JP2017125240A - Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet - Google Patents

Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet Download PDF

Info

Publication number
JP2017125240A
JP2017125240A JP2016005510A JP2016005510A JP2017125240A JP 2017125240 A JP2017125240 A JP 2017125240A JP 2016005510 A JP2016005510 A JP 2016005510A JP 2016005510 A JP2016005510 A JP 2016005510A JP 2017125240 A JP2017125240 A JP 2017125240A
Authority
JP
Japan
Prior art keywords
aluminum alloy
structural member
plate
crushing
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016005510A
Other languages
Japanese (ja)
Inventor
有賀 康博
Yasuhiro Ariga
康博 有賀
松本 克史
Katsushi Matsumoto
克史 松本
佐藤 和史
Kazufumi Sato
和史 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2016005510A priority Critical patent/JP2017125240A/en
Priority to US15/380,011 priority patent/US20170204503A1/en
Priority to CN201611225226.7A priority patent/CN106978553A/en
Publication of JP2017125240A publication Critical patent/JP2017125240A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • B21B2003/001Aluminium or its alloys

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structural member with improved collapse characteristics using a 6000 series aluminum alloy sheet as a molding material, and a manufacturing method thereof.SOLUTION: Even if a 6000 series aluminum alloy sheet of a specific composition manufactured by a conventional method is used as a material, collapse characteristics at automobile collision to be evaluated by a VDA flexure testing can be improved as well as strength through imparting a comparative higher strain in cold-working to increase average dislocation density measured by X-ray diffraction on a surface of the structural member after an artificial aging treatment.SELECTED DRAWING: Figure 1

Description

本発明は、6000系アルミニウム合金板(圧延板)を成形素材とする構造部材であって、圧壊特性(衝撃吸収性)に優れたアルミニウム合金構造部材およびその製造方法、アルミニウム合金板に関するものである。   The present invention relates to a structural member made of a 6000 series aluminum alloy plate (rolled plate) as a molding material, and relates to an aluminum alloy structural member excellent in crushing properties (impact absorbability), a manufacturing method thereof, and an aluminum alloy plate. .

近年、地球環境などへの配慮から、自動車車体の軽量化の社会的要求はますます高まってきている。かかる要求に答えるべく、自動車車体のうち、パネル(フード、ドア、ルーフなどのアウタパネル、インナパネル)や、バンパリーンフォース(バンパーR/F)やドアビームなどの補強材などの部分に、それまでの鋼板等の鉄鋼材料に代えて、アルミニウム合金材料を適用することが行われている。   In recent years, due to consideration for the global environment, social demands for reducing the weight of automobile bodies are increasing. In order to meet such demands, parts of automobile bodies such as panels (outer panels such as hoods, doors and roofs, inner panels), reinforcements such as bumper force (bumper R / F) and door beams, etc. An aluminum alloy material is applied instead of a steel material such as a steel plate.

自動車車体の更なる軽量化のためには、自動車部材のうちでも特に軽量化に寄与する、サイドメンバー等のメンバ、フレーム類や、ピラーなどの自動車構造部材にも、アルミニウム合金材の適用を拡大することが必要となる。ただ、これら自動車構造部材には、前記自動車パネル材に比べて、素材板の更なる高強度化や、車体衝突時の衝撃吸収性や乗員の保護にもつながる、圧壊性(耐圧壊性、圧壊特性)を新たな特性として付与することが必要である。   In order to further reduce the weight of automobile bodies, the use of aluminum alloy materials has been expanded to include members such as side members, frames, and automobile structural members such as pillars that contribute to weight reduction. It is necessary to do. However, these automotive structural members have a higher level of strength compared to the above-mentioned automotive panel materials, impact resistance in case of a vehicle collision, and protection of passengers. Characteristic) as a new characteristic.

前記自動車構造部材のうちの、高強度な補強材としては、JIS乃至AA7000系アルミニウム合金を熱間押出加工して製造される押出形材が、素材として既に汎用されている。これに対して、フレーム、ピラーなどの大型の構造部材は、鋳塊を均熱処理後に熱間圧延する、あるいは更に冷間圧延するような、常法によって製造される圧延板を素材とすることが好ましい。ただ、前記した7000系アルミニウム合金は、圧延板としては、その高合金ゆえの作りにくさがあり、これまであまり実用化されていない。   As the high-strength reinforcing material among the automobile structural members, extruded shapes produced by hot extrusion of JIS or AA7000 series aluminum alloys are already widely used as materials. On the other hand, large structural members such as frames and pillars may be made of a rolled plate manufactured by a conventional method such as hot rolling after soaking or further cold rolling the ingot. preferable. However, the above-described 7000 series aluminum alloy is difficult to make as a rolled plate because of its high alloy, and has not been practically used so far.

このため、通常の圧延(常法)によって製造される圧延板用の合金としては、前記7000系よりも低合金であるがゆえに作りやすい、Al−Mg−Si系アルミニウム合金である、JIS乃至AA6000系アルミニウム合金が注目される。
この6000系アルミニウム合金板は、自動車の大型ボディパネル(フード、フェンダー、ドア、ルーフ、トランクリッドなどのアウタパネルやインナパネル)としては既に用いられている。このため、これら自動車の大型ボディパネルに要求される、プレス成形性とBH性(ベークハード性)との兼備や向上のために、従来から、成分組成や組織などの冶金的な改善策が、数多く提案されている。
For this reason, as an alloy for a rolled sheet manufactured by normal rolling (ordinary method), it is an Al—Mg—Si aluminum alloy that is easy to make because it is a lower alloy than the 7000 series, JIS to AA6000. Aluminum alloys are attracting attention.
This 6000 series aluminum alloy plate is already used as a large body panel (outer panel or inner panel such as a hood, fender, door, roof, trunk lid, etc.) of an automobile. For this reason, in order to combine and improve the press formability and BH properties (bake hard properties) required for large body panels of these automobiles, conventionally, metallurgical improvement measures such as component composition and structure, Many proposals have been made.

ただ、前記補強材などには、従来から6000系アルミニウム合金押出形材が提案され、実用化されているものの、アルミニウム合金圧延板は、自動車構造部材にはあまり提案例がない。
例えば、アルミニウム合金圧延板の組織として、結晶粒のサイズやアスペクト比を制御し、人工時効処理後の耐力を230MPa以上とした、圧壊性を高めた6000系アルミニウム合金板が、特許文献1などで提案されている程度である。
However, although 6000 series aluminum alloy extruded shapes have been proposed and put to practical use as the reinforcing material and the like, aluminum alloy rolled sheets have few proposals for automobile structural members.
For example, as a structure of a rolled aluminum alloy plate, a 6000 series aluminum alloy plate with improved crushing property, in which the grain size and aspect ratio are controlled and the proof stress after artificial aging treatment is 230 MPa or more is disclosed in Patent Document 1 To the extent proposed.

一方、周知の通り、従来から、前記パネル材としての素材6000系アルミニウム合金板の、成形性や強度特性を向上させるための組成や組織制御の手段は、結晶粒径の制御から、集合組織の制御を含め、原子の集合体(クラスター)の制御に至るまで、多数提案されている。
これらの組織制御の手段の中で、固溶Mg量や固溶Si量、あるいは固溶Cu量を制御することや、転位密度を制御することも種々提案されている。
On the other hand, as is well known, conventionally, the composition and structure control means for improving the formability and strength characteristics of the material 6000 series aluminum alloy plate as the panel material are controlled by the control of the crystal grain size. Many proposals have been made up to the control of atomic aggregates (clusters) including control.
Among these means for controlling the structure, various proposals have been made to control the amount of solid solution Mg, the amount of solid solution Si, or the amount of solid solution Cu, and the control of the dislocation density.

例えば、特許文献2では、前記パネル材として、常温安定性に優れ、室温時効によるベークハード性(BH性)などの材質の低下が生じ難い6000系アルミニウム合金板を得ることを目的として、固溶Si量を0.55〜0.80質量%、固溶Mg量を0.35〜0.60質量%とし、且つ、固溶Si量/固溶Mg量を1.1〜2とすることが提案されている。   For example, in Patent Document 2, for the purpose of obtaining a 6000 series aluminum alloy plate, which is excellent in room temperature stability and hardly deteriorates in material such as bake hardness (BH property) due to room temperature aging, as the panel material. The amount of Si may be 0.55 to 0.80 mass%, the amount of solid solution Mg may be 0.35 to 0.60 mass%, and the amount of solid solution Si / solid solution Mg may be 1.1 to 2. Proposed.

また、特許文献3では、前記パネル材として、残渣抽出法により測定したCu固溶量を0.01〜0.7%とし、平均結晶粒径も10〜50μmの範囲とした、BH性に優れた温間成形用6000系アルミニウム合金板が提案されている。   Moreover, in patent document 3, as the panel material, the Cu solid solution amount measured by the residue extraction method is 0.01 to 0.7%, and the average crystal grain size is also in the range of 10 to 50 μm. A 6000 series aluminum alloy plate for warm forming has been proposed.

更に、非特許文献1では、6000系アルミニウム合金板の更なる高強度化を図るために、転位強化あるいは結晶粒微細化強化と、析出強化とを最適に組み合わせた微視的組織パラメータ(転位密度、結晶粒径)を予測することが提案されている。
そして、6000系アルミニウム合金板に、冷間圧延または巨大ひずみ加工法の1つであるHPT加工を施した試料について、転位密度を調査し、無加工材の転位密度が1011-2程度であり、圧延率30%(相当ひずみ0.36)を施した冷間圧延材の転位密度が1014-2程度であることを記載している。なお、この転位密度の測定は、等厚干渉縞法により、倍率10万倍のTEM写真5視野を用いた交切解析法により行っている。
この非特許文献1は、6000系アルミニウム合金板に、転位強化あるいは結晶粒微細化強化のための組織制御を行った場合、その後の人工時効中の時効硬化能は抑制されることが多く、強化機構の並立を図ることは困難であった、従来の技術報告への検証を行っている。
そして、その試験結果では、人工時効時間の経過とともに、無加工材、前記冷間圧延材では硬さは増加したが、ピーク硬さから人工時効前の硬さを差し引いた値は、無加工材の75 HV に対して冷間圧延材では43 HV と逆に小さくなり、冷間圧延によって時効硬化能は低下したことが記載されている。そして、HPT 材では、時効時間の経過とともに硬さは単調に減少し、時効硬化挙動は認められなかったことが記載されている。
Furthermore, in Non-Patent Document 1, in order to further increase the strength of a 6000 series aluminum alloy sheet, a microstructural parameter (dislocation density) that optimally combines dislocation strengthening or grain refinement strengthening and precipitation strengthening. It has been proposed to predict the crystal grain size).
And about the sample which gave cold rolling or HPT processing which is one of the giant strain processing methods to a 6000 series aluminum alloy plate, a dislocation density is investigated and the dislocation density of a non-processed material is about 10 < 11 > m <-2 >. It is described that the dislocation density of the cold-rolled material subjected to a rolling rate of 30% (equivalent strain 0.36) is about 10 14 m −2 . The measurement of the dislocation density is performed by the cross-cut analysis method using five TEM photographs with a magnification of 100,000 times by the equal thickness interference fringe method.
In Non-Patent Document 1, when a structure control for dislocation strengthening or grain refinement strengthening is performed on a 6000 series aluminum alloy plate, the age-hardening ability during subsequent artificial aging is often suppressed. Verification of conventional technical reports, which was difficult to arrange the mechanisms side by side, is being conducted.
And in the test results, as the artificial aging time passed, the hardness increased in the unprocessed material and the cold-rolled material, but the value obtained by subtracting the hardness before artificial aging from the peak hardness is the non-processed material. On the other hand, it is described that the cold-rolled material is smaller than 43 HV compared to 75 HV, and the age-hardening ability is reduced by cold rolling. In the HPT material, it is described that the hardness monotonously decreases with the aging time, and no age hardening behavior was observed.

特開2001−294965号公報JP 2001-294965 A 特開2008−174797号公報JP 2008-174797 A 特開2008−266684号公報JP 2008-266684 A

日本金属学会誌第75 巻、第5 号(2011)283〜290頁、「高転位密度および超微細粒組織をもつAl-Mg-Si合金で観察される競合析出現象の実験的ならびに計算科学的研究」増田哲也、廣澤渉一、堀田善治、松田健二Journal of the Japan Institute of Metals, Vol. 75, No. 5 (2011), pp. 283-290, "Experimental and computational science of competitive precipitation observed in Al-Mg-Si alloys with high dislocation density and ultrafine grain structure Research ”Tetsuya Masuda, Shinichi Serizawa, Zenji Hotta, Kenji Matsuda

本発明が用途とする前記自動車などの構造部材では、更に高強度化させることや、車体衝突時の衝撃吸収性=耐圧壊性を新たに持たせるなどの、この用途特有の特性が要求される。   The structural member such as the automobile used in the present invention is required to have characteristics specific to this application, such as further increasing the strength and providing a new shock absorbing property at the time of collision of the vehicle body. .

