JP2017078211A - Aluminum alloy sheet having high moldability - Google Patents

Aluminum alloy sheet having high moldability Download PDF

Info

Publication number
JP2017078211A
JP2017078211A JP2015207061A JP2015207061A JP2017078211A JP 2017078211 A JP2017078211 A JP 2017078211A JP 2015207061 A JP2015207061 A JP 2015207061A JP 2015207061 A JP2015207061 A JP 2015207061A JP 2017078211 A JP2017078211 A JP 2017078211A
Authority
JP
Japan
Prior art keywords
amount
aluminum alloy
less
solid solution
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015207061A
Other languages
Japanese (ja)
Inventor
有賀 康博
Yasuhiro Ariga
康博 有賀
久郎 宍戸
Hisao Shishido
久郎 宍戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2015207061A priority Critical patent/JP2017078211A/en
Priority to US15/295,455 priority patent/US20170114431A1/en
Priority to CN201610906737.9A priority patent/CN106609328A/en
Priority to CN201810799384.6A priority patent/CN108866393A/en
Publication of JP2017078211A publication Critical patent/JP2017078211A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a 6000 series aluminum alloy sheet having high moldability capable of being manufactured as for an automotive panel material without largely changing a conventional composition or manufacturing condition.SOLUTION: High work hardening property is achieved by increasing a solid solution Si amount and a solid solution Cu amount of an Al-Mg-Si-based aluminum alloy sheet at good balance, suppressing localization of transition introduced into a material by tensile deformation during press molding to an automotive panel material with transition density in a specific range when tensile deformation in low strain region to the sheet, increasing transition uniformly from low strain range to high strain range and suppressing nonuniform deformation in molding to the automotive panel material.SELECTED DRAWING: None

Description

本発明は成形性に優れたAl−Mg−Si系アルミニウム合金板に関するものである。本発明で言うアルミニウム合金板とは、熱間圧延板や冷間圧延板などの圧延板であって、溶体化処理および焼入れ処理などの調質が施された後であって、使用される部材に曲げ加工されたり、塗装焼付硬化処理される前のアルミニウム合金板を言う。また、以下の記載ではアルミニウムをアルミやAlとも言う。   The present invention relates to an Al—Mg—Si-based aluminum alloy plate excellent in formability. The aluminum alloy plate referred to in the present invention is a rolled plate such as a hot-rolled plate or a cold-rolled plate, and after being subjected to tempering such as solution treatment and quenching treatment, the member to be used This refers to an aluminum alloy plate before being bent or painted and hardened. In the following description, aluminum is also referred to as aluminum or Al.

近年、地球環境などへの配慮から、自動車等の車両の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車の材料として、鋼板等の鉄鋼材料に代えて、成形性や塗装焼付硬化性(ベークハード性、以下BH性とも言う)に優れた、より軽量なアルミニウム合金材の適用が増加しつつある。   In recent years, due to consideration for the global environment and the like, social demands for weight reduction of vehicles such as automobiles are increasing. In order to respond to such demands, instead of steel materials such as steel plates, the application of lighter aluminum alloy materials with excellent formability and paint bake hardenability (bake hard property, hereinafter also referred to as BH property) as automobile materials Is increasing.

自動車のアウタパネル、インナパネルなどの大型自動車パネル材用のアルミニウム合金板としては、代表的にはAl−Mg−Si系のAA乃至JIS 6000系 (以下、単に6000系とも言う) アルミニウム合金板が例示される。この6000系アルミニウム合金板は、Si、Mgを必須として含む組成を有し、成形時には低耐力(低強度)で成形性を確保し、成形後のパネルの塗装焼付処理などの人工時効(硬化) 処理時の加熱により耐力(強度)が向上し、必要な強度を確保できる、塗装焼付硬化性が優れている。   Examples of aluminum alloy plates for large automobile panel materials such as automobile outer panels and inner panels are typically Al-Mg-Si AA to JIS 6000 series (hereinafter also simply referred to as 6000 series) aluminum alloy sheets. Is done. This 6000 series aluminum alloy sheet has a composition containing Si and Mg as essential components, and has a low yield strength (low strength) during molding and ensures formability. Artificial aging (hardening) such as paint baking treatment of panels after molding. Yield (strength) is improved by heating at the time of processing, and the necessary baking strength can be secured.

自動車のアウタパネルは、デザイン性の点で、コーナー部やキャラクターラインなどの形状が先鋭化あるいは複雑化しても、ひずみやしわのない美しい曲面構成とキャラクターラインを実現させることが必要である。また、自動車のインナパネルでも、前記アウタパネルとの関係で、設計される凹凸形状が深く(高く)なり、複雑化しても、ひずみやしわのない曲面構成を実現させることが必要である。
そして、このような高成形性化の要求は、素材であるアルミニウム合金板の採用拡大に伴って、年々厳しくなっている。
From the viewpoint of design, the outer panel of an automobile needs to realize a beautiful curved surface configuration and a character line that are free from distortion and wrinkles even if the shape of a corner portion or character line is sharpened or complicated. Further, even in an inner panel of an automobile, it is necessary to realize a curved surface configuration free from distortion and wrinkles even if the uneven shape to be designed becomes deeper (higher) and complicated due to the relationship with the outer panel.
And the request | requirement of such high moldability has become severe every year with the adoption expansion of the aluminum alloy plate which is a raw material.

ただ、このような自動車パネル材用途に要求される高成形性化を、鋼板素材よりも難加工材である、6000系アルミニウム合金板の、通常の(従来の)合金組成範囲や、通常の製造工程や条件を大きく変えることなく達成することは、かなり難しい課題となる。   However, the high formability required for such automotive panel material applications, the normal (conventional) alloy composition range of 6000 series aluminum alloy plates, which are harder to process than steel plate materials, and normal manufacturing Achieving this without significantly changing the process and conditions is a rather difficult task.

これに対して、周知の通り、従来から、前記パネル材としての素材6000系アルミニウム合金板の、成形性や強度特性を向上させるための組成や組織制御の手段は、結晶粒径の制御から、集合組織の制御を含め、原子の集合体(クラスター)の制御に至るまで、多数提案されている。
これらの組織制御の手段の中で、固溶Mg量や固溶Si量、あるいは固溶Cu量を制御することや、転位密度を制御することも種々提案されている。
On the other hand, as is well known, conventionally, the composition and structure control means for improving the formability and strength properties of the material 6000 series aluminum alloy plate as the panel material are from the control of the crystal grain size, Many proposals have been made up to the control of atomic clusters (clusters), including control of textures.
Among these means for controlling the structure, various proposals have been made to control the amount of solid solution Mg, the amount of solid solution Si, or the amount of solid solution Cu, and the control of the dislocation density.

例えば、特許文献1では、前記パネル材として、常温安定性に優れ、室温時効によるベークハード性(BH性)などの材質の低下が生じ難い6000系アルミニウム合金板を得ることを目的として、固溶Si量を0.55〜0.80質量%、固溶Mg量を0.35〜0.60質量%とし、且つ、固溶Si量/固溶Mg量を1.1〜2とすることが提案されている。   For example, in Patent Document 1, for the purpose of obtaining a 6000 series aluminum alloy plate that is excellent in room temperature stability and hardly deteriorates in material such as bake hardness (BH property) due to room temperature aging as the panel material. The amount of Si may be 0.55 to 0.80 mass%, the amount of solid solution Mg may be 0.35 to 0.60 mass%, and the amount of solid solution Si / solid solution Mg may be 1.1 to 2. Proposed.

また、特許文献2では、残渣抽出法により測定したCu固溶量を0.01〜0.7%とし、平均結晶粒径も10〜50μmとした、BH性に優れた温間成形用6000系アルミニウム合金板が提案されている。   Moreover, in patent document 2, 6000 type | system | group for warm forming excellent in BH property which made Cu solid solution amount measured by the residue extraction method 0.01-0.7%, and made the average crystal grain diameter 10-50 micrometers. Aluminum alloy plates have been proposed.

更に、非特許文献1では、6000系アルミニウム合金板の更なる高強度化を図るために、転位強化あるいは結晶粒微細化強化と、析出強化とを最適に組み合わせた微視的組織パラメータ(転位密度,結晶粒径)を予測することが提案されている。
そして、6000系アルミニウム合金板に、冷間圧延または巨大ひずみ加工法の1つであるHPT加工を施した試料について、転位密度を調査し、無加工材の転位密度が1011-2 程度であり、圧延率30%(相当ひずみ0.36)を施した冷間圧延材の転位密度が1014-2 程度であることを記載している。
そして、この転位密度の測定は、等厚干渉縞法により、倍率10万倍のTEM写真5視野を用いた、交切解析法により行っている。
Furthermore, in Non-Patent Document 1, in order to further increase the strength of a 6000 series aluminum alloy sheet, a microstructural parameter (dislocation density) that optimally combines dislocation strengthening or grain refinement strengthening and precipitation strengthening. , Crystal grain size) has been proposed.
And about the sample which gave cold rolling or HPT processing which is one of the giant strain processing methods to a 6000 series aluminum alloy plate, a dislocation density is investigated and the dislocation density of a non-processed material is about 10 < 11 > m <-2 >. It is described that the dislocation density of the cold-rolled material subjected to a rolling rate of 30% (equivalent strain 0.36) is about 10 14 m −2 .
The dislocation density is measured by the cross-cut analysis method using the TEM photograph 5 fields of view with a magnification of 100,000 times by the equal thickness interference fringe method.

特開2008−174797号公報JP 2008-174797 A 特開2008−266684号公報JP 2008-266684 A

日本金属学会誌第75 巻、第5 号(2011)283〜290頁、「高転位密度および超微細粒組織をもつAl-Mg-Si合金で観察される競合析出現象の実験的ならびに計算科学的研究」増田哲也、廣澤渉一、堀田善治、松田健二Journal of the Japan Institute of Metals, Vol. 75, No. 5 (2011), pp. 283-290, "Experimental and computational science of competitive precipitation observed in Al-Mg-Si alloys with high dislocation density and ultrafine grain structure Research ”Tetsuya Masuda, Shinichi Serizawa, Zenji Hotta, Kenji Matsuda

ただ、これら従来技術では、固溶元素量の制御や、転位密度の制御は、6000系アルミニウム合金板の特に強度特性を向上させる目的で行われている。このため、成形性の兼備も当然考慮してはいるものの、そのレベルは、通常のヘム加工性やプレス成形性の域を出ず、前記した近年の自動車のパネル材に要求されるような厳しい高成形性を達成する目的ではない。   However, in these conventional techniques, the control of the amount of solid solution elements and the control of the dislocation density are performed for the purpose of improving particularly the strength characteristics of the 6000 series aluminum alloy plate. For this reason, although the combination of formability is taken into consideration, the level does not fall within the range of normal hem workability and press formability, and is as severe as required for the above-mentioned recent automobile panel materials. It is not the purpose of achieving high formability.

したがって、このような自動車パネル材用途に要求される厳しい高成形性を達成するためには、パネルデザインの変更や成形条件を変更して、成形時の負荷を緩和するか、6000系アルミニウム合金板の成形時の強度を下げるなどの、従来周知の対策しか、これまでなかったのが実情である。   Therefore, in order to achieve the strict high formability required for such automotive panel material applications, the panel design can be changed or the molding conditions can be changed to reduce the load during molding, or the 6000 series aluminum alloy plate Actually, there has been only a conventionally known measure such as lowering the strength at the time of molding.

