm未満となると降伏強度が高く加工性に劣る場合があるため、フェライト平均結晶粒径は5.0μm以上であることが好ましい。なお、フェライト平均結晶粒径の測定方法はJIS G0551に基づく。
Ferrite average crystal grain size is 10.0 μm or less When the ferrite average crystal grain size is large, the surface roughness after can processing tends to deteriorate. Specifically, when the ferrite average crystal grain size exceeds 10.0 μm, the surface roughness of the surface deteriorates. For this reason, the ferrite average crystal grain size shall not exceed 10.0 μm. When the ferrite average crystal grain size is less than 5.0 μm, the yield strength is high and the workability may be inferior. Therefore, the ferrite average crystal grain size is preferably 5.0 μm or more. The method for measuring the ferrite average crystal grain size is based on JIS G0551.

板厚が0.60mm以下
本発明の缶用鋼板の板厚は特に限定されないが、缶用鋼板としてのコストや缶体重量の観点から、0.60mm以下とすることが好ましい。ただし、過度の圧延はコストを上昇させるため、板厚は0.10mm以上であることが好ましい。
Plate thickness is 0.60 mm or less The plate thickness of the steel plate for cans of the present invention is not particularly limited, but is preferably 0.60 mm or less from the viewpoint of cost and weight of the can body as a steel plate for cans. However, since excessive rolling increases costs, the plate thickness is preferably 0.10 mm or more.

粒径が80nm以上であるBN析出物と、粒径が50nm以下であるAlN析出物の関係が質量%でBN≧AlN
析出物粒径は析出強化の程度に影響し、析出物粒径が小さいほど析出強化の程度は大きい。本発明では軟質化を目的に、微細なAlNの析出を抑えつつNは粗大なBNとして析出させる。BNの粒径が80nm以上であると析出強化の影響がほとんど無視できる値となり、AlNの粒径が50nm以下であると析出強化の影響が10MPaを超えることから、粒径が80nm以上の粗大なBNの析出量と、粒径が50nm以下である微細なAlNの析出量との関係が析出強化の程度を実質的に支配する。そして本発明の缶用鋼板中のBNの含有量(質量%)とAlNの含有量(質量%)の関係は、BNの含有量≧AlNの含有量、である。上記関係を満たせば、析出強化の程度をより適度に抑え、缶用鋼板を十分に軟質化することが可能となる。
The relationship between a BN precipitate having a particle size of 80 nm or more and an AlN precipitate having a particle size of 50 nm or less is expressed as BN ≧ AlN.
The precipitate particle size affects the degree of precipitation strengthening. The smaller the precipitate particle size, the greater the degree of precipitation strengthening. In the present invention, for the purpose of softening, N is precipitated as coarse BN while suppressing the precipitation of fine AlN. When the particle size of BN is 80 nm or more, the effect of precipitation strengthening becomes a value that can be almost ignored. When the particle size of AlN is 50 nm or less, the effect of precipitation strengthening exceeds 10 MPa, so the particle size is coarser than 80 nm. The relationship between the precipitation amount of BN and the precipitation amount of fine AlN having a particle size of 50 nm or less substantially governs the degree of precipitation strengthening. The relationship between the BN content (mass%) and the AlN content (mass%) in the steel sheet for cans of the present invention is BN content ≧ AlN content. If the above relationship is satisfied, the degree of precipitation strengthening can be suppressed more appropriately, and the steel plate for cans can be sufficiently softened.

なお、AlNおよびBNの粒径は、鋼板から得た抽出レプリカを、電子顕微鏡にて観察し、元素分析にて対象の元素が検出される析出物の直径を計測し得られる(BNの径の決め方の例を図2に、AlNの径の決め方の例を図3に示した。なお、径は外接円の直径である。)。また、BNの含有量、AlNの含有量は、電解抽出残渣を用いて測定する。   The particle diameters of AlN and BN can be obtained by observing the extracted replica obtained from the steel sheet with an electron microscope and measuring the diameter of the precipitate in which the target element is detected by elemental analysis (the diameter of BN). An example of how to determine is shown in Fig. 2 and an example of how to determine the diameter of AlN is shown in Fig. 3. The diameter is the diameter of the circumscribed circle. Further, the content of BN and the content of AlN are measured using an electrolytic extraction residue.