この一例として、近年の自動車の衝突安全基準のレベルアップ(厳格化)によって、ヨーロッパなどでは、前記フレーム、ピラーなどの自動車構造部材には、ドイツ自動車工業会(VDA)で規格化されている「VDA238−100 Plate bending test for metallic materials(以後、VDA曲げ試験と言う)」にて評価される、自動車の衝突時における圧壊特性(耐圧壊性、衝撃吸収性)を満たすことが求められるようになっている。   As an example of this, in recent years, the automobile safety components such as frames and pillars have been standardized by the German Automobile Manufacturers Association (VDA) in Europe and the like due to the recent improvement (stricter) of automobile crash safety standards. VDA238-100 Plate bending test for metallic materials (hereinafter referred to as “VDA bending test”) is required to satisfy the crushing characteristics (crush resistance, shock absorption) at the time of automobile collision. ing.

このような厳しい安全基準に対して、前記した通常の圧延によって製造される6000系アルミニウム合金板を成形素材とする自動車構造部材では、より高強度化させた上での、車体衝突時の圧壊特性が不足している。そして、このような6000系アルミニウム合金板を素材とする自動車構造部材の圧壊特性を満たす手段については、前記非特許文献1の存在によっても、未だ有効な手段が不明で、なお解明の余地がある。   With respect to such strict safety standards, in automotive structural members made of 6000 series aluminum alloy sheets produced by the above-mentioned normal rolling, the crushing characteristics at the time of vehicle body collision with higher strength Is lacking. And about the means which satisfy | fills the crushing characteristic of the automotive structural member which uses such a 6000 series aluminum alloy plate as a raw material, even if the nonpatent literature 1 exists, an effective means is still unknown, and there is still room for elucidation. .

このような状況に鑑み、本発明の目的は、6000系アルミニウム合金板を成形素材とする圧壊特性を向上させた構造部材と、その製造方法、アルミニウム合金板を提供することである。   In view of such a situation, an object of the present invention is to provide a structural member with improved crushing characteristics using a 6000 series aluminum alloy plate as a forming material, a manufacturing method thereof, and an aluminum alloy plate.

この目的を達成するために、本発明の圧壊特性に優れたアルミニウム合金構造部材の要旨は、質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金構造部材であって、この構造部材表面のX線回折により測定された転位密度が平均で3.0×1014〜8.0×1014-2であることとする。 In order to achieve this object, the gist of the aluminum alloy structural member excellent in the crushing characteristics of the present invention is, by mass, Mg: 0.30 to 1.5%, Si: 0.50 to 1.5%. It is an aluminum alloy structural member that contains Al and inevitable impurities, and the average dislocation density measured by X-ray diffraction on the surface of the structural member is 3.0 × 10 14 to 8.0 × 10 14. It is assumed that m- 2 .

また、前記目的を達成するための、圧壊特性に優れたアルミニウム合金構造部材の製造方法の要旨は、質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を各々含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊を、均熱処理後に圧延して板となし、更に、この板を溶体化および焼入れ処理した後に、冷間加工によって、ひずみを5〜20%の範囲で付与しつつ、構造部材に成形した上で、人工時効処理することによって、この人工時効処理後の構造部材表面のX線回折により測定された転位密度を平均で3.0×1014〜8.0×1014-2とすることとする。 Moreover, the summary of the manufacturing method of the aluminum alloy structural member excellent in the crushing characteristic for achieving the said objective is the mass%, Mg: 0.30-1.5%, Si: 0.50-1.5. Aluminum alloy ingots, each of which contains Al and inevitable impurities, and is rolled after soaking to form a plate. Further, after this plate is subjected to solution treatment and quenching treatment, Is imparted in the range of 5 to 20% while being molded into a structural member, and then subjected to artificial aging treatment, the average dislocation density measured by X-ray diffraction on the surface of the structural member after the artificial aging treatment is 3 and be .0 × 10 14 ~8.0 × 10 14 m -2.

更に、前記目的を達成するための、圧壊特性に優れたアルミニウム合金板の要旨は、質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を含有し、残部がAl及び不可避的不純物からなる構造部材用アルミニウム合金板であって、前記構造部材用途を模擬して、この板を550℃の温度で30秒保持する溶体化処理をした後、直ちに室温までの平均冷却速度を30℃/sで水冷し、この冷却直後に直ちに100℃で5時間保持する予備時効処理を行い、その後引張試験機によるひずみを10%付与した後で、更に210℃×30分の人工時効処理を施した際の組織として、この板表面のX線回折により測定された転位密度が平均で3.0×1014 〜8.0×1014-2であることとする。 Furthermore, the gist of the aluminum alloy plate excellent in the crushing characteristics for achieving the above object is mass%, and contains Mg: 0.30 to 1.5%, Si: 0.50 to 1.5%. The balance is an aluminum alloy plate for a structural member made of Al and unavoidable impurities, and imitates the use of the structural member, and after the solution treatment for holding the plate at a temperature of 550 ° C. for 30 seconds, The water is cooled at an average cooling rate of 30 ° C./s until immediately after this cooling, and immediately after the preliminary aging treatment is carried out at 100 ° C. for 5 hours. As a structure when the artificial aging treatment is performed for 30 minutes, the average dislocation density measured by X-ray diffraction on the surface of the plate is 3.0 × 10 14 to 8.0 × 10 14 m −2. To do.

本発明では、溶体化処理などの調質処理後の素材板(圧延板)に、前記自動車などの構造部材へのプレス成形を含む冷間加工により、ひずみを予め多く付加(付与)して、成形された構造部材表面の転位密度を従来よりも高くする。
そして、このように転位密度を高くした構造部材を人工時効処理して、使用される最終の構造部材を、250MPa以上の0.2%耐力(高強度)を有するとともに、VDA曲げ試験にて90°以上の曲げ角度となる高圧壊特性を発現させる。
In the present invention, to the material plate after the tempering treatment such as solution treatment (rolled plate), by cold working including press molding to the structural member such as the automobile, a lot of strain is added (given) in advance, The dislocation density on the surface of the molded structural member is made higher than before.
Then, the structural member having such a high dislocation density is artificially aged, and the final structural member to be used has a 0.2% proof stress (high strength) of 250 MPa or more and 90% in the VDA bending test. High-pressure fracture characteristics with a bending angle of more than ° are exhibited.

この発現の詳細な機構(理由)は未だ不明であるが、通常のパネル材として使用される素材板や構造部材の有する転位密度のレベルよりも、構造部材表面も転位密度をより高いレベルとすることで、自動車の衝突事故時などの構造部材の圧壊変形時に、転位の運動を妨げる効果が著しく増して、強度と圧壊特性のバランスが向上するものと推考される。
また、このような効果は、固溶Cu量の増加によっても増し、固溶強化量が増加して高強度化すると共に、圧壊変形時の転位の局在化が抑制されて圧壊特性も向上する。
The detailed mechanism (reason) of this manifestation is still unclear, but the surface of the structural member has a higher dislocation density than the level of dislocation density of the material plate and structural member used as a normal panel material. Thus, when the structural member is crushed and deformed, such as in a car crash, the effect of hindering the movement of dislocation is remarkably increased, and the balance between strength and crushing characteristics is expected to be improved.
In addition, such an effect increases with an increase in the amount of solid solution Cu, the amount of solid solution strengthening increases to increase the strength, and localization of dislocations during crushing deformation is suppressed to improve the crushing characteristics. .

本発明によれば、既に構造部材として規格化されている6000系アルミニウム合金素材圧延板の組成や製法を大きく変更することなく、また、素材アルミニウム合金圧延板の成形性などの特性を低下させずに、構造部材の前記圧壊特性を向上させることができる。
また、素材アルミニウム合金圧延板の構造部材へのプレス成形などの冷間加工時に、合わせてひずみを多く予め付加(付与)してやれば、構造部材の製造過程において、冷間加工工程を増すことなく、構造部材の転位密度を高くすることができる。
このため、本発明によれば、通常のパネル材として使用される6000系アルミニウム合金素材圧延板であっても、自動車の重要な保安部材である構造部材として適用することが可能となる。
According to the present invention, the composition and manufacturing method of a 6000 series aluminum alloy material rolled plate that has already been standardized as a structural member are not significantly changed, and characteristics such as formability of the material aluminum alloy rolled plate are not deteriorated. In addition, the crushing characteristics of the structural member can be improved.
In addition, during cold working such as press forming to the structural member of the aluminum alloy rolled plate material, if a lot of strain is added (given) in advance, without increasing the number of cold working steps in the manufacturing process of the structural member, The dislocation density of the structural member can be increased.
For this reason, according to this invention, even if it is a 6000 series aluminum alloy raw material rolled plate used as a normal panel material, it becomes possible to apply as a structural member which is an important safety | security member of a motor vehicle.

衝撃吸収性を評価するVDA曲げ試験の態様を示す斜視図である。It is a perspective view which shows the aspect of the VDA bending test which evaluates shock absorption.

本発明で言う構造部材とは、特に、自動車、車両などの輸送機の骨格となる板厚が2〜10mm程度と比較的厚い構造部材であって、板厚が2mm未満と比較的薄いアウタやインナなどの大型ボディパネル材とは厳に区別される。
そして、本発明で規定している構造部材表面の転位密度は、構造部材の、塗装焼き付け処理を含む人工時効処理によって転位密度は減少する。
したがって、使用時の構造部材の前記圧壊特性を保証するために、本発明で規定している転位密度は、人工時効処理した後の構造部材において規定している。
また、本発明で言う素材アルミニウム合金板とは、熱間圧延板や冷間圧延板などの圧延板で、これらの圧延板に溶体化処理および焼入れ処理などの調質(T4)が施された板であって、使用される自動車構造部材に成形される前の、素材アルミニウム合金板を言う。以下の記載ではアルミニウムをアルミやAlとも言う。以下に、本発明の実施の形態につき、要件ごとに具体的に説明する。
The structural member referred to in the present invention is a structural member having a relatively thick plate thickness of about 2 to 10 mm, which is a skeleton of a transport machine such as an automobile or a vehicle, and has a relatively thin outer thickness of less than 2 mm. It is strictly distinguished from large body panel materials such as inner.
And the dislocation density of the structural member surface prescribed | regulated by this invention reduces a dislocation density by the artificial aging process including the paint baking process of a structural member.
Therefore, in order to guarantee the crush characteristics of the structural member in use, the dislocation density defined in the present invention is defined in the structural member after artificial aging treatment.
The material aluminum alloy plate referred to in the present invention is a rolled plate such as a hot rolled plate or a cold rolled plate, and these rolled plates are subjected to tempering (T4) such as solution treatment and quenching treatment. It is a board | substrate, Comprising: The raw material aluminum alloy board before shape | molding to the motor vehicle structural member used is said. In the following description, aluminum is also referred to as aluminum or Al. Hereinafter, embodiments of the present invention will be specifically described for each requirement.

アルミニウム合金組成:
先ず、本発明アルミニウム合金板の化学成分組成について、各元素の限定理由を含めて、以下に説明する。なお、各元素の含有量の%表示は全て質量%の意味である。
Aluminum alloy composition:
First, the chemical component composition of the aluminum alloy sheet of the present invention will be described below, including reasons for limiting each element. In addition,% display of content of each element means the mass% altogether.

本発明アルミニウム合金板の化学成分組成は、6000系アルミニウム合金として、人工時効処理後の、最終の構造部材として、あるいはこの構造部材を模擬してひずみや熱処理を付加した素材板の、各規定する組織について、規定する転位密度組織を得るとともに、要求される強度と圧壊特性の特性を得る、また、好ましくは構造材への成形性とを兼備する前提となる。   The chemical composition of the aluminum alloy plate of the present invention is defined as a 6000 series aluminum alloy, as a final structural member after artificial aging treatment, or as a material plate to which strain or heat treatment is applied by simulating this structural member. As for the structure, it is a premise that the dislocation density structure to be defined is obtained, the required strength and crushing characteristics are obtained, and the moldability to a structural material is preferably combined.

