JP2007204788A - Method for manufacturing steel sheet for battery - Google Patents

Method for manufacturing steel sheet for battery Download PDF

Info

Publication number
JP2007204788A
JP2007204788A JP2006022521A JP2006022521A JP2007204788A JP 2007204788 A JP2007204788 A JP 2007204788A JP 2006022521 A JP2006022521 A JP 2006022521A JP 2006022521 A JP2006022521 A JP 2006022521A JP 2007204788 A JP2007204788 A JP 2007204788A
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
annealing
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006022521A
Other languages
Japanese (ja)
Inventor
Susumu Kaizu
享 海津
Nobuo Yamagami
伸夫 山上
Soichi Shimada
聰一 島田
Hideko Yasuhara
英子 安原
Reiko Sugihara
玲子 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006022521A priority Critical patent/JP2007204788A/en
Publication of JP2007204788A publication Critical patent/JP2007204788A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a steel sheet for battery which is excellent in workability possible of DI (drawing and ironing) work. <P>SOLUTION: In order to obtaining the steel sheet for battery having the workability sufficiently resist to the DI work, the combination of a component composition and a producing condition is optimized so that the steel sheet is sufficiently softened. Concretely, a slab contains, by mass%, 0.01-0.1% C, ≤0.1% Si, 0.1-1.0% Mn, ≤0.03% P, ≤0.2% S, 0.01-0.08% sol.Al, ≤0.0050% N and the balance Fe with inevitable impurities, is hot-rolled and cold-rolled at 80-90% rolling-reduction ratio and successively, annealed at 600-700°C for 30 sec-5 min, and successively, a skin-pass rolling is performed at 0.5-2.0% expanding ratio, and a plating-treatment is performed and successively, after diffusion-annealing at 650-800°C for 5 min or more, the skin pass-rolling is performed. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、DI加工により形成する電池用缶の材料を製造する方法に関するものである。   The present invention relates to a method for producing a battery can material formed by DI processing.

鋼板を用いて乾電池用缶を製造するにあたっては、その乾電池胴体部分はDI(Drawing and Ironing)絞り加工により形成される。DI絞り加工方法とはシート状のメッキ鋼板から基材を打ち抜く際に、底壁と周壁とを有する浅底円筒形状のカップとして絞りながら打ち抜き、このカップを次の一工程の深絞り加工で所要の深さと径を有する円筒形状に加工するものである。このようにDI絞り加工では、カップを深絞りする工程で、周壁のみを引き伸ばし加工するため、例えば、底壁の板厚0.4mmに対して、周壁の板厚を0.15mmまで絞ることが可能となり、板厚に対するしごき率(減少率)は従来の2倍強とすることが出来る。そして、周壁を薄肉とすると中空部の容積が大となり、充填剤が増加(電解液容量増大)して電池特性を向上させることが出来る。また、加工工程が缶形成材料となるシート鋼板からカップを打ち抜く一工程のカッピング工程と、絞り加工するDI工程の一工程との合計二工程のみで良いため、加工工程の大幅な減少、それに伴う製造コストの低減を図ることが出来る。   In manufacturing a dry cell can using a steel plate, the dry cell body portion is formed by drawing (Drawing and Ironing) drawing. The DI drawing method is to punch a base material from a sheet-like plated steel plate while drawing it as a shallow cylindrical cup with a bottom wall and a peripheral wall, and this cup is required in the next deep drawing process. It is processed into a cylindrical shape having a depth and a diameter. Thus, in the DI drawing process, only the peripheral wall is stretched in the deep drawing process of the cup. For example, the thickness of the peripheral wall can be reduced to 0.15 mm with respect to the thickness of the bottom wall of 0.4 mm. The ironing rate (decrease rate) with respect to the plate thickness can be made slightly more than twice that of the prior art. And if a surrounding wall is made thin, the volume of a hollow part will become large, a filler will increase (electrolyte capacity increase), and a battery characteristic can be improved. In addition, the machining process requires only a total of two processes, one cupping process for punching a cup from a sheet steel sheet, which is a can-forming material, and one process for the DI process for drawing. Manufacturing costs can be reduced.