本発明は、このような課題を解決するためになされたものであって、自動車パネル材用として、従来の6000系アルミニウム合金板の組成や製造条件を大きく変えることなく製造できる、高成形性6000系アルミニウム合金板を提供することを目的とする。   The present invention has been made to solve such problems, and has a high formability of 6000 that can be manufactured for automobile panel materials without greatly changing the composition and manufacturing conditions of a conventional 6000 series aluminum alloy plate. An object of the present invention is to provide an aluminum alloy plate.

この目的を達成するために、本発明の高成形性アルミニウム合金板の要旨は、質量%で、Si:0.30〜2.0%、Mg:0.20〜1.5%、Cu:0.05〜1.0%、Mn:1.0%以下(但し、0%を含まず)、Fe:1.0%以下(但し、0%を含まず)を各々含み、残部がAl及び不可避不純物からなるAl−Mg−Si系アルミニウム合金板であって、この板の熱フェノール残渣抽出法により分離された溶液中の固溶Si量が0.30〜2.0%、固溶Cu量が0.05〜1.0%であり、この板の圧延方向に5%の歪の引張変形を付与した際の、X線回折により測定された、この板の圧延表面の転位密度が平均で6.0×1014〜12×1014 -2であることとする。 In order to achieve this object, the gist of the high formability aluminum alloy plate of the present invention is mass%, Si: 0.30 to 2.0%, Mg: 0.20 to 1.5%, Cu: 0. 0.05 to 1.0%, Mn: 1.0% or less (excluding 0%), Fe: 1.0% or less (excluding 0%), the balance being Al and inevitable An Al—Mg—Si-based aluminum alloy plate made of impurities having a solid solution Si amount of 0.30 to 2.0% and a solid solution Cu amount in the solution separated by the hot phenol residue extraction method of this plate 0.05 to 1.0%, and the average dislocation density of the rolled surface of the plate measured by X-ray diffraction was 6 when a tensile deformation of 5% strain was applied in the rolling direction of the plate. and that it is .0 × 10 14 ~12 × 10 14 m -2.

本発明では、6000系アルミニウム合金板の固溶Si量と固溶Cu量を増加させ、自動車パネル材への成形時において、引張変形により材料中に導入される転位の局在化を抑制し、前記引張変形の低歪み域から高歪み域まで、均一に(比較的高めに)転位を増殖させることを意図する。
これによって、自動車パネル材へのプレス成形における、高歪み域から破断に至るまでの不均一変形を抑制し、高い加工硬化特性を発現させることができる。
In the present invention, the amount of solute Si and the amount of solute Cu of the 6000 series aluminum alloy plate is increased, and at the time of molding into an automobile panel material, the localization of dislocations introduced into the material by tensile deformation is suppressed, It is intended to propagate dislocations uniformly (relatively higher) from the low strain region to the high strain region of the tensile deformation.
As a result, it is possible to suppress non-uniform deformation from high strain range to breakage in press molding of automobile panel material, and to exhibit high work hardening characteristics.

但し、このような固溶Siや固溶Cuの機構を確実に発揮させ、自動車パネル材用としての高成形性化を確実に達成するためには、実際の自動車パネル材への成形時を想定した、前記引張変形の低歪み域における、板の転位密度の量が重要な指標となる。
言い換えると、固溶Siや固溶Cuの増加だけでは不十分で、前記引張変形の低歪み域における板の転位密度の量も満足することで、自動車パネル材用としての高成形性化が達成できることを知見した。
また、素材板の圧延方向に5%の歪の引張変形を付与した際の転位密度により、実際の自動車パネル材への成形時(引張変形時)の低歪み域での転位密度の量を模擬することができ、互いに相関することも知見した。
However, in order to ensure that such a solid solution Si or solid solution Cu mechanism is exhibited and to achieve high formability for automobile panel materials, it is assumed that molding to actual automobile panel materials is performed. The amount of dislocation density of the plate in the low strain region of the tensile deformation is an important index.
In other words, the increase in solute Si and solute Cu is not sufficient, and the amount of dislocation density of the plate in the low strain region of the tensile deformation is satisfied, thereby achieving high formability for automobile panel materials. I found out that I can do it.
In addition, the amount of dislocation density in the low strain region at the time of forming into an actual automobile panel material (at the time of tensile deformation) is simulated by the dislocation density when a tensile deformation of 5% strain is applied in the rolling direction of the base plate. It was also found that they can be correlated with each other.

すなわち、素材板の固溶Si量や固溶Cu量とをバランス良く増加させることが必要条件、素材板の圧延方向に5%の歪の引張変形を付与した際に、所定の転位密度を有することが十分条件であって、これら両者を満足させることで、自動車パネル材用としての高成形性を達成できる。
しかも、これらの制御による高成形性化は、従来のアルミニウム合金組成や製造条件を大きく変えないで達成できる利点がある。
That is, it is necessary to increase the amount of solute Si and solute Cu in the material plate in a well-balanced manner, and when a tensile deformation of 5% strain is applied in the rolling direction of the material plate, it has a predetermined dislocation density. This is a sufficient condition, and by satisfying both of these conditions, high formability for automobile panel materials can be achieved.
In addition, high formability by these controls has the advantage that it can be achieved without greatly changing the conventional aluminum alloy composition and manufacturing conditions.

以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。   Hereinafter, embodiments of the present invention will be specifically described for each requirement.

(化学成分組成)
先ず、本発明のAl−Mg−Si系(以下、6000系とも言う)アルミニウム合金板の化学成分組成について、以下に説明する。本発明では、前記パネル材用として必要な高成形性や、BH性、強度、溶接性、耐食性などの諸特性を、組成の面からもこれらの要求を満たすようにする。但し、この場合でも、従来の組成や製造条件を大きくは変えないことを前提とする。
(Chemical composition)
First, the chemical component composition of the Al—Mg—Si (hereinafter also referred to as 6000) aluminum alloy sheet of the present invention will be described below. In the present invention, various requirements such as high formability, BH property, strength, weldability, and corrosion resistance necessary for the panel material are satisfied from the viewpoint of composition. However, even in this case, it is assumed that the conventional composition and manufacturing conditions are not greatly changed.

このような課題を組成の面から満たすようにするため、6000系アルミニウム合金板の組成は、質量%で、Si:0.30〜2.0%、Mg:0.20〜1.5%、Cu:0.05〜1.0%、Mn:1.0%以下(但し、0%を含まず)、Fe:1.0%以下(但し、0%を含まず)を各々含み、残部がAl及び不可避不純物からなるものとする。   In order to satisfy such a problem from the viewpoint of composition, the composition of the 6000 series aluminum alloy plate is mass%, Si: 0.30 to 2.0%, Mg: 0.20 to 1.5%, Cu: 0.05-1.0%, Mn: 1.0% or less (excluding 0%), Fe: 1.0% or less (excluding 0%), respectively, the balance being It shall consist of Al and inevitable impurities.

また、これに加えて、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Zn:1.0%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、Sn:0.15%以下(但し、0%を含まず)の1種または2種以上を含むことを許容する。   In addition to this, Cr: 0.3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), V: 0.3% or less (providing that , 0% not included), Ti: 0.1% or less (excluding 0%), Zn: 1.0% or less (excluding 0%), Ag: 0.2% or less ( However, it is allowed to contain one or more of Sn: 0.15% or less (however, not including 0%).

上記6000系アルミニウム合金板における、各元素の含有範囲と意義、あるいは許容量について以下に説明する。なお、各元素の含有量の%表示は全て質量%の意味である。   The content range and significance of each element in the 6000 series aluminum alloy sheet, or the allowable amount will be described below. In addition,% display of content of each element means the mass% altogether.

Si:0.30〜2.0%
Siは、Mgとともに、固溶強化と、焼付け塗装処理などの人工時効処理時に、強度向上に寄与するMg−Si系析出物を形成して、人工時効硬化能(BH性)を発揮し、自動車のアウタパネルとして必要な強度(耐力)を得るための必須の元素である。
また、固溶Siは自動車パネル材へのプレス成形において材料に導入される転位の局在化を抑制し、引張変形の低歪み域から高歪み域まで均一に転位を増殖させる効果を有する。これによって、プレス成形時の高歪み域から破断に至るまでの不均一変形を抑制し、高い伸びや加工硬化特性を発現させることができる。
Si: 0.30 to 2.0%
Si, together with Mg, forms Mg-Si based precipitates that contribute to strength improvement during solid solution strengthening and artificial aging treatment such as baking coating treatment, and exhibits artificial age hardening ability (BH property). It is an indispensable element for obtaining the strength (proof strength) required for the outer panel.
Further, solute Si suppresses the localization of dislocations introduced into the material in press molding to automobile panel materials, and has the effect of uniformly growing dislocations from a low strain region to a high strain region of tensile deformation. As a result, non-uniform deformation from high strain range to breakage during press molding can be suppressed, and high elongation and work hardening characteristics can be exhibited.

Si含有量が少なすぎると、固溶Si量が減少し、プレス成形時の伸びや加工硬化特性が低下して、5%の歪の引張変形を付与した後の転位増殖量が低下する。また、それだけではなく、Mg−Si系析出物の生成量が不足するため、BH性が低下して、焼付け塗装処理後の強度が著しく低下する。
一方、Si含有量が多すぎると、粗大な晶出物および析出物が形成されて、熱間圧延中に大幅な板割れが生じる。
したがって、Siは0.30〜2.0%の範囲とする。Siの好ましい下限値は0.50%であり、好ましい上限値は1.5%である。
If the Si content is too small, the amount of dissolved Si decreases, the elongation during press molding and work hardening characteristics decrease, and the amount of dislocation growth after imparting 5% strain tensile deformation decreases. In addition, since the amount of Mg—Si-based precipitates is insufficient, the BH property is lowered, and the strength after the baking coating process is significantly lowered.
On the other hand, when there is too much Si content, a coarse crystallization thing and a precipitate will be formed and a big board crack will arise during hot rolling.
Therefore, Si is set to a range of 0.30 to 2.0%. The preferable lower limit value of Si is 0.50%, and the preferable upper limit value is 1.5%.

Mg:0.20〜1.5%
MgもSiとともに、固溶強化と、焼付け塗装処理などの人工時効処理時に、強度向上に寄与するMg−Si系析出物を形成して、人工時効硬化能(BH性)を発揮し、パネルとしての必要耐力を得るための必須の元素である。
また、固溶Mgは、固溶Siと同様に、自動車パネル材へのプレス成形において材料に導入される転位の局在化を抑制し、引張変形の低歪み域から高歪み域まで均一に転位を増殖させる効果を有する。これによって、プレス成形時の高歪み域から破断に至るまでの不均一変形を抑制し、高い伸びや加工硬化特性を発現させることができる。
Mg: 0.20 to 1.5%
Mg, together with Si, forms a Mg-Si-based precipitate that contributes to strength improvement during solid solution strengthening and artificial aging treatment such as baking coating, and exhibits artificial aging hardening ability (BH property) as a panel It is an essential element for obtaining the required proof stress.
In addition, solid solution Mg, like solid solution Si, suppresses the localization of dislocations introduced into the material during press molding of automotive panel materials, and dislocations uniformly from the low strain region to the high strain region of tensile deformation. Has the effect of proliferating. As a result, non-uniform deformation from high strain range to breakage during press molding can be suppressed, and high elongation and work hardening characteristics can be exhibited.