降伏強度が280MPa以下
缶成型時の加工性や金型寿命の観点から、缶用鋼板の降伏強度は280MPa以下である。好ましくは270MPa以下である。
Yield strength is 280 MPa or less From the viewpoint of workability at the time of can molding and die life, the yield strength of the steel plate for cans is 280 MPa or less. Preferably it is 270 MPa or less.

めっき皮膜
耐食性向上の観点から、上記の鋼板にZn、Sn、Ni、Crなどのめっき皮膜を施すことが可能である。めっき皮膜の形成方法は、特に限定されず、溶融めっき、電気めっきなどの常法を採用すればよい。また、鋼板とめっき金属間に拡散層を形成するため、めっき後に拡散焼鈍を施してもかまわない。
Plating film From the viewpoint of improving the corrosion resistance, it is possible to apply a plating film such as Zn, Sn, Ni, and Cr to the steel sheet. The formation method of a plating film is not specifically limited, What is necessary is just to employ | adopt ordinary methods, such as hot dipping and electroplating. Further, in order to form a diffusion layer between the steel plate and the plated metal, diffusion annealing may be performed after plating.

続いて、本発明の缶用鋼板の好ましい製造方法について説明するが、本発明の缶用鋼板の製造方法は以下の方法に特に限定されない。   Then, although the preferable manufacturing method of the steel plate for cans of this invention is demonstrated, the manufacturing method of the steel plate for cans of this invention is not specifically limited to the following method.

連続鋳造鋼片を1100℃以上に加熱
上記の成分組成を有する鋼を転炉で溶製後、連続鋳造して得られたスラブ(連続鋳造鋼片)を、粗圧延した後又は直接熱間仕上圧延機に挿入し熱間圧延を行う。スラブ加熱温度はAlNを分解し再固溶させるため1100℃以上とする。スラブ加熱温度の上限値は特に限定されないが、加熱コストを抑えるため、1300℃以下であることが好ましい。
Heating continuously cast steel slab to 1100 ° C or more After slab (continuous cast steel slab) obtained by continuous casting after melting steel having the above composition in a converter, or hot finishing directly Insert into a rolling mill and perform hot rolling. The slab heating temperature is set to 1100 ° C. or higher in order to decompose and re-dissolve AlN. The upper limit of the slab heating temperature is not particularly limited, but is preferably 1300 ° C. or lower in order to reduce the heating cost.

850℃以上の温度で仕上げ圧延
熱延の仕上げ温度は850℃以上とする。熱延仕上げ温度が850℃より低くなると、熱延板に集合組織が形成されるとともに、表層結晶粒が粗大化したり加工組織が残存したりする場合があり、深絞り性が劣化する。仕上げ温度の上限値は特に限定されないが、仕上げ温度が高すぎると熱延板の結晶粒径が大きくなりすぎる。このため、上記仕上げ温度は950℃以下であることが好ましい。
Finish rolling at a temperature of 850 ° C. or higher The finishing temperature of hot rolling is 850 ° C. or higher. When the hot-rolling finishing temperature is lower than 850 ° C., a texture is formed on the hot-rolled sheet, and the surface layer crystal grains may be coarsened or the processed structure may remain, resulting in deterioration of deep drawability. The upper limit of the finishing temperature is not particularly limited, but if the finishing temperature is too high, the crystal grain size of the hot rolled sheet becomes too large. For this reason, it is preferable that the said finishing temperature is 950 degrees C or less.

540〜590℃の温度で巻き取り
巻取温度はAlNの析出を抑えるため590℃以下とする。コイル幅方向および長手方向のばらつきを考慮して下限は540℃とする。
Winding at a temperature of 540 to 590 ° C. The winding temperature is 590 ° C. or lower in order to suppress the precipitation of AlN. The lower limit is set to 540 ° C. in consideration of variations in the coil width direction and the longitudinal direction.

圧下率70〜90%で冷間圧延
上記で得られた熱延鋼板を酸洗した後、冷間圧延を行う。面内異方性を小さくするために、圧下率は70〜90%の範囲とする。
Cold rolling at a rolling reduction of 70 to 90% After the hot-rolled steel sheet obtained above is pickled, cold rolling is performed. In order to reduce the in-plane anisotropy, the rolling reduction is in the range of 70 to 90%.