一方では、DI絞り加工は上記のような加工方法をとるゆえに、用いる鋼板に対しては、DI加工に耐えられる優れた加工性が求められる。   On the other hand, since the DI drawing process uses the above-described processing method, the steel sheet to be used is required to have excellent workability that can withstand DI processing.

これに対し、通常、乾電池用鋼板は、スラブを熱間圧延、冷間圧延、場合によってはその後焼鈍(箱焼鈍、連続焼鈍の場合の両方あり)、調質圧延を実施し、めっき工程を経て、焼鈍、調質圧延して製造される。しかし、焼鈍条件については特に限定されておらず、1回目の連続焼鈍の条件次第では固溶元素が残留することにより、材料が軟質化せず、DI加工に耐え得る材質とならない場合がある。     On the other hand, steel plates for dry batteries are usually subjected to hot rolling and cold rolling of slabs, and sometimes annealing (both in case of box annealing and continuous annealing) and temper rolling, followed by a plating process. Manufactured by annealing, temper rolling. However, the annealing conditions are not particularly limited, and depending on the conditions of the first continuous annealing, solid solution elements may remain, so that the material does not soften and may not be a material that can withstand DI processing.

例えば、特許文献1では、DI加工を行う電池用缶の材料として、面内偏差Δrを0に近づけると共に、板厚を幅方向に均一とすることによりイヤリング発生を抑えた鋼板が開示されている。
特開平6-344003号公報
For example, Patent Document 1 discloses a steel plate that suppresses the occurrence of earrings by making the in-plane deviation Δr close to 0 and making the plate thickness uniform in the width direction as a material for a battery can for performing DI processing. .
JP-A-6-344003

しかしながら、特許文献1に記載の鋼板を、DI加工を行う電池用缶の材料として用いた場合、固溶元素が残存することから時効硬化が避けられず、DI加工中に割れが生じるという問題がある。   However, when the steel sheet described in Patent Document 1 is used as a material for battery cans that perform DI processing, since solute elements remain, age hardening cannot be avoided, and cracking occurs during DI processing. is there.

本発明では、かかる事情に鑑み、上記問題点を解決するためになされたもので、DI加工が可能な、加工性に優れた電池用鋼板を得ることを目的とする。   In view of such circumstances, the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a battery steel sheet that can be processed by DI and has excellent workability.

本発明者らは、上記の課題を解決すべく鋭意研究した。そして、DI加工に耐えうる充分な加工性を有する電池用鋼板を得るためには、鋼板を軟質化することが重要であり、鋼板の軟質化の点から成分組成と製造条件の組み合わせについて検討した。その結果、時効硬化に対しては拡散焼鈍条件を適正な範囲に制御することが最も有効であることを見出し、成分組成としてCの量を規定し、その上で2回目の焼鈍(拡散焼鈍)を中心とした各製造条件の組み合わせを規定することにより、DI加工が可能な加工性に優れた鋼板が得られることをも見出した。   The present inventors have intensively studied to solve the above problems. And in order to obtain a battery steel sheet having sufficient workability that can withstand DI processing, it is important to soften the steel sheet, and from the point of softening of the steel sheet, the combination of the composition and production conditions was examined. . As a result, it has been found that it is most effective to control the diffusion annealing condition within an appropriate range for age hardening, and the amount of C is specified as a component composition, and then the second annealing (diffusion annealing). It has also been found that a steel sheet excellent in workability capable of DI processing can be obtained by defining a combination of manufacturing conditions centering on.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]DI絞り加工により乾電池胴体部分とする電池用鋼板を製造するにあたって、質量%で、C:0.01〜0.1%、Si≦0.1%、Mn:0.1〜1.0%、P≦0.03%、S≦0.2%、sol.Al:0.01〜0.08%、N≦0.0050%を含有し、残部Feおよび不可避的不純物からなるスラブを熱間圧延し、80〜90%の圧延率で冷間圧延し、次いで、600〜700℃の温度で30秒〜5分焼鈍し、次いで、0.5〜2.0%の伸長率で調質圧延し、めっき処理を行い、次いで、650〜800℃の温度で5分以上の拡散焼鈍後、調質圧延を行うことを特徴とする電池用鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] When manufacturing a battery steel sheet for a dry battery body by DI drawing, in mass%, C: 0.01 to 0.1%, Si ≤ 0.1%, Mn: 0.1 to 1.0%, P ≤ 0.03%, S ≤ 0.2%, sol.Al:0.01-0.08%, N ≦ 0.0050%, the slab composed of the balance Fe and inevitable impurities is hot-rolled, cold-rolled at a rolling rate of 80-90%, and then Annealing at a temperature of 600 to 700 ° C for 30 seconds to 5 minutes, then temper-rolling at an elongation of 0.5 to 2.0%, plating, and then diffusion annealing at a temperature of 650 to 800 ° C for 5 minutes or more Then, temper rolling is performed, The manufacturing method of the steel plate for batteries characterized by the above-mentioned.
In addition, in this specification,% which shows the component of steel is mass% altogether.