Mg含有量が少なすぎると、固溶Mg量が減少し、加工硬化特性が低下して、5%の歪の引張変形を付与した後の転位増殖量が低下する。さらに、Mg−Si系析出物の生成量が不足するため、BH性が低下して、焼付け塗装処理後の強度が低下する。
一方、Mg含有量が多すぎると、粗大な晶出物および析出物が形成されて、熱間圧延中に大幅な板割れが生じる。
したがって、Mgの含有量は0.20〜1.5%の範囲とする。Mgの好ましい下限値は0.30%であり、好ましい上限値は1.2%である。
If the Mg content is too small, the solid solution Mg amount is decreased, the work hardening characteristics are lowered, and the dislocation growth amount after applying a tensile deformation of 5% strain is lowered. Furthermore, since the production amount of Mg—Si-based precipitates is insufficient, the BH property is lowered and the strength after the baking coating treatment is lowered.
On the other hand, when there is too much Mg content, a coarse crystallization thing and a precipitate will be formed and a big plate crack will arise during hot rolling.
Therefore, the Mg content is in the range of 0.20 to 1.5%. A preferable lower limit value of Mg is 0.30%, and a preferable upper limit value is 1.2%.

Cu:0.05〜1.0%
Cuは強度や成形性の向上に寄与する。そして、固溶Cuは、固溶Siと同様に、加工硬化特性を向上させ、強度と成形性のバランスを高める。
Cu量が0.05%未満では、Cu自体の前記効果が小さくなり、同時に固溶Cu量も不足して、固溶Cuによる前記効果も不足する。
一方、Cu量が1.0%を超えると、塗装後の耐糸さび性や耐応力腐食割れ性を著しく劣化させる。このため、耐食性が重視される用途などの場合には0.80%以下とすることが好ましい。
Cu: 0.05 to 1.0%
Cu contributes to improvement of strength and formability. And solid solution Cu improves work hardening characteristic like solid solution Si, and raises the balance of intensity and formability.
When the amount of Cu is less than 0.05%, the effect of Cu itself is reduced, and at the same time, the amount of solid solution Cu is insufficient, and the effect of solid solution Cu is also insufficient.
On the other hand, when the amount of Cu exceeds 1.0%, the yarn rust resistance and stress corrosion cracking resistance after coating are remarkably deteriorated. For this reason, it is preferable to set it as 0.80% or less in the use etc. where corrosion resistance is regarded as important.

Mn:1.0%以下(但し、0%を含まず)
Mnは、固溶強化と結晶粒微細化効果により、アルミニウム合金の強度を向上させる。
ただ、1.0%を超えて過度に含有すると、Al−Mn系金属間化合物量が多くなって破壊の起点になり、伸びが低下しやすい。また、板に5%程度の低歪みを付与したときに、Al−Mn系金属間化合物の周囲に転位が局在化し、加工硬化特性も低下する。
したがって、Mnの含有量は1.0%以下(但し、0%を含まず)、好ましくは0.8%以下(但し、0%を含まず)とする。
Mn: 1.0% or less (excluding 0%)
Mn improves the strength of the aluminum alloy by solid solution strengthening and crystal grain refinement effects.
However, when it exceeds 1.0% and it contains excessively, the amount of Al-Mn type intermetallic compounds will increase, it will become a starting point of destruction, and elongation will fall easily. Moreover, when a low strain of about 5% is applied to the plate, dislocations are localized around the Al—Mn intermetallic compound, and work hardening characteristics also deteriorate.
Therefore, the Mn content is 1.0% or less (however, not including 0%), preferably 0.8% or less (however, not including 0%).

Fe:1.0%以下(但し、0%を含まず)
Feはアルミニウム合金中でAl−Fe系金属間化合物を形成するため、その含有量が多くなると、その化合物量が多くなって破壊の起点になり、伸びが低下しやすい。しかも、Al−Fe系金属間化合物にはSiも包含されることが多く、この金属間化合物にSiが取り込まれた分だけ、固溶Si量が減少してしまう。
Feは地金不純物としてアルミニウム合金中に混入され、溶解原料としてアルミニウム合金スクラップ量(アルミニウム地金に対する割合)が増すほど、含有量が多くなるので、その含有量は少ないほど良い。ただ、検出限界以下などにFeを低減することはコストアップとなるため、ある程度の含有の許容が必要となる。
したがって、Feの含有量は1.0%以下(但し、0%を含まず)、好ましくは0.5%以下(但し、0%を含まず)とする。
Fe: 1.0% or less (excluding 0%)
Since Fe forms an Al—Fe-based intermetallic compound in the aluminum alloy, when the content is increased, the amount of the compound is increased to become a starting point of fracture, and elongation is likely to decrease. Moreover, Si is often included in the Al—Fe-based intermetallic compound, and the amount of solute Si is reduced by the amount of Si taken into the intermetallic compound.
Fe is mixed into the aluminum alloy as a metal impurity, and the content increases as the amount of aluminum alloy scrap (ratio to the aluminum metal) increases as a melting raw material. Therefore, the smaller the content, the better. However, reducing Fe below the detection limit or the like increases the cost, so a certain amount of allowance is required.
Therefore, the Fe content is 1.0% or less (however, not including 0%), preferably 0.5% or less (however, not including 0%).

その他の元素
その他、本発明では、更に、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Zn:1.0%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、Sn:0.15%以下(但し、0%を含まず)の1種または2種以上を含むことを許容する。
Other Elements In addition, in the present invention, Cr: 0.3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), V: 0.3 % Or less (excluding 0%), Ti: 0.1% or less (excluding 0%), Zn: 1.0% or less (excluding 0%), Ag: 0. It is allowed to contain one or more of 2% or less (excluding 0%) and Sn: 0.15% or less (excluding 0%).

なお、これらの元素は、共通して板を高強度化させる効果があるので、高強度化の同効元素と見なせるが、その具体的な機構には、共通する部分だけでなく、異なる部分も勿論ある。
Cr、Zr、Vは、Mnと同様に、均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果があり、結晶粒を微細化する役割を果たす。
Tiは、Bとともに晶出物を生成して、再結晶粒の核となり、結晶粒の粗大化を阻止し、結晶粒を微細化する役割を果たす。
Zn、Agは人工時効硬化能(BH性)を向上させるのに有用で、比較的低温短時間の人工時効処理の条件で、板組織の結晶粒内へのGPゾーンなどの化合物相の析出を促進させる効果がある。
Snは原子空孔を捕獲することで、室温でのMgやSiの拡散を抑制し、室温における強度増加(室温時効)を抑制し、人工時効処理時に、捕獲していた空孔を放出し、MgやSiの拡散を促進し、BH性を高くする効果がある。
Since these elements have the effect of increasing the strength of the plate in common, they can be regarded as synergistic elements for increasing the strength, but the specific mechanism includes not only common parts but also different parts. Of course there is.
Cr, Zr, and V, like Mn, produce dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have the effect of hindering grain boundary movement after recrystallization. To play a role.
Ti forms a crystallized substance together with B, serves as a nucleus of recrystallized grains, prevents coarsening of the crystal grains, and plays a role of refining the crystal grains.
Zn and Ag are useful for improving the artificial age hardening ability (BH property), and precipitate a compound phase such as a GP zone in the crystal grains of the plate structure under conditions of artificial aging treatment at a relatively low temperature for a short time. There is an effect to promote.
Sn captures atomic vacancies, suppresses diffusion of Mg and Si at room temperature, suppresses an increase in strength at room temperature (room temperature aging), releases vacancies captured during artificial aging treatment, It has the effect of promoting the diffusion of Mg and Si and increasing the BH property.

但し、これらの元素各々の含有量が大きすぎると、粗大な化合物を形成するなどして、板の製造が困難となり、強度や曲げ加工性などの成形性、耐食性も低下する。したがって、これらの元素を含有させる場合には、前記した各上限値以下の含有量とする。   However, if the content of each of these elements is too large, it becomes difficult to produce a plate by forming a coarse compound, and formability such as strength and bending workability and corrosion resistance are also lowered. Therefore, when these elements are contained, the content is not more than the above upper limit values.

(組織)
以上の合金組成を前提として、本発明では成形性の向上のために、板の組織についても、以下の通り、固溶Si量と固溶Cu量、転位密度について各々規定する。
(Organization)
Based on the above alloy composition, in the present invention, in order to improve formability, the structure of the plate also defines the amount of solute Si, the amount of solute Cu, and the dislocation density as follows.

固溶Si量と固溶Cu量
従来の自動車パネル材用途における、6000系アルミニウム合金板の固溶Si量や固溶Cu量の制御は、前記特許文献1、2などの通り、主として強度特性を向上させる目的であった。
これに対して、本発明では、固溶Si量と固溶Cu量とをバランス良く増加させることで、自動車パネル材への成形性を向上させる。
自動車パネル材用途の6000系アルミニウム合金板において、成形性向上の目的で、固溶Si量と固溶Cu量の制御を合わせて行っている例を、本発明者らは知見していない。
以下に、これら固溶Si量と固溶Cu量の規定範囲と、その意義につき各々説明する。
The amount of solute Si and the amount of solute Cu In the conventional automotive panel material application, the control of the amount of solute Si and the amount of solute Cu of the 6000 series aluminum alloy plate is mainly based on strength characteristics as described in Patent Documents 1 and 2 above. The purpose was to improve.
On the other hand, in this invention, the moldability to a motor vehicle panel material is improved by increasing the amount of solute Si and the amount of solute Cu with good balance.
In the 6000 series aluminum alloy plate for automobile panel materials, the present inventors have not found an example in which the control of the solid solution Si amount and the solid solution Cu amount is performed for the purpose of improving formability.
In the following, the specified ranges of the solute Si amount and the solute Cu amount and their significance will be described.

固溶Si量0.30〜2.0%
固溶Si量が多いほど、固溶Cuとともに、アルミ合金の積層欠陥エネルギーを低下させ、自動車パネル材へのプレス成形時など、引張変形時に材料中に導入される転位の局在化を抑制して、引張変形の低歪み域から高歪み域まで均一に転位を増殖させる。その結果、加工硬化特性が向上して、降伏比が低減され、伸びが増加する。
固溶Si量が0.30%未満では、例え固溶Cu量を満足しても、その効果が不十分である。
固溶Si量の上限は、実質的に、前記したSiの含有量の上限と同じである。
Solid solution Si amount 0.30-2.0%
The higher the amount of solute Si, the lower the stacking fault energy of the aluminum alloy together with the solute Cu, which suppresses the localization of dislocations introduced into the material during tensile deformation, such as during press forming on automobile panel materials. Thus, dislocations are uniformly propagated from a low strain region to a high strain region of tensile deformation. As a result, work hardening characteristics are improved, yield ratio is reduced, and elongation is increased.
If the amount of solid solution Si is less than 0.30%, even if the amount of solid solution Cu is satisfied, the effect is insufficient.
The upper limit of the solute Si amount is substantially the same as the upper limit of the Si content described above.

ちなみに、固溶Mgも、固溶Siと同様に、加工硬化特性を向上させ、降伏比を低減し、伸びを増加させる。
ただ、SiがAl−Fe系やAl−Mn系の金属間化合物と共に析出するため、固溶Si量の制御が複雑で重要であるのに対して、Mgは主にSiと共に析出するだけなので、固溶Mg量の制御は比較的容易である。
さらに、固溶Mg量の増減は、固溶Si量と同じ挙動や傾向を示すので、固溶Si量さえ測定および制御して、上記規定を満足させれば、固溶Mg量も必然的に好ましい範囲になり、固溶Mg量までを測定および制御する必要が無い。
したがって、本発明では、その作用効果は期待しているものの、固溶Mg量は敢えて規定しない。
Incidentally, solid solution Mg, like solid solution Si, improves work hardening characteristics, reduces the yield ratio, and increases elongation.
However, since Si precipitates together with Al—Fe and Al—Mn intermetallic compounds, control of the amount of dissolved Si is complicated and important, whereas Mg mainly precipitates together with Si. Control of the solid solution Mg amount is relatively easy.
Furthermore, since the increase or decrease in the amount of solid solution Mg shows the same behavior and tendency as the amount of solid solution Si, if the amount of solid solution Si is measured and controlled to satisfy the above regulations, the amount of solid solution Mg is necessarily increased. There is no need to measure and control the solid solution Mg amount.
Therefore, in the present invention, although the effect is expected, the solid solution Mg amount is not defined.