650℃〜750℃の温度で連続焼鈍
連続焼鈍の焼鈍温度は、未再結晶組織の残存による加工性の低下を抑制するため再結晶温度以上であることが好ましく、650℃以上とする。また過度の粒成長による粗粒化に起因した肌荒れを抑制するため、750℃以下とする。また、AlNの析出を抑えるため550℃〜再結晶開始温度の通過時間を5秒以内とする。好ましくは3秒以内とする。
Continuous annealing at a temperature of 650 ° C. to 750 ° C. The annealing temperature of the continuous annealing is preferably equal to or higher than the recrystallization temperature in order to suppress a decrease in workability due to remaining unrecrystallized structure, and is set to 650 ° C. or higher. Moreover, in order to suppress the rough skin resulting from the coarsening by excessive grain growth, it shall be 750 degrees C or less. In order to suppress precipitation of AlN, the transit time from 550 ° C. to the recrystallization start temperature is set to be within 5 seconds. Preferably, it is within 3 seconds.

伸張率1.0〜2.0%で調質圧延
調質圧延は、伸張率が1.0〜2.0%の範囲であればストレッチャストレインの発生が防止されるため、この範囲で行う。
Temper rolling at an elongation rate of 1.0 to 2.0% Temper rolling is performed in this range because the occurrence of stretcher strain is prevented if the elongation rate is in the range of 1.0 to 2.0%.

表2に示す化学成分を有する連続鋳造鋼片を1200℃に加熱後、仕上げ温度890℃、巻取り温度560〜630℃の熱間圧延にて板厚2.1mmの熱延鋼板とした。この熱延鋼板を酸洗後、冷間圧延し板厚0.25mmの冷延板とした。圧下率は88%である。その後昇温速度10〜30℃/秒で600〜770℃の温度にて連続焼鈍し、伸張率1.5%の調質圧延を施すことにより鋼板を得た。焼鈍温度等の条件について表3に示した。なお、昇温時間は550℃〜再結晶開始温度までの時間を示す。再結晶開始温度とは、焼鈍時に圧延組織の一部でも再結晶を開始する温度を示す。再結晶開始温度は、各成分の冷延板について、事前に550℃〜700℃で10秒の均熱処理後、室温まで冷却したサンプルを作成し、該サンプルの断面ミクロ組織を確認することで決定した。   A continuous cast steel slab having the chemical components shown in Table 2 was heated to 1200 ° C., and then hot rolled at a finishing temperature of 890 ° C. and a winding temperature of 560 to 630 ° C. to obtain a hot-rolled steel plate having a thickness of 2.1 mm. The hot-rolled steel sheet was pickled and cold-rolled to obtain a cold-rolled sheet having a thickness of 0.25 mm. The rolling reduction is 88%. Thereafter, continuous annealing was performed at a temperature rising rate of 10 to 30 ° C./second and a temperature of 600 to 770 ° C., and temper rolling with an elongation rate of 1.5% was performed to obtain a steel plate. The conditions such as the annealing temperature are shown in Table 3. In addition, temperature rising time shows the time from 550 degreeC to recrystallization start temperature. The recrystallization start temperature indicates a temperature at which recrystallization is started even in a part of the rolled structure during annealing. The recrystallization start temperature is determined by preparing a sample which is cooled to room temperature after soaking at 550 ° C. to 700 ° C. for 10 seconds in advance, and confirming the cross-sectional microstructure of the sample. did.

この鋼板からJIS5号引張試験片および光学顕微鏡観察サンプルを採取し、引張試験により降伏強度を測定し、JIS G0551に基づく切断法によりフェライト平均結晶粒径を測定した。降伏強度、フェライト平均結晶粒径の結果を、表3に示した。   A JIS No. 5 tensile specimen and an optical microscope observation sample were collected from this steel plate, the yield strength was measured by a tensile test, and the ferrite average crystal grain size was measured by a cutting method based on JIS G0551. The results of yield strength and ferrite average crystal grain size are shown in Table 3.