本発明によれば、鋼種選定、スラブから熱間圧延、冷間圧延、焼鈍、調質圧延、めっき、焼鈍、調質圧延の一連の製造工程(特に2回目の焼鈍条件)を最適化することによって、鋼板が充分に軟質化され、DI加工可能な電池用鋼板を得ることができる。   According to the present invention, optimization of a series of manufacturing processes (especially the second annealing condition) of steel type selection, slab to hot rolling, cold rolling, annealing, temper rolling, plating, annealing, temper rolling. Thus, the steel plate is sufficiently softened, and a battery steel plate capable of DI processing can be obtained.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

まず、本発明の成分限定理由について説明する。   First, the reasons for limiting the components of the present invention will be described.

化学成分範囲
C:0.01〜0.1%
Cは本発明において、最も重要な要件の一つである。鋼板を軟質化するためには、C量と製造条件の適切な組み合わせが必須となる。Cの添加量が0.1%を超えると、加工性が劣り、かつ固溶Cが残存し、時効硬化が生じ、軟質化の観点から不利である。よって、C量は0.1%以下とする。また、少なすぎると缶壁の強度不足となるため、強度確保の観点から0.01%以上とする。
Chemical composition range
C: 0.01-0.1%
C is one of the most important requirements in the present invention. In order to soften the steel sheet, an appropriate combination of C content and manufacturing conditions is essential. When the addition amount of C exceeds 0.1%, workability is inferior and solid solution C remains, age hardening occurs, which is disadvantageous from the viewpoint of softening. Therefore, the C content is 0.1% or less. If the amount is too small, the strength of the can wall will be insufficient, so 0.01% or more from the viewpoint of securing the strength.

Si≦0.1%
Siは鋼板の強化に有効な元素であり、適宜添加することが出来る。しかし、Siの添加量が0.1%を超えると、赤スケールの発生による鋼板の表面性状が劣化するため、Si量は0.1%以下とする。
Si ≦ 0.1%
Si is an element effective for strengthening steel sheets and can be added as appropriate. However, if the added amount of Si exceeds 0.1%, the surface properties of the steel sheet deteriorate due to the occurrence of red scale, so the Si amount is made 0.1% or less.

Mn:0.1〜1.0%
Mnは鋼板の強化に有効な元素であるが、添加量が0.1%未満では強化元素として不十分である。一方、Mn量が1.0%を超えると、表面性状が悪化する。よって、Mn量は0.1%以上1.0%以下とする。
Mn: 0.1-1.0%
Mn is an element effective for strengthening steel sheets, but if it is less than 0.1%, it is insufficient as a strengthening element. On the other hand, when the amount of Mn exceeds 1.0%, the surface properties deteriorate. Therefore, the Mn content is 0.1% or more and 1.0% or less.

P≦0.03%
Pは鋼板の強化に有効な元素であるが、添加量が0.03%を超えると、伸びの低下が著しくなる。以上より、P量は0.03%以下とする。
P ≦ 0.03%
P is an element effective for strengthening steel sheets. However, when the addition amount exceeds 0.03%, the elongation decreases remarkably. Based on the above, the P content is 0.03% or less.