固溶Cu量0.05〜1.0%
固溶Si量とともに、固溶Cu量も重要である。固溶Cu量が多いほど、固溶Siと同様に、加工硬化特性を向上させ、降伏比を低減し、伸びを増加させ、強度と成形性のバランスを高めることができる。
固溶Cu量が0.05%未満では、例え固溶Siを満足しても、その効果が不十分である。
固溶Cu量の上限は実質的に添加量の上限と同じである。
Solid solution Cu amount 0.05-1.0%
Along with the solid solution Si amount, the solid solution Cu amount is also important. As the amount of solid solution Cu increases, the work hardening characteristics can be improved, the yield ratio can be reduced, the elongation can be increased, and the balance between strength and formability can be increased, as in the case of solid solution Si.
If the amount of solid solution Cu is less than 0.05%, even if solid solution Si is satisfied, the effect is insufficient.
The upper limit of the amount of solid solution Cu is substantially the same as the upper limit of the addition amount.

転位密度
上記したような固溶Siや固溶Cuの機構を確実に発揮させ、自動車パネル材用としての高成形性を確実に達成するためには、固溶Si量や固溶Cu量の制御に加えて、実際の自動車パネル材への成形時の低歪み域での板の転位密度の量の制御が必要となる。
このような低歪み域での転位密度の量は、実際の自動車パネル材へのプレス成形を模擬した、板の圧延方向に5%の歪の引張変形を付与した際の転位密度により、再現性良く測定できる。
Dislocation density Control of the amount of solute Si and the amount of solute Cu in order to reliably exhibit the above-described mechanism of solute Si and solute Cu and to reliably achieve high formability for automobile panel materials. In addition to this, it is necessary to control the amount of dislocation density of the plate in a low strain region during molding into an actual automobile panel material.
The amount of dislocation density in such a low strain region is reproducible due to the dislocation density when applying 5% strain tensile deformation in the rolling direction of the plate, simulating press forming on an actual automobile panel material. Can measure well.

したがって、本発明では、上記組成や固溶Siや固溶Cuの量を満足する板を、実際の自動車パネル材へのプレス成形を模擬した引張試験を行う。そして、5%の歪の引張変形を付与した際の(付与した後の)、板の転位密度を、平均で6.0×1014〜12×1014 -2の範囲に制御する。
この転位密度の測定は、板の圧延方向に5%の歪の引張変形を付与した際の、この板の圧延表面(板の圧延面)の組織を、X線回折により測定して行う。
Therefore, in the present invention, a tensile test simulating press forming on an actual automobile panel material is performed on a plate that satisfies the above composition and the amount of solute Si or solute Cu. Then, the dislocation density of the plate when the tensile deformation of 5% strain is applied (after application) is controlled in the range of 6.0 × 10 14 to 12 × 10 14 m −2 on average.
This dislocation density is measured by measuring the structure of the rolled surface of the plate (rolled surface of the plate) by X-ray diffraction when a tensile deformation of 5% strain is applied in the rolling direction of the plate.

前記引張試験を行った時の歪みが5%程度の低歪み域において、上記範囲に均一に(比較的高めに)転位を増殖させることで、その後の高歪み域〜破断までの不均一変形が抑制され、高い加工硬化特性(降伏比の低減、伸びの増加)が発現する。
この転位密度が6.0×1014-2より低いことは、転位が増殖しにくく、加工硬化特性が低いことを示唆しており、それが起因して高歪み域での早期の破断をまねくことになり、成形性が低下する。
逆に、歪みが5%の低歪み域での転位密度が12×1014-2より高いと、それ以降の高歪み域で導入、蓄積できる転位が減少するので、やはり成形性が向上しない。
したがって、板の圧延方向に5%の引張変形を付与した際の(後の)転位密度は、平均で6.0×1014〜12×1014 -2の範囲とし、好ましくは7.0×1014〜11×1014 -2の範囲とする。
In the low strain region where the strain at the time of the tensile test is about 5%, the dislocations are propagated uniformly (relatively high) in the above range, so that non-uniform deformation from the subsequent high strain region to breakage can be achieved. Suppressed and high work hardening characteristics (reduction in yield ratio, increase in elongation) are exhibited.
This dislocation density lower than 6.0 × 10 14 m −2 suggests that the dislocations are difficult to proliferate and have low work hardening properties, which causes early breakage in the high strain region. This results in a reduction in moldability.
On the other hand, if the dislocation density in the low strain region where the strain is 5% is higher than 12 × 10 14 m −2 , dislocations that can be introduced and accumulated in the subsequent high strain region are reduced, so that the moldability is not improved. .
Therefore, the (after) dislocation density when 5% tensile deformation is applied in the rolling direction of the plate is in the range of 6.0 × 10 14 to 12 × 10 14 m −2 on average, and preferably 7.0. in the range of × 10 14 ~11 × 10 14 m -2.

ちなみに、前記非特許文献1に記載されているように、本発明のような、5%の歪の引張変形を付与しない、通常の6000系アルミニウム合金板は、測定方法が異なり(倍率10万倍のTEMにて測定)、比較が難しい面もあるが、無加工の状態(溶体化処理材)で1011-2 程度の転位密度しか有さない。また、この板に、圧延率30%(相当ひずみ0.36)もの冷間圧延を施した状態で、1014-2 程度の転位密度しか有していない。 Incidentally, as described in Non-Patent Document 1, an ordinary 6000 series aluminum alloy plate that does not give a tensile deformation of 5% strain as in the present invention has a different measurement method (magnification of 100,000 times). However, it has a dislocation density of about 10 11 m −2 in an unprocessed state (solution treated material). Further, this plate has only a dislocation density of about 10 14 m −2 in a state where cold rolling with a rolling rate of 30% (equivalent strain 0.36) is performed.

これに対して、本発明では、溶体化処理を行った冷延板にわずか5%の低歪の引張変形を付与するだけで、前記非特許文献1の冷間圧延付加を超える、6.0×1014〜12×1014 -2もの転位密度を導入できている。
これは、本発明における固溶Si量と固溶Cu量との増加ゆえであって、これが無い限り、本発明で規定する転位密度が導入できないことを意味している。また、自動車パネル材への成形時などの引張変形と、前記非特許文献1のような板の冷間圧延とでは、材料中に導入されるひずみの機構や転位密度が全く異なることも意味している。
On the other hand, in the present invention, it is more than the cold rolling addition of Non-Patent Document 1 described above, only by applying a low strain tensile deformation of only 5% to the cold-rolled sheet that has undergone solution treatment. A dislocation density of × 10 14 to 12 × 10 14 m −2 can be introduced.
This is due to an increase in the amount of solid solution Si and the amount of solid solution Cu in the present invention, and unless this is present, it means that the dislocation density specified in the present invention cannot be introduced. Also, it means that the strain deformation and dislocation density introduced into the material are completely different between the tensile deformation at the time of forming into an automotive panel material and the cold rolling of the plate as in Non-Patent Document 1. ing.

本発明の固溶Si量と固溶Cu量とを増加させようとする技術思想は、自動車パネル材への成形性と、固溶Si量と固溶Cu量との関係を知見しない限り生じない。
また、板の転位密度の量を制御しようとする技術思想も、自動車パネル材への成形時など、引張変形により材料中に導入される転位密度、それも低歪み域での転位密度に着目しない限り生じない。
更に、溶体化処理材(無加工材)にわずか5%の低歪の引張変形を付与するだけで、6.0×1014〜12×1014 -2もの転位密度を導入できるという認識も、前記技術思想を得て、実際に試験して確認しない限り生じない。
したがって、前記非特許文献1他の公知例が、板の転位密度の強度などの特性に及ぼす影響に例え着目していたとしても、また、固溶Si量や固溶Cu量を増加させて板の強度を向上させている公知例があったとしても、本発明の構成は容易には得られない。
The technical idea of increasing the solute Si amount and the solute Cu amount of the present invention does not occur unless the formability to an automobile panel material and the relationship between the solute Si amount and the solute Cu amount are known. .
Also, the technical idea to control the amount of dislocation density of the plate does not pay attention to the dislocation density introduced into the material by tensile deformation, such as when forming into automobile panel materials, nor the dislocation density in the low strain region. It does not occur as much as possible.
Furthermore, it is recognized that dislocation density of 6.0 × 10 14 to 12 × 10 14 m −2 can be introduced only by applying a low strain strain of only 5% to a solution-treated material (unprocessed material). It does not occur unless the technical idea is obtained and actually tested and confirmed.
Therefore, even if the above-mentioned non-patent document 1 and other known examples pay attention to the influence on the properties such as the strength of the dislocation density of the plate, it is also possible to increase the amount of solid solution Si and solid solution Cu. Even if there is a publicly known example that improves the strength, the configuration of the present invention cannot be easily obtained.

転位密度の測定方法
転位密度を透過型電子顕微鏡などにより計測することも、前記非特許文献1などのように汎用されているが、本発明では、X線回折により、より簡便かつ再現性よく測定する。
転位のうち、線状、筋状の転位が密集した領域(セル壁やせん断帯)は、透過型電子顕微鏡では判別しにくく、転位密度ρを求める際の測定誤差となりうる。これに対して、X線回折では、後述する通り、集合組織における各面からの回折ピークの半価幅から転位密度ρを算出するために、このような林立転位であっても誤差が少なくなる利点がある。
Measurement method of dislocation density Measurement of dislocation density with a transmission electron microscope or the like is also widely used as in Non-Patent Document 1, but in the present invention, measurement is simpler and more reproducible by X-ray diffraction. To do.
Of the dislocations, regions (cell walls and shear bands) in which linear and streak dislocations are dense are difficult to discriminate with a transmission electron microscope, and can cause measurement errors when determining the dislocation density ρ. On the other hand, in X-ray diffraction, as will be described later, since the dislocation density ρ is calculated from the half-value width of the diffraction peak from each surface in the texture, there is less error even with such a forest dislocation. There are advantages.

冷延や引張試験などの塑性変形を加えて転位を導入した板の組織では、転位を中心に格子歪みが生じる。また、転位の配列により小傾角粒界、セル構造などが発達する。このような転位やそれに伴うドメイン構造をX線回折パターンからとらえると、回折指数に応じた特徴的な拡がり、形状が回折ピークに現れる。この回折ピークの形状(ラインプロファイル)を解析(ラインプロファイル解析)して、転位密度を求めることができる。   In the structure of a plate in which dislocations are introduced by applying plastic deformation such as cold rolling or tensile test, lattice strain is generated around dislocations. In addition, small tilt grain boundaries, cell structures, and the like develop due to the dislocation arrangement. When such dislocations and the domain structure associated therewith are taken from the X-ray diffraction pattern, a characteristic spread corresponding to the diffraction index and a shape appear in the diffraction peak. By analyzing the shape (line profile) of this diffraction peak (line profile analysis), the dislocation density can be obtained.