この観点から、本発明アルミニウム合金板の化学成分組成は、質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を含有し、残部がAl及び不可避的不純物からなるものとする。
強度向上のために、この組成に、更に、Cu:0.05〜1.0%を含有し、熱フェノール残渣抽出法により分離された溶液中の固溶Cu量を0.05〜1.0%、選択的に含有しても良い。
また、強度向上のために、上記組成に、更に、Mn:0.05〜0.5%、Zr:0.02〜0.20%、Cr:0.02〜0.15%のうちの一種または二種以上を選択的に含有しても良い。
また、強度向上のために、上記各組成に、更に、Ag:0.01〜0.2%、Sn:0.001〜0.1%、Sc:0.02〜0.1%のうちの一種または二種以上を選択的に含有しても良い。
なお、各元素の含有量の%表示は全て質量%の意味である。
From this viewpoint, the chemical composition of the aluminum alloy sheet of the present invention is, by mass, Mg: 0.30 to 1.5%, Si: 0.50 to 1.5%, with the balance being Al and inevitable. It shall consist of impurities.
In order to improve strength, the composition further contains Cu: 0.05 to 1.0%, and the amount of solid solution Cu in the solution separated by the hot phenol residue extraction method is 0.05 to 1.0. %, May be selectively contained.
In order to improve the strength, the above composition is further added to one of Mn: 0.05 to 0.5%, Zr: 0.02 to 0.20%, and Cr: 0.02 to 0.15%. Or you may contain 2 or more types selectively.
Moreover, in order to improve the strength, each of the above-described compositions further includes: Ag: 0.01 to 0.2%, Sn: 0.001 to 0.1%, Sc: 0.02 to 0.1% You may selectively contain 1 type, or 2 or more types.
In addition,% display of content of each element means the mass% altogether.

Si:0.50〜1.5%
SiはMgとともに、固溶強化と、焼付け塗装処理などの人工時効処理時に、構造部材の強度向上に寄与するMg−Si系析出物を形成して、時効硬化能を発揮し、自動車などの構造部材として必要な強度(耐力)を得るための必須の元素である。
Si含有量が少なすぎると、焼付け塗装処理前(人工時効処理前)の固溶Si量が減少し、Mg−Si系析出物の生成量が不足し、BH性が著しく低下し、強度や圧壊特性が不足する。
一方、Si含有量が多すぎると、粗大な晶出物および析出物が形成されて、延性が低下し、圧延時の割れの原因となる。したがって、Siの含有量は0.50〜1.5%の範囲、好ましくは、0.70〜1.5%の範囲とする。
Si: 0.50 to 1.5%
Si, together with Mg, forms a Mg-Si-based precipitate that contributes to improving the strength of structural members during solid solution strengthening and artificial aging treatment such as baking coating treatment, and exhibits age-hardening ability, and structures such as automobiles It is an essential element for obtaining the strength (proof strength) necessary for the member.
If the Si content is too small, the amount of solute Si before baking coating treatment (before artificial aging treatment) will decrease, the amount of Mg-Si-based precipitates will be insufficient, the BH property will be significantly reduced, and the strength and crushing will be reduced. Insufficient characteristics.
On the other hand, when there is too much Si content, a coarse crystallization thing and a precipitate will be formed, ductility will fall and it will become a cause of a crack at the time of rolling. Therefore, the Si content is in the range of 0.50 to 1.5%, preferably in the range of 0.70 to 1.5%.

Mg:0.30〜1.5%
MgもSiとともに、固溶強化と、焼付け塗装処理などの人工時効処理時に、構造部材の強度向上に寄与するMg−Si系析出物を形成して、時効硬化能を発揮し、自動車構造部材としての必要耐力を得るための必須の元素である。
Mg含有量が少なすぎると、人工時効処理前の固溶Mg量が減少し、Mg−Si系析出物の生成量が不足し、BH性が著しく低下し、強度や圧壊特性が不足する。
一方、Mg含有量が多すぎると、冷間圧延時にせん断帯が形成されやすくなり、圧延時の割れの原因となる。したがって、Mgの含有量は0.3〜1.5%の範囲、好ましくは、0.7〜1.5%の範囲とする。
Mg: 0.30 to 1.5%
Mg, together with Si, forms an Mg-Si-based precipitate that contributes to improving the strength of structural members during solid solution strengthening and artificial aging treatments such as baking coating treatment, and exhibits age-hardening ability as an automotive structural member It is an essential element for obtaining the required proof stress.
If the Mg content is too small, the amount of solid solution Mg before artificial aging treatment is reduced, the amount of Mg-Si-based precipitates is insufficient, the BH property is remarkably lowered, and the strength and crushing properties are insufficient.
On the other hand, when there is too much Mg content, it will become easy to form a shear band at the time of cold rolling, and will cause the crack at the time of rolling. Therefore, the Mg content is in the range of 0.3 to 1.5%, preferably in the range of 0.7 to 1.5%.

Cu:0.05〜1.0%
Cuは固溶強化により、構造部材を高強度化すると共に、圧壊変形時の転位の局在化を抑制して、圧壊特性も向上させる。Cuの含有量が少なすぎると、その効果が小さく、多すぎても.その効果は飽和し、却って耐食性などを劣化させる。したがって、Cuは0.05〜1.0%の範囲で選択的に含有させる。
Cu: 0.05 to 1.0%
Cu strengthens the structural member by solid solution strengthening, suppresses localization of dislocations during crushing deformation, and improves crushing characteristics. If there is too little content of Cu, the effect will be small, and even if there is too much. The effect is saturated and on the contrary, the corrosion resistance is deteriorated. Therefore, Cu is selectively contained in the range of 0.05 to 1.0%.

固溶Cu量0.05〜1.0%
前記Cuの固溶強化による、高強度化や圧壊特性向上効果を保証する(発揮させる)ために、Cuを含有させる場合には、熱フェノール残渣抽出法により分離された溶液中の固溶Cu量を0.05〜1.0%の範囲とする。固溶Cu量が多いほど、加工硬化特性を向上させ、降伏比を低減し、伸びを増加させ、圧壊特性が向上する。
Cuの含有量によらず、固溶Cu量が0.05%未満では、その効果が不十分となる。なお、固溶Cu量の上限は実質的に添加量の上限と同じである。
Solid solution Cu amount 0.05-1.0%
In order to guarantee (exhibit) the enhancement of strength and the effect of improving the crushing properties due to the solid solution strengthening of Cu, when Cu is contained, the amount of solid solution Cu in the solution separated by the hot phenol residue extraction method Is in the range of 0.05 to 1.0%. As the amount of dissolved Cu increases, work hardening characteristics are improved, yield ratio is reduced, elongation is increased, and crush characteristics are improved.
Regardless of the Cu content, if the solid solution Cu content is less than 0.05%, the effect is insufficient. In addition, the upper limit of the amount of solid solution Cu is substantially the same as the upper limit of the addition amount.

Mn:0.05〜0.5%、Zr:0.02〜0.20%、Cr:0.02〜0.15%
Mn、Zr、Crは、鋳塊及び素材板の結晶粒を微細化して、最終の構造部材の強度向上に寄与する同効元素として、その一種または二種以上を選択的に含有させても良い。
また、これらの元素は分散粒子として存在して、結晶粒微細化に寄与して、素材板の成形性も向上させる効果もある。各々の含有量が少なすぎると、これらの結晶粒微細化による、強度や成形性の向上効果が不足する。一方、これらの元素が多すぎると、粗大な化合物を形成し、延性を劣化させる。
従って、これらMn、Zr、Crは、選択的に含有させる場合には、Mn:0.05〜0.5%、Zr:0.02〜0.20%、Cr:0.02〜0.15%の範囲で、一種または二種以上を含有させる。
Mn: 0.05 to 0.5%, Zr: 0.02 to 0.20%, Cr: 0.02 to 0.15%
Mn, Zr, and Cr may be selectively contained as one or more of the same elements that contribute to improving the strength of the final structural member by refining the crystal grains of the ingot and the material plate. .
Further, these elements exist as dispersed particles, contribute to the refinement of crystal grains, and have the effect of improving the formability of the material plate. When each content is too small, the effect of improving strength and formability due to the refinement of crystal grains is insufficient. On the other hand, when there are too many of these elements, a coarse compound will be formed and ductility will deteriorate.
Therefore, when these Mn, Zr, and Cr are selectively contained, Mn: 0.05 to 0.5%, Zr: 0.02 to 0.20%, Cr: 0.02 to 0.15 In the range of%, one kind or two or more kinds are contained.

Ag:0.01〜0.2%、Sn:0.001〜0.1%、Sc:0.02〜0.1%
Ag、Sn、Scも、強度向上の同効元素として、その一種または二種以上を選択的に含有させても良い。
Agは、構造材への成形加工後の人工時効処理によって強度向上に寄与する時効析出物を緊密微細に析出させ、高強度化を促進する効果があるので、必要に応じて選択的に含有させる。Agの含有量が0.01%未満では強度向上効果が小さい。一方、Ag含有量が多すぎると、圧延性及び溶接性などの諸特性を却って低下させ、また、強度向上効果も飽和し、高価となるだけである。従って、選択的に含有させる場合のAgの含有量は0.01〜0.2%の範囲とする。
Ag: 0.01-0.2%, Sn: 0.001-0.1%, Sc: 0.02-0.1%
Ag, Sn, and Sc may also be selectively included as one or more of them as synergistic elements for improving the strength.
Ag has an effect of closely and finely precipitating aging precipitates that contribute to strength improvement by artificial aging treatment after forming processing into a structural material, and has the effect of promoting high strength. Therefore, Ag is selectively contained as necessary. . If the Ag content is less than 0.01%, the effect of improving the strength is small. On the other hand, if the Ag content is too large, various properties such as rollability and weldability are deteriorated, and the effect of improving the strength is saturated and only expensive. Therefore, the content of Ag when selectively contained is set to a range of 0.01 to 0.2%.

Snは室温でのクラスタ形成を抑制して、溶体化・焼き入れ処理後の素材板の優れた成形加工性を長時間保持する効果を有し、更にその後に焼付け塗装処理などの人工時効処理した場合の強度を向上させる。このため、自動車構造部材としての必要耐力や圧壊特性を得るための必須の元素である。Snの含有量が0.001%未満ではその効果が小さく、また0.1%を超えても、その効果は飽和し、却って熱間脆性を生じて熱間加工性(熱延性)を著しく劣化させる。従って、選択的に含有させる場合のSnの含有量は0.001〜0.1%の範囲とする。   Sn has the effect of suppressing the cluster formation at room temperature and maintaining the excellent moldability of the material plate after solution treatment and quenching treatment for a long time, and further subjected to artificial aging treatment such as baking coating treatment after that. Increase the strength of the case. For this reason, it is an indispensable element for obtaining the required yield strength and crushing characteristics as an automobile structural member. If the Sn content is less than 0.001%, the effect is small. If the Sn content exceeds 0.1%, the effect is saturated, and hot brittleness is generated, and hot workability (hot ductility) is remarkably deteriorated. Let Accordingly, the Sn content when selectively contained is in the range of 0.001 to 0.1%.

Scは、鋳塊及び最終板製品の結晶粒を微細化して強度向上に寄与する。また、分散粒子として存在して、結晶粒微細化に寄与して、素材板の成形性も向上させる。含有量が少なすぎると、これらの効果が不足する。一方、含有量が多すぎると、粗大な化合物を形成し、延性を劣化させる。従って、選択的に含有させる場合のScは0.02〜0.1%の範囲で含有させる。   Sc contributes to strength improvement by refining the crystal grains of the ingot and the final plate product. Moreover, it exists as a dispersed particle, contributes to crystal grain refinement | miniaturization, and improves the moldability of a raw material board. If the content is too small, these effects are insufficient. On the other hand, when there is too much content, a coarse compound will be formed and ductility will be degraded. Therefore, Sc in the case of containing selectively is contained in 0.02 to 0.1% of range.

その他の元素:
これら記載した以外の、Ti、B、Fe、Zn、Vなどのその他の元素は不可避的な不純物であり、6000系合金としてJIS規格などで規定する範囲での各々の含有を許容する。
Other elements:
Other elements such as Ti, B, Fe, Zn, and V other than those described above are unavoidable impurities, and are allowed to be contained within the range specified by the JIS standard as a 6000 series alloy.

(転位密度)
以上の合金組成を前提に、本発明では、人工時効処理後の構造部材の、あるいはこの構造部材を模擬してひずみや熱処理を付加した素材板の、各表面における組織(表面を観察面とした組織)として、X線回折により測定された転位密度を平均で3.0×1014〜8.0×1014-2の範囲、好ましくは4.0×1014〜8.0×1014-2の範囲とする。
人工時効処理後の構造部材表面、あるいはこの構造部材を模擬してひずみや熱処理を付加した素材板表面の、転位密度を前記規定範囲とすることで、構造部材として、250MPa以上の0.2%耐力を有するとともに、VDA曲げ試験にて90°以上の曲げ角度となる圧壊特性を有することができる。
(Dislocation density)
Based on the above alloy composition, in the present invention, the structure of each surface of the structural member after artificial aging treatment or a material plate to which strain or heat treatment is applied by simulating this structural member (the surface is the observation surface) As the structure), the average dislocation density measured by X-ray diffraction is in the range of 3.0 × 10 14 to 8.0 × 10 14 m −2 , preferably 4.0 × 10 14 to 8.0 × 10 14. The range is m- 2 .
By setting the dislocation density on the surface of the structural member after the artificial aging treatment, or on the surface of the material plate to which the structural member is simulated and subjected to strain and heat treatment within the specified range, 0.2% of 250 MPa or more as the structural member. In addition to having proof strength, it can have a crushing characteristic that results in a bending angle of 90 ° or more in the VDA bending test.

