JP2017048452A - Aluminum alloy sheet for automobile body panel excellent in filiform rust resistance, coating galling curability and processability and manufacturing method therefor, automobile body panel using the same and manufacturing method therefor - Google Patents

Aluminum alloy sheet for automobile body panel excellent in filiform rust resistance, coating galling curability and processability and manufacturing method therefor, automobile body panel using the same and manufacturing method therefor Download PDF

Info

Publication number
JP2017048452A
JP2017048452A JP2015175243A JP2015175243A JP2017048452A JP 2017048452 A JP2017048452 A JP 2017048452A JP 2015175243 A JP2015175243 A JP 2015175243A JP 2015175243 A JP2015175243 A JP 2015175243A JP 2017048452 A JP2017048452 A JP 2017048452A
Authority
JP
Japan
Prior art keywords
aluminum alloy
body panel
automobile body
rust resistance
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015175243A
Other languages
Japanese (ja)
Other versions
JP6585436B2 (en
Inventor
藤本一郎
Ichiro Fujimoto
植木光彦
Mitsuhiko Ueki
島田隆登志
Takatoshi Shimada
竹田博貴
Hirotaka Takeda
佐賀誠
Makoto Saga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Nippon Steel Corp
UACJ Corp
Original Assignee
Honda Motor Co Ltd
Nippon Steel and Sumitomo Metal Corp
UACJ Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Nippon Steel and Sumitomo Metal Corp, UACJ Corp filed Critical Honda Motor Co Ltd
Priority to JP2015175243A priority Critical patent/JP6585436B2/en
Publication of JP2017048452A publication Critical patent/JP2017048452A/en
Application granted granted Critical
Publication of JP6585436B2 publication Critical patent/JP6585436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for an automobile body panel excellent in filiform rust resistance and recycling property and a manufacturing method therefor, an automobile body panel using the same and a manufacturing method therefor.SOLUTION: An aluminum alloy sheet for an automobile body panel excellent in filiform rust resistance and recycling property, is made of an Al alloy containing Mg:0.30 to 0.80 mass% (hereafter referred to as "%"), Si:0.80 to 1.40%, Mn:0.20 to 0.65%, Zn:0.44 to 0.60%, Fe:0.25 to 0.40% and Cu:0.17 to 0.25%, has elongation of 23% at 100 days after solution heat treatment, bearing force after conducting coating galling treatment of 200 MPa or more and further point number in a Heming test based on JISH7701 of 0 to 2 point. The present invention also provides a manufacturing method for the aluminum alloy sheet, an automobile body panel using the aluminum alloy sheet and a manufacturing method therefor.SELECTED DRAWING: None

Description

本発明は、自動車ボディパネル用アルミニウム合金板及びその製造方法、ならびに、これを用いた自動車ボディパネル及びその製造方法に関し、詳細には、意匠性を高めるためのバフ研削処理を施しても優れた耐糸錆性を有し、また、塗装焼付け硬化性と加工性にも優れた自動車ボディパネル用アルミニウム合金板及びその製造方法、ならびに、これを用いた自動車ボディパネル及びその製造方法に関する。   The present invention relates to an aluminum alloy plate for an automobile body panel and a method for producing the same, and an automobile body panel using the same and a method for producing the same, and in particular, it is excellent even when subjected to a buff grinding process for improving design properties. The present invention relates to an aluminum alloy plate for an automobile body panel that has yarn rust resistance and is excellent in paint bake hardenability and workability, and a manufacturing method thereof, and an automotive body panel using the same and a manufacturing method thereof.

近年、様々な分野において資源をリサイクルする要求が高まっている。ボーキサイトを還元して製造されるアルミニウム合金は、莫大な電力を消費して製造されるため、リサイクルは必須とも言える。一般にアルミニウム合金がリサイクルされる場合、不純物は増加する傾向にある。アルミニウム合金中の不純物の増加は、アルミニウム合金の品位を低下させるため、リサイクルされたアルミニウム合金は、自動車ボディパネルに使用されていないのが現状である。   In recent years, there is an increasing demand for recycling resources in various fields. Since aluminum alloys produced by reducing bauxite are produced by consuming enormous electric power, recycling can be said to be essential. In general, when aluminum alloys are recycled, impurities tend to increase. Since the increase in impurities in the aluminum alloy lowers the quality of the aluminum alloy, the recycled aluminum alloy is not currently used in automobile body panels.

この現状を打破するため、例えば特許文献1には、アルミニウム合金屑などを利用する対策などが提案されている。しかしながら、金属組織の制御による成形性の向上やBH性向上を目的とする溶体化後の安定化処理が未実施であり、現在において自動車ボディパネル等で要求される高い材料特性を確保することが困難であることから実用化に至っていない。   In order to overcome this situation, for example, Patent Document 1 proposes a countermeasure using aluminum alloy scraps. However, the stabilization treatment after solution treatment for the purpose of improving the formability and BH properties by controlling the metal structure has not been carried out, and it is possible to secure the high material properties currently required for automobile body panels and the like. Since it is difficult, it has not been put to practical use.

一方、自動車ボディパネルは、化成処理やその後の塗装を実施する前に、ボディパネル表面の疵などを消すためにバフ研磨を実施することがある。一般にバフ研磨を含む機械加工は耐食性を低下させることが知られているが、耐食性を低下させる要因については不明な部分が多い。更に、自動車ボディパネルにおいて問題となる腐食形態は、外観品位を低下させる糸状の腐食(糸錆腐食)であるが、バフ研磨と糸錆腐食との関係については不明である。これらの理由により、バフ研磨によって耐糸錆性を低下させない対策を講じることが困難となっていた。   On the other hand, an automobile body panel may be buffed to remove wrinkles on the surface of the body panel before chemical conversion treatment or subsequent coating. In general, it is known that machining including buffing lowers corrosion resistance, but there are many unclear points about the factors that reduce corrosion resistance. Furthermore, the corrosive form that becomes a problem in automobile body panels is thread-like corrosion (yarn rust corrosion) that deteriorates the appearance quality, but the relationship between buffing and yarn rust corrosion is unknown. For these reasons, it has been difficult to take measures to prevent the yarn rust resistance from being reduced by buffing.

特開平11−293363号公報JP 11-293363 A

本発明は上記事情を背景としてなされたもので、バフ研磨を施しても耐糸錆性が低下し難い優れた耐糸錆性、優れた塗装焼付け硬化性、ならびに、プレス加工性や曲げ加工性といった優れた加工性を有する自動車ボディパネル用アルミニウム合金板及びその製造方法、ならびに、これを用いた自動車ボディパネル及びその製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, excellent yarn rust resistance, which is difficult to reduce yarn rust resistance even after buffing, excellent paint bake hardenability, and press workability and bending workability. It is an object of the present invention to provide an aluminum alloy plate for automobile body panels having such excellent workability and a manufacturing method thereof, and an automobile body panel using the same and a manufacturing method thereof.

上記課題を解決するために、本発明者等は、バフ研磨による機械加工層部に着目し、塗装焼付け後にこの機械加工部に析出物が存在することを突き止め、この析出物により析出物周辺における電位が低下して、その結果、耐食性が低下することを見出した。具体的には、塗装焼付け温度である180℃で25分間の加熱により析出し、マトリクスの孔食電位を貴化させる元素を含む析出物を制御することで、バフ研磨を施しても耐糸錆性が低下しないことを見出し、更に、塗装焼付け性及び加工性にも優れた特性を有することも見出して本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventors focused on the machined layer portion by buffing, ascertained that precipitates exist in this machined portion after paint baking, and the precipitates around the precipitates. It has been found that the potential decreases, and as a result, the corrosion resistance decreases. Specifically, by controlling the deposits containing elements that make the matrix pitting corrosion potential noble by depositing by heating at 180 ° C., which is the coating baking temperature, for 25 minutes, it is resistant to yarn rust even when buffing is applied. The present invention has been completed by finding that the properties do not deteriorate, and also by finding that it has excellent paint baking properties and processability.

すなわち、本発明は請求項1において、Mg:0.30〜0.80mass%、Si:0.80〜1.40mass%、Mn:0.20〜0.65mass%、Zn:0.44〜0.60mass%、Fe:0.25〜0.40mass%、Cu:0.17〜0.25mass%を含有し、残部Al及び不純物からなるアルミニウム合金からなり、溶体化処理の100日後において、塗装焼付け処理を施した後の耐力が200MPa以上であり、伸びが23%以上であり、更に、JISH7701に基づくヘミング試験による点数が0〜2点であることを特徴とする耐糸錆性、塗装焼付け性及び加工性に優れた自動車ボディパネル用アルミニウム合金板とした。   That is, the present invention according to claim 1, Mg: 0.30-0.80 mass%, Si: 0.80-1.40 mass%, Mn: 0.20-0.65 mass%, Zn: 0.44-0 .60 mass%, Fe: 0.25 to 0.40 mass%, Cu: 0.17 to 0.25 mass%, the balance being made of an aluminum alloy consisting of Al and impurities, and coating baking after 100 days of solution treatment Yield rust resistance, paint bakeability, characterized in that the yield strength after the treatment is 200 MPa or more, the elongation is 23% or more, and further, the score is 0 to 2 in the hemming test based on JISH7701. And it was set as the aluminum alloy plate for automobile body panels excellent in workability.