具体的には、先ず、調質された冷延板から供試板として、引張試験の要領で、JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温にて試験片の引張方向を圧延方向とした引張を行う。これは、実際の自動車パネル材への成形時の低歪み域での板の転位密度を模擬したもので、低歪み域として、5%の歪の引張変形を付与する。   Specifically, first, a JISZ2201 No. 5 test piece (25 mm × 50 mmGL × plate thickness) was collected as a test plate from a tempered cold-rolled plate in the manner of a tensile test, and the test piece was collected at room temperature. Pulling is performed with the pulling direction as the rolling direction. This simulates the dislocation density of a plate in a low strain region during molding into an actual automobile panel material, and gives a tensile deformation of 5% strain as the low strain region.

この5%の歪の引張変形を付与した試験片の圧延表面(圧延面)の組織をX線回折して、板(試験片)表面部の集合組織における主要な方位である、(111)、(200)、(220)、(311)、(400)、(331)、(420)、(422)の各面(各方位面)からの回折ピークの半価幅を求める。転位密度ρが高いほど、これら各面の回折ピークの半価幅は大きくなる。なお、5%の歪の引張変形を付与した試験片の、X線回折の測定対象となる圧延表面は、試験片の状態のままであっても、エッチングを伴わない洗浄が施されていても良い。   X-ray diffraction of the texture of the rolled surface (rolled surface) of the test piece imparted with the tensile deformation of 5% strain is the main orientation in the texture of the plate (test piece) surface part (111), The half width of the diffraction peak from each surface (each azimuth surface) of (200), (220), (311), (400), (331), (420), (422) is obtained. The higher the dislocation density ρ, the larger the half width of the diffraction peak on each of these surfaces. In addition, even if the rolled surface used as the measurement object of X-ray diffraction of the test piece which gave the tensile deformation of 5% distortion was the state of a test piece, even if the cleaning without etching was given good.

次に、これらの各面の回折ピークの半価幅から、Williamson-Hall法により、格子ひずみ(結晶歪み)εを求めた上で、下記の式により転位密度ρを算出することができる。
ρ= 16.1ε/b
ここで、ρは転位密度、εは格子ひずみ、bはバーガースベクトルの大きさである。
また、バーガースベクトルの大きさには2.8635×10-10mを用いた。
Next, after obtaining the lattice strain (crystal strain) ε by the Williamson-Hall method from the half-value width of the diffraction peak of each surface, the dislocation density ρ can be calculated by the following equation.
ρ = 16.1ε 2 / b 2
Here, ρ is the dislocation density, ε is the lattice strain, and b is the size of the Burgers vector.
The size of Burgers vector was 2.8635 × 10 -10 m.

上記Williamson-Hall法は、複数の回折の半価幅と回折角の関係から転位密度や結晶粒径を求めるために汎用されている公知のラインプロファイル解析法である。また、これらX線回折による転位密度の一連の求め方も公知であり、これらX線回折による転位密度の一連の求め方を総称して、本発明では転位密度を「X線回折により測定された転位密度」と称している。   The Williamson-Hall method is a well-known line profile analysis method that is widely used to determine the dislocation density and the crystal grain size from the relationship between the half width of a plurality of diffractions and the diffraction angle. In addition, a series of methods for obtaining the dislocation density by X-ray diffraction is also known, and the series of methods for obtaining the dislocation density by X-ray diffraction are collectively referred to as “dislocation density measured by X-ray diffraction” in the present invention. Dislocation density ".

高加工硬化特性(高成形性)の指標
以上の組成と組織の制御による、板の高加工硬化特性化(高成形性化)達成の指標(目安)として、降伏比と伸びが挙げられる。
降伏比が低く、同時に伸びが高ければ、板の小試験片での成形試験をせずとも、あるいは実際の自動車パネル材への成形試験をせずとも、自動車パネル材用としての高成形性化が裏付けられる。
具体的に、この高成形性化達成の指標(目安)は、後述する実施例にて裏付ける通り、アルミニウム合金板の0.2%耐力と引張強さとの比率(0.2%耐力/引張強さ)で定義される降伏比が0.56以下であるとともに、全伸びが26%以上である。
この降伏比が0.56を超えて高すぎるか、全伸びが26%未満と低すぎれば、自動車パネル材用としての高加工硬化特性化や高成形性化が達成できていない。
Index of high work hardening characteristics (high formability) Yield ratio and elongation are examples of indices (standards) for achieving high work hardening characteristics (high formability) of a plate by controlling the composition and structure described above.
If the yield ratio is low and the elongation is high at the same time, high formability for automotive panel materials can be achieved without performing molding tests on small test pieces of the plate or molding tests on actual automotive panel materials. Is supported.
Specifically, the index (standard) for achieving high formability is the ratio between the 0.2% proof stress and the tensile strength (0.2% proof stress / tensile strength) of the aluminum alloy sheet, as will be explained in the examples described later. The yield ratio defined in (1) is 0.56 or less and the total elongation is 26% or more.
If this yield ratio exceeds 0.56 and is too high, or if the total elongation is too low as less than 26%, high work hardening characteristics and high formability cannot be achieved for automobile panel materials.

(製造方法)
次ぎに、本発明アルミニウム合金板の製造方法について以下に説明する。
本発明アルミニウム合金板は、製造工程自体は常法あるいは公知の方法であり、上記6000系成分組成のアルミニウム合金鋳塊を鋳造後に均質化熱処理し、熱間圧延、冷間圧延が施されて所定の板厚とされ、更に溶体化焼入れなどの調質処理が施されて製造される。
(Production method)
Next, a method for producing the aluminum alloy plate of the present invention will be described below.
The aluminum alloy sheet of the present invention is a conventional process or a known process, and the aluminum alloy ingot having the above-mentioned 6000 series component composition is subjected to homogenization heat treatment after casting, and then subjected to hot rolling and cold rolling to obtain a predetermined process. It is manufactured by being subjected to a tempering treatment such as solution hardening and quenching.

但し、これらの製造工程中で、本発明の規定する組織(固溶Si量と固溶Cu量、あるいは転位密度)を確実に再現性良く得るためには、後述する通り、均熱条件、熱間仕上げ圧延条件、溶体化および焼入れ処理などの条件を好ましい範囲とする。   However, in these manufacturing processes, in order to ensure that the structure (the amount of dissolved Si and the amount of dissolved Cu or the dislocation density) defined by the present invention is reproducibly ensured, as described later, soaking conditions, heat Conditions such as interfinish rolling conditions, solution treatment and quenching treatment are set in a preferred range.

溶解、鋳造冷却速度
先ず、溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。ここで、本発明の規定範囲内に組織(固溶Si量と固溶Cu量、あるいは転位密度)を制御するために、鋳造時の平均冷却速度について、液相線温度から固相線温度までを30℃/分以上と、できるだけ大きく(速く)することが好ましい。
Melting and casting cooling rate First, in the melting and casting process, an aluminum alloy melt adjusted to be dissolved within the above-mentioned 6000-based component composition range is converted into a normal melting and casting method such as a continuous casting method or a semi-continuous casting method (DC casting method). Is appropriately selected and cast. Here, in order to control the structure (the amount of solute Si and the amount of solute Cu, or dislocation density) within the specified range of the present invention, the average cooling rate during casting is from the liquidus temperature to the solidus temperature. Is preferably as large as possible (faster) at 30 ° C./min or more.

このような、鋳造時の高温領域での温度(冷却速度)制御を行わない場合、この高温領域での冷却速度は必然的に遅くなる。このように高温領域での平均冷却速度が遅くなった場合、この高温領域での温度範囲で粗大に生成する晶出物の量が多くなって、鋳塊における固溶Si量や固溶Cu量が少なくなる。この結果、本発明の範囲に前記組織を制御することができなくなる可能性が高くなる。   When such temperature (cooling rate) control in the high temperature region during casting is not performed, the cooling rate in this high temperature region is inevitably slow. As described above, when the average cooling rate in the high temperature region becomes slow, the amount of crystallized material generated coarsely in the temperature range in this high temperature region increases, and the amount of solute Si and the amount of solute Cu in the ingot Less. As a result, there is a high possibility that the tissue cannot be controlled within the scope of the present invention.

均質化熱処理
次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、均質化熱処理を施す。この均質化熱処理(均熱処理)は、通常の目的である、組織の均質化(鋳塊組織中の結晶粒内の偏析をなくす)の他に、SiやMgを充分に固溶させるために重要である。この目的を達成する条件であれば、特に限定されるものではなく、通常の1回または1段の処理でも良い。
Homogenization heat treatment Next, the cast aluminum alloy ingot is subjected to a homogenization heat treatment prior to hot rolling. This homogenization heat treatment (uniform heat treatment) is important for sufficiently dissolving Si and Mg in addition to the normal purpose of homogenizing the structure (eliminating segregation in crystal grains in the ingot structure). It is. The conditions are not particularly limited as long as the object is achieved, and normal one-stage or one-stage processing may be performed.

均質化熱処理温度は、500℃以上で、560℃以下、均質(保持)時間は1時間以上の範囲から適宜選択して、SiやCuを充分に固溶させる。この均質化温度が低いと、SiやCuの固溶量を確保できず、後述する溶体化・焼入れ処理後の予備時効処理(再加熱処理)によっても、本発明の規定する組織(固溶Si量と固溶Cu量)とできなくなる。また、結晶粒内の偏析を十分に無くすことができず、これが破壊の起点として作用するために、成形性が低下する。   The homogenization heat treatment temperature is 500 ° C. or more, 560 ° C. or less, and the homogenization (retention) time is appropriately selected from a range of 1 hour or more to sufficiently dissolve Si and Cu. If this homogenization temperature is low, the solid solution amount of Si or Cu cannot be secured, and the structure (solid solution Si) prescribed by the present invention is also obtained by preliminary aging treatment (reheating treatment) after solution treatment and quenching treatment described later. Amount and solute Cu amount). Further, segregation in the crystal grains cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that formability is lowered.

この均質化熱処理を行った後に熱間圧延を行うが、均質化熱処理後の熱間での粗圧延開始まで、500℃以下には、鋳塊の温度を下げずに、SiやCuの固溶量を確保することが必要である。
粗圧延開始までに、500℃以下に鋳塊の温度が下がった場合、SiやCuが析出して、本発明の前記規定する組織とするための、SiやCuの固溶量が確保できない可能性が高くなる。
After this homogenization heat treatment, hot rolling is performed. Until the start of hot rough rolling after the homogenization heat treatment, the solution of Si or Cu is dissolved at 500 ° C. or lower without lowering the temperature of the ingot. It is necessary to secure the quantity.
When the temperature of the ingot is lowered to 500 ° C. or less by the start of rough rolling, Si and Cu are precipitated, and it is not possible to secure the solid solution amount of Si and Cu to obtain the above-defined structure of the present invention. Increases nature.

熱間圧延
熱間圧延は、圧延する板厚に応じて、鋳塊 (スラブ) の粗圧延工程と、仕上げ圧延工程とから構成される。これら粗圧延工程や仕上げ圧延工程では、リバース式あるいはタンデム式などの圧延機が適宜用いられる。
Hot rolling Hot rolling is composed of a rough rolling process of an ingot (slab) and a finish rolling process according to the sheet thickness to be rolled. In these rough rolling process and finish rolling process, a reverse or tandem rolling mill is appropriately used.