S≦0.2%
Sは0.2%を超えると、Mn/Sが低下し欠陥が発生しやすくなる。このため、S量は0.2%以下とする。
S ≦ 0.2%
If S exceeds 0.2%, Mn / S decreases and defects tend to occur. Therefore, the S content is 0.2% or less.

sol.Al:0.01〜0.08%
sol.AlはAlNとして固溶Nを固定し時効性を改善させる元素であるが、0.01%未満ではNを固定するのに不十分であり、0.08%を超えると表面性状が低下する。このため、sol.Alは0.01%〜0.08%とする。
sol.Al: 0.01-0.08%
sol.Al is an element that fixes solid solution N as AlN and improves aging properties. However, if it is less than 0.01%, it is insufficient to fix N, and if it exceeds 0.08%, the surface properties deteriorate. For this reason, sol.Al is made 0.01% to 0.08%.

N≦0.0050%
Nは0.0050%を超えると、AlNとして固定できなくなり、時効性が劣化する。このため、N量は0.0050%以下とする。
N ≦ 0.0050%
If N exceeds 0.0050%, it cannot be fixed as AlN, and the aging property deteriorates. For this reason, N amount shall be 0.0050% or less.

上記以外の残部はFe及び不可避不純物とする。また、本発明では、本発明の作用効果を害さない微量元素として、例えば、Cr、Moは0.05%以下を含有してもよい。   The remainder other than the above is Fe and inevitable impurities. Moreover, in this invention, as a trace element which does not impair the effect of this invention, Cr and Mo may contain 0.05% or less, for example.

次に本発明の電池用鋼板の製造方法について説明する。   Next, the manufacturing method of the battery steel plate of this invention is demonstrated.

本発明の鋼板は、まず、上記成分組成を有する鋼を溶製し、鋳造する。生産性、コスト面を考慮して、鋳造方法は、連続鋳造法とする。次いで、鋳造されたスラブを熱間圧延する。   The steel plate of the present invention first melts and casts steel having the above component composition. In consideration of productivity and cost, the casting method is a continuous casting method. Next, the cast slab is hot-rolled.

熱間圧延は、高温の鋳造スラブをそのまま圧延しても良いし、室温まで冷却されたスラブを再加熱してから圧延しても良い。スラブ加熱する場合、圧延加熱温度が1100℃未満では圧延荷重が高くなるため、圧延が困難となる。また、スラブ加熱温度が1300℃を超えると、一次スケールの過剰な発生による熱延時のスケール欠陥発生し易くなる。このため、スラブの加熱温度は、1100℃以上1300℃以下が好ましい。粗圧延後、仕上圧延し、コイルに巻き取る。仕上圧延の際、850℃未満の温度で圧延終了すると、粗大粒となる。よって、仕上温度は850℃以上が好ましい。   In hot rolling, a high-temperature cast slab may be rolled as it is, or a slab cooled to room temperature may be reheated and then rolled. In the case of slab heating, if the rolling heating temperature is less than 1100 ° C., the rolling load becomes high, so that rolling becomes difficult. Further, when the slab heating temperature exceeds 1300 ° C., scale defects are easily generated during hot rolling due to excessive generation of primary scale. For this reason, the heating temperature of the slab is preferably 1100 ° C. or higher and 1300 ° C. or lower. After rough rolling, it is finish-rolled and wound on a coil. When finishing rolling at a temperature lower than 850 ° C. during finish rolling, coarse grains are formed. Therefore, the finishing temperature is preferably 850 ° C. or higher.

巻取温度
Fe3Cの凝集粗大化及びAlN析出促進の効果があり、時効硬化が低減される。巻取温度が600℃未満では上記効果は充分でない。一方、700℃を超えると、ばらつきが大きくなる。よって巻取温度は600℃以上700℃以下とする。なお、好ましい巻取温度は620〜680℃である。
Winding temperature
There is an effect of coarsening of Fe 3 C and acceleration of AlN precipitation, and age hardening is reduced. If the coiling temperature is less than 600 ° C., the above effect is not sufficient. On the other hand, when it exceeds 700 ° C., the variation becomes large. Therefore, the coiling temperature is set to 600 ° C or higher and 700 ° C or lower. A preferable winding temperature is 620 to 680 ° C.