本発明は請求項2において、請求項1に記載の自動車ボディパネル用アルミニウム合金板の製造方法であって、前記アルミニウム合金を鋳造する鋳造工程と、鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板の中間焼鈍工程と、中間焼鈍した圧延板を冷間圧延する冷間圧延工程と、冷間圧延板を溶体化処理する溶体化処理工程と、溶体化処理した圧延板を安定化処理する安定化処理工程とを含み、前記溶体化処理の温度が480℃以上であり、前記安定化処理工程が前記溶体化処理工程後1時間以内に開始され、かつ、圧延板を80〜120℃の温度で1時間以上加熱保持することを特徴とする耐糸錆性、塗装焼付け性及び加工性に優れた自動車ボディパネル用アルミニウム合金板の製造方法とした。   The present invention is the method of manufacturing an aluminum alloy plate for an automobile body panel according to claim 1 according to claim 2, wherein the casting step of casting the aluminum alloy, and the homogenization processing step of homogenizing the ingot , A hot rolling process for hot rolling the homogenized ingot, an intermediate annealing process for the hot rolled sheet, a cold rolling process for cold rolling the intermediate annealed sheet, and a solution of the cold rolled sheet A solution treatment step for heat treatment, and a stabilization treatment step for stabilizing the solution-treated rolled plate, wherein the temperature of the solution treatment is 480 ° C. or more, and the stabilization treatment step is the solution treatment. An automotive body panel excellent in yarn rust resistance, paint bakeability and workability, which is started within 1 hour after the treatment step and is characterized by holding the rolled sheet at 80 to 120 ° C. for 1 hour or more. For aluminum alloy sheet And the production method.

更に本発明は請求項3において、請求項1に記載の自動車ボディパネル用アルミニウム合金板を一部に又は全てに用いて塗装焼付けされた自動車ボディパネルであって、前記アルミニウム合金板の表層から板厚方向に沿って0.5〜5.0μmの厚さを有する機械加工層が形成されており、当該機械加工層におけるSi系金属間化合物及びAl−Cu系金属間化合物の数密度が2個/μm以下であることを特徴とする耐糸錆性、塗装焼付け性及び加工性に優れた自動車ボディパネルとした。 Furthermore, the present invention provides a vehicle body panel according to claim 3, wherein the aluminum body plate for automobile body panel according to claim 1 is partially or entirely painted and baked, and is formed from a surface layer of the aluminum alloy plate. A machining layer having a thickness of 0.5 to 5.0 μm is formed along the thickness direction, and the number density of the Si-based intermetallic compound and the Al—Cu-based intermetallic compound in the machining layer is two. An automobile body panel excellent in yarn rust resistance, paint bakeability and workability, characterized by being / μm 2 or less.

本発明は請求項4において、請求項3に記載の自動車ボディパネルの製造方法であって、80〜320の粒度を有するアルミナ粒子を付着させたバフによって前記アルミニウム合金板の表面をバフ研磨するバフ研磨工程と、バフ研磨したアルミニウム合金板を塗装する塗装工程と、塗装したアルミニウム合金板を180℃で25分間焼付ける焼付け工程とを備えることを特徴とする耐糸錆性、塗装焼付け性及び加工性に優れた自動車ボディパネルの製造方法とした。   The present invention provides the method for manufacturing an automobile body panel according to claim 3, wherein the surface of the aluminum alloy plate is buffed with a buff to which alumina particles having a particle size of 80 to 320 are attached. Yarn rust resistance, paint bake resistance and processing characterized by comprising a polishing step, a painting step for painting a buffed aluminum alloy plate, and a baking step for baking the painted aluminum alloy plate at 180 ° C. for 25 minutes This is a method for manufacturing an automobile body panel having excellent properties.

本発明により、バフ研磨を施しても耐糸錆性が低下し難い優れた耐糸錆性、ならびに、塗装焼付け硬化性及び加工性にも優れた自動車ボディパネル用アルミニウム合金板及びその製造方法、ならびに、これを用いた自動車ボディパネル及びその製造方法が得られる。   According to the present invention, even when buffing is performed, the yarn rust resistance is not easily lowered, and the aluminum alloy plate for an automobile body panel excellent in paint bake hardenability and workability and the manufacturing method thereof, In addition, an automobile body panel using the same and a manufacturing method thereof can be obtained.

1.自動車ボディパネル用アルミニウム合金板
1−1.合金組成
本発明に係る自動車用ボディパネル用アルミニウム合金板(以下において場合により、単に「アルミニウム合金板」と記す)の合金組成について、以下に説明する。
本発明に係るアルミニウム合金板は、Mg:0.30〜0.80mass%(以下、単に「%」と記す)、Si:0.80〜1.40%、Mn:0.20〜0.65%、Zn:0.44〜0.60%、Fe:0.25〜0.40%、Cu:0.17〜0.25%を含有し、残部Al及び不純物からなるアルミニウム合金からなる。バフ研磨後に実施される塗装工程後の焼付け工程での加熱処理(以下場合により、単に「バフ研磨後の加熱処理」と記す)により、バフ研磨により形成される機械加工層におけるSi系金属間化合物やAl−Cu系金属間化合物の析出を抑制するものである。
1. 1. Aluminum alloy plate for automobile body panel 1-1. Alloy Composition The alloy composition of the aluminum alloy plate for an automobile body panel according to the present invention (hereinafter sometimes simply referred to as “aluminum alloy plate”) will be described below.
The aluminum alloy plate according to the present invention has Mg: 0.30 to 0.80 mass% (hereinafter simply referred to as “%”), Si: 0.80 to 1.40%, Mn: 0.20 to 0.65. %, Zn: 0.44 to 0.60%, Fe: 0.25 to 0.40%, Cu: 0.17 to 0.25%, and the balance is made of an aluminum alloy consisting of Al and impurities. Si-based intermetallic compound in the machining layer formed by buffing by heat treatment in the baking step after the coating step performed after buffing (hereinafter, simply referred to as “heat treatment after buffing”). And the precipitation of Al—Cu intermetallic compounds.

Si及びCuがマトリクス中に固溶している場合、マトリクスの孔食電位を貴化させる。Siを主とするSi系金属間化合物やCuを含有するAl−Cu系金属間化合物が析出することは、マトリクス中におけるSiおよびCuの固溶量が減少することを意味する。そのため、これら析出物の周囲における孔食電位を卑化させて耐糸錆性の低下を招く。そこで、バフ研磨後の加熱処理によって、Si系金属間化合物やAl−Cu系金属間化合物の析出を抑制することで、耐糸錆性の低下を抑制可能とするものである。   When Si and Cu are dissolved in the matrix, the pitting corrosion potential of the matrix is made noble. The precipitation of Si-based intermetallic compounds mainly containing Si and Al—Cu-based intermetallic compounds containing Cu means that the amount of Si and Cu dissolved in the matrix decreases. For this reason, the pitting corrosion potential around these precipitates is reduced to cause a decrease in yarn rust resistance. Therefore, by suppressing the precipitation of the Si-based intermetallic compound and the Al—Cu-based intermetallic compound by the heat treatment after buffing, it is possible to suppress the decrease in yarn rust resistance.

Mg:
Mgはバフ研磨を実施する前において、Siと共にMg−Si系金属間化合物を形成し、マトリクス中のSi固溶量を低下させる。マトリクス中のSi固溶量の低下は、バフ研磨後の加熱処理によるSi系金属間化合物の析出を一層抑制するため、結果的にMgの添加は耐糸錆性の向上に寄与する。一方、Mgのマトリクス中への固溶はマトリクスの孔食電位を卑下させ、バフ研磨の有無に関わらず耐糸錆性を低下させる。Mg含有量が0.30%未満では、Mg−Si系金属間化合物の析出量が不十分となる。その結果、バフ研磨後の加熱処理によるSi系金属間化合物の析出が十分に抑制されず、耐糸錆性が低下する。一方、Mg含有量が0.80%を超えると、マトリクスにMgが固溶する効果が大きくなり、耐糸錆性の低下を招くと共に曲げ加工性も低下させる。Mg含有量は、好ましくは0.40〜0.80%である。
Mg:
Mg forms an Mg—Si-based intermetallic compound together with Si before buffing to reduce the amount of Si solid solution in the matrix. The decrease in the amount of Si solid solution in the matrix further suppresses the precipitation of the Si-based intermetallic compound by the heat treatment after buffing, and as a result, the addition of Mg contributes to the improvement of the yarn rust resistance. On the other hand, the solid solution of Mg in the matrix lowers the pitting corrosion potential of the matrix and lowers the yarn rust resistance regardless of the presence or absence of buffing. When the Mg content is less than 0.30%, the precipitation amount of the Mg—Si-based intermetallic compound becomes insufficient. As a result, the precipitation of the Si-based intermetallic compound due to the heat treatment after buffing is not sufficiently suppressed, and the rust resistance is lowered. On the other hand, when the Mg content exceeds 0.80%, the effect of Mg in solid solution in the matrix increases, leading to a decrease in yarn rust resistance and a bending workability. The Mg content is preferably 0.40 to 0.80%.