熱間粗圧延の開始から終了までの圧延中には、450℃以下には温度を下げることなく、SiやMgの固溶量を確保することが必要である。
圧延時間が長くなるなどして、パス間の粗圧延板の最低温度が450℃以下に下がると、Mg−Si系の化合物が析出しやすくなり、固溶Siと固溶Cu量が低下する。このため、本発明の規定する前記組織とするための、SiやCuの固溶量が確保できない可能性が高くなる。
During rolling from the start to the end of hot rough rolling, it is necessary to ensure the solid solution amount of Si or Mg without lowering the temperature to 450 ° C. or lower.
If the minimum temperature of the rough rolled sheet between passes falls to 450 ° C. or lower due to an increase in rolling time or the like, Mg—Si based compounds are likely to precipitate, and the amount of solute Si and solute Cu decreases. For this reason, possibility that the solid solution amount of Si or Cu for setting it as the said structure | tissue which this invention prescribes | regulates becomes high.

このような熱間粗圧延後に、終了温度を300〜360℃の範囲とした熱間仕上圧延を行う。
この熱間仕上圧延の終了温度が300℃未満と低すぎる場合には、圧延荷重が高くなって生産性が低下する。一方、加工組織を多く残さず再結晶組織とするために、熱間仕上圧延の終了温度を高くした場合、この温度が360℃を超えると、Mg−Si系の化合物が析出しやすくなって固溶Si量と固溶Cu量が低下する。このため、本発明の規定する前記組織とするための、SiやCuの固溶量が確保できない可能性が高くなる。
After such hot rough rolling, hot finish rolling with an end temperature in the range of 300 to 360 ° C. is performed.
When the finishing temperature of this hot finish rolling is too low, such as less than 300 ° C., the rolling load becomes high and the productivity is lowered. On the other hand, in order to obtain a recrystallized structure without leaving a large amount of processed structure, when the finish temperature of hot finish rolling is increased, if this temperature exceeds 360 ° C., an Mg—Si compound tends to precipitate and become solid. The amount of dissolved Si and the amount of dissolved Cu decrease. For this reason, possibility that the solid solution amount of Si or Cu for setting it as the said structure | tissue which this invention prescribes | regulates becomes high.

また、熱間仕上げ圧延終了直後の材料(板)温度から、150℃の材料温度までの間の平均冷却速度を、最低でも5℃/時間以上に制御する。
この平均冷却速度が5℃/時間より小さいと、その冷却中に生成するMg−Si系の析出物量が多くなって、製品板の固溶Si量が減少する。
したがって、熱間仕上げ圧延終了直後の前記平均冷却速度は大きい方が好ましく、最低でも5℃/時間以上、好ましくは8℃/時間以上とする。
Further, the average cooling rate from the material (plate) temperature immediately after the hot finish rolling to the material temperature of 150 ° C. is controlled to at least 5 ° C./hour or more.
When this average cooling rate is less than 5 ° C./hour, the amount of Mg—Si-based precipitates generated during the cooling increases, and the amount of solute Si in the product plate decreases.
Accordingly, the average cooling rate immediately after the end of hot finish rolling is preferably large, and at least 5 ° C./hour or more, preferably 8 ° C./hour or more.

熱延板の焼鈍
この熱延板の冷間圧延前の焼鈍 (荒鈍) は必要ではないが、実施しても良い。
Annealing of hot-rolled sheet Annealing (roughening) of the hot-rolled sheet before cold rolling is not necessary, but may be performed.

冷間圧延
冷間圧延では、上記熱延板を圧延して、所望の最終板厚の冷延板 (コイルも含む) を製作する。但し、結晶粒をより微細化させるためには、冷間圧延率は30%以上であることが望ましく、また前記荒鈍と同様の目的で、冷間圧延パス間で中間焼鈍を行っても良い。
Cold Rolling In cold rolling, the hot rolled sheet is rolled to produce a cold rolled sheet (including a coil) having a desired final thickness. However, in order to further refine the crystal grains, the cold rolling rate is desirably 30% or more, and intermediate annealing may be performed between the cold rolling passes for the same purpose as the above roughening. .

溶体化および焼入れ処理
冷間圧延後、溶体化処理と、これに続く、室温までの焼入れ処理を行う。この溶体化焼入れ処理については、通常の連続熱処理ラインを用いてよい。
ただ、Mg、Siなどの各元素の十分な固溶量を得るためには、550℃以上、溶融温度以下の溶体化処理温度で10秒以上保持した後、その保持温度から100℃までの平均冷却速度を20℃/秒以上とすることが好ましい。
550℃より低い温度、または10秒より短い保持時間では、溶体化処理前に生成していた、Cuを含むAl−Mn系やAl−Fe系化合物や、Mg−Si系化合物の再固溶が不十分になって、固溶Si量と固溶Cu量が低下する。
Solution treatment and quenching treatment After cold rolling, solution treatment and subsequent quenching treatment to room temperature are performed. For this solution hardening treatment, a normal continuous heat treatment line may be used.
However, in order to obtain a sufficient solid solution amount of each element such as Mg, Si, etc., after holding at a solution treatment temperature not lower than 550 ° C. and not higher than the melting temperature for 10 seconds or more, an average from the holding temperature to 100 ° C. The cooling rate is preferably 20 ° C./second or more.
When the temperature is lower than 550 ° C. or the holding time is shorter than 10 seconds, the re-solution of the Al—Mn-based compound, the Al—Fe-based compound containing Cu, or the Mg—Si-based compound, which was generated before the solution treatment, is caused. It becomes insufficient and the amount of solute Si and the amount of solute Cu decrease.

また、平均冷却速度が20℃/秒未満の場合、冷却中に主にMg−Si系の析出物が生成して固溶Si量が低下し、やはりSiの固溶量が確保できない可能性が高くなる。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用いる。   In addition, when the average cooling rate is less than 20 ° C./second, Mg-Si-based precipitates are mainly generated during cooling and the amount of solid solution Si is lowered, and the solid solution amount of Si may still not be ensured. Get higher. In order to ensure this cooling rate, the quenching treatment is performed by selecting water cooling means and conditions such as air cooling such as a fan, mist, spray, and immersion, respectively.

予備時効処理:再加熱処理
このような溶体化処理および焼入れ処理後に、予備時効処理を必要により行う。ちなみに、この予備時効処理の固溶Si量やCu量への影響は小さく、BH性向上などの必要性があれば選択的に行う。
予備時効処理(再加熱処理)を行う場合は、前記焼入れ処理して室温まで冷却した後、1時間以内に行うことが好ましい。
室温までの焼入れ処理終了後、予備時効処理開始(加熱開始)までの室温保持時間が長すぎると、室温時効により、BH性に寄与しないMg−Siクラスタが生成してしまい、BH性に寄与するMgとSiのバランスが良いMg−Siクラスタを増加させることができにくくなる。したがって、この室温保持時間は短いほど良く、溶体化および焼入れ処理と再加熱処理とが、時間差が殆ど無いように連続していても良く、下限の時間は特に設定しない。
Pre-aging treatment: Reheating treatment After such solution treatment and quenching treatment, preliminary aging treatment is performed if necessary. Incidentally, the effect of this preliminary aging treatment on the amount of dissolved Si and Cu is small, and it is selectively performed if there is a need for improving the BH property.
In the case of performing a pre-aging treatment (reheating treatment), it is preferable to perform the quenching treatment within 1 hour after cooling to room temperature.
If the room temperature holding time from the completion of the quenching treatment to room temperature until the start of pre-aging treatment (heating start) is too long, Mg-Si clusters that do not contribute to BH properties are generated due to room temperature aging, which contributes to BH properties. It becomes difficult to increase the number of Mg-Si clusters having a good balance between Mg and Si. Accordingly, the shorter the room temperature holding time is better, the solution treatment and quenching treatment and the reheating treatment may be continued so that there is almost no time difference, and the lower limit time is not particularly set.

この予備時効処理は、60〜120℃での保持時間を10時間以上、40時間以下保持する。これによって、前記MgとSiのバランスが良いMg−Siクラスタが形成される。   In this preliminary aging treatment, the holding time at 60 to 120 ° C. is held for 10 hours or more and 40 hours or less. As a result, Mg—Si clusters having a good balance between Mg and Si are formed.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

次に本発明の実施例を説明する。表1に示す組成と表2に示す組織のように、組成や、固溶Si量、固溶Cu量、5%の引張変形を付与した際の転位密度からなる組織が異なる6000系アルミニウム合金板を、製造条件を変えて作り分けて製造した。   Next, examples of the present invention will be described. As shown in Table 1 and the structure shown in Table 2, the 6000 series aluminum alloy plates differ in composition and structure composed of dislocation density when imparted with 5% tensile deformation. Were manufactured with different manufacturing conditions.

そして、板製造後室温に10日間保持後(室温時効後)の、固溶Si量、固溶Cu量、5%の引張変形を付与した際の転位密度、0.2%耐力、引張強さ、降伏比(0.2%耐力/引張強さ)、全伸びを各々測定、評価した。これらの結果も表2に示す。ここで、表2は表1の続きであり、表1の合金番号と、表2の番号とは、各々対応して同じである。   Then, after holding the plate at room temperature for 10 days (after aging at room temperature), the dislocation density, 0.2% proof stress, and tensile strength when applying a tensile deformation of 5% solute Si amount, solute Cu amount, and the like. , Yield ratio (0.2% yield strength / tensile strength) and total elongation were measured and evaluated. These results are also shown in Table 2. Here, Table 2 is a continuation of Table 1, and the alloy numbers in Table 1 are the same as the numbers in Table 2, respectively.

具体的な前記作り分け方は、表1に示す化学成分組成の6000系アルミニウム合金板を、表2に示すように、均熱温度、熱間粗圧延のパス間における粗圧延板が最低となる温度(表2には最低温度と記載)、熱間仕上げ圧延の終了温度、熱間仕上げ圧延終了直後の材料(板)温度から、150℃の材料温度までの間の平均冷却速度、溶体化処理の保持温度、平均冷却速度などの製造条件を種々変えて行った。
ここで、表1中の各元素の含有量の表示において、各元素における数値をブランクとしている表示は、その含有量が検出限界以下であることを示す。
Specifically, the 6000 series aluminum alloy plate having the chemical composition shown in Table 1 is the lowest in the soaking temperature and the rough rolled plate between the hot rough rolling passes as shown in Table 2. Temperature (described as minimum temperature in Table 2), end temperature of hot finish rolling, average cooling rate from material (plate) temperature immediately after end of hot finish rolling to material temperature of 150 ° C, solution treatment The production conditions such as the holding temperature and the average cooling rate were varied.
Here, in the display of the content of each element in Table 1, the display in which the numerical value of each element is blank indicates that the content is below the detection limit.

アルミニウム合金板の具体的な製造条件は以下の通りとした。表1に示す各組成のアルミニウム合金鋳塊を、DC鋳造法により共通して溶製した。この際、各例とも共通して、鋳造時の平均冷却速度について、液相線温度から固相線温度までを50℃/分とした。続いて、鋳塊を、各例とも表2に示す温度条件にて、共通して6時間の均熱処理をした後、その温度で熱間粗圧延を開始した。この際の熱間粗圧延の最低(パス)温度も表2に示す。
そして、各例とも共通して、続く熱間仕上げ圧延を、表2に示す終了温度と、終了後の前記平均冷却速度(℃/時間)にて、厚さ2.5mmまで熱延し、熱間圧延板とした。
この熱間圧延後のアルミニウム合金板を、各例とも共通して、500℃×1分の荒焼鈍を施した後、冷延パス途中の中間焼鈍無しで、加工率50%の冷間圧延を行い、厚さ1.0mmの冷延板とした。
The specific production conditions for the aluminum alloy plate were as follows. Aluminum alloy ingots having respective compositions shown in Table 1 were commonly melted by DC casting. At this time, in common with each example, the average cooling rate during casting was set to 50 ° C./min from the liquidus temperature to the solidus temperature. Subsequently, the ingot was subjected to a soaking treatment in common for 6 hours under the temperature conditions shown in Table 2 in each example, and hot rough rolling was started at that temperature. Table 2 also shows the minimum (pass) temperature of the hot rough rolling at this time.
Then, in common with each example, the subsequent hot finish rolling is hot rolled to a thickness of 2.5 mm at the end temperature shown in Table 2 and the average cooling rate (° C./hour) after the end, A rolled sheet was used.
This hot-rolled aluminum alloy sheet is subjected to rough annealing at 500 ° C. for 1 minute in common with each example, and then cold-rolled at a processing rate of 50% without intermediate annealing in the middle of the cold rolling pass. And a cold-rolled sheet having a thickness of 1.0 mm was obtained.