通常のパネル材の素材板や、この板を素材とするパネル材表面の転位密度のレベルよりも、構造部材表面の転位密度をより高いレベルとすることで、自動車の衝突事故時などの構造部材の圧壊変形時に、転位の運動を妨げる効果が著しく増して、強度と圧壊特性のバランスが向上するものと推考される。
この点で、転位密度が平均で3.0×1014-2未満と小さすぎる場合には、従来材(パネル材など)と変わらず、構造部材に要求される強度と圧壊特性の特性とすることができない。
一方、転位密度が平均で8.0×1014-2を超えて大きすぎる場合には、伸びが低下して、却って圧壊特性が低下する。
Structural members in the event of a car crash, etc. by making the dislocation density on the surface of the structural member higher than the level of dislocation density on the surface of the normal panel material and the panel material surface made of this plate. It is presumed that the effect of hindering the movement of dislocations is significantly increased during the crushing deformation, and the balance between strength and crushing characteristics is improved.
In this respect, when the dislocation density is too small, on average, less than 3.0 × 10 14 m −2 , the strength and crushing characteristics required for structural members are the same as those of conventional materials (panel materials, etc.). Can not do it.
On the other hand, when the dislocation density exceeds 8.0 × 10 14 m −2 on average, the elongation is lowered and the crushing property is lowered.

本発明では、溶体化処理などの調質処理後の素材板(圧延板)に、構造部材へのプレス成形などの冷間加工時において、あるいは、このプレス成形の前後に冷間加工を更に付加して、ひずみを予め構造部材に付加(付与)する。そして、成形された構造部材表面の転位密度を前記した規定範囲に高くする。   In the present invention, a material plate (rolled plate) after tempering treatment such as solution treatment is further subjected to cold working at the time of cold working such as press forming on a structural member, or before and after this press forming. Then, strain is added (given) to the structural member in advance. Then, the dislocation density on the surface of the molded structural member is increased to the specified range.

ちなみに、素材アルミニウム合金板のパネル材への通常のプレス成形時に付加されるひずみは、一般的に5%未満と小さく、人工時効処理後の構造部材表面の転位密度を、本発明の前記規定範囲とすることはできない。   Incidentally, the strain applied during normal press molding of the aluminum alloy plate material to the panel material is generally as small as less than 5%, and the dislocation density on the surface of the structural member after the artificial aging treatment is determined within the specified range of the present invention. It cannot be.

構造部材表面の転位密度を本発明の前記規定範囲とするためには、通常の高温短時間の塗装焼き付け処理などの人工時効処理条件を考慮すると、構造部材へのプレス成形にて付加するひずみ量、あるいは、このプレス成形の前後に付加する冷間加工と合わせて付加されるひずみ量を、5%以上、好ましくは10%以上とするとする必要がある。
但し、付加されるひずみが20%を超えると、通常の高温短時間の塗装焼き付け処理などの人工時効処理条件では、構造部材表面の転位密度が平均で8.0×1014-2を超えて大きくなりすぎる可能性があり、伸びが低下して、却って圧壊特性が低下する可能性がある。
また、構造材への素材板のプレス成形時にひずみを付与することも考慮すると、これ以上のひずみの付与や転位を付与することも、実際問題としては困難となる。
したがって、通常の高温短時間の塗装焼き付け処理などの人工時効処理条件の範囲で、本発明で規定する範囲に平均転位密度を制御するためには、人工時効処理条件も考慮しつつ、付加する最適ひずみ量を5〜20%の範囲、好ましくは10〜20%の範囲から選択することが好ましい。
In order to make the dislocation density on the surface of the structural member within the specified range of the present invention, in consideration of artificial aging treatment conditions such as ordinary high-temperature short-time paint baking treatment, the amount of strain added by press molding to the structural member Alternatively, it is necessary to set the amount of strain added together with the cold working applied before and after the press molding to 5% or more, preferably 10% or more.
However, when the applied strain exceeds 20%, the average dislocation density on the surface of the structural member exceeds 8.0 × 10 14 m −2 under the conditions of artificial aging treatment such as ordinary high-temperature short-time paint baking treatment. May become too large, and the elongation may decrease, while the crushing properties may decrease.
Further, in consideration of applying strain at the time of press molding of the material plate to the structural material, it becomes difficult as a practical matter to apply more strain or dislocation.
Therefore, in order to control the average dislocation density within the range specified by the present invention within the range of artificial aging treatment conditions such as ordinary high-temperature short-time paint baking treatment, an optimum addition is also made while taking into consideration the artificial aging treatment conditions. It is preferable to select the strain amount from the range of 5 to 20%, preferably from the range of 10 to 20%.

ちなみに、前記非特許文献1では、6000系アルミニウム合金板の更なる高強度化を図るために、転位(密度)強化が提案されており、6000系アルミニウム合金板に、冷間圧延または巨大ひずみ加工法の1つであるHPT加工を施して、人工時効処理している。
しかし、その試験結果では、従来の技術報告の通り、6000系アルミニウム合金板を転位強化しても(転位密度を増しても)、その後の人工時効中の時効硬化能が抑制されるという事実を裏付けているのみである。そして、この転位密度と、板を成形して人工時効処理した構造部材の圧壊性との関係については何ら記載していない。
Incidentally, in Non-Patent Document 1, in order to further increase the strength of the 6000 series aluminum alloy sheet, dislocation (density) strengthening has been proposed, and the 6000 series aluminum alloy sheet is subjected to cold rolling or giant strain processing. An artificial aging treatment is performed by applying HPT processing, which is one of the methods.
However, according to the test results, as in the conventional technical report, the fact that the aging hardening ability during the subsequent artificial aging is suppressed even when the 6000 series aluminum alloy sheet is strengthened by dislocation (even if the dislocation density is increased). It is only supported. And there is no description about the relationship between the dislocation density and the crushability of the structural member formed by artificially aging the plate.

この構造部材の前記人工時効処理後の組織や機械的な特性は、素材板を実際に構造部材に成形して人工時効処理せずとも、溶体化および焼入れ処理などの調質を施した、素材6000系アルミニウム合金板に、プレス成形などのひずみ付与の冷間加工と、人工時効処理とを模擬した際の、組織や機械的な特性を調べれば、評価できる。
この構造部材を模擬するための好ましい処理条件としては、前記した構造部材の具体的な用途を模擬して、この板を、後述する好ましい製造条件から選択される、550℃以上、溶融温度以下の温度で、連続炉であれば0.1秒〜数10秒程度、バッチ炉であれば数10分程度保持する溶体化処理をした後、直ちに室温までの平均冷却速度を20℃/秒以上で急冷し、この冷却直後に直ちに60〜120℃で2〜10時間保持する予備時効処理を行い、その後、引張試験機によるひずみを10〜20%付与し、その後更に210〜270℃×10〜30分の人工時効処理を施した際の組織と機械的な特性を調べれば、実際の前記構造部材との相関性が高く、また再現性良く評価できる。
ただ、請求項10では、この再現性をより厳密なものとするために、構造部材を模擬する具体的な処理条件を、バッチ炉で550℃の温度で30秒保持する溶体化処理をした後、直ちに室温までの平均冷却速度が30℃/sで水冷し、この冷却直後に直ちに100℃で5時間保持する予備時効処理を行い、その後、引張試験機によるひずみを10%付与し、その後更に210℃×30分の人工時効処理を施す、ワンポイントの条件としている。
The structure and mechanical properties of the structural member after the artificial aging treatment are the materials that have been subjected to tempering such as solution treatment and quenching treatment without actually forming the material plate into the structural member and performing artificial aging treatment. This can be evaluated by examining the structure and mechanical properties of a 6000 series aluminum alloy plate simulating cold-working such as press forming and artificial aging treatment.
As a preferable processing condition for simulating this structural member, the specific use of the structural member described above is simulated, and this plate is selected from the preferable manufacturing conditions described later. The temperature is about 0.1 to several tens of seconds for a continuous furnace and about 10 minutes for a batch furnace, and immediately after that, the average cooling rate to room temperature is 20 ° C / second or more. Immediately after this cooling, a preliminary aging treatment is performed immediately at 60 to 120 ° C. for 2 to 10 hours, after which 10 to 20% of strain by a tensile tester is applied, and further 210 to 270 ° C. × 10 to 30 By examining the structure and mechanical characteristics when the artificial aging treatment is performed for a minute, the correlation with the actual structural member is high, and the evaluation can be performed with good reproducibility.
However, in claim 10, in order to make this reproducibility more strict, specific treatment conditions for simulating the structural member are subjected to solution treatment for 30 seconds at a temperature of 550 ° C. in a batch furnace. Immediately after this cooling, water is cooled at an average cooling rate to room temperature of 30 ° C./s. Immediately after this cooling, a preliminary aging treatment is carried out at 100 ° C. for 5 hours, and then 10% strain is applied by a tensile tester. One-point condition is that an artificial aging treatment is performed at 210 ° C. for 30 minutes.

転位密度の測定方法
転位密度を透過型電子顕微鏡などにより計測することも、前記非特許文献1などのように汎用されているが、本発明では、X線回折により、より簡便かつ再現性よく測定する。
転位のうち、線状、筋状の転位が密集した領域(セル壁やせん断帯)は、透過型電子顕微鏡では判別しにくく、転位密度ρを求める際の測定誤差となりうる。これに対して、X線回折では、後述する通り、集合組織における各面からの回折ピークの半価幅から転位密度ρを算出するために、このような林立転位であっても誤差が少なくなる利点がある。
Measurement method of dislocation density Measurement of dislocation density with a transmission electron microscope or the like is also widely used as in Non-Patent Document 1, but in the present invention, measurement is simpler and more reproducible by X-ray diffraction. To do.
Of the dislocations, regions (cell walls and shear bands) in which linear and streak dislocations are dense are difficult to discriminate with a transmission electron microscope, and can cause measurement errors when determining the dislocation density ρ. On the other hand, in X-ray diffraction, as will be described later, since the dislocation density ρ is calculated from the half-value width of the diffraction peak from each surface in the texture, there is less error even with such a forest dislocation. There are advantages.

冷延や引張試験などの塑性変形を加えて転位を導入した板の組織では、転位を中心に格子歪みが生じる。また、転位の配列により小傾角粒界、セル構造などが発達する。このような転位やそれに伴うドメイン構造をX線回折パターンからとらえると、回折指数に応じた特徴的な拡がり、形状が回折ピークに現れる。この回折ピークの形状(ラインプロファイル)を解析(ラインプロファイル解析)して、転位密度を求めることができる。   In the structure of a plate in which dislocations are introduced by applying plastic deformation such as cold rolling or tensile test, lattice strain is generated around dislocations. In addition, small tilt grain boundaries, cell structures, and the like develop due to the dislocation arrangement. When such dislocations and the domain structure associated therewith are taken from the X-ray diffraction pattern, a characteristic spread corresponding to the diffraction index and a shape appear in the diffraction peak. By analyzing the shape (line profile) of this diffraction peak (line profile analysis), the dislocation density can be obtained.

具体的には、人工時効処理後の構造部材から、あるいはこの構造部材を模擬した素材板から、これらの表面が観察面となるように、供試材を採取して、この供試材の前記表面の組織をX線回折する。そして、構造部材表面の集合組織における主要な方位である、(111)、(200)、(220)、(311)、(400)、(331)、(420)、(422)の各面(各方位面)からの回折ピークの半価幅を求める。
転位密度ρが高いほど、これら各面の回折ピークの半価幅は大きくなる。なお、前記供試材の、X線回折の測定対象となる構造部材表面は、供試材の状態のままであっても、エッチングを伴わない洗浄が施されていても良い。
Specifically, from a structural member after artificial aging treatment or from a material plate simulating this structural member, sample material is collected so that these surfaces become the observation surface, the sample of the test material X-ray diffraction of the surface texture. Each surface of (111), (200), (220), (311), (400), (331), (420), (422), which is the main orientation in the texture of the structural member surface ( The half width of the diffraction peak from each azimuth plane is obtained.
The higher the dislocation density ρ, the larger the half width of the diffraction peak on each of these surfaces. In addition, even if the structural member surface used as the measuring object of X-ray diffraction of the said test material remains in the state of a test material, the washing | cleaning which does not involve an etching may be given.