Si:
上述のように、Siは、バフ研磨によって生じた機械加工層にSi系金属間化合物として析出して耐糸錆性を低下させる。しかしながら、Si含有量が0.80%未満の場合には、材料強度が低下する。一方、Si含有量が1.40%を超える場合には、バフ研磨後の加熱処理によりSi系金属間化合物の析出が多くなり、その結果、耐糸錆性を低下させる。Si含有量は、好ましくは0.80〜1.20%である。
Si:
As described above, Si precipitates as a Si-based intermetallic compound on the machined layer produced by buffing and reduces the yarn rust resistance. However, when the Si content is less than 0.80%, the material strength decreases. On the other hand, when the Si content exceeds 1.40%, precipitation of Si-based intermetallic compounds increases due to the heat treatment after buffing, and as a result, the yarn rust resistance is lowered. The Si content is preferably 0.80 to 1.20%.

Mn:
Mnはバフ研磨を実施する前において、Siと共にAl−Mn−Si系金属間化合物を形成し、マトリクス中のSi固溶量を低下させる。マトリクス中のSi固溶量の低下は、バフ研磨後の加熱処理によるAl−Si系金属間化合物の析出を一層抑制するため、結果的にMnの添加は耐糸錆性の向上に寄与する。Mn含有量が0.20%未満では、Al−Mn−Si系金属間化合物の析出量が不十分となる。その結果、バフ研磨後の加熱処理によるAl−Si系金属間化合物の析出が十分に抑制されず、耐糸錆性が低下する。一方、Mn含有量が0.65%を超えると、多数の金属間化合物の生成により曲げ加工性が低下する。Mn含有量は、好ましくは0.30〜0.60%である。
Mn:
Mn forms an Al—Mn—Si intermetallic compound with Si before buffing to reduce the amount of Si solid solution in the matrix. The decrease in the amount of Si solid solution in the matrix further suppresses the precipitation of the Al—Si intermetallic compound by the heat treatment after buffing, and as a result, the addition of Mn contributes to the improvement of the yarn rust resistance. When the Mn content is less than 0.20%, the precipitation amount of the Al—Mn—Si intermetallic compound becomes insufficient. As a result, the precipitation of the Al—Si intermetallic compound due to the heat treatment after buffing is not sufficiently suppressed, and the rust resistance is lowered. On the other hand, if the Mn content exceeds 0.65%, bending workability is lowered due to the generation of a large number of intermetallic compounds. The Mn content is preferably 0.30 to 0.60%.

Zn:
Znはバフ研磨後の加熱処理によって、析出するSi系金属間化合物中やAl−Cu系金属間化合物中に固溶する。析出したSi系金属間化合物中やAl−Cu系金属間化合物中へのZnの固溶は、それらの析出物周辺における孔食電位を貴化させるため、バフ研磨後の加熱処理前後で耐糸錆性を低下させない。一方、Znのマトリクス中への固溶はマトリクスの孔食電位を卑化させ、バフ研磨の有無に関わらず耐糸錆性を低下させる。Zn含有量が0.44%未満では、析出したSi系金属間化合物中やAl−Cu系金属間化合物中へのZnの固溶量が不十分となり、バフ研磨後の加熱処理後の耐糸錆性の低下を招く。一方、Zn含有量が0.60%を超えると、マトリクス中の孔食電位の卑化効果が大きくなり、耐糸錆性が低下する。
Zn:
Zn is dissolved in the precipitated Si-based intermetallic compound or Al-Cu-based intermetallic compound by heat treatment after buffing. The solid solution of Zn in the precipitated Si-based intermetallic compound or Al-Cu-based intermetallic compound makes the pitting corrosion potential around those precipitates noble, so the yarn resistance before and after the heat treatment after buffing Does not reduce rust. On the other hand, the solid solution of Zn in the matrix lowers the pitting corrosion potential of the matrix and lowers the yarn rust resistance regardless of the presence or absence of buffing. If the Zn content is less than 0.44%, the solid solution amount of Zn in the precipitated Si-based intermetallic compound or Al—Cu-based intermetallic compound becomes insufficient, and the yarn resistance after heat treatment after buffing Rust deterioration is caused. On the other hand, if the Zn content exceeds 0.60%, the effect of lowering the pitting potential in the matrix is increased, and the yarn rust resistance is lowered.

Fe:
Feはバフ研磨を実施する前において、Siと共にAl−Fe−Si系金属間化合物を形成し、マトリクス中のSi固溶量を低下させる。マトリクス中のSi固溶量の低下は、バフ研磨後の加熱処理によるAl−Si系金属間化合物の析出を一層抑制するため、結果的にFeの添加は耐糸錆性の向上に寄与する。Fe含有量が0.25%未満では、Al−Fe−Si系金属間化合物の析出量が不十分となる。その結果、バフ研磨後の加熱処理によるAl−Si系金属間化合物の析出が十分に抑制されず、耐糸錆性が低下する。一方、Fe含有量が0.40%を超えると、多数の金属間化合物の生成により曲げ加工性が低下する。Fe含有量は、好ましくは0.25〜0.35%である。
Fe:
Fe forms an Al—Fe—Si intermetallic compound together with Si before buffing to reduce the amount of Si solid solution in the matrix. The decrease in the amount of Si solid solution in the matrix further suppresses the precipitation of the Al—Si intermetallic compound by the heat treatment after buffing, and as a result, the addition of Fe contributes to the improvement of the yarn rust resistance. When the Fe content is less than 0.25%, the precipitation amount of the Al—Fe—Si intermetallic compound is insufficient. As a result, the precipitation of the Al—Si intermetallic compound due to the heat treatment after buffing is not sufficiently suppressed, and the rust resistance is lowered. On the other hand, when the Fe content exceeds 0.40%, bending workability is reduced due to the generation of a large number of intermetallic compounds. The Fe content is preferably 0.25 to 0.35%.

Cu:
Cuは加熱処理により、バフ研磨によって生じた機械加工層にAl−Cu系金属間化合物として析出し、耐糸錆性を低下させる。Cu含有量が0.17%未満の場合には、曲げ加工性が低下する。一方、Cu含有量が0.25%を超える場合には、バフ研磨後の加熱処理によりAl−Cu系金属間化合物の析出が多くなり、その結果、耐糸錆性を低下させる。
Cu:
Cu is deposited as an Al—Cu intermetallic compound on the machined layer produced by buffing by heat treatment, and reduces the rust resistance. When the Cu content is less than 0.17%, the bending workability decreases. On the other hand, when the Cu content exceeds 0.25%, the precipitation of Al-Cu intermetallic compounds is increased by the heat treatment after buffing, and as a result, the yarn rust resistance is lowered.

本発明に係るアルミニウム合金板においては、上記各元素の他に不純物として、Ni、Bi等からなる1種以上を各々0.05%以下、全体として0.15%以下含有していてもよい。   In the aluminum alloy plate according to the present invention, in addition to the above elements, one or more of Ni, Bi and the like may be contained as 0.05% or less and 0.15% or less as a whole as impurities.

1−2.機械的特性
機械的特性として、アルミニウム合金板製造から100日後における特性を挙げた。すなわち、塗装焼付け性を示す塗装焼付け処理後の耐力、ならびに、加工性として、プレス加工性に影響を及ぼす伸びと曲げ加工性に影響を及ぼすJISH7701に基づくヘミング試験によって評価するものである。
1-2. Mechanical properties As mechanical properties, the properties after 100 days from the production of the aluminum alloy sheet were listed. That is, the proof stress after the paint baking process showing the paint bakeability and the workability are evaluated by the hemming test based on JISH7701 which affects the elongation and bending workability affecting the press workability.

塗装焼付け処理後の耐力:
自動車ボディパネル等では、成形後の塗装焼付け処理中に析出硬化し強度向上する。本発明では、自動車ボディパネル向けのアルミニウム板材の一般的な使用を想定し、溶体化100日後において、塗装焼付け処理後の耐力を200MPa以上と規定する。この耐力が200MPa未満では、強度不足となり自動車ボディパネルに適さない。
Yield strength after paint baking process:
In automobile body panels, etc., the strength is improved by precipitation hardening during paint baking after molding. In the present invention, assuming the general use of an aluminum plate material for automobile body panels, the proof stress after paint baking is defined as 200 MPa or more 100 days after solution heat treatment. If the yield strength is less than 200 MPa, the strength is insufficient and it is not suitable for an automobile body panel.