冷延
圧延率を最適化することにより、缶成形時の缶高さばらつき(Δr)を低減することが可能となる。この効果を充分に得るためには、圧延率は80%以上とする。一方、圧延率が90%超えると圧延荷重の増大により、圧延が困難となる。よって、圧延率は80%以上90%以下である。
By optimizing the cold rolling ratio, can height variation (Δr) during can forming can be reduced. In order to sufficiently obtain this effect, the rolling rate is 80% or more. On the other hand, if the rolling rate exceeds 90%, rolling becomes difficult due to an increase in rolling load. Therefore, the rolling rate is 80% or more and 90% or less.

焼鈍
雰囲気中で600℃以上700℃以下の再結晶温度直上で、30秒以上5分以下の連続焼鈍を行う。箱焼鈍で行うことも可能であるが、生産性、コスト面等を考慮すると連続焼鈍が好ましい。
Continuous annealing is performed for 30 seconds to 5 minutes immediately above the recrystallization temperature of 600 ° C to 700 ° C in an annealing atmosphere. Although it can be performed by box annealing, continuous annealing is preferable in consideration of productivity, cost and the like.

調質圧延
0.5〜2.0%の伸長率で調質圧延を行う。
Temper rolling
Temper rolling is performed at an elongation rate of 0.5 to 2.0%.

めっき処理
電解液に触れる内面側を中心に鋼板にNiめっき処理を施す。処理方法は特に限定しないが、メッキ厚の均一性の理由により、電気めっきが好ましい。また、めっき層の厚さは1μm〜5μmが好ましい。軟質めっきか硬質めっきかは特に問わない。
Ni plating treatment is performed on the steel sheet centering on the inner surface side that contacts the plating electrolyte. The treatment method is not particularly limited, but electroplating is preferable for the reason of the uniformity of the plating thickness. The thickness of the plating layer is preferably 1 μm to 5 μm. It does not matter whether the plating is soft or hard.

拡散焼鈍
本発明において重要な要件の一つである。過時効処理後の時効硬化に対して有効に働き、焼鈍条件を最適化することによりYPを低下し鋼板を軟質化させることが可能となる。また、Niめっき層と鋼板との間にFe-Ni拡散層を形成する。特に本発明においては、固溶元素の残存による時効硬化が避けられないため、めっき後の拡散焼鈍条件を最適にしないと材料が軟質化せず、DI成型することが不可能となる。すなわち、拡散焼鈍を中心に一連の製造条件を最適化することによって初めて、DI加工可能な鋼板および製造方法を得ることが可能となる。
Diffusion annealing is one of the important requirements in the present invention. It works effectively against age hardening after overaging treatment, and by optimizing the annealing conditions, it is possible to lower YP and soften the steel sheet. Further, an Fe—Ni diffusion layer is formed between the Ni plating layer and the steel plate. In particular, in the present invention, age hardening due to residual solid solution elements is unavoidable, so the material does not become soft unless the conditions for diffusion annealing after plating are optimized, and DI molding becomes impossible. That is, it is possible to obtain a steel plate and a manufacturing method capable of DI processing only by optimizing a series of manufacturing conditions centering on diffusion annealing.