更に、この各冷延板を、各例とも共通して、連続式の熱処理設備で巻き戻し、巻き取りながら、連続的に調質処理(T4)した。具体的には、溶体化処理を、500℃までの平均加熱速度を50℃/秒として、各例とも表2に示す各目標温度(保持温度)に到達後、各例とも共通して20秒保持して行い、その後、各例とも表2に示す各平均冷却速度(℃/秒)にて水冷を行うことで室温まで冷却した。   Further, the cold-rolled sheets were tempered (T4) continuously while being rewound and wound up in a continuous heat treatment facility in common with each example. Specifically, the solution treatment is performed at an average heating rate of up to 500 ° C. at 50 ° C./second, and after reaching each target temperature (holding temperature) shown in Table 2 for each example, 20 seconds is commonly used for each example. Thereafter, each example was cooled to room temperature by performing water cooling at each average cooling rate (° C./second) shown in Table 2.

これらの調質処理後、10日間室温放置した後の各最終製品板から供試板 (ブランク) を切り出し、各供試板の前記固溶Si量と固溶Cu量、転位密度で規定する組織や、機械的特性を測定、評価した。これらの結果を表2に示す。   After these tempering treatments, a test plate (blank) is cut out from each final product plate after being left at room temperature for 10 days, and a structure defined by the solid solution Si amount, solid solution Cu amount, and dislocation density of each test plate. In addition, the mechanical properties were measured and evaluated. These results are shown in Table 2.

固溶Si量と固溶Cu量の測定
前記各供試板の固溶Si量と固溶Cu量の測定は、熱フェノールによる残渣抽出法により、測定対象となる試料を溶解し、メッシュを0.1μmとしたフィルターにより固液をろ過分離し、分離された溶液中のSiとCuの含有量を、各々固溶Si量と固溶Cu量として測定した。
Measurement of the amount of solid solution Si and the amount of solid solution Cu The measurement of the amount of solid solution Si and the amount of solid solution Cu of each test plate was performed by dissolving a sample to be measured by a residue extraction method using hot phenol, The solid and liquid were separated by filtration with a filter of 1 μm, and the contents of Si and Cu in the separated solution were measured as the amount of solid solution Si and the amount of solid solution Cu, respectively.

熱フェノールによる残渣抽出法は、具体的に次のように行った。先ず、分解フラスコにフェノールを入れて加熱した後、測定対象となる各供試板試料を、この分解フラスコに移し入れて加熱分解した。次に、ベンジルアルコールを加えた後、前記フィルターにより吸引ろ過して、固液をろ過分離し、分離された溶液中のSiとCuとの含有量を各々定量分析した。
この定量分析には、原子吸光分析法(AAS)や誘導結合プラズマ発光分析法(ICP−OES)などを適宜用いた。
前記吸引ろ過には、前記した通り、メッシュ(捕集粒子径)が0.1μmでφ47mmのメンブレンフィルターを用いた。
この測定と計算は、前記供試板の板幅方向の中央部1箇所と、この中央部からの板幅方向の両端部2箇所の計3箇所から採取した各試料3個について行い、これら各試料のSi、Cuの固溶量(質量%)を平均化し、板の固溶Si量と固溶Cu量とした。
The residue extraction method using hot phenol was specifically performed as follows. First, after putting phenol into a decomposition flask and heating, each sample plate sample to be measured was transferred into this decomposition flask and thermally decomposed. Next, after adding benzyl alcohol, the solution was suction filtered through the filter, the solid-liquid was separated by filtration, and the contents of Si and Cu in the separated solution were each quantitatively analyzed.
For this quantitative analysis, atomic absorption spectrometry (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES) or the like was appropriately used.
As described above, a membrane filter having a mesh (collected particle diameter) of 0.1 μm and a diameter of 47 mm was used for the suction filtration.
This measurement and calculation are performed on three samples taken from a total of three locations, one central portion in the plate width direction of the test plate and two end portions in the plate width direction from the central portion. The solid solution amounts (mass%) of Si and Cu of the sample were averaged to obtain the solid solution Si amount and the solid solution Cu amount of the plate.

転位密度の測定
前記各供試板(採取試験片)に、前記要領にて圧延方向に5%の歪の引張変形を付与した際の、圧延表面の転位密度(×1014 -2)を、X線回折により前記した具体的な条件で測定した。測定は前記各供試板の任意の5箇所にて行い、これら5箇所の転位密度を平均化したものを、平均転位密度(×1014 -2)とした。
Measurement of dislocation density The dislocation density (× 10 14 m -2 ) on the rolling surface when each sample plate (collected specimen) was given a tensile deformation of 5% strain in the rolling direction as described above. , And measured under the specific conditions described above by X-ray diffraction. The measurement was performed at any five locations on each test plate, and the average dislocation density at these five locations was defined as the average dislocation density (× 10 14 m −2 ).

引張試験
前記各供試板の引張試験は、前記各供試板から、各々JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温にて引張試験を行った。このときの試験片の引張方向を圧延方向の平行方向とした。引張速度は、0.2%耐力までは5mm/分、耐力以降は20mm/分とした。機械的特性測定のN数は3とし、各々平均値で算出した。
そして、各例とも、0.2%耐力、引張強さ、降伏比(0.2%耐力/引張強さ)、全伸びを各々算出した。
Tensile test For each of the test plates, a JISZ2201 No. 5 test piece (25 mm × 50 mmGL × plate thickness) was sampled from each of the test plates, and a tensile test was performed at room temperature. The tensile direction of the test piece at this time was the parallel direction of the rolling direction. The tensile speed was 5 mm / min until 0.2% proof stress, and 20 mm / min after proof stress. The N number of the mechanical property measurement was 3, and each was calculated as an average value.
In each example, 0.2% yield strength, tensile strength, yield ratio (0.2% yield strength / tensile strength), and total elongation were calculated.

表1、2に各々示す通り、発明例1〜11は、本発明の成分組成範囲内で、かつ好ましい条件範囲で製造されている。
このため、これら各発明例は、表2に示す通り、本発明で規定する通り、熱フェノール残渣抽出法により分離された溶液中の固溶Si量が0.30〜2.0%、固溶Cu量が0.05〜1.0%であり、この板の圧延方向に5%の歪の引張変形を付与した際の、前記板の圧延表面のX線回折により測定された転位密度が平均で6.0×1014〜12×1014 -2である。
As shown in Tables 1 and 2, Invention Examples 1 to 11 are manufactured within the component composition range of the present invention and in a preferable condition range.
Therefore, as shown in Table 2, each of these inventive examples has a solid solution Si content of 0.30 to 2.0% in a solution separated by a hot phenol residue extraction method as defined in the present invention. The amount of Cu is 0.05 to 1.0%, and the average dislocation density measured by X-ray diffraction on the rolled surface of the plate when a tensile deformation of 5% strain is applied in the rolling direction of the plate. in a 6.0 × 10 14 ~12 × 10 14 m -2.

この結果、各発明例は、室温時効後であっても、表2に示す通り、0.2%耐力と引張強さとの比率(0.2%耐力/引張強さ)で定義される降伏比が0.56以下、全伸びが26%以上であり、自動車パネル材用として合格する高い成形性を有する。   As a result, as shown in Table 2, the yield ratio defined by the ratio between the 0.2% proof stress and the tensile strength (0.2% proof stress / tensile strength) is shown in Table 2. Is 0.56 or less, and the total elongation is 26% or more.

これに対して、表2の比較例12〜16は、好ましい条件範囲で製造しているものの、表1の合金番号12〜16を用いており、Si、Mg、Cu、Mn、Feの含有量が各々本発明範囲を外れている。
このため、これら比較例は、表2に示す通り、固溶Si量や固溶Cu量、あるいは低歪領域での平均転位密度の、いずれかが本発明で規定する範囲から外れ、降伏比が0.56を超えるか、全伸びが26%未満であり、発明例に比して成形性が劣っている。したがって、自動車パネル材用としては不合格である。
On the other hand, although Comparative Examples 12-16 of Table 2 are manufactured in a preferable condition range, alloy numbers 12-16 of Table 1 are used, and the contents of Si, Mg, Cu, Mn, and Fe Are outside the scope of the present invention.
For this reason, as shown in Table 2, in these comparative examples, either the amount of solute Si, the amount of solute Cu, or the average dislocation density in the low strain region is out of the range defined by the present invention, and the yield ratio is It exceeds 0.56 or the total elongation is less than 26%, and the moldability is inferior to the inventive examples. Therefore, it is unacceptable for automobile panel materials.

比較例12は表1の合金12であり、Mgが少なすぎる。
比較例13は表1の合金13であり、Siが少なすぎる。
比較例14は表1の合金14であり、Cuが少なすぎる。
比較例15は表1の合金15であり、Mnが多すぎる。
比較例16は表1の合金16であり、Feが多すぎる。
The comparative example 12 is the alloy 12 of Table 1, and there is too little Mg.
The comparative example 13 is the alloy 13 of Table 1, and there is too little Si.
The comparative example 14 is the alloy 14 of Table 1, and there is too little Cu.
The comparative example 15 is the alloy 15 of Table 1, and there is too much Mn.
The comparative example 16 is the alloy 16 of Table 1, and there is too much Fe.

また、表2の比較例17〜21は、表1の通り、本発明範囲内の合金例を用いている。しかし、これら各比較例は、表2に示す通り、均熱温度、熱間粗圧延の最低温度、熱間仕上げ圧延の終了温度、この終了後の平均冷却速度(℃/時間)、溶体化処理の保持温度、平均冷却速度(℃/秒)などの製造条件が、好ましい条件を外れている。
この結果、固溶Si量、固溶Cu量、低歪領域での平均転位密度などが、本発明で規定する範囲から外れ、発明例に比して、降伏比が0.56を超えるか、全伸びが26%未満となって劣っている。したがって、自動車パネル材用としては不合格である。
Moreover, Comparative Examples 17 to 21 in Table 2 use alloy examples within the scope of the present invention as shown in Table 1. However, as shown in Table 2, each of these comparative examples has a soaking temperature, a minimum temperature of hot rough rolling, an end temperature of hot finish rolling, an average cooling rate (° C./hour) after the end, and a solution treatment. The production conditions such as the holding temperature and the average cooling rate (° C./second) are out of the preferable conditions.
As a result, the amount of solid solution Si, the amount of solid solution Cu, the average dislocation density in the low strain region, etc. deviates from the range defined in the present invention, and the yield ratio exceeds 0.56 as compared with the invention example, Total elongation is inferior at less than 26%. Therefore, it is unacceptable for automobile panel materials.