伸び:
更に、アルミニウム板材から自動車ボディパネルに成形する際には、材料の伸びが必要であり、自動車ボディパネル向けのアルミニウム板材での一般的な使用を想定し、溶体化100日後における伸びを23%以上と規定する。この伸びが23%未満では、成形性は不足となる。
Elongation:
Furthermore, when forming from aluminum plate material to automobile body panel, it is necessary to stretch the material. Assuming general use with aluminum plate material for automobile body panel, the elongation after 100 days of solution is 23% or more. It prescribes. If this elongation is less than 23%, the moldability becomes insufficient.

曲げ性
更に、アルミニウム板材から自動車ボディパネルに成形する際には、材料の曲げ性も必要である。本発明では、自動車ボディパネル向けのアルミニウム板材の一般的な使用を想定し、溶体化処理100日後において、圧延方向に対して90°方向のJIS5号試験片を用いたJISH7701に基づくヘミング試験による点数を0〜2点と規定する。この点数が2点を超える場合には、曲げ性が不足する。なお、この点数は少ない程好ましく、0点が最も好ましい。
Bendability Furthermore, when forming from an aluminum plate material to an automobile body panel, bendability of the material is also necessary. In the present invention, assuming a general use of an aluminum plate material for an automobile body panel, a score obtained by a hemming test based on JIS 7701 using a JIS No. 5 test piece in a 90 ° direction with respect to the rolling direction 100 days after solution treatment. Is defined as 0 to 2 points. If this score exceeds two, the bendability is insufficient. In addition, this score is so preferable that it is small, and 0 point is the most preferable.

1−3.製造方法
次に、本発明に係る自動車ボディパネル用アルミニウム合金板の製造方法について説明する。
1-3. Manufacturing method Next, the manufacturing method of the aluminum alloy plate for motor vehicle body panels which concerns on this invention is demonstrated.

まず、前述のような合金組成を有するアルミニウム合金を常法に従って溶製し、溶湯を鋳造することで鋳塊を作製する。得られた鋳塊に対し、均質化処理、熱間圧延、中間焼鈍、冷間圧延、溶体化処理、安定化処理をこの順序で行う。本発明にて規定する材料特性を満足するための、各工程の好ましい条件を以下に説明する。   First, an ingot is produced by melting an aluminum alloy having the above alloy composition in accordance with a conventional method and casting a molten metal. The obtained ingot is subjected to homogenization treatment, hot rolling, intermediate annealing, cold rolling, solution treatment, and stabilization treatment in this order. The preferable conditions for each step for satisfying the material properties defined in the present invention will be described below.

鋳造工程:
鋳造工程では、DC鋳造法等の通常の鋳造法によって溶湯を鋳造して鋳塊を得る。
Casting process:
In the casting process, the molten metal is cast by a normal casting method such as a DC casting method to obtain an ingot.

均質化処理工程:
均質化処理は、添加元素の偏析をなくすことが主目的である。均質化処理温度は、480℃以上融点未満とするのが好まし。この処理温度が480℃未満では、偏析をなくす効果が十分に得られない。一方、処理温度が融点以上では、共晶融解の発生の抑制が困難となる。また、均質化処理の時間は添加元素量にもよるが、上記温度範囲内にて20分〜24時間とするのが好まし。処理時間が20分未満の場合は十分に偏析をなくすことが困難となる場合がある。一方、処理時間が24時間を超える場合は製造コストが増加する。
Homogenization process:
The main purpose of the homogenization treatment is to eliminate segregation of additive elements. The homogenization temperature is preferably 480 ° C. or higher and lower than the melting point. If the treatment temperature is less than 480 ° C., the effect of eliminating segregation cannot be obtained sufficiently. On the other hand, when the processing temperature is equal to or higher than the melting point, it is difficult to suppress the occurrence of eutectic melting. The time for the homogenization treatment depends on the amount of added elements, but is preferably 20 minutes to 24 hours within the above temperature range. If the treatment time is less than 20 minutes, it may be difficult to sufficiently eliminate segregation. On the other hand, when the processing time exceeds 24 hours, the manufacturing cost increases.

熱間圧延工程:
続く熱間圧延工程では、開始温度を450〜融点とするのが好ましい。450℃未満では、変形抵抗が増加し生産効率が低下する。一方、開始温度が融点以上では、共晶融解が発生する。また、熱間圧延の終了温度は、200〜400℃とするのが好ましい。終了温度が200℃未満では、変形抵抗が増加し生産効率が低下する。一方、終了温度が400℃を超えると、析出物の粗大化が起こりその後の工程での溶体化が困難となる。
Hot rolling process:
In the subsequent hot rolling step, the starting temperature is preferably set to 450 to the melting point. If it is less than 450 degreeC, a deformation resistance will increase and production efficiency will fall. On the other hand, eutectic melting occurs when the starting temperature is equal to or higher than the melting point. Moreover, it is preferable that the completion | finish temperature of hot rolling shall be 200-400 degreeC. If the end temperature is less than 200 ° C., the deformation resistance increases and the production efficiency decreases. On the other hand, when the end temperature exceeds 400 ° C., the precipitates become coarse and it becomes difficult to form a solution in the subsequent steps.

中間焼鈍工程:
続く中間焼鈍は、添加元素の溶体化と再結晶を目的とする。中間焼鈍の保持温度は、480℃以上融点未満とするのが好ましい。この工程は、MgSi、Si系化合物等をマトリックス中に固溶させ、これにより焼付硬化性を付与して塗装焼付後の強度向上を図るために重要である。また、この工程は、MgSi、Si系化合物等の固溶により第2相粒子の分布密度を低下させて、延性と曲げ性の向上にも寄与する。更に、この工程は、これに続く冷間圧延工程と溶体化処理工程とともに最終的に所要の結晶組織を得て、良好な成形性を得るためにも重要である。
Intermediate annealing process:
The subsequent intermediate annealing is aimed at solution and recrystallization of the additive elements. The holding temperature of the intermediate annealing is preferably 480 ° C. or higher and lower than the melting point. This step is important for dissolving Mg 2 Si, Si-based compounds and the like in the matrix, thereby imparting bake hardenability and improving the strength after baking. Furthermore, this process, Mg 2 Si, thereby decreasing the distribution density of the second phase particles by solid solution, such as Si-based compound, which contributes to the improvement of ductility and bendability. Furthermore, this step is important for obtaining a desired crystal structure and obtaining good formability together with the subsequent cold rolling step and solution treatment step.

中間焼鈍の保持温度が480℃未満では、上記各効果が十分に得られない場合がある。一方、処理温度が融点以上では、共晶融解が起こる虞がある。中間焼鈍の保持時間は、5分以下とするのが好ましい。保持時間が5分を超えると、生産性に欠ける。また、中間焼鈍の冷却中にMgSi、Si系化合物等が粒界に多量に析出することを防止するため、100℃/分以上の冷却速度で、保持温度から150℃以下の温度域まで冷却(焼入れ)するのが好ましい。なお、この中間焼鈍工程とその前工程である熱間圧延の間に、必要に応じて冷間圧延工程を設けてもよい。 If the holding temperature of the intermediate annealing is less than 480 ° C., the above effects may not be sufficiently obtained. On the other hand, if the processing temperature is higher than the melting point, eutectic melting may occur. The holding time for the intermediate annealing is preferably 5 minutes or less. When the holding time exceeds 5 minutes, productivity is lacking. Also, in order to prevent a large amount of Mg 2 Si, Si compounds, etc. from precipitating at the grain boundaries during the cooling of the intermediate annealing, from the holding temperature to the temperature range of 150 ° C. or less at a cooling rate of 100 ° C./min or more. Cooling (quenching) is preferable. In addition, you may provide a cold rolling process as needed between this intermediate annealing process and the hot rolling which is the previous process.

冷間圧延工程:
続く冷間圧延工程により、熱間圧延板を所望の板厚まで常法で圧延される。冷間圧延率を大きくすることで、結晶粒径が微細化し、曲げ性の改善や肌荒れ防止に効果を発揮するので、冷間圧延率は25%以上とするのが好ましい。金属組織制御の観点からは、冷間圧延率の上限を制限する積極的な理由はないが、冷延率を過度の大きくする場合、生産性の低下を招くため冷間圧延率は90%以下とするのが好ましい。また、所望のΔr(ランクフォード値の異方向性を示すもの)となる結晶組織を安定して得る上においても、冷間圧延率を上記のようにするのが望ましい。
Cold rolling process:
In the subsequent cold rolling process, the hot-rolled sheet is rolled by a conventional method to a desired sheet thickness. By increasing the cold rolling rate, the crystal grain size is refined, and the effect of improving the bendability and preventing rough skin is exhibited. Therefore, the cold rolling rate is preferably 25% or more. From the viewpoint of controlling the metal structure, there is no positive reason to limit the upper limit of the cold rolling rate, but when the cold rolling rate is excessively increased, the cold rolling rate is 90% or less because the productivity is reduced. Is preferable. In order to stably obtain a crystal structure having a desired Δr (indicating a different directionality of the Rankford value), it is desirable to set the cold rolling rate as described above.