拡散焼鈍の最適条件を調査するため、拡散焼鈍温度(最高到達温度)を変化させた電池用鋼板を作成し、硬度(HV)と引張特性を調査した。なお、この時用いた電池用鋼板は、以下の様にして作成した。質量%で、C:0.03%、Si:0.01%、Mn:0.2%、P:0.01%、S:0.01%、Sol.Al:0.05%、N:0.03%、残部Feおよび不可避的不純物からなる鋼を溶製し、スラブに連続鋳造した後、室温まで冷却した。次いで、鋳造スラブを加熱温度1250℃、仕上温度870℃で熱間圧延し、620℃で巻取処理した。次いで、酸洗し、圧延率86%で冷間圧延を施した後、均熱温度650℃、焼鈍時間1分として連続焼鈍を行った。次いで、伸長率1.0%の調質圧延を行い、Niめっき処理を施した。Niめっきは、表裏両面とし、厚さが2μmとなるように、Niめっきを電気めっきにより施した。さらに、上記により得られためっき鋼板に対して、焼鈍温度を変化させ、拡散時間10分の拡散焼鈍を行い、再度、伸長率1.0%の調質圧延を行い電池用鋼板を得た。得られた結果を図1及び図2に示す。   In order to investigate the optimum conditions for diffusion annealing, battery steel sheets with varying diffusion annealing temperature (maximum temperature reached) were prepared and the hardness (HV) and tensile properties were investigated. The battery steel plate used at this time was prepared as follows. Steel consisting of C: 0.03%, Si: 0.01%, Mn: 0.2%, P: 0.01%, S: 0.01%, Sol.Al: 0.05%, N: 0.03%, balance Fe and inevitable impurities Was melted and continuously cast into a slab, and then cooled to room temperature. Next, the cast slab was hot-rolled at a heating temperature of 1250 ° C and a finishing temperature of 870 ° C, and wound at 620 ° C. Next, pickling and cold rolling at a rolling rate of 86%, followed by continuous annealing at a soaking temperature of 650 ° C. and an annealing time of 1 minute. Next, temper rolling was performed at an elongation rate of 1.0%, and Ni plating was performed. The Ni plating was applied to both the front and back surfaces by electroplating so that the thickness was 2 μm. Furthermore, with respect to the plated steel sheet obtained as described above, the annealing temperature was changed, diffusion annealing was performed for 10 minutes, and temper rolling was performed again with an elongation rate of 1.0% to obtain a battery steel sheet. The obtained results are shown in FIGS.

図1及び図2から、拡散焼鈍温度を変化させると、特性が大きく変化することがわかる。特に最高温度が650℃近辺では、YP、YPELが低下するに伴い、硬度(HV)も大きく低下し鋼板が軟質化している。この鋼板の軟質化は、焼鈍温度が再結晶温度以上になり粒成長が起こりYPが低下することによると思われる。
以上より、焼鈍温度はYP低減効果による鋼板の軟質化の観点から650℃以上とする。一方、800℃超えではTSが低下し、強度不足となる。また、焼鈍時間が5分未満では拡散が不十分となる。よって、拡散焼鈍における温度は650℃以上800℃以下、時間は5分以上とする。
From FIG. 1 and FIG. 2, it can be seen that the characteristics change greatly when the diffusion annealing temperature is changed. In particular, when the maximum temperature is around 650 ° C., as YP and YPEL decrease, the hardness (HV) also greatly decreases and the steel sheet becomes soft. This softening of the steel sheet seems to be due to the fact that the annealing temperature becomes higher than the recrystallization temperature, grain growth occurs, and YP decreases.
From the above, the annealing temperature is set to 650 ° C. or more from the viewpoint of softening the steel sheet due to the YP reduction effect. On the other hand, if it exceeds 800 ° C, TS decreases and the strength becomes insufficient. Further, if the annealing time is less than 5 minutes, the diffusion is insufficient. Therefore, the temperature in diffusion annealing is set to 650 ° C. to 800 ° C., and the time is set to 5 minutes or more.

調質圧延
さらに、上記により得られためっき鋼板の組織を整えるために、伸長率0.5%〜2.0%で調質圧延を行う。
Temper rolling Furthermore, in order to prepare the structure of the plated steel sheet obtained as described above, temper rolling is performed at an elongation of 0.5% to 2.0%.