次に、これらの各面の回折ピークの半価幅から、Williamson-Hall法により、格子ひずみ(結晶歪み)εを求めた上で、下記の式により転位密度ρを算出することができる。
ρ= 16.1ε/b
ここで、ρは転位密度、εは格子ひずみ、bはバーガースベクトルの大きさである。
また、バーガースベクトルの大きさには2.8635×10-10mを用いた。
Next, after obtaining the lattice strain (crystal strain) ε by the Williamson-Hall method from the half-value width of the diffraction peak of each surface, the dislocation density ρ can be calculated by the following equation.
ρ = 16.1ε 2 / b 2
Here, ρ is the dislocation density, ε is the lattice strain, and b is the size of the Burgers vector.
The size of Burgers vector was 2.8635 × 10 -10 m.

上記Williamson-Hall法は、複数の回折の半価幅と回折角の関係から転位密度や結晶粒径を求めるために汎用されている公知のラインプロファイル解析法である。また、これらX線回折による転位密度の一連の求め方も公知であり、これらX線回折による転位密度の一連の求め方を総称して、本発明では転位密度を「X線回折により測定された転位密度」と称している。
ここで、転位密度の測定は、構造部材の任意の箇所から採取した10個の供試材につき行い、これらの転位密度を平均化する。
The Williamson-Hall method is a well-known line profile analysis method that is widely used to determine the dislocation density and the crystal grain size from the relationship between the half width of a plurality of diffractions and the diffraction angle. In addition, a series of methods for obtaining the dislocation density by X-ray diffraction is also known, and the series of methods for obtaining the dislocation density by X-ray diffraction are collectively referred to as “dislocation density measured by X-ray diffraction” in the present invention. Dislocation density ".
Here, the measurement of the dislocation density is carried out for 10 specimens taken from arbitrary positions of the structural member, and these dislocation densities are averaged.

(製造方法)
本発明の構造部材の好ましい製造方法について説明するが、先ず、素材圧延板の好ましい製造方法について、以下に工程順に説明する。
構造部材の素材である6000系アルミニウム合金板は、鋳塊を均熱処理後に熱間圧延された熱延板か、更に冷間圧延された冷延板であって、更に溶体化処理などの調質が施される、常法によって製造される。即ち、鋳造、均質化熱処理、熱間圧延の通常の各製造工程を経て製造され、板厚が2〜4mm程度のアルミニウム合金熱延板か、あるいは、これより厚い熱延板を冷間圧延して板厚が2〜4mm程度の冷延板とされる。
(Production method)
Although the preferable manufacturing method of the structural member of this invention is demonstrated, first, the preferable manufacturing method of a raw-material rolling board is demonstrated to process order below.
The 6000 series aluminum alloy plate that is the material of the structural member is either a hot-rolled plate that is hot-rolled after soaking the ingot, or a cold-rolled plate that is further cold-rolled. It is manufactured by a conventional method. That is, it is manufactured through normal manufacturing processes such as casting, homogenization heat treatment, and hot rolling, and an aluminum alloy hot rolled sheet having a thickness of about 2 to 4 mm or a hot rolled sheet thicker than this is cold rolled. The plate thickness is a cold-rolled plate having a thickness of about 2 to 4 mm.

また、本発明の6000系アルミニウム合金板は、双ロール法などの薄板連続鋳造後に冷延して熱延を省略したり、温間圧延を行うような特殊な製造方法や圧延方法による製造方法でも良い。
このため、圧延板の、前記構造部材として既に規格化されている6000系アルミニウム合金組成を大きく変更することなく、また、常法による圧延工程を大きく変更することなく、素材板を製造できる利点がある。
In addition, the 6000 series aluminum alloy sheet of the present invention can be manufactured by a special manufacturing method or a rolling method such as cold rolling after a thin continuous casting such as a twin roll method to omit hot rolling or a warm rolling. good.
For this reason, there is an advantage that the material plate can be manufactured without greatly changing the composition of the 6000 series aluminum alloy already standardized as the structural member of the rolled plate, and without greatly changing the rolling process by a conventional method. is there.

(溶解、鋳造冷却速度)
溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(Dissolution, casting cooling rate)
In the melting and casting process, the molten aluminum alloy melt-adjusted within the above-mentioned 6000 series component composition range is cast by appropriately selecting a normal melting casting method such as a continuous casting method or a semi-continuous casting method (DC casting method). .

(均質化熱処理)
次いで、前記鋳造されたアルミニウム合金鋳塊に、熱間圧延に先立って、常法による均質化熱処理を施す。この均質化熱処理(均熱処理)は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。この均熱処理の条件は、500℃以上、融点未満の温度範囲で、2時間以上の保持時間の範囲から適宜選択される。
(Homogenization heat treatment)
Next, prior to hot rolling, the cast aluminum alloy ingot is subjected to a homogenizing heat treatment by a conventional method. The purpose of this homogenization heat treatment (soaking) is to homogenize the structure, that is, eliminate segregation in crystal grains in the ingot structure. The conditions for the soaking are appropriately selected from a range of holding time of 2 hours or more in a temperature range of 500 ° C. or higher and lower than the melting point.

(熱間圧延)
熱間圧延は、熱延開始温度が固相線温度を超える条件では、バーニングが起こるため熱延自体が困難となる。また、熱延開始温度が350℃未満では熱延時の荷重が高くなりすぎ、熱延自体が困難となる。したがって、熱延開始温度は350℃〜固相線温度の範囲から選択して熱間圧延し、2〜10mm程度の板厚の熱延板とする。この熱延板の冷間圧延前の焼鈍(荒鈍) は必ずしも必要ではないが実施しても良い。
(Hot rolling)
In the hot rolling, the hot rolling itself becomes difficult because burning occurs under conditions where the hot rolling start temperature exceeds the solidus temperature. On the other hand, when the hot rolling start temperature is less than 350 ° C., the load during hot rolling becomes too high, and the hot rolling itself becomes difficult. Therefore, the hot rolling start temperature is selected from the range of 350 ° C. to the solidus temperature and hot rolled to obtain a hot rolled plate having a thickness of about 2 to 10 mm. Annealing (roughening) of the hot-rolled sheet before cold rolling is not always necessary, but may be performed.

均質化熱処理を行った鋳塊の熱間圧延は、圧延する板厚に応じて、鋳塊 (スラブ) の粗圧延工程と、仕上げ圧延工程とから構成される。これら粗圧延工程や仕上げ圧延工程では、リバース式あるいはタンデム式などの圧延機が適宜用いられる。   The hot rolling of the ingot that has been subjected to the homogenization heat treatment includes a rough rolling process of the ingot (slab) and a finish rolling process according to the thickness of the rolled sheet. In these rough rolling process and finish rolling process, a reverse or tandem rolling mill is appropriately used.

熱間粗圧延の開始から終了までの圧延中には、450℃以下には温度を下げることなく、SiやMgの固溶量を確保することが好ましい。圧延時間が長くなるなどして、パス間の粗圧延板の最低温度が450℃以下に下がると、化合物が析出しやすくなり、人工時効熱処理前にひずみを付加しても、転位密度が十分に増加しない可能性がある。また、固溶Cu量も低下する可能性が高い。   During rolling from the start to the end of hot rough rolling, it is preferable to ensure the solid solution amount of Si and Mg without lowering the temperature to 450 ° C. or lower. If the minimum temperature of the rough rolled plate between passes falls to 450 ° C or lower due to the rolling time becoming longer, the compound is likely to precipitate, and even if strain is added before artificial aging heat treatment, the dislocation density is sufficient. May not increase. In addition, there is a high possibility that the amount of dissolved Cu will also decrease.

このような熱間粗圧延後に、好ましくは、終了温度を300〜360℃の範囲とした熱間仕上圧延を行う。この熱間仕上圧延の終了温度が300℃未満と低すぎる場合には、圧延荷重が高くなって生産性が低下する。一方、加工組織を多く残さず再結晶組織とするために、熱間仕上圧延の終了温度を高くした場合、この温度が360℃を超えると、遷移元素系分散粒子が粗大に析出する可能性が高くなる。   After such hot rough rolling, it is preferable to perform hot finish rolling with an end temperature in the range of 300 to 360 ° C. When the finishing temperature of this hot finish rolling is too low, such as less than 300 ° C., the rolling load becomes high and the productivity is lowered. On the other hand, in order to make a recrystallized structure without leaving a lot of processed structure, when the finishing temperature of hot finish rolling is increased, if this temperature exceeds 360 ° C., transition element-based dispersed particles may be coarsely precipitated. Get higher.

また、熱間仕上げ圧延終了直後の材料(板)温度から、150℃の材料温度までの間の平均冷却速度を、最低でも5℃/時間以上に、ファン等を用いた強制的な冷却により制御する。この平均冷却速度が5℃/時間より小さいと、その冷却中に生成する析出物量が多くなって、人工時効熱処理前にひずみを付加しても、転位密度が十分に増加しない。また、製品板の固溶Cu量が減少する。
したがって、熱間仕上げ圧延終了直後の平均冷却速度は大きい方が好ましく、最低でも5℃/時間以上、好ましくは8℃/時間以上とする。
なお、通常の熱間仕上げ圧延では、圧延後にコイルに巻取るため、本発明のように、ファン等で強制的に冷却しない限り、熱間仕上げ圧延終了直後の自然放冷による平均冷却速度は、通常のコイル径の場合、5℃/時間未満となりやすい。
この熱延板を更に冷間圧延する場合、冷間圧延前の焼鈍 (荒鈍) は必要ではないが、実施しても良い。
The average cooling rate from the material (plate) temperature immediately after the hot finish rolling to the material temperature of 150 ° C is controlled to at least 5 ° C / hour by forced cooling using a fan or the like. To do. When the average cooling rate is less than 5 ° C./hour, the amount of precipitates generated during the cooling increases, and the dislocation density does not increase sufficiently even if strain is added before the artificial aging heat treatment. Moreover, the amount of solid solution Cu of a product board reduces.
Accordingly, it is preferable that the average cooling rate immediately after the hot finish rolling is finished, and at least 5 ° C./hour or more, preferably 8 ° C./hour or more.
In addition, in normal hot finish rolling, since it is wound into a coil after rolling, as in the present invention, unless forcibly cooled by a fan or the like, the average cooling rate by natural cooling immediately after the end of hot finish rolling is: In the case of a normal coil diameter, it tends to be less than 5 ° C./hour.
When this hot-rolled sheet is further cold-rolled, annealing (roughening) before cold rolling is not necessary, but it may be performed.

(冷間圧延)
冷間圧延では、上記熱延板を圧延して、所望の最終板厚の冷延板 (コイルも含む) に製作する。但し、結晶粒をより微細化させるためには、冷間圧延率は30%以上であることが望ましく、また前記荒鈍と同様の目的で、冷間圧延パス間で中間焼鈍を行っても良い。
(Cold rolling)
In cold rolling, the hot-rolled sheet is rolled to produce a cold-rolled sheet (including a coil) having a desired final thickness. However, in order to further refine the crystal grains, the cold rolling rate is desirably 30% or more, and intermediate annealing may be performed between the cold rolling passes for the same purpose as the above roughening. .

(溶体化および焼入れ処理)
冷間圧延後、溶体化処理と、これに続く、室温までの焼入れ処理を行う。この溶体化焼入れ処理については、通常の連続熱処理ラインを用いてよい。ただ、Mg、Siなどの各元素の十分な固溶量を得るためには、550℃以上、溶融温度以下の温度で溶体化処理した後、室温までの平均冷却速度を20℃/秒以上とすることが好ましい。550℃より低い温度では、溶体化処理前に生成していたMg−Si系などの化合物の再固溶が不十分になって、固溶Mg量と固溶Si量が低下する。
(Solution and quenching)
After the cold rolling, solution treatment and subsequent quenching to room temperature are performed. For this solution hardening treatment, a normal continuous heat treatment line may be used. However, in order to obtain a sufficient solid solution amount of each element such as Mg and Si, after performing solution treatment at a temperature of 550 ° C. or higher and a melting temperature or lower, the average cooling rate to room temperature is 20 ° C./second or higher. It is preferable to do. If the temperature is lower than 550 ° C., the re-solution of the compound such as Mg—Si generated before the solution treatment becomes insufficient, and the solid solution Mg amount and the solid solution Si amount decrease.