溶体化処理工程:
冷間圧延終了後は、冷間圧延板に溶体化処理を施す。溶体化処理の目的は中間焼鈍と同様であり、添加元素の固溶と再結晶化にある。また、この溶体化処理中の再結晶をもって最終的な結晶組織が決定される。溶体化処理温度は、480℃以上、好ましくは490℃以上で融点未満とする。溶体化処理温度が480℃未満の場合、室温時効の経時変化の抑制に対しては有利であるが、固溶量が少なくなって十分な焼付硬化性が得られなくなるとともに、延性と曲げ性も著しく悪化する。一方、溶体化中の共晶融解の発生を抑制するため融点未満とする。また、溶体化処理の保持時間は5分以下とするのが好ましい。保持時間が5分を超えると、生産性の低下を招く。更に、溶体化処理の保持後における冷却中にMgSiや単体Si等が粒界に多量に析出することを防止するため、100℃/分以上の冷却速度で、保持温度から150℃以下の温度域まで冷却(焼入れ)するのが好ましい。
Solution treatment process:
After the cold rolling is completed, the cold rolled sheet is subjected to a solution treatment. The purpose of the solution treatment is the same as in the intermediate annealing, and is in the solid solution and recrystallization of the additive elements. The final crystal structure is determined by recrystallization during the solution treatment. The solution treatment temperature is 480 ° C. or higher, preferably 490 ° C. or higher and lower than the melting point. When the solution treatment temperature is less than 480 ° C., it is advantageous for suppressing the aging of the room temperature aging, but the amount of solid solution decreases and sufficient bake hardenability cannot be obtained, and ductility and bendability are also obtained. Remarkably worse. On the other hand, in order to suppress the occurrence of eutectic melting during solution treatment, the melting point is set to less than the melting point. Moreover, it is preferable that the retention time of the solution treatment is 5 minutes or less. When the holding time exceeds 5 minutes, the productivity is lowered. Furthermore, in order to prevent a large amount of Mg 2 Si, elemental Si, etc. from precipitating at the grain boundaries during cooling after holding the solution treatment, at a cooling rate of 100 ° C./min or higher, the holding temperature is 150 ° C. or lower. It is preferable to cool (quenify) to a temperature range.

安定化処理工程:
溶体化処理工程の終了後1時間以内に、圧延板を80〜120℃の温度で1時間以上、加熱保持する安定化処理を行う必要がある。この安定化処理は、塗装焼付け時に強度向上に寄与するG.P.ゾーンに移行し易いクラスターIIと言われる原子群を形成することを目的としており、塗装焼付け後の強度確保のために必要な処理である。溶体化処理工程の終了後1時間を超える場合や80℃未満の温度で加熱保持した場合には、クラスターIIと競合して塗装焼付け時の強度向上を妨げるクラスターIが形成されるため、塗装焼付け後の強度が不足する。一方、加熱保持温度が120℃を超える場合には、クラスターIIが過度に成長して曲げ加工性や成形性が低下する。更に、加熱保持時間が1時間未満の場合には、クラスターIIの形成が不十分となり塗装焼付け後の強度が不足する。なお、加熱保持時間の上限は特に限定されるものではないが、生産効率の観点から24時間以内とするのが好ましい。
Stabilization process:
Within 1 hour after the completion of the solution treatment step, it is necessary to perform a stabilization treatment in which the rolled plate is heated and held at a temperature of 80 to 120 ° C. for 1 hour or more. This stabilization treatment contributes to the improvement of strength during paint baking. P. The purpose is to form an atomic group called cluster II that easily migrates to the zone, and is a treatment necessary for securing the strength after paint baking. If it is more than 1 hour after the solution treatment process is completed or if it is heated and held at a temperature of less than 80 ° C., cluster I will be formed, which will compete with cluster II and prevent strength improvement during paint baking. Later strength is insufficient. On the other hand, when the heating and holding temperature exceeds 120 ° C., the cluster II grows excessively and bending workability and formability deteriorate. Furthermore, when the heating and holding time is less than 1 hour, the formation of the cluster II is insufficient and the strength after baking is insufficient. The upper limit of the heating and holding time is not particularly limited, but is preferably within 24 hours from the viewpoint of production efficiency.

2.自動車ボディパネル
次に、本発明に係るアルミニウム合金板を用いて製造される自動車ボディパネルについて説明する。
2. Next, an automobile body panel manufactured using the aluminum alloy plate according to the present invention will be described.

2−1.アルミニウム合金板の表層組織
アルミニウム合金板のプレス成形時や組み立て加工時に生じた自動車ボディパネル(以下において場合により、単に「ボディパネル」と記す)上の疵などを見え難くするために、バフ研磨が実施される。バフ研磨は、ボディパネルのアルミニウム合金板の表層に機械加工層をもたらす。機械加工層は歪を蓄積しており、この歪はバフ研磨後の加熱処理におけるSi系金属間化合物やAl−Cu系金属間化合物の析出に対する駆動力となる。Si系金属間化合物やAl−Cu系金属間化合物が析出した機械加工層は、マトリクスよりも孔食電位が卑下するため、機械加工層は優先的に腐食されて耐糸錆性は低下する。
2-1. Surface structure of aluminum alloy sheet Buffing is used to make it difficult to see wrinkles on automobile body panels (hereinafter, simply referred to as “body panels”) generated during press molding and assembly of aluminum alloy sheets. To be implemented. Buffing provides a machined layer on the surface of the aluminum alloy plate of the body panel. The machined layer accumulates strain, and this strain becomes a driving force for precipitation of Si-based intermetallic compounds and Al—Cu-based intermetallic compounds in the heat treatment after buffing. The machined layer on which the Si-based intermetallic compound or the Al—Cu-based intermetallic compound is deposited has a lower pitting corrosion potential than the matrix. Therefore, the machined layer is preferentially corroded and the yarn rust resistance is reduced.

上記機械加工層は、アルミニウム合金板の表層から板厚方向に沿って0.5〜5.0μm、好ましくは2.0〜5.0μmの厚さもって成形される。この厚さが0.5μm未満では、疵を見え難くすることが困難である。一方、この厚さが5μmを超えると、機械加工層の電位の卑化が激しくなり耐糸錆性が著しく低下する。   The machining layer is formed with a thickness of 0.5 to 5.0 μm, preferably 2.0 to 5.0 μm along the thickness direction from the surface layer of the aluminum alloy plate. If the thickness is less than 0.5 μm, it is difficult to make the wrinkles difficult to see. On the other hand, when the thickness exceeds 5 μm, the potential of the machined layer is greatly reduced, and the rust resistance is remarkably lowered.

機械加工層の厚さは、バフ研磨部分の任意の部分を透過型電子顕微鏡で観察することによって測定される。例えば、厚さ方向に沿った断面を観察するものである。機械加工層の厚さは、複数個所の測定値の最大値として規定される。   The thickness of the machined layer is measured by observing an arbitrary portion of the buffed portion with a transmission electron microscope. For example, a cross section along the thickness direction is observed. The thickness of the machined layer is defined as the maximum value of the measured values at a plurality of locations.

機械加工層におけるSi系金属間化合物及びAl−Cu系金属間化合物の合計の数密度は、2個/μm以下に規定される。この数密度が2個/μmを超える場合には、機械加工層中の孔食電位が著しく卑化して耐糸錆性が低下する。なお、この数密度は小さい程好ましく、0個/μmが最も好ましい。 The total number density of the Si-based intermetallic compound and the Al—Cu-based intermetallic compound in the machined layer is defined as 2 pieces / μm 2 or less. When this number density exceeds 2 pieces / μm 2 , the pitting corrosion potential in the machined layer is remarkably reduced and the rust resistance is lowered. In addition, this number density is so preferable that it is small, and 0 piece / micrometer < 2 > is the most preferable.

機械加工層中におけるSi系金属間化合物及びAl−Cu系金属間化合物の数密度は、エネルギー分散型X線分光機能を備えた透過型電子顕微鏡によって測定される。例えば、Siが50mass%以上含有されるSi系金属間化合物やCuが20mass%以上含有されるAl−Cu系金属間化合物の数を測定するものである。なお、ここでの数密度は、3個所以上で測定された最大値として規定される。   The number density of the Si-based intermetallic compound and the Al—Cu-based intermetallic compound in the machining layer is measured by a transmission electron microscope having an energy dispersive X-ray spectroscopic function. For example, the number of Si-based intermetallic compounds containing 50 mass% or more of Si or Al—Cu based intermetallic compounds containing 20 mass% or more of Cu is measured. The number density here is defined as the maximum value measured at three or more locations.

2−2.製造方法
次に、本発明に係るボディパネルの製造方法について説明する。
2-2. Manufacturing Method Next, a manufacturing method of the body panel according to the present invention will be described.