また、この鋼板から100mm径の円形ブランクを採取して、これを5工程の多段絞り成型で14mm径の円筒状に成型した後、JIS B0601に基づき缶胴部の表面粗さRaを測定し、成型加工性と肌荒れ性の評価を行った。成型加工性の評価として200個の上記絞り成型を行い、割れや疵など不良の発生しなかったものを「○」、発生したものを「×」とした。肌荒れ性の評価は、缶胴部の表面粗さRaが0.5μm未満を「◎」、0.5μm以上0.7μm未満を「○」、0.7μm以上を「×」とした。これらの評価結果を表3に示した(表中の加工性評価、肌荒れ評価)。   Also, after collecting a 100 mm diameter circular blank from this steel plate and forming it into a 14 mm diameter cylindrical shape by multistage drawing of 5 steps, the surface roughness Ra of the can body portion is measured based on JIS B0601; The moldability and rough skin were evaluated. As the evaluation of the moldability, 200 pieces of the above-mentioned drawing were performed, and “◯” was given when no defects such as cracks and wrinkles occurred, and “X” was given. In the evaluation of the rough skin property, the surface roughness Ra of the can body portion was “◎” when the surface roughness Ra was less than 0.5 μm, “◯” when 0.5 μm or more and less than 0.7 μm, and “X” when 0.7 μm or more. These evaluation results are shown in Table 3 (workability evaluation and rough skin evaluation in the table).

また、鋼板の抽出残渣分析およびTEM観察により、粒径80nm以上のBN析出物の含有量と、粒径50nm以下のAlN析出物の含有量とを質量%でそれぞれ算出し、含有量の関係がBN≧AlNであれば「○」、BN<AlNであれば「×」とした。以上の結果を表3に示した(表中の析出物評価)。   In addition, the content of BN precipitates having a particle size of 80 nm or more and the content of AlN precipitates having a particle size of 50 nm or less are calculated in mass% by extraction residue analysis and TEM observation of the steel sheet, respectively. When BN ≧ AlN, “◯” was indicated, and when BN <AlN, “X” was indicated. The above results are shown in Table 3 (Evaluation of precipitates in the table).

析出物の重量は10%AA系電解液(アセチルアセトンテトラメチルアンモニウムクロライドのエタノール溶液)でサンプルを溶解し、残渣からICP発光分光分析法により求めた。   The weight of the precipitate was obtained by dissolving the sample with a 10% AA electrolyte solution (ethanol solution of acetylacetone tetramethylammonium chloride), and determining the residue from the residue by ICP emission spectrometry.

TEM観察は抽出レプリカ法を用いて加速電圧200kVで行った。   TEM observation was performed using an extraction replica method at an acceleration voltage of 200 kV.

発明鋼である発明例1〜7は加工性、肌荒れ性ともに缶用鋼板として優れた結果となった。   Inventive Examples 1 to 7, which are invention steels, were excellent results as steel sheets for cans in terms of both workability and rough skin.

比較例1は鋼片1を使用したが、焼鈍温度が高すぎること等が原因で結晶粒が粗大化したため、フェライト平均結晶粒径が10.0μmを超え、肌荒れ評価が不良となった例である。   Although the comparative example 1 used the steel slab 1, since the crystal grain coarsened because the annealing temperature was too high, etc., the ferrite average crystal grain size exceeded 10.0 μm, and the skin roughness evaluation was poor. is there.

比較例2は鋼片1を使用したが、焼鈍温度が低すぎ未再結晶となり、フェライト再結晶粒がほとんど生じなかったため、降伏強度、結晶粒径、加工性および肌荒れが評価できなかった例である。   In Comparative Example 2, the steel slab 1 was used, but the annealing temperature was too low to be unrecrystallized, and almost no ferrite recrystallized grains were produced, so the yield strength, crystal grain size, workability and rough skin could not be evaluated. is there.

比較例3は鋼片1を使用したが、昇温時間が長くAlNの析出が抑制できなかったため、軟質化が不十分となった例である。   In Comparative Example 3, the steel slab 1 was used. However, since the temperature rise time was long and precipitation of AlN could not be suppressed, the softening was insufficient.

比較例4は鋼片2を使用したが、巻取り温度が高くAlNの析出が抑制できなかったため、軟質化が不十分となった例である。   In Comparative Example 4, the steel slab 2 was used, but since the winding temperature was high and precipitation of AlN could not be suppressed, the softening was insufficient.

比較例5で使用した鋼片4はBを含まないので、AlNの析出を抑制できず、硬質になり、加工性が劣位であった例である。   Since the steel piece 4 used in Comparative Example 5 does not contain B, it is an example in which precipitation of AlN cannot be suppressed, it becomes hard, and workability is inferior.