このうち、比較例17は、均熱温度や熱間粗圧延の最低温度が低すぎる。このため、固溶Si量と固溶Cu量とがともに下限を外れて少なすぎ、低歪領域での平均転位密度も低すぎる。このため、降伏比が0.56を超え、全伸びが26%未満であり、成形性が劣る。
比較例18は、熱間粗圧延の最低温度や熱間仕上げ圧延の終了温度が低すぎる。このため、固溶Si量と固溶Cu量とがともに下限を外れて少なすぎ、低歪領域での平均転位密度も低すぎる。このため、降伏比が0.56を超え、全伸びが26%未満であり、成形性が劣る。
比較例19は、熱間仕上げ圧延後の平均冷却速度(℃/時間)が遅すぎる。このため、固溶Si量が下限を外れて少なすぎ、低歪領域での平均転位密度も低すぎる。このため、降伏比が0.56を超え、全伸びが26%未満であり、成形性が劣る。
比較例20は、溶体化処理の保持温度が低すぎる。このため、固溶Si量と固溶Cu量とが下限を外れて少なすぎ、低歪領域での平均転位密度も低すぎる。このため、降伏比が0.56を超え、全伸びが26%未満であり、成形性が劣る。
比較例21は、溶体化処理後の平均冷却速度(℃/秒)が遅すぎる。このため、固溶Si量が下限を外れて少なすぎ、低歪領域での平均転位密度も低すぎる。このため、固溶Cu量は規定を満たすものの、降伏比が0.56を超え、全伸びが26%未満であり、成形性が劣る。
Among these, in Comparative Example 17, the soaking temperature and the minimum temperature of hot rough rolling are too low. For this reason, both the amount of solute Si and the amount of solute Cu are too small beyond the lower limit, and the average dislocation density in the low strain region is too low. For this reason, the yield ratio exceeds 0.56, the total elongation is less than 26%, and the formability is inferior.
In Comparative Example 18, the minimum temperature of hot rough rolling and the end temperature of hot finish rolling are too low. For this reason, both the amount of solute Si and the amount of solute Cu are too small beyond the lower limit, and the average dislocation density in the low strain region is too low. For this reason, the yield ratio exceeds 0.56, the total elongation is less than 26%, and the formability is inferior.
In Comparative Example 19, the average cooling rate (° C./hour) after hot finish rolling is too slow. For this reason, the amount of solute Si is too small beyond the lower limit, and the average dislocation density in the low strain region is too low. For this reason, the yield ratio exceeds 0.56, the total elongation is less than 26%, and the formability is inferior.
In Comparative Example 20, the holding temperature of the solution treatment is too low. For this reason, the amount of solute Si and the amount of solute Cu are too small beyond the lower limit, and the average dislocation density in the low strain region is too low. For this reason, the yield ratio exceeds 0.56, the total elongation is less than 26%, and the formability is inferior.
In Comparative Example 21, the average cooling rate (° C./second) after the solution treatment is too slow. For this reason, the amount of solute Si is too small beyond the lower limit, and the average dislocation density in the low strain region is too low. For this reason, although the amount of solute Cu satisfies the regulation, the yield ratio exceeds 0.56, the total elongation is less than 26%, and the formability is inferior.

したがって、以上の実施例の結果から、自動車パネル材用として、従来の組成や製造条件を大きく変えることなく、高成形性6000系アルミニウム合金板を得るための、本発明で規定する組成や組織の要件を全て満たすことの意義が裏付けられる。   Therefore, from the results of the above examples, the composition and structure prescribed in the present invention for obtaining a high formability 6000 series aluminum alloy plate for automobile panel materials without greatly changing the conventional composition and production conditions. The significance of meeting all requirements is supported.

本発明によれば、自動車パネル材用として、従来の組成や製造条件を大きく変えることなく製造できる、高成形性6000系アルミニウム合金板を得ることができる。この結果、自動車パネル材用として、6000系アルミニウム合金板の適用を拡大できる。   ADVANTAGE OF THE INVENTION According to this invention, the high moldability 6000 series aluminum alloy plate which can be manufactured for car panel materials, without changing a conventional composition and manufacturing conditions largely can be obtained. As a result, the application of the 6000 series aluminum alloy plate can be expanded for automobile panel materials.

Claims (3)

質量%で、Si:0.30〜2.0%、Mg:0.20〜1.5%、Cu:0.05〜1.0%、Mn:1.0%以下(但し、0%を含まず)、Fe:1.0%以下(但し、0%を含まず)を各々含み、残部がAl及び不可避不純物からなるAl−Mg−Si系アルミニウム合金板であって、この板の熱フェノール残渣抽出法により分離された溶液中の固溶Si量が0.30〜2.0%、固溶Cu量が0.05〜1.0%であり、この板の圧延方向に5%の歪の引張変形を付与した際の、X線回折により測定された、この板の圧延表面の転位密度が平均で6.0×1014〜12×1014 -2であることを特徴とする高成形性アルミニウム合金板。 In mass%, Si: 0.30 to 2.0%, Mg: 0.20 to 1.5%, Cu: 0.05 to 1.0%, Mn: 1.0% or less (however, 0% Not including), Fe: 1.0% or less (however, not including 0%), each of which is an Al—Mg—Si aluminum alloy plate made of Al and inevitable impurities, The amount of solute Si in the solution separated by the residue extraction method is 0.30 to 2.0%, the amount of solute Cu is 0.05 to 1.0%, and a 5% strain is applied in the rolling direction of this plate. The dislocation density on the rolled surface of this plate, measured by X-ray diffraction at the time of imparting the tensile deformation, is 6.0 × 10 14 to 12 × 10 14 m −2 on average. Formable aluminum alloy plate. 前記アルミニウム合金板が、Cr:0.3%以下(但し、0%を含まず)、Zr:0.3%以下(但し、0%を含まず)、V:0.3%以下(但し、0%を含まず)、Ti:0.1%以下(但し、0%を含まず)、Zn:1.0%以下(但し、0%を含まず)、Ag:0.2%以下(但し、0%を含まず)、Sn:0.15%以下(但し、0%を含まず)の1種または2種以上を含む請求項1に記載の高成形性アルミニウム合金板。   The aluminum alloy plate is Cr: 0.3% or less (excluding 0%), Zr: 0.3% or less (excluding 0%), V: 0.3% or less (provided that 0%), Ti: 0.1% or less (excluding 0%), Zn: 1.0% or less (excluding 0%), Ag: 0.2% or less (excluding The high formability aluminum alloy sheet according to claim 1, comprising one or more of Sn: 0.15% or less (excluding 0%). 前記アルミニウム合金板の0.2%耐力と引張強さとの比率(0.2%耐力/引張強さ)で定義される降伏比が0.56以下、全伸びが26%以上である請求項1または2に記載の高成形性アルミニウム合金板。   The yield ratio defined by the ratio of 0.2% proof stress to tensile strength (0.2% proof stress / tensile strength) of the aluminum alloy sheet is 0.56 or less and the total elongation is 26% or more. Or the high formability aluminum alloy plate of 2.
JP2015207061A 2015-10-21 2015-10-21 Aluminum alloy sheet having high moldability Pending JP2017078211A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2015207061A JP2017078211A (en) 2015-10-21 2015-10-21 Aluminum alloy sheet having high moldability
US15/295,455 US20170114431A1 (en) 2015-10-21 2016-10-17 Aluminum alloy sheet having good formability
CN201610906737.9A CN106609328A (en) 2015-10-21 2016-10-18 Aluminum alloy sheet having good formability
CN201810799384.6A CN108866393A (en) 2015-10-21 2016-10-18 High formability aluminium alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015207061A JP2017078211A (en) 2015-10-21 2015-10-21 Aluminum alloy sheet having high moldability

Publications (1)

Publication Number Publication Date
JP2017078211A true JP2017078211A (en) 2017-04-27

Family

ID=58558411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015207061A Pending JP2017078211A (en) 2015-10-21 2015-10-21 Aluminum alloy sheet having high moldability

Country Status (3)

Country Link
US (1) US20170114431A1 (en)
JP (1) JP2017078211A (en)
CN (2) CN106609328A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3400316B1 (en) 2016-01-08 2020-09-16 Arconic Technologies LLC New 6xxx aluminum alloys, and methods of making the same
US10030295B1 (en) 2017-06-29 2018-07-24 Arconic Inc. 6xxx aluminum alloy sheet products and methods for making the same
CN111254324A (en) * 2018-11-30 2020-06-09 宝山钢铁股份有限公司 Al-Mg-Si alloy plate and manufacturing method thereof
CN111041294B9 (en) * 2019-12-31 2021-03-12 辽宁忠旺集团有限公司 6-series low alloy composition with high long-term thermal stability and preparation method thereof
CN111155002A (en) * 2020-02-03 2020-05-15 中南大学 Aluminum-magnesium-silicon alloy for reducing negative effect of natural aging for vehicle body and preparation method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5864337A (en) * 1981-10-12 1983-04-16 Mitsubishi Keikinzoku Kogyo Kk Aluminum alloy for high pressure solidification and casting
NO166879C (en) * 1987-07-20 1991-09-11 Norsk Hydro As PROCEDURE FOR PREPARING AN ALUMINUM ALLOY.
JP2000129382A (en) * 1998-10-26 2000-05-09 Kobe Steel Ltd Aluminum alloy clad plate for forming, excellent in filiform corrosion resistance
JP4019082B2 (en) * 2005-03-25 2007-12-05 株式会社神戸製鋼所 Aluminum alloy plate for bottle cans with excellent high temperature characteristics
CN100429330C (en) * 2005-08-19 2008-10-29 株式会社神户制钢所 Shaping method of aluminium alloy section
KR101196527B1 (en) * 2009-03-24 2012-11-01 가부시키가이샤 고베 세이코쇼 Aluminum alloy sheet with excellent formability
CN101851715A (en) * 2009-03-31 2010-10-06 株式会社神户制钢所 Aluminium alloy plate for battery case and battery case
JP5758676B2 (en) * 2011-03-31 2015-08-05 株式会社神戸製鋼所 Aluminum alloy plate for forming and method for producing the same
JP5905810B2 (en) * 2012-10-23 2016-04-20 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP6005544B2 (en) * 2013-02-13 2016-10-12 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bake hardenability

Also Published As

Publication number Publication date
CN108866393A (en) 2018-11-23
US20170114431A1 (en) 2017-04-27
CN106609328A (en) 2017-05-03

Similar Documents

Publication Publication Date Title
KR102121156B1 (en) Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP6227222B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP5852534B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP2017179468A (en) Aluminum alloy sheet with high formability
JP6810508B2 (en) High-strength aluminum alloy plate
JP2016141843A (en) High strength aluminum alloy sheet
JP2017125240A (en) Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet
US20160305000A1 (en) Aluminum alloy sheet for molding
WO2015034024A1 (en) Aluminum alloy plate having excellent bake hardening properties
WO2016190408A1 (en) High-strength aluminum alloy sheet
JP2017078211A (en) Aluminum alloy sheet having high moldability
JP2016141842A (en) High strength aluminum alloy sheet
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
WO2016031937A1 (en) Aluminum alloy sheet for forming
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP2018070947A (en) Aluminum alloy sheet
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
WO2016031941A1 (en) Aluminum alloy sheet
JP2019143206A (en) Magnesium alloy and manufacturing method of magnesium alloy
JP6585436B2 (en) Aluminum alloy plate for automobile body panel excellent in yarn rust resistance, paint bake hardenability and processability, and production method thereof, and automobile body panel using the same and production method thereof
JP5918187B2 (en) Aluminum alloy sheet with excellent bake hardenability