バフ研磨工程:
ボディパネルのアルミニウム合金板に対してバフ研磨が施されると、アルミニウム合金板の表層に機械加工層が形成される、バフ研磨の条件は、機械加工層の厚さに影響を及ぼす。Si系金属間化合物及びAl−Cu系金属間化合物が、バフ研磨後に実施される塗料の焼付け工程において析出する。
Buffing process:
When buffing is performed on the aluminum alloy plate of the body panel, the machining layer is formed on the surface layer of the aluminum alloy plate. The buffing condition affects the thickness of the machining layer. The Si-based intermetallic compound and the Al—Cu-based intermetallic compound are precipitated in the coating baking process performed after the buffing.

バフ研磨には、80〜320の粒度を有するアルミナ粒子を付着させたバフが用いられる。このアルミナ粒子の粒度が80未満であると、機械加工層が厚くなり耐糸錆性が低下する。一方、このアルミナ粒子の粒度が320を越えると、疵を見えなくする効果が低下する。   For buffing, a buff to which alumina particles having a particle size of 80 to 320 are attached is used. When the particle size of the alumina particles is less than 80, the machining layer becomes thick and the yarn rust resistance decreases. On the other hand, when the particle size of the alumina particles exceeds 320, the effect of hiding soot is reduced.

塗装工程:焼付け工程
バフ研磨したアルミニウム合金板には、通常の塗装方法を用いて塗料が塗装される。更に、塗装が施されたアルミニウム合金板は、通常、180℃で25分間の加熱処理による焼付によってボディパネルとされる。
Painting process: Baking process Paint is applied to the buffed aluminum alloy sheet using a normal coating method. Furthermore, the coated aluminum alloy plate is usually made into a body panel by baking at 180 ° C. for 25 minutes.

次に、本発明を実施例に基づいて更に詳細に説明する。以下の実施例は、本発明を説明するための例示に過ぎず、本発明の技術的範囲を限定するものでない。   Next, the present invention will be described in more detail based on examples. The following examples are merely illustrative for explaining the present invention, and do not limit the technical scope of the present invention.

アルミニウム合金材には、表1に示す組成の合金をそれぞれ常法に従って溶製し、DC鋳造法によりスラブに鋳造した。鋳造後、スラブに面削を施した。   In the aluminum alloy material, alloys having the compositions shown in Table 1 were melted in accordance with conventional methods, and cast into slabs by DC casting. After casting, the slab was chamfered.

Figure 2017048452
Figure 2017048452

添加元素の偏析をなくすために、上記面削したスラブに対して540℃の温度で10時間の均質化処理を行ない室温まで冷却した後に再加熱し、開始温度530℃、終了温度250℃で熱間圧延を実施し厚さ3mmの圧延板を得た。得られた熱間圧延板に、2mm厚さとなるまで冷間圧延を施した。次いで、冷間圧延板を塩浴炉中において530℃で5秒保持して中間焼鈍を行い、ファンを用いて300℃/分の冷却速度で保持温度から室温まで強制空冷した。次いで、冷間圧延によって板厚1mmとしてから、溶体化処理を行なった後にファンを用いて300℃/分の冷却速度で溶体化処理温度から室温まで強制空冷した。次いで、強制空冷した圧延板に安定化処理を施して最終板を得た。なお、溶体化処理条件は、530℃の保持温度で保持時間を0秒とした。ここで、0秒とは、530℃に到達後直ちに冷却するものである。安定化処理は、溶体化処理を行なってから1時間後に表2に示す温度で2時間加熱保持することにより行なった。最後に、安定化処理したアルミニウム合金板を、80℃の10mass%HSO中に浸漬した後に大気中で乾燥した。このようにして作製したアルミニウム合金板の試料について、以下の評価を行なった。 In order to eliminate segregation of the additive elements, the face-cut slab was homogenized at a temperature of 540 ° C. for 10 hours, cooled to room temperature, reheated, and heated at a start temperature of 530 ° C. and an end temperature of 250 ° C. Cold rolling was performed to obtain a rolled plate having a thickness of 3 mm. The obtained hot-rolled sheet was cold-rolled to a thickness of 2 mm. Next, the cold-rolled sheet was subjected to intermediate annealing by being held at 530 ° C. for 5 seconds in a salt bath furnace, and forcibly air-cooled from the holding temperature to room temperature at a cooling rate of 300 ° C./min using a fan. Subsequently, after the sheet thickness was 1 mm by cold rolling, solution treatment was performed, and then forced air cooling was performed from the solution treatment temperature to room temperature using a fan at a cooling rate of 300 ° C./min. Next, the final plate was obtained by subjecting the forced air-cooled rolled plate to a stabilization treatment. The solution treatment conditions were a holding temperature of 530 ° C. and a holding time of 0 seconds. Here, 0 seconds means cooling immediately after reaching 530 ° C. The stabilization treatment was performed by heating and holding at the temperature shown in Table 2 for 1 hour after the solution treatment. Finally, the stabilized aluminum alloy plate was immersed in 10 mass% H 2 SO 4 at 80 ° C. and then dried in the air. The following evaluation was performed about the sample of the aluminum alloy plate produced in this way.

Figure 2017048452
Figure 2017048452

(a)100日後における塗装焼付け後の耐力
上記アルミニウム合金板の試料を100日間にわたって、室温中で保持した。そして、塗装後の焼付け条件を180℃で1時間として、アルミニウム合金板試料を熱処理した。耐力測定は、アルミニウム合金板試料をJIS5号試験片に加工し、インストロン型引張試験にて、引張速度10mm/分で行った。結果を表4に示す。耐力が200MPa以上のものを合格(○)とし、それ未満のものを不合格(×)とした。
(A) Strength after painting and baking after 100 days A sample of the aluminum alloy plate was held at room temperature for 100 days. And the baking condition after painting was 180 degreeC for 1 hour, and the aluminum alloy plate sample was heat-processed. The proof stress measurement was performed by processing an aluminum alloy plate sample into a JIS No. 5 test piece and performing an Instron type tensile test at a tensile speed of 10 mm / min. The results are shown in Table 4. Those with a yield strength of 200 MPa or more were judged as acceptable (◯), and those with a yield strength of less than that were judged as unacceptable (x).

Figure 2017048452
Figure 2017048452

(b)100日後における伸び
上記アルミニウム合金板の試料を100日間にわたって、室温中で保持した。伸びは、アルミニウム合金板試料をJIS5号試験片に加工し、インストロン型引張試験にて、引張速度10mm/分で行ったときの伸びを測定して、伸び率を求めた。伸び率が23%以上のものを合格(○)とし、それ未満のものを不合格(×)とした。結果を表4に示す。
(B) Elongation after 100 days The sample of the aluminum alloy sheet was held at room temperature for 100 days. The elongation was determined by measuring the elongation when an aluminum alloy plate sample was processed into a JIS No. 5 test piece and subjected to an Instron type tensile test at a tensile rate of 10 mm / min. Those with an elongation rate of 23% or more were evaluated as acceptable (◯), and those with an elongation of less than 23% were evaluated as unacceptable (x). The results are shown in Table 4.

(c)100日後におけるJISH7701に基づくヘミング試験
上記アルミニウム合金板の試料を100日間にわたって、室温中で保持した。アルミニウム合金板試料を圧延方向に対して90°方向のJIS5号試験片に加工し、JISH7701に基づくヘミング試験を実施した。なお、予歪は8%、プリヘミング時のポンチ先端半径は0.5mm、本ヘミング時の中板の厚さは1.0mmとした。ヘミング試験後において、外周部表面がJISH7701に記載される0〜2点のものを合格(○)とし、外周部表面が3〜4点のものを不合格(×)とした。結果を表4に示す。
(C) Hemming test based on JISH7701 after 100 days The sample of the aluminum alloy plate was held at room temperature for 100 days. The aluminum alloy sheet sample was processed into a JIS No. 5 test piece in a direction of 90 ° with respect to the rolling direction, and a hemming test based on JIS 7701 was performed. The pre-strain was 8%, the punch tip radius during pre-hemming was 0.5 mm, and the thickness of the intermediate plate during main hemming was 1.0 mm. After the hemming test, 0 to 2 points on the outer peripheral surface described in JISH7701 were accepted (◯), and 3 to 4 outer peripheral surfaces were rejected (x). The results are shown in Table 4.

次に、上記アルミニウム合金板試料の表面を、表3に示す粒度のアルミナ粒子を付着させたバフを用いてバフ研磨を行なった。具体的には、サンダーに取り付けたバフを用いて、アルミニウム合金板試料の表面を60秒間研磨することによって、アルミニウム合金板試料の表層から板厚方向に沿って機械加工層を形成した。そして、この機械加工層について、以下の測定を行なった。   Next, the surface of the aluminum alloy plate sample was buffed using a buff to which alumina particles having a particle size shown in Table 3 were attached. Specifically, a machined layer was formed from the surface layer of the aluminum alloy plate sample along the plate thickness direction by polishing the surface of the aluminum alloy plate sample for 60 seconds using a buff attached to the sander. And the following measurements were performed about this machined layer.