比較例6は鋼片5を使用したもので、Bが下限未満でありAlNの析出を抑制できなかったため、軟質化が不十分となった例である。   In Comparative Example 6, steel slab 5 was used, and B was less than the lower limit, and precipitation of AlN could not be suppressed, so that softening was insufficient.

比較例7は鋼片6を使用したもので、Bが上限を超えて添加されているため異方性が高く、成型時に耳が発生し、加工不良となった例である(比較例7はイヤリング性が悪い)。   Comparative Example 7 uses a steel slab 6 and is an example in which B is added in excess of the upper limit, so that the anisotropy is high, an ear is generated at the time of molding, and the processing becomes defective (Comparative Example 7 is a comparative example). Earrings are bad).

比較例8は鋼片7を使用したもので、C量が上限を超えており、加工性に劣った例である。   The comparative example 8 uses the steel piece 7, and the C amount exceeds the upper limit, and is an example inferior in workability.

比較例9は鋼片8の極低炭素鋼を使用したもので、フェライト結晶粒が粗大であり、フェライト平均結晶粒径が10.0μmを超えるため、肌荒れ評価が不良となった例である。   Comparative Example 9 is an example in which extremely low carbon steel of steel slab 8 is used, the ferrite crystal grains are coarse, and the ferrite average crystal grain size exceeds 10.0 μm, so that the rough skin evaluation is poor.

Claims (4)

成分組成として、質量%で、C:0.016〜0.050%、Si:0.03%以下、Mn:0.30%以下、P:0.02%以下、S:0.02%以下、Al:0.04%以下、N:0.004%以下、B:0.0010〜0.0025%、残部がFe及び不可避的不純物からなり、フェライト平均結晶粒径が10.0μm以下、降伏強度が280MPa以下、粒径が80nm以上であるBN析出物と、粒径が50nm以下であるAlN析出物とを含み、前記BN析出物の含有量が、前記AlN析出物の含有量以上であることを特徴とする加工性と耐肌荒れ性に優れた缶用鋼板。 As component composition, by mass%, C: 0.016 to 0.050%, Si: 0.03% or less, Mn: 0.30% or less, P: 0.02% or less, S: 0.02% or less Al: 0.04% or less, N: 0.004% or less, B: 0.0010 to 0.0025%, the balance is made of Fe and inevitable impurities, ferrite average crystal grain size is 10.0 μm or less, yield It includes a BN precipitate having a strength of 280 MPa or less and a particle size of 80 nm or more, and an AlN precipitate having a particle size of 50 nm or less, and the content of the BN precipitate is greater than or equal to the content of the AlN precipitate. Steel plate for cans with excellent processability and rough skin resistance. 表面にめっき皮膜を有することを特徴とする請求項1に記載の加工性と耐肌荒れ性に優れた缶用鋼板。   The steel plate for cans having excellent workability and rough skin resistance according to claim 1, wherein the steel plate has a plating film on the surface. 請求項1に記載の加工性と耐肌荒れ性に優れた缶用鋼板の製造方法であって、
質量%で、C:0.016〜0.050%、Si:0.03%以下、Mn:0.30%以下、P:0.02%以下、S:0.02%以下、Al:0.04%以下、N:0.004%以下、B:0.0010〜0.0025%、残部がFe及び不可避的不純物からなる成分組成を有する連続鋳造鋼片を1100℃以上に加熱し、850℃以上の温度で仕上げ圧延を行い、540〜590℃の温度で巻き取り、圧下率70〜90%で冷間圧延し、550℃〜再結晶開始温度の通過時間が5秒以内となる条件で昇温して650℃〜750℃の温度で連続焼鈍を施し、伸張率1.0〜2.0%で調質圧延を行なうことを特徴とする加工性と耐肌荒れ性に優れた缶用鋼板の製造方法。
It is a manufacturing method of the steel plate for cans excellent in workability and rough skin resistance according to claim 1,
In mass%, C: 0.016 to 0.050%, Si: 0.03% or less, Mn: 0.30% or less, P: 0.02% or less, S: 0.02% or less, Al: 0 0.04% or less, N: 0.004% or less, B: 0.0010 to 0.0025%, and the continuous cast steel slab having a component composition consisting of Fe and inevitable impurities is heated to 1100 ° C. or higher, and 850 Finish rolling at a temperature of ℃ ℃ or more, winding at a temperature of 540-590 ℃, cold-rolling at a reduction rate of 70-90%, under the condition that the transit time from 550 ℃ to the recrystallization start temperature is within 5 seconds Steel plate for cans with excellent workability and rough skin resistance, characterized in that the temperature is raised, continuous annealing is performed at a temperature of 650 ° C. to 750 ° C., and temper rolling is performed at an elongation of 1.0 to 2.0%. Manufacturing method.
前記調質圧延後に、表面にめっきを施すことを特徴とする請求項3に記載の加工性と耐肌荒れ性に優れた缶用鋼板の製造方法。   The method for producing a steel plate for cans having excellent workability and rough skin resistance according to claim 3, wherein the surface is plated after the temper rolling.
JP2014054814A 2013-03-28 2014-03-18 Steel plate for cans excellent in workability and rough skin resistance and method for producing the same Active JP5874771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014054814A JP5874771B2 (en) 2013-03-28 2014-03-18 Steel plate for cans excellent in workability and rough skin resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013069948 2013-03-28
JP2013069948 2013-03-28
JP2014054814A JP5874771B2 (en) 2013-03-28 2014-03-18 Steel plate for cans excellent in workability and rough skin resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014208894A JP2014208894A (en) 2014-11-06
JP5874771B2 true JP5874771B2 (en) 2016-03-02