(本発明例)
表1に示す成分の鋼を溶製し、スラブに連続鋳造した後、室温まで冷却した。次いで、鋳造スラブを加熱温度1250℃、仕上温度870℃で熱間圧延し、620℃で巻取処理した。次いで、酸洗し、圧延率86%で冷間圧延を施した後、均熱温度650℃、焼鈍時間1分として連続焼鈍を行った。次いで、伸長率1.0%の調質圧延を行い、Niめっき処理を施した。Niめっきは、表裏両面とし、厚さが2μmとなるように、Niめっきを電気めっきにより施した。さらに、上記により得られためっき鋼板に対して、焼鈍温度650℃、拡散時間10分の拡散焼鈍を行い、再度、伸長率1.0%の調質圧延を行い電池用鋼板を得た。
以上により得られた鋼板について、引張特性を調査した。なお、引張特性は圧延方向から採取したJIS5号引張試験片を用いて求めた。
(比較例)
上記本発明例と同様の成分を用い、製造条件として、拡散焼鈍温度を450℃、拡散時間を10分とした以外は本発明例と同様の方法を用いて電池用鋼板を得た。得られた鋼板に対して引張特性を調査した。なお、引張特性の測定方法は本発明例と同様である。
(Example of the present invention)
Steels having the components shown in Table 1 were melted and continuously cast into slabs, and then cooled to room temperature. Next, the cast slab was hot-rolled at a heating temperature of 1250 ° C. and a finishing temperature of 870 ° C., and wound at 620 ° C. Next, pickling and cold rolling were performed at a rolling rate of 86%, followed by continuous annealing at a soaking temperature of 650 ° C. and an annealing time of 1 minute. Next, temper rolling was performed at an elongation rate of 1.0%, and Ni plating was performed. The Ni plating was applied to both the front and back surfaces by electroplating so that the thickness was 2 μm. Further, the plated steel sheet obtained as described above was subjected to diffusion annealing at an annealing temperature of 650 ° C. and a diffusion time of 10 minutes, and temper rolling was performed again with an elongation rate of 1.0% to obtain a battery steel sheet.
The steel sheet obtained as described above was examined for tensile properties. The tensile properties were determined using JIS No. 5 tensile specimens taken from the rolling direction.
(Comparative example)
A steel plate for a battery was obtained using the same components as those of the above-described example of the present invention, except that the diffusion annealing temperature was set to 450 ° C. and the diffusion time was set to 10 minutes. The tensile properties of the obtained steel plate were investigated. In addition, the measuring method of a tensile characteristic is the same as that of the example of this invention.

Figure 2007204788
Figure 2007204788

表2に上記により得られた鋼板の特性の結果を示す。   Table 2 shows the results of the characteristics of the steel sheet obtained as described above.

Figure 2007204788
Figure 2007204788

表2より、本発明例では、拡散前よりYPが低下しかつYPELがなくなっており、鋼板が軟質化されていることがわかる。
一方、比較例では引張特性は拡散前とほぼ同等であり、YPの低下は得られていない。
From Table 2, it can be seen that in the present invention example, the YP decreased and the YPEL disappeared before diffusion, and the steel sheet was softened.
On the other hand, in the comparative example, the tensile properties are almost the same as before diffusion, and no decrease in YP is obtained.

次に上記により得られた本発明例及び比較例の鋼板に対して、DI絞り加工を施し、乾電池胴体を作成した。得られた乾電池胴体についてクラック発生の有無を目視にて調査した。その結果、本発明例ではクラック発生率は1〜5%、比較例では10〜30%であった。
以上の結果から、本発明例では、鋼板の軟質化が充分に行われたため、クラックが発生することなしにDI絞り加工が可能であることがわかる。
Next, DI drawing was performed on the steel sheets of the present invention and the comparative example obtained as described above, and a dry cell body was prepared. The obtained dry cell body was visually inspected for cracks. As a result, the crack occurrence rate was 1 to 5% in the inventive example, and 10 to 30% in the comparative example.
From the above results, it can be seen that in the example of the present invention, the steel sheet was sufficiently softened, so that DI drawing can be performed without generating cracks.

乾電池外筒缶製造の分野に好適であり、非時効性の鋼板でも適用可能であるため、箱焼鈍が不可欠と考えられている用途にも適用できる。   Since it is suitable for the field of manufacturing a battery outer can, and can be applied to a non-aging steel plate, it can also be applied to applications where box annealing is considered indispensable.

焼鈍の際の最高到達温度とYPおよびYPELとの関係を示す図である。It is a figure which shows the relationship between the highest ultimate temperature in the case of annealing, and YP and YPEL. 焼鈍の際の最高到達温度とHVとの関係を示す図である。It is a figure which shows the relationship between the highest ultimate temperature in the case of annealing, and HV.