また、平均冷却速度が20℃/秒未満の場合、冷却中に主にMg−Si系の析出物が生成して固溶Mg量と固溶Si量が低下し、やはりSiやMgの固溶量が確保できない可能性が高くなる。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用いる。   In addition, when the average cooling rate is less than 20 ° C./second, Mg—Si based precipitates are mainly generated during cooling, and the solid solution Mg amount and the solid solution Si amount are reduced. The possibility that the amount cannot be secured increases. In order to ensure this cooling rate, the quenching treatment is performed by selecting water cooling means and conditions such as air cooling such as a fan, mist, spray, and immersion, respectively.

(予備時効処理:再加熱処理)
このような溶体化処理後に焼入れ処理して室温まで冷却した後、1時間以内に冷延板を予備時効処理(再加熱処理)することが好ましい。室温までの焼入れ処理終了後、予備時効処理開始(加熱開始)までの室温保持時間が長すぎると、室温時効により、SiリッチのMg−Siクラスタが生成してしまい、MgとSiのバランスが良いMg−Siクラスタを増加させことができにくくなる。したがって、この室温保持時間は短いほど良く、溶体化および焼入れ処理と再加熱処理とが、時間差が殆ど無いように連続していても良く、下限の時間は特に設定しない。
(Preliminary aging treatment: reheating treatment)
After such a solution treatment, it is preferable to quench the steel sheet and cool it to room temperature, and then subject the cold-rolled sheet to a pre-aging treatment (reheating treatment) within one hour. After the quenching process to room temperature, if the room temperature holding time until the start of pre-aging treatment (heating start) is too long, Si-rich Mg-Si clusters are generated due to room temperature aging, and the balance between Mg and Si is good It becomes difficult to increase Mg-Si clusters. Accordingly, the shorter the room temperature holding time is better, the solution treatment and quenching treatment and the reheating treatment may be continued so that there is almost no time difference, and the lower limit time is not particularly set.

この予備時効処理は、60〜120℃での保持時間を2時間以上、40時間以下保持することが好ましい。これによって、MgとSiのバランスが良いMg−Siクラスタが形成される。
予備時効温度が60℃未満か、または保持時間が2時間未満であると、この予備時効処理をしない場合と同様となって、SiリッチのMg−Siクラスタを抑制し、前記MgとSiのバランスが良いMg−Siクラスタを増加させにくくなり、焼付塗装後の耐力が低くなりやすい。
一方、予備時効条件が120℃を超える、または、40時間を超えては、析出核の生成量が多すぎてしまい、焼付け塗装前の曲げ加工時の強度が高くなりすぎ、曲げ加工性が劣化しやすい。
In this preliminary aging treatment, the holding time at 60 to 120 ° C. is preferably held for 2 hours or more and 40 hours or less. As a result, Mg—Si clusters having a good balance between Mg and Si are formed.
When the preliminary aging temperature is less than 60 ° C. or the holding time is less than 2 hours, the Si-rich Mg—Si cluster is suppressed as in the case where the preliminary aging treatment is not performed, and the balance between the Mg and Si is reduced. However, it is difficult to increase the Mg-Si cluster, and the proof stress after baking coating tends to be low.
On the other hand, if the pre-aging condition exceeds 120 ° C or exceeds 40 hours, the amount of precipitation nuclei is too much, the strength during bending before baking coating becomes too high, and the bending workability deteriorates. It's easy to do.

構造部材の製造
(ひずみ付加)
これらの調質処理(T4)後の素材板は、サイドメンバー等のメンバ、フレーム類や、ピラーなどの、自動車などの前記構造部材へと、主としてプレス成形にて製品成形される。
この際に、前記素材あるいは構造部材に、冷間加工によって、ひずみを5〜20%の範囲で付与しつつ、構造部材に成形した上で、人工時効処理することによって、この人工時効処理後の構造部材表面のX線回折により測定された転位密度を平均で3.0×1014〜8.0×1014-2とできる。
Manufacturing of structural members (addition of strain)
After the tempering (T4), the material plate is product-molded mainly by press molding into members such as side members, frames, and structural members such as automobiles such as pillars.
At this time, after applying the artificial aging treatment to the raw material or the structural member by forming the structural member while applying a strain in the range of 5 to 20% by cold working, the artificial aging treatment is performed. The average dislocation density measured by X-ray diffraction on the surface of the structural member can be 3.0 × 10 14 to 8.0 × 10 14 m −2 .

この際、人工時効処理前に、予め前記ひずみを付与する冷間加工を、別工程の冷間加工ではなく、素材板の構造部材へのプレス成形時に付与しても良い。
また、構造部材の形状に応じて、前記プレス成形に加えて、引張、冷間圧延、レベラー、ストレッチなどの冷間加工の手段によって付与しても良い。この場合は、プレス成形と前記冷間加工により付加される合計のひずみ量を前記範囲とする。
ひずみ量は、自動車パネルなどへの常法によるプレス成形時よりも大きくして、人工時効処理前に予め付加(付与)する。平均転位密度を前記した3.0×1014〜8.0×1014-2の範囲とするためには、ひずみ量を5%以上、好ましくは10%以上、20%以下付加する。
At this time, before the artificial aging treatment, the cold working for applying the strain in advance may be given at the time of press forming the structural member of the material plate instead of the cold working in another process.
Moreover, according to the shape of a structural member, in addition to the said press molding, you may provide by means of cold processing, such as tension | pulling, cold rolling, a leveler, and a stretch. In this case, the total amount of strain added by the press forming and the cold working is within the above range.
The amount of strain is made larger than that during press molding by a conventional method on an automobile panel or the like, and is added (given) in advance before the artificial aging treatment. In order to set the average dislocation density in the range of 3.0 × 10 14 to 8.0 × 10 14 m −2 , the strain amount is 5% or more, preferably 10% or more and 20% or less.

前記した通り、ひずみ量が5%以未満では、人工時効処理の条件にもよるが、従来のプレス成形や曲げ加工の際に付与されるひずみ量と大差なくなり、平均転位密度を3.0×1014-2以上とすることができない。
一方、ひずみ量が大きいほど、平均転位密度を大きくできるが、ひずみ量が20%を超えると、平均転位密度が8.0×1014-2を超えて、伸びが著しく低下して、圧壊特性が劣るようになる。
As described above, when the amount of strain is less than 5%, depending on the conditions of the artificial aging treatment, there is no significant difference from the amount of strain applied during conventional press molding or bending, and the average dislocation density is 3.0 ×. It cannot be 10 14 m -2 or more.
On the other hand, the larger the amount of strain, the larger the average dislocation density. However, when the amount of strain exceeds 20%, the average dislocation density exceeds 8.0 × 10 14 m −2 , and the elongation decreases significantly, resulting in crushing. The characteristics become inferior.

(人工時効処理)
前記ひずみ付与後の構造部材、あるいはこの構造部材を模擬してひずみを5〜20%の範囲で付与した板の、人工時効処理は、塗装焼き付け処理をもってしても良く、あるいは、一般的な人工時効条件(T6、T7)でも良い。
加熱温度や保持時間の条件は、所望の構造部材の強度、あるいは室温時効の進行程度などから自由に決定される。例示すると、1段の人工時効処理であれば、好ましくは、加熱温度200〜270℃×保持時間5〜30分の範囲での時効処理を行う。
加熱温度が低すぎる、保持時間が短すぎると、時効硬化が不足し、本発明で狙いとする強度や圧壊特性とならない可能性がある。また加熱温度が高すぎたり、保持時間が長すぎたりしても、過時効となり、本発明で狙いとする強度や圧壊特性とならない可能性がある。
(Artificial aging treatment)
The artificial aging treatment of the structural member after the strain application, or a plate imitating this structural member and imparting a strain within a range of 5 to 20% may be a paint baking process, or a general artificial Aging conditions (T6, T7) may be used.
The conditions of the heating temperature and holding time are freely determined from the strength of the desired structural member or the degree of progress of aging at room temperature. For example, in the case of a one-stage artificial aging treatment, the aging treatment is preferably performed in the range of heating temperature 200 to 270 ° C. x holding time 5 to 30 minutes.
If the heating temperature is too low and the holding time is too short, age hardening is insufficient, and the strength and crushing characteristics targeted in the present invention may not be achieved. Moreover, even if the heating temperature is too high or the holding time is too long, overaging may occur, and the strength and crushing characteristics targeted by the present invention may not be achieved.

下記表1に示す各成分組成の、調質後の6000系アルミニウム合金の冷延板に、表2のように、構造部材を模擬して、予ひずみを、ひずみ量を種々変えて付加したものについて人工時効処理し、この人工時効処理後の試験材表面の組織(平均転位密度、固溶Cu量)と、強度とVDA曲げ試験にて評価される圧壊特性とを測定評価した。これらの結果を表2に示す。ここで、表1中の各元素の含有量の表示において、各元素における数値欄を「−」としている表示は、その含有量が検出限界以下であることを示す。   The 6000 series aluminum alloy cold-rolled sheet of each component composition shown in the following Table 1 is added with pre-strain, varying the strain amount, by simulating a structural member as shown in Table 2. Was subjected to an artificial aging treatment, and the structure (average dislocation density, solute Cu amount) on the surface of the test material after the artificial aging treatment, the strength, and the crushing characteristics evaluated in the VDA bending test were measured and evaluated. These results are shown in Table 2. Here, in the display of the content of each element in Table 1, the display in which the numerical value column for each element is “−” indicates that the content is below the detection limit.

素材アルミニウム合金板の具体的な製造条件は以下の通りとした。
すなわち、表1に示す各組成のアルミニウム合金鋳塊を、DC鋳造法により共通して溶製した。続いて、鋳塊を、各例とも、昇温速度150℃/hr、均熱温度550℃×3時間保持にて均熱処理をした。
その後、各例とも、熱間粗圧延を500〜520℃で開始し、熱間粗圧延の最低温度を表2に示す通り種々変えた上で行い、更に、終了温度を300〜350℃の範囲とした熱間仕上圧延を行い、共通して厚さ4.0mmの熱延板とした。
この際、熱間仕上げ圧延終了直後の材料(板)温度から、150℃の材料温度までの間の平均冷却速度(℃/時間)を、表2に示す通り種々変えた上で行った。
この熱延板を、各例とも共通して、熱延後の荒焼鈍や、冷延パス途中の中間焼鈍無しで、加工率50%の冷間圧延を行い、厚さ2.0mmの冷延板とした。
The specific production conditions for the material aluminum alloy plate were as follows.
That is, aluminum alloy ingots having respective compositions shown in Table 1 were commonly melted by DC casting. Subsequently, the ingots were subjected to soaking treatment in each example while maintaining a heating rate of 150 ° C./hr and a soaking temperature of 550 ° C. × 3 hours.
Thereafter, in each example, hot rough rolling was started at 500 to 520 ° C., and the minimum temperature of hot rough rolling was changed as shown in Table 2, and the end temperature was in the range of 300 to 350 ° C. Hot finish rolling was performed to obtain a hot rolled sheet having a thickness of 4.0 mm in common.
At this time, the average cooling rate (° C./hour) from the material (plate) temperature immediately after the end of hot finish rolling to the material temperature of 150 ° C. was changed as shown in Table 2 in various ways.
In common with each example, this hot-rolled sheet is cold-rolled at a processing rate of 50% without rough annealing after hot-rolling or intermediate annealing in the middle of the cold-rolling pass. A board was used.

更に、この各冷延板を、各例とも共通した条件にて、熱処理設備で調質処理(T4)した。具体的には、溶体化処理を550℃×30秒保持で行い、この際、前記溶体化処理温度までの平均加熱速度を50℃/秒とし、溶体化処理後は平均冷却速度を30℃/秒とした水冷を行うことで室温まで冷却した。また、この冷却直後に、各例とも共通して、直ちに予備時効処理を100℃で5時間保持する条件で行い、予備時効処理後は徐冷(放冷)しT4材を得た。   Furthermore, each cold-rolled sheet was subjected to a tempering treatment (T4) with a heat treatment facility under the same conditions as in each example. Specifically, the solution treatment is performed by holding at 550 ° C. for 30 seconds. At this time, the average heating rate up to the solution treatment temperature is 50 ° C./second, and after the solution treatment, the average cooling rate is 30 ° C./second. It cooled to room temperature by performing water cooling for 2 seconds. Immediately after this cooling, in common with each example, the preliminary aging treatment was immediately performed at 100 ° C. for 5 hours, and after the preliminary aging treatment, it was gradually cooled (cooled) to obtain a T4 material.