Figure 2017048452
Figure 2017048452

(d)機械加工層の厚さ、ならびに、Al−Si系金属間化合物及びAl−Cu系金属間化合物の面密度
上記のようにしてバフ研磨した各アルミニウム合金板試料を塗装の焼付け条件に相当する180℃で25分間熱処理した後に、表面から厚さ100〜200nm程度の試験片を、FIB(Focused Ion Beam)によって作製した。この試験片の任意の3箇所について、透過型電子顕微鏡(TEM)を用いて2万倍の倍率で観察した。各箇所の透過電子像中において、機械加工層が最も厚くなっている部分厚さをその箇所における機械加工層厚さとし、3箇所の機械加工厚さの算術平均値をもって試料の機械加工厚さとした。更に、上記各箇所において観察される析出物に対してEDS(Energy Dispersive Spectroscopy)検出器による元素分析を行い、Siが30%以上含有されるものをSi系金属間化合物とし、Cuが10%以上含有されるものをAl−Cu系金属間化合物として、両方の個数の合計を単位面積(μm)当たりに換算して当該箇所の面密度とし、3箇所の面密度の算術平均値をもって試料の面密度とした。結果を表4に示す。
(D) Thickness of machined layer, and surface density of Al—Si intermetallic compound and Al—Cu intermetallic compound Each aluminum alloy plate sample buffed as described above corresponds to the baking conditions for coating. After heat treatment at 180 ° C. for 25 minutes, a test piece having a thickness of about 100 to 200 nm was produced from the surface by FIB (Focused Ion Beam). Three arbitrary positions of this test piece were observed at a magnification of 20,000 times using a transmission electron microscope (TEM). In the transmission electron image at each location, the thickness where the machining layer is thickest is the machining layer thickness at that location, and the arithmetic thickness of the 3 machining thicknesses is the machining thickness of the sample. . Furthermore, elemental analysis using an EDS (Energy Dispersive Spectroscopy) detector is performed on the precipitates observed in each of the above locations, and Si-containing intermetallic compounds containing 30% or more of Si are obtained, and Cu is 10% or more. What is contained is an Al—Cu-based intermetallic compound, and the total of both is converted per unit area (μm 2 ) to obtain the surface density of the part, and the arithmetic average value of the surface density of the three parts is used as the sample density. The surface density was taken. The results are shown in Table 4.

(e)耐糸錆性
上記のバフ研磨した各アルミニウム合金板資料に対して市販のリン酸亜鉛処理用薬剤を用いて標準的な処理条件でリン酸亜鉛処理を実施した。リン酸亜鉛処理後の各アルミニウム合金板試料に対して市販の電着塗装を行なった後に,180℃で25分の熱処理(焼付け)を行なった。焼付けした試料に、中塗りと上塗りを更に行なって、塗装焼付けしたボディパネル試料を作製した。このボディパネル試料の塗装面のL方向とC方向にカッターで切れ目を入れ、ASTM D2083法に準拠して耐糸錆性の評価を行った。膨れ幅が2mm未満を合格とし、2mm以上を不合格とした。結果を表4に示す。
(E) Yarn rust resistance Zinc phosphate treatment was carried out under standard treatment conditions using commercially available zinc phosphate treatment chemicals on each of the above buffed aluminum alloy sheet materials. A commercially available electrodeposition coating was applied to each aluminum alloy sheet sample after the zinc phosphate treatment, followed by a heat treatment (baking) at 180 ° C. for 25 minutes. The baked sample was further subjected to intermediate coating and top coating to prepare a body panel sample that was baked. Cuts were made with a cutter in the L direction and C direction of the painted surface of this body panel sample, and the yarn rust resistance was evaluated in accordance with ASTM D2083 method. The swelling width of less than 2 mm was accepted and 2 mm or more was rejected. The results are shown in Table 4.

本発明例1〜18では、耐力、伸び率、曲げ性及び耐糸錆性の評価結果が合格であった。これに対して比較例1〜15では、これら評価のいずれかが不合格であった。   In Inventive Examples 1 to 18, the evaluation results of proof stress, elongation, bendability and yarn rust resistance were acceptable. On the other hand, in Comparative Examples 1-15, either of these evaluations was disqualified.

具体的には、比較例1では、安定化処理の保持温度が低過ぎたため耐力が不合格となり、自動車ボディパネルに必要な強度が得られなかった。   Specifically, in Comparative Example 1, since the holding temperature of the stabilization treatment was too low, the yield strength was rejected, and the strength required for the automobile body panel could not be obtained.

比較例2では、安定化処理の保持温度が高過ぎたため曲げ性及び伸び率が不合格となり、自動車ボディパネルに必要な加工性が得られなかった。   In Comparative Example 2, since the holding temperature of the stabilization treatment was too high, the bendability and elongation rate were rejected, and the workability required for the automobile body panel was not obtained.

比較例3では、バフ研磨に用いたアルミナ粒子の粒度が低過ぎたため機械加工層が厚くなり過ぎ、耐糸錆性が不合格となった。   In Comparative Example 3, since the particle size of the alumina particles used for buffing was too low, the machined layer was too thick and the yarn rust resistance was rejected.

比較例4では、Mg含有量が多過ぎたため曲げ性及び伸び率が不合格となり、自動車ボディパネルに必要な加工性が得られず、また、孔食電位が卑化し過ぎて耐糸錆性が不合格となった。   In Comparative Example 4, since the Mg content was too high, the bendability and the elongation rate were rejected, the workability required for the automobile body panel was not obtained, and the pitting potential was too low and the yarn rust resistance was too low. It was rejected.

比較例5では、Mg含有量が少な過ぎたため、バフ研磨後の加熱処理時に析出したSi系金属間化合物の面密度が増加し、耐糸錆性が不合格となった。   In Comparative Example 5, since the Mg content was too small, the surface density of the Si-based intermetallic compound deposited during the heat treatment after buffing increased, and the yarn rust resistance was rejected.

比較例6では、Si含有量が多過ぎたため、バフ研磨後の加熱処理時に析出したSi系金属間化合物の面密度が増加し、耐糸錆性が不合格となった。   In Comparative Example 6, since the Si content was too high, the surface density of the Si-based intermetallic compound deposited during the heat treatment after buffing increased, and the yarn rust resistance was rejected.

比較例7では、Si含有量が少な過ぎたため耐力が不合格となり、自動車ボディパネルに必要な強度が得られなかった。   In Comparative Example 7, since the Si content was too small, the yield strength was rejected, and the strength required for the automobile body panel could not be obtained.

比較例8では、Mn含有量が多すぎたため曲げ性及び伸び率が不合格となり、自動車ボディパネルに必要な加工性が得られなかった。   In Comparative Example 8, since the Mn content was too large, the bendability and elongation rate were rejected, and the workability required for the automobile body panel was not obtained.

比較例9では、Mn含有量が少な過ぎたためバフ研磨後の加熱処理時に析出したSi系金属間化合物の面密度が増加し、耐糸錆性が不合格となった。   In Comparative Example 9, since the Mn content was too small, the surface density of the Si-based intermetallic compound deposited during the heat treatment after buffing increased, and the yarn rust resistance was rejected.

比較例10では、Zn含有量が多すぎたため孔食電位が低下し過ぎて、耐糸錆性が不合格となった。   In Comparative Example 10, since the Zn content was too high, the pitting potential was too low, and the yarn rust resistance was rejected.

比較例11では、Zn含有量が少な過ぎたため、バフ研磨後の加熱処理時に析出したAl−Si系金属間化合物とAl−Cu系金属間化合物の周辺における電位が卑化し過ぎて、耐糸錆性が不合格となった。   In Comparative Example 11, since the Zn content was too small, the potential around the Al—Si-based intermetallic compound and Al—Cu-based intermetallic compound deposited during the heat treatment after buffing was too low, resulting in yarn rust resistance. Sex was rejected.

比較例12では、Fe含有量が多過ぎたため曲げ性及び伸び率が不合格となり、自動車ボディパネルに必要な加工性(曲げ性)が得られなかった。   In Comparative Example 12, since the Fe content was too large, the bendability and the elongation were rejected, and the workability (bendability) required for the automobile body panel was not obtained.

比較例13では、Fe含有量が少な過ぎたためバフ研磨後の加熱処理時に析出したAl−Si系金属間化合物の面密度が増加し、耐糸錆性が不合格となった。   In Comparative Example 13, since the Fe content was too small, the surface density of the Al—Si-based intermetallic compound deposited during the heat treatment after buffing increased, and the yarn rust resistance was rejected.