Claims (1)

DI絞り加工により乾電池胴体部分とする電池用鋼板を製造するにあたって、質量%で、C:0.01〜0.1%、Si≦0.1%、Mn:0.1〜1.0%、P≦0.03%、S≦0.2%、sol.Al:0.01〜0.08%、N≦0.0050%を含有し、残部Feおよび不可避的不純物からなるスラブを熱間圧延し、80〜90%の圧延率で冷間圧延し、次いで、600〜700℃の温度で30秒〜5分焼鈍し、次いで、0.5〜2.0%の伸長率で調質圧延し、めっき処理を行い、次いで、650〜800℃の温度で5分以上の拡散焼鈍後、調質圧延を行うことを特徴とする電池用鋼板の製造方法。 In manufacturing a battery steel plate for a dry battery body part by DI drawing, in mass%, C: 0.01 to 0.1%, Si ≤ 0.1%, Mn: 0.1 to 1.0%, P ≤ 0.03%, S ≤ 0.2%, sol.Al: 0.01 to 0.08%, N ≦ 0.0050%, the slab composed of the remaining Fe and inevitable impurities is hot-rolled, cold-rolled at a rolling rate of 80 to 90%, and then 600 to 700 Annealed at a temperature of 30 ° C. for 30 seconds to 5 minutes, then temper-rolled at an elongation of 0.5 to 2.0%, plated, and then subjected to diffusion annealing at a temperature of 650 to 800 ° C. for 5 minutes or more. A method of manufacturing a steel sheet for a battery, comprising performing quality rolling.
JP2006022521A 2006-01-31 2006-01-31 Method for manufacturing steel sheet for battery Pending JP2007204788A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006022521A JP2007204788A (en) 2006-01-31 2006-01-31 Method for manufacturing steel sheet for battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006022521A JP2007204788A (en) 2006-01-31 2006-01-31 Method for manufacturing steel sheet for battery

Publications (1)

Publication Number Publication Date
JP2007204788A true JP2007204788A (en) 2007-08-16

Family

ID=38484507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006022521A Pending JP2007204788A (en) 2006-01-31 2006-01-31 Method for manufacturing steel sheet for battery

Country Status (1)

Country Link
JP (1) JP2007204788A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411213A (en) * 2022-02-17 2022-04-29 江苏东方九天新能源材料有限公司 Preparation method of nickel-plated steel strip for lithium battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114411213A (en) * 2022-02-17 2022-04-29 江苏东方九天新能源材料有限公司 Preparation method of nickel-plated steel strip for lithium battery

Similar Documents

Publication Publication Date Title
JP5217197B2 (en) Cold-rolled steel sheet with excellent earring properties and method for producing the same
EP2465962B1 (en) High-strength steel sheets and processes for production of the same
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JP4475352B2 (en) Stainless steel sheet for parts and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
TWI428453B (en) Steel plate for can and manufacturing method thereof
WO2016035235A1 (en) Material for cold-rolled stainless steel sheets
JP2008202113A (en) Manufacturing method of steel sheet for can
JP4715496B2 (en) Method for producing cold-rolled steel sheets with excellent strain aging resistance and small in-plane anisotropy
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP2007009272A (en) Steel sheet having low anisotropy, and manufacturing method therefor
CN109440004B (en) Steel sheet for can and method for producing same
JP6123735B2 (en) Crown steel sheet, method for producing the same, and crown
JP2017190469A (en) Cold rolled steel sheet for drawn can and production method therefor
WO2012073914A1 (en) Steel sheet for can, and process for producing same
JP6137436B2 (en) Steel plate for can and manufacturing method thereof
JP5540580B2 (en) Steel sheet for high strength and high workability can and method for producing
JP5874771B2 (en) Steel plate for cans excellent in workability and rough skin resistance and method for producing the same
KR101020887B1 (en) Cold-rolled steel sheet and method for producing the same
JP2007204788A (en) Method for manufacturing steel sheet for battery
EP2431490B1 (en) Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same
JP2007009271A (en) Steel sheet having low anisotropy, and manufacturing method therefor
JP2007239035A (en) Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method
JP2002088446A (en) Steel sheet for forming outer cylinder of battery having excellent anisotropy and its production method
JP2009132984A (en) Steel sheet having high strength and superior expansion formability for three-piece can, and manufacturing method therefor