これらT4材から、JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、前記T4材を、構造部材へプレス成形する際にひずみを付与することを模擬して、後述する引張試験にて、前記5号引張試験片に予ひずみを、ひずみ量を種々変えて付加した。これらひずみを付加した5号引張試験片について、表2に示す条件で人工時効処理を行い、引張試験を行った。その後、その試験片から必要なサイズの板状試験片を切り出し、固溶Cu量や転位密度、衝撃吸収性の評価を実施した。   From these T4 materials, a JISZ2201 No. 5 test piece (25 mm × 50 mmGL × plate thickness) was sampled, and the tensile test described later was simulated by applying strain when the T4 material was press-formed into a structural member. The pre-strain was added to the No. 5 tensile test piece with various strains. About the No. 5 tensile test piece which added these distortions, the artificial aging treatment was performed on the conditions shown in Table 2, and the tensile test was done. Thereafter, a plate-shaped test piece having a necessary size was cut out from the test piece, and the amount of dissolved Cu, dislocation density, and impact absorption were evaluated.

(固溶Cu量の測定)
固溶Cu量の測定は、熱フェノールによる残渣抽出法により、測定対象となる前記板状試験片を溶解し、メッシュを0.1μmとしたフィルターにより固液をろ過分離し、分離された溶液中のCuの含有量を固溶Cu量として測定した。
(Measurement of solid solution Cu amount)
The amount of solid solution Cu is measured by dissolving the plate-like test piece to be measured by a residue extraction method using hot phenol, and filtering and separating the solid and liquid with a filter having a mesh of 0.1 μm. The Cu content was measured as the amount of solid solution Cu.

この熱フェノールによる残渣抽出法は、具体的に次のように行った。先ず、分解フラスコにフェノールを入れて加熱した後、測定対象となる前記板状試験片を、この分解フラスコに移し入れて加熱分解した。次に、ベンジルアルコールを加えた後、前記フィルターにより吸引ろ過して、固液をろ過分離し、分離された溶液中のCuの含有量を各々定量分析した。
この定量分析には、原子吸光分析法(AAS)や誘導結合プラズマ発光分析法(ICP−OES)などを適宜用いた。前記吸引ろ過には、前記した通り、メッシュ(捕集粒子径)が0.1μmでφ47mmのメンブレンフィルターを用いた。
この測定と計算は、前記板状試験片の任意の3箇所から採取した各試料3個について行い、これら各試料のCuの固溶量(質量%)を平均化し、固溶Cu量とした。
The residue extraction method using hot phenol was specifically performed as follows. First, after putting phenol into a decomposition flask and heating, the plate-shaped test piece to be measured was transferred to the decomposition flask and thermally decomposed. Next, after adding benzyl alcohol, it filtered by suction with the said filter, the solid-liquid was separated by filtration, and each Cu content in the isolate | separated solution was quantitatively analyzed.
For this quantitative analysis, atomic absorption spectrometry (AAS), inductively coupled plasma optical emission spectrometry (ICP-OES) or the like was appropriately used. As described above, a membrane filter having a mesh (collected particle diameter) of 0.1 μm and a diameter of 47 mm was used for the suction filtration.
This measurement and calculation were performed on three samples collected from any three locations of the plate-shaped test piece, and the solid solution amount (mass%) of these samples was averaged to obtain the solid solution Cu amount.

(転位密度の測定)
前記板状試験片の表面を構造部材表面と模擬して、前記板状試験片表面の転位密度(×1014 -2)を、X線回折により、前記した具体的な条件で測定した。測定は前記板状試験片の任意の5箇所にて行い、これら5箇所の転位密度を平均化したものを、平均転位密度(×1014 -2)とした。
(Measurement of dislocation density)
By simulating the surface of the plate-like test piece as the surface of a structural member, the dislocation density (× 10 14 m −2 ) on the surface of the plate-like test piece was measured by X-ray diffraction under the specific conditions described above. The measurement was performed at any five locations on the plate-like test piece, and the average dislocation density at these five locations was defined as the average dislocation density (× 10 14 m −2 ).

(引張試験)
また、人工時効処理後の前記5号引張試験片を用いた引張試験を、室温にて行った。このときの試験片の引張方向を圧延方向の平行方向とした。試験方法は、JIS2241(1980)に基づき、室温20℃で試験を行い、評点間距離50mmで引張速度5mm/分、試験片が破断するまで一定の速度で行った。そして、人工時効処理後の構造部材として、0.2%耐力が250MPa以上を合格とした。
(Tensile test)
Further, a tensile test using the No. 5 tensile test piece after the artificial aging treatment was performed at room temperature. The tensile direction of the test piece at this time was the parallel direction of the rolling direction. The test method was based on JIS2241 (1980), the test was performed at room temperature of 20 ° C., the distance between the scores was 50 mm, the tensile speed was 5 mm / min, and the test piece was run at a constant speed until it broke. And as a structural member after artificial aging treatment, 0.2% proof stress made 250 MPa or more to pass.

(衝撃吸収性)
衝撃吸収性を評価する曲げ試験は、VDA曲げ試験として、ドイツ自動車工業会(VDA)の規格の中の「VDA238−100 Plate bending test for metallic materials」に従って実施した。この試験方法を、図1に斜視図で示す。
先ず、前記板状試験片を、ロールギャップを設けて、互いに平行に配置した2個のロール上に、図1に点線で示すように、水平で左右均等の長さに載置する。
具体的には、前記板状試験片を、その圧延方向と、上方に垂直に立てて配置した板状の押し曲げ治具の延在方向とが、互いに直角になるように、ロールギャップ中央にその中央部が位置するよう、2個のロール上に、水平で左右均等の長さに載置する。
そして、上方から前記押し曲げ治具を前記板状試験片の中央部に押し当てて荷重を負荷し、この板状試験片を前記狭いロールギャップに向けて押し曲げ(突き曲げ)て、曲げ変形した板状試験片中央部を前記狭いロールギャップ内に押し込む。
(Shock absorption)
The bending test for evaluating shock absorption was performed as a VDA bending test in accordance with “VDA238-100 Plate Bending Test for Metallic Materials” in the standards of the German Automobile Manufacturers Association (VDA). This test method is shown in perspective view in FIG.
First, the plate-like test piece is placed on two rolls arranged parallel to each other with a roll gap, as shown by dotted lines in FIG.
Specifically, the plate-shaped test piece is placed in the center of the roll gap so that the rolling direction and the extending direction of the plate-shaped pushing and bending jig arranged vertically are perpendicular to each other. It is placed horizontally and equally on the left and right on the two rolls so that the central part is located.
Then, the pushing and bending jig is pressed against the center of the plate-shaped test piece from above to apply a load, and the plate-like test piece is pushed and bent (bent) toward the narrow roll gap to bend and deform. The center part of the plate-shaped test piece is pushed into the narrow roll gap.

この際に、上方からの押し曲げ治具からの荷重Fが最大となる時の板状試験片の中央部の曲げ外側の角度を曲げ角度(°)として測定して、その曲げ角度の大きさで衝撃吸収性を評価する。この曲げ角度が大きいほど、板状試験片は、途中で圧壊せずに、曲げ変形が持続しており、衝撃吸収性(圧壊特性)が高い。   At this time, the angle of the bending outside of the center part of the plate-like test piece when the load F from the pushing bending jig from the maximum is measured as a bending angle (°), and the magnitude of the bending angle. Evaluate the shock absorption. The larger the bending angle, the more the plate-like test piece is not crushed in the middle, the bending deformation is continued, and the shock absorption (crushing property) is higher.

このVDA曲げ試験の試験条件として、図1に記載した記号を用いて示すと、板状試験片は幅b:60mm×長さl:60mmの正方形形状とし、2個のロール直径Dは各々30mm、ロールギャップLは板状試験片板厚の2.0倍の4mmとした。Sは荷重Fが最大となる時の板状試験片中央部のロールギャップ内への押し込み深さである。
また、板状の押し曲げ治具は、図1に示すように、板状試験片の中央部に押し当たる、下端側の辺が、その先端(下端)の半径が0.2mmφとなるように尖ったテーパ状とされている。
上記VDA曲げ試験は、各例とも前記板状試験片3枚ずつ(3回)行い、曲げ角度(°)はこれらの平均値を採用した。これらの結果を表2に示す。
As test conditions for this VDA bending test, the symbols shown in FIG. 1 are used to indicate that the plate-shaped test piece has a square shape of width b: 60 mm × length l: 60 mm, and each of the two roll diameters D is 30 mm. The roll gap L was 4 mm, which is 2.0 times the plate thickness of the plate-shaped test piece. S is the depth of intrusion into the roll gap at the center of the plate-like test piece when the load F is maximum.
In addition, as shown in FIG. 1, the plate-like pushing / bending jig presses against the center portion of the plate-like test piece so that the lower end side has a radius of 0.2 mmφ at the tip (lower end). It has a sharp tapered shape.
The VDA bending test was performed for each of the three plate-like test pieces (3 times) in each example, and the average value of the bending angles (°) was adopted. These results are shown in Table 2.

表2から明らかなように、表1の1〜10の合金番号(本発明組成範囲内)のアルミニウム合金を用いた、各発明例1〜13は、前記した好ましいひずみや人工時効処理が施されている。
このため、構造部材を模擬した前記人工時効処理後の状態として、本発明で規定する平均転位密度を満足している。
この結果、VDA曲げ試験にて評価される圧壊特性も、曲げ角度が90°以上と、構造部材としての要求特性を満たして優れている。また、0.2%耐力も、構造部材としての要求特性を満たす250MPa以上の高強度である。
As is apparent from Table 2, each of Invention Examples 1 to 13 using the aluminum alloys of alloy numbers 1 to 10 (within the composition range of the present invention) in Table 1 was subjected to the above-described preferred strain and artificial aging treatment. ing.
For this reason, the average dislocation density defined in the present invention is satisfied as the state after the artificial aging treatment simulating the structural member.
As a result, the crushing characteristics evaluated in the VDA bending test are excellent because the bending angle is 90 ° or more, which satisfies the required characteristics as a structural member. The 0.2% proof stress is also a high strength of 250 MPa or more that satisfies the required characteristics as a structural member.

これに対して、各比較例は、合金組成が本発明範囲から外れるか、合金組成は本発明範囲内であるものの、前記したひずみ条件が好ましい範囲から外れる。
このため、各比較例は、本発明で規定する平均転位密度を満足していない。
この結果、各比較例は0.2%耐力か、VDA曲げ試験にて評価される圧壊特性が発明例よりも劣っており、構造部材としての要求特性を満たしていない。
On the other hand, in each comparative example, although the alloy composition is out of the range of the present invention, or the alloy composition is in the range of the present invention, the above-described strain condition is out of the preferable range.
For this reason, each comparative example does not satisfy the average dislocation density defined in the present invention.
As a result, each comparative example is 0.2% proof stress, or the crushing property evaluated by the VDA bending test is inferior to that of the inventive example, and does not satisfy the required properties as a structural member.

比較例14〜20は、合金組成は表1の合金番号2あるいは5の通り本発明範囲内であるものの、素材板が好ましい製造条件から外れるか、人工時効処理前の構造部材として、好ましい予ひずみが付加されていないか、不足しており、押しなべて、平均転位密度範囲が、本発明で規定する範囲から低めに外れている。   In Comparative Examples 14 to 20, although the alloy composition is within the scope of the present invention as shown in Alloy No. 2 or 5 of Table 1, the pre-strain is preferable as the structural member before the artificial aging treatment or the raw material plate is out of the preferable manufacturing conditions. Is not added or is insufficient, and the average dislocation density range is slightly lower than the range defined in the present invention.

比較例14は、素材板製造の際の熱間粗圧延の最低温度が低すぎて、本発明で規定する平均転位密度を満足していない。
比較例15は、素材板製造の際の熱間仕上げ圧延終了直後の材料(板)温度から、150℃の材料温度までの間の平均冷却速度が遅すぎて、本発明で規定する平均転位密度範囲が低めに外れている。
比較例16、17は、前記予ひずみが付加されていないか、不足している。
比較例18は、付加される前記予ひずみが高すぎる。
比較例19、20は、付加された前記予ひずみに対する人工時効処理の温度が高すぎるか、保持時間が長すぎる。
Comparative Example 14 does not satisfy the average dislocation density defined in the present invention because the minimum temperature of the hot rough rolling during the production of the raw material sheet is too low.
In Comparative Example 15, the average cooling rate from the material (plate) temperature immediately after completion of hot finish rolling in the production of the raw material plate to the material temperature of 150 ° C. is too slow, and the average dislocation density specified in the present invention The range is out of range.
In Comparative Examples 16 and 17, the pre-strain is not added or is insufficient.
In Comparative Example 18, the added pre-strain is too high.
In Comparative Examples 19 and 20, the temperature of the artificial aging treatment for the added pre-strain is too high, or the holding time is too long.