比較例14では、Cu含有量が多過ぎたためバフ研磨後の加熱処理時に析出したAl−Cu系金属間化合物の面密度が増加し、耐糸錆性が不合格となった。   In Comparative Example 14, since the Cu content was excessive, the surface density of the Al—Cu intermetallic compound deposited during the heat treatment after buffing increased, and the yarn rust resistance was rejected.

比較例15では、Cu含有量が少な過ぎたため曲げ性及び伸び率が不合格となり、自動車ボディパネルに必要な加工性が得られなかった。   In Comparative Example 15, since the Cu content was too small, the bendability and the elongation were rejected, and the workability required for the automobile body panel was not obtained.

本発明は、バフ研磨を施しても耐糸錆性が低下し難い優れた耐糸錆性、ならびに、塗装焼付け硬化性及び加工性にも優れた自動車ボディパネル用アルミニウム合金板及びこれを用いた自動車ボディパネルを提供可能であり、産業上の利用可能性に優れる。   INDUSTRIAL APPLICABILITY The present invention uses an aluminum alloy plate for an automobile body panel that has excellent yarn rust resistance that hardly deteriorates even when buffed, and also has excellent paint bake hardenability and workability, and the same. Auto body panels can be provided, and the industrial applicability is excellent.

Claims (4)

Mg:0.30〜0.80mass%、Si:0.80〜1.40mass%、Mn:0.20〜0.65mass%、Zn:0.44〜0.60mass%、Fe:0.25〜0.40mass%、Cu:0.17〜0.25mass%を含有し、残部Al及び不純物からなるアルミニウム合金からなり、溶体化処理の100日後において、伸びが23%以上であり、塗装焼付け処理を施した後の耐力が200MPa以上であり、更に、JISH7701に基づくヘミング試験による点数が0〜2点であることを特徴とする耐糸錆性及びリサイクル性に優れた自動車ボディパネル用アルミニウム合金板。   Mg: 0.30 to 0.80 mass%, Si: 0.80 to 1.40 mass%, Mn: 0.20 to 0.65 mass%, Zn: 0.44 to 0.60 mass%, Fe: 0.25 It contains 0.40 mass%, Cu: 0.17 to 0.25 mass%, and consists of an aluminum alloy composed of the balance Al and impurities. After 100 days of solution treatment, the elongation is 23% or more, and the paint baking treatment is performed. An aluminum alloy sheet for automobile body panels excellent in yarn rust resistance and recyclability, characterized by having a yield strength of 200 MPa or more after application and a score of 0 to 2 according to a hemming test based on JISH7701. 請求項1に記載の自動車ボディパネル用アルミニウム合金板の製造方法であって、前記アルミニウム合金を鋳造する鋳造工程と、鋳塊を均質化処理する均質化処理工程と、均質化処理した鋳塊を熱間圧延する熱間圧延工程と、熱間圧延板の中間焼鈍工程と、中間焼鈍した圧延板を冷間圧延する冷間圧延工程と、冷間圧延板を溶体化処理する溶体化処理工程と、溶体化処理した圧延板を安定化処理する安定化処理工程とを含み、前記溶体化処理の温度が480℃以上であり、前記安定化処理工程が前記溶体化処理工程後1時間以内に開始され、かつ、圧延板を80〜120℃の温度で1時間以上加熱保持することを特徴とする耐糸錆性及びリサイクル性に優れた自動車ボディパネル用アルミニウム合金板の製造方法。   A method for producing an aluminum alloy plate for an automobile body panel according to claim 1, wherein a casting step of casting the aluminum alloy, a homogenization step of homogenizing the ingot, and a homogenized ingot A hot rolling step for hot rolling, an intermediate annealing step for the hot rolled plate, a cold rolling step for cold rolling the intermediate annealed rolled plate, and a solution treatment step for solution treating the cold rolled plate And a stabilization treatment step for stabilizing the solution-treated rolled plate, the temperature of the solution treatment is 480 ° C. or more, and the stabilization treatment step is started within 1 hour after the solution treatment step And a rolled plate is heated and held at a temperature of 80 to 120 ° C. for 1 hour or longer, and a method for producing an aluminum alloy plate for an automobile body panel excellent in yarn rust resistance and recyclability. 請求項1に記載の自動車ボディパネル用アルミニウム合金板を一部に又は全てに用いて塗装焼付けされた自動車ボディパネルであって、前記アルミニウム合金板の表層から板厚方向に沿って0.5〜5.0μmの厚さを有する機械加工層が形成されており、当該機械加工層におけるSi系金属間化合物及びAl−Cu系金属間化合物の数密度が2個/μm以下であることを特徴とする耐糸錆性及びリサイクル性に優れた自動車ボディパネル。 An automobile body panel that is painted and baked using part or all of the aluminum alloy plate for an automobile body panel according to claim 1, wherein 0.5 to 0.5 to the thickness direction from the surface layer of the aluminum alloy plate A machined layer having a thickness of 5.0 μm is formed, and the number density of the Si-based intermetallic compound and the Al—Cu-based intermetallic compound in the machined layer is 2 / μm 2 or less. Automotive body panel with excellent rust resistance and recyclability. 請求項3に記載の自動車ボディパネルの製造方法であって、80〜320の粒度を有するアルミナ粒子を付着させたバフによって前記アルミニウム合金板の表面をバフ研磨するバフ研磨工程と、バフ研磨したアルミニウム合金板を塗装する塗装工程と、塗装したアルミニウム合金板を180℃で25分間焼付ける焼付け工程とを備えることを特徴とする耐糸錆性及びリサイクル性に優れた自動車ボディパネルの製造方法。   4. The method of manufacturing an automobile body panel according to claim 3, wherein a buffing step of buffing the surface of the aluminum alloy plate with a buff to which alumina particles having a particle size of 80 to 320 are attached, and buffed aluminum. A manufacturing method of an automobile body panel excellent in yarn rust resistance and recyclability, comprising: a coating step of coating an alloy plate; and a baking step of baking the coated aluminum alloy plate at 180 ° C. for 25 minutes.
JP2015175243A 2015-09-05 2015-09-05 Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof Active JP6585436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015175243A JP6585436B2 (en) 2015-09-05 2015-09-05 Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015175243A JP6585436B2 (en) 2015-09-05 2015-09-05 Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof

Publications (2)

Publication Number Publication Date
JP2017048452A true JP2017048452A (en) 2017-03-09
JP6585436B2 JP6585436B2 (en) 2019-10-02

Family

ID=58278163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015175243A Active JP6585436B2 (en) 2015-09-05 2015-09-05 Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof

Country Status (1)

Country Link
JP (1) JP6585436B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181505A1 (en) * 2017-03-29 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
WO2023068293A1 (en) 2021-10-19 2023-04-27 株式会社Uacj Aluminum alloy rolled sheet and method for producing same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018181505A1 (en) * 2017-03-29 2018-10-04 古河電気工業株式会社 Aluminium alloy material, conductive member using same, battery member, fastening component, spring component, and structure component
JP6430085B1 (en) * 2017-03-29 2018-11-28 古河電気工業株式会社 Aluminum alloy material and conductive member, battery member, fastening component, spring component and structural component using the same
US10808299B2 (en) 2017-03-29 2020-10-20 Furukawa Electric Co., Ltd. Aluminum alloy material, and conductive member, battery member, fastening component, spring component, and structural component including the aluminum alloy material
WO2023068293A1 (en) 2021-10-19 2023-04-27 株式会社Uacj Aluminum alloy rolled sheet and method for producing same

Also Published As

Publication number Publication date
JP6585436B2 (en) 2019-10-02

Similar Documents

Publication Publication Date Title
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP5852534B2 (en) Aluminum alloy sheet with excellent bake hardenability
US9932658B2 (en) Aluminum alloy having excellent characteristic after natural aging at room temperature
WO2012124676A1 (en) Aluminum alloy plate having superior baking finish hardening
JP2017179468A (en) Aluminum alloy sheet with high formability
JP2014208876A (en) High strength hot rolled steel sheet and manufacturing method therefor
JP2015067857A (en) Al-Mg-Si-BASED ALUMINUM ALLOY SHEET FOR AUTOMOBILE PANEL AND MANUFACTURING METHOD THEREFOR
JP6224549B2 (en) Aluminum alloy plate with excellent rust resistance
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP2017078211A (en) Aluminum alloy sheet having high moldability
JP4328242B2 (en) Aluminum alloy plate with excellent ridging mark characteristics
WO2014119260A1 (en) High-strength hot-rolled steel sheet and production method thereof
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
TW201441384A (en) High strength hot-rolled steel sheet and method for producing the same
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008231475A (en) Aluminum alloy sheet for forming workpiece, and producing method therefor
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
JP6768568B2 (en) Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
WO2016031941A1 (en) Aluminum alloy sheet
WO2018003709A1 (en) Aluminum alloy sheet having excellent ridging resistance and hem bendability and production method for same
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP7153469B2 (en) Aluminum alloy plate excellent in formability, strength and appearance quality, and method for producing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190620

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190905

R150 Certificate of patent or registration of utility model

Ref document number: 6585436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250