Family

ID=51903277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014054814A Active JP5874771B2 (en) 2013-03-28 2014-03-18 Steel plate for cans excellent in workability and rough skin resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP5874771B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746802B1 (en) * 2015-12-22 2017-06-13 주식회사 포스코 Cold-rolled steel sheet for continuous-type self-brazing and manufacturing method of the same
JP6455639B1 (en) 2017-03-27 2019-01-23 Jfeスチール株式会社 Steel plate for 2-piece can and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06306534A (en) * 1993-04-26 1994-11-01 Nippon Steel Corp Surface treated original sheet for di can good in pressure withstanding strength and necked-in property and its production
JP3915146B2 (en) * 1996-09-05 2007-05-16 Jfeスチール株式会社 Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance
JP2006148500A (en) * 2004-11-19 2006-06-08 Jfe Steel Kk Manufacturing method of inner shielding material
JP5810714B2 (en) * 2011-07-29 2015-11-11 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same

Also Published As

Publication number Publication date
JP2014208894A (en) 2014-11-06

Similar Documents

Publication Publication Date Title
JP5217197B2 (en) Cold-rolled steel sheet with excellent earring properties and method for producing the same
JP6428986B1 (en) Cold-rolled steel sheet for drawn cans and manufacturing method thereof
TWI518186B (en) High strength hot-rolled steel sheet and method for producing the same
JPWO2010131303A1 (en) Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof
JP5924459B1 (en) Stainless steel for cold rolled steel
JP6037084B2 (en) Steel plate for squeezed can and method for manufacturing the same
EP3318649B1 (en) Material for cold-rolled stainless steel sheets and manufacturing method therefor
TWI515309B (en) High strength hot-rolled steel sheet and method for producing the same
JP5930144B1 (en) Steel plate for squeezed can and method for manufacturing the same
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
JP6699310B2 (en) Cold rolled steel sheet for squeezer and method for manufacturing the same
TW201441384A (en) High strength hot-rolled steel sheet and method for producing the same
JP6137436B2 (en) Steel plate for can and manufacturing method thereof
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JP4760455B2 (en) Cold rolled steel sheet having high average r value and small in-plane anisotropy and method for producing the same
JP2017048452A (en) Aluminum alloy sheet for automobile body panel excellent in filiform rust resistance, coating galling curability and processability and manufacturing method therefor, automobile body panel using the same and manufacturing method therefor
JP6210177B2 (en) Steel plate for can and manufacturing method thereof
JP3814865B2 (en) Manufacturing method of steel plate for battery outer cylinder with excellent material uniformity and corrosion resistance
JP2007204788A (en) Method for manufacturing steel sheet for battery
JP5239331B2 (en) Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same
JP2790369B2 (en) Manufacturing method of cold rolled steel sheet with excellent workability
JPH09241760A (en) Production of steel sheet for external cylinder of battery, excellent in material uniformity and corrosion resistance
JPH09241757A (en) Production of steel sheet for external cylinder of battery, excellent in material uniformity and corrosion resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160104

R150 Certificate of patent or registration of utility model

Ref document number: 5874771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250