比較例21、22は、素材板は前記好ましい条件で製造され、前記した好ましい範囲でのひずみが付加されているものの、合金組成が、表1の合金番号11、12の通り、Mg、Siの含有量が本発明範囲から低めに外れる。
このため、平均転位密度範囲が、本発明で規定する範囲から低めに外れており、BH性が著しく低下して、強度と圧壊特性とが低すぎる。
In Comparative Examples 21 and 22, the material plate was manufactured under the above-mentioned preferable conditions, and the strain within the above-mentioned preferable range was added, but the alloy composition was Mg, Si as shown in Alloy Nos. 11 and 12 in Table 1. The content deviates slightly from the scope of the present invention.
For this reason, the average dislocation density range is slightly lower than the range defined in the present invention, the BH property is remarkably lowered, and the strength and the crushing property are too low.

以上の結果から、本発明アルミニウム合金構造部材がVDA曲げ試験にて評価される圧壊特性、高強度を兼備するための、本発明の各要件の臨界的な意義が裏付けられる。   From the above results, the critical significance of each requirement of the present invention for the aluminum alloy structural member of the present invention to have both the crushing characteristics and high strength evaluated by the VDA bending test is supported.

Figure 2017125240
Figure 2017125240

Figure 2017125240
Figure 2017125240

以上説明したように、本発明は、6000系アルミニウム合金板を成形素材とする圧壊特性を向上させた構造部材と、その製造方法を提供できる。したがって、本発明は軽量化に寄与する、自動車、自転車、鉄道車両などの構造部材に好適である。   As described above, the present invention can provide a structural member with improved crushing characteristics using a 6000 series aluminum alloy plate as a forming material, and a method for manufacturing the structural member. Therefore, the present invention is suitable for structural members such as automobiles, bicycles, and railway vehicles that contribute to weight reduction.

Claims (13)

質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を含有し、残部がAl及び不可避的不純物からなるアルミニウム合金構造部材であって、この構造部材表面のX線回折により測定された転位密度が平均で3.0×1014〜8.0×1014-2であることを特徴とする圧壊特性に優れたアルミニウム合金構造部材。 An aluminum alloy structural member containing, by mass%, Mg: 0.30 to 1.5%, Si: 0.50 to 1.5%, the balance being Al and inevitable impurities, and the surface of the structural member An aluminum alloy structural member excellent in crushing characteristics, characterized in that the dislocation density measured by X-ray diffraction is 3.0 × 10 14 to 8.0 × 10 14 m −2 on average. 前記アルミニウム合金構造部材が、更に、質量%で、Cu:0.05〜1.0%を含有し、熱フェノール残渣抽出法により分離された溶液中の固溶Cu量が0.05〜1.0%である、請求項1に記載の圧壊特性に優れたアルミニウム合金構造部材。   The aluminum alloy structural member further contains Cu: 0.05 to 1.0% by mass, and the amount of solid solution Cu in the solution separated by the hot phenol residue extraction method is 0.05 to 1.%. The aluminum alloy structural member excellent in crushing characteristics according to claim 1, which is 0%. 前記アルミニウム合金構造部材が、更に、質量%で、Mn:0.05〜0.5%、Zr:0.02〜0.20%、Cr:0.02〜0.15%のうちの一種または二種以上を含有する請求項1または2に記載の圧壊特性に優れたアルミニウム合金構造部材。   The aluminum alloy structural member may further be, in mass%, Mn: 0.05 to 0.5%, Zr: 0.02 to 0.20%, Cr: 0.02 to 0.15%, The aluminum alloy structural member excellent in the crushing property according to claim 1 or 2 containing two or more kinds. 前記アルミニウム合金構造部材が、更に、質量%で、Ag:0.01〜0.2%、Sn:0.001〜0.1%、Sc:0.02〜0.1%のうちの一種または二種以上を含有する請求項1〜3のいずれか1項に記載の圧壊特性に優れたアルミニウム合金構造部材。   The aluminum alloy structural member is further in mass%, Ag: 0.01 to 0.2%, Sn: 0.001 to 0.1%, Sc: 0.02 to 0.1% or The aluminum alloy structural member excellent in the crushing property according to any one of claims 1 to 3, comprising two or more kinds. 質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を各々含有し、残部がAl及び不可避的不純物からなるアルミニウム合金鋳塊を、均熱処理後に圧延して板となし、更に、この板を溶体化および焼入れ処理した後に、冷間加工によって、ひずみを5〜20%の範囲で付与しつつ、構造部材に成形した上で、人工時効処理することによって、この人工時効処理後の構造部材表面のX線回折により測定された転位密度を平均で3.0×1014〜8.0×1014-2とすることを特徴とする、圧壊特性に優れたアルミニウム合金構造部材の製造方法。 An aluminum alloy ingot containing Mg: 0.30 to 1.5% and Si: 0.50 to 1.5% by mass and the balance being Al and inevitable impurities is rolled after soaking. After the solution is formed and quenched, and the plate is molded into a structural member while applying a strain in the range of 5 to 20% by cold working, and then subjected to artificial aging treatment The crushing characteristic is characterized in that the dislocation density measured by X-ray diffraction on the surface of the structural member after the artificial aging treatment is 3.0 × 10 14 to 8.0 × 10 14 m −2 on average. A method for producing an excellent aluminum alloy structural member. 前記アルミニウム合金構造部材が、更に、質量%で、Cu:0.05〜1.0%を含有し、熱フェノール残渣抽出法により分離された溶液中の固溶Cu量が0.05〜1.0%である、請求項5に記載の圧壊特性に優れたアルミニウム合金構造部材の製造方法。   The aluminum alloy structural member further contains Cu: 0.05 to 1.0% by mass, and the amount of solid solution Cu in the solution separated by the hot phenol residue extraction method is 0.05 to 1.%. The manufacturing method of the aluminum alloy structural member excellent in the crushing property according to claim 5, which is 0%. 前記アルミニウム合金構造部材が、更に、質量%で、Mn:0.05〜0.5%、Zr:0.02〜0.20%、Cr:0.02〜0.15%のうちの一種または二種以上を含有する請求項5または6に記載の圧壊特性に優れたアルミニウム合金構造部材の製造方法。   The aluminum alloy structural member may further be, in mass%, Mn: 0.05 to 0.5%, Zr: 0.02 to 0.20%, Cr: 0.02 to 0.15%, The manufacturing method of the aluminum alloy structural member excellent in the crushing characteristic of Claim 5 or 6 containing 2 or more types. 前記アルミニウム合金構造部材が、更に、質量%で、Ag:0.01〜0.2%、Sn:0.001〜0.1%、Sc:0.02〜0.1%のうちの一種または二種以上を含有する請求項5〜7のいずれか1項に記載の圧壊特性に優れたアルミニウム合金構造部材の製造方法。   The aluminum alloy structural member is further in mass%, Ag: 0.01 to 0.2%, Sn: 0.001 to 0.1%, Sc: 0.02 to 0.1% or The manufacturing method of the aluminum alloy structural member excellent in the crushing characteristic of any one of Claims 5-7 containing 2 or more types. 前記ひずみの付与を前記板の構造部材への前記成形時に行う請求項5〜8のいずれか1項に記載の圧壊特性に優れたアルミニウム合金構造部材の製造方法。   The method for producing an aluminum alloy structural member having excellent crushing characteristics according to any one of claims 5 to 8, wherein the imparting of the strain is performed at the time of forming the structural member of the plate. 質量%で、Mg:0.30〜1.5%、Si:0.50〜1.5%を含有し、残部がAl及び不可避的不純物からなる構造部材用アルミニウム合金板であって、前記構造部材用途を模擬して、この板を550℃の温度で30秒保持する溶体化処理をした後、直ちに室温までの平均冷却速度を30℃/sで水冷し、この冷却直後に直ちに100℃で5時間保持する予備時効処理を行い、その後引張試験機によるひずみを10%付与した後で、更に210℃×30分の人工時効処理を施した際の組織として、この板表面のX線回折により測定された転位密度が平均で3.0×1014 〜8.0×1014-2であることを特徴とする圧壊特性に優れたアルミニウム合金板。 An aluminum alloy plate for a structural member containing, in mass%, Mg: 0.30 to 1.5%, Si: 0.50 to 1.5%, and the balance being Al and inevitable impurities, Immediately after the solution treatment for holding the plate at a temperature of 550 ° C. for 30 seconds, simulating the use of the member, the average cooling rate to room temperature was 30 ° C./s, and immediately after this cooling, immediately at 100 ° C. Preliminary aging treatment is held for 5 hours, and after applying 10% strain by a tensile tester, the structure is further subjected to artificial aging treatment at 210 ° C. for 30 minutes by X-ray diffraction of the plate surface. An aluminum alloy plate having excellent crushing characteristics, wherein the measured dislocation density is 3.0 × 10 14 to 8.0 × 10 14 m −2 on average. 前記アルミニウム合金板が、更に、質量%で、Cu:0.05〜1.0%を含有し、熱フェノール残渣抽出法により分離された溶液中の固溶Cu量が0.05〜1.0%である、請求項10に記載の圧壊特性に優れたアルミニウム合金板。   The aluminum alloy plate further contains, by mass%, Cu: 0.05 to 1.0%, and the amount of solid solution Cu in the solution separated by the hot phenol residue extraction method is 0.05 to 1.0. The aluminum alloy plate having excellent crushing characteristics according to claim 10, which is%. 前記アルミニウム合金板が、更に、質量%で、Mn:0.05〜0.5%、Zr:0.02〜0.20%、Cr:0.02〜0.15%のうちの一種または二種以上を含有する請求項10または11に記載の圧壊特性に優れたアルミニウム合金板。   The aluminum alloy plate is further in mass%, Mn: 0.05 to 0.5%, Zr: 0.02 to 0.20%, Cr: 0.02 to 0.15%. The aluminum alloy plate excellent in the crushing property according to claim 10 or 11, comprising a seed or more. 前記アルミニウム合金板が、更に、質量%で、Ag:0.01〜0.2%、Sn:0.001〜0.1%、Sc:0.02〜0.1%のうちの一種または二種以上を含有する請求項10〜12のいずれか1項に記載の圧壊特性に優れたアルミニウム合金板。
Further, the aluminum alloy plate may be one or two of Ag: 0.01 to 0.2%, Sn: 0.001 to 0.1%, Sc: 0.02 to 0.1% by mass%. The aluminum alloy plate excellent in the crushing property according to any one of claims 10 to 12, comprising a seed or more.
JP2016005510A 2016-01-14 2016-01-14 Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet Pending JP2017125240A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016005510A JP2017125240A (en) 2016-01-14 2016-01-14 Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet
US15/380,011 US20170204503A1 (en) 2016-01-14 2016-12-15 Aluminum alloy structural part, method for producing the same, and aluminum alloy sheet
CN201611225226.7A CN106978553A (en) 2016-01-14 2016-12-27 Aluminium alloy structure component and its manufacture method and aluminium alloy plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016005510A JP2017125240A (en) 2016-01-14 2016-01-14 Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet

Publications (1)

Publication Number Publication Date
JP2017125240A true JP2017125240A (en) 2017-07-20

Family

ID=59313582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016005510A Pending JP2017125240A (en) 2016-01-14 2016-01-14 Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet

Country Status (3)

Country Link
US (1) US20170204503A1 (en)
JP (1) JP2017125240A (en)
CN (1) CN106978553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791720A (en) * 2019-11-25 2020-02-14 重庆文理学院 Processing method for inhibiting recrystallization of aluminum-lithium alloy

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135367A1 (en) * 2013-03-07 2014-09-12 Aleris Aluminum Duffel Bvba Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
US11932928B2 (en) * 2018-05-15 2024-03-19 Novelis Inc. High strength 6xxx and 7xxx aluminum alloys and methods of making the same
CN112626429B (en) * 2019-10-08 2022-10-21 有研工程技术研究院有限公司 Method for improving aging resistance stability of 6000 series aluminum alloy plate
JP7244407B2 (en) * 2019-12-13 2023-03-22 株式会社神戸製鋼所 Aluminum alloy sheet for automobile structural member, automobile structural member, and method for producing aluminum alloy plate for automobile structural member
CN112267036B (en) * 2020-09-09 2021-12-03 宁波悦威液压科技有限公司 Hydraulic cylinder cover and preparation method thereof
CN112760528A (en) * 2020-12-24 2021-05-07 亚太轻合金(南通)科技有限公司 Aluminum alloy for improving crushing performance of 6008 energy-absorbing box and preparation method thereof
CN114231803B (en) * 2021-12-23 2022-08-16 江苏中天科技股份有限公司 High-strength high-conductivity aluminum alloy monofilament and preparation method thereof
CN115383133A (en) * 2022-08-31 2022-11-25 厦门理工学院 3D printing aluminum alloy and modification method thereof
CN116121672A (en) * 2023-02-21 2023-05-16 西北工业大学 Method for thermo-mechanical treatment of aluminum alloy through compression-torsion composite deformation

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000129382A (en) * 1998-10-26 2000-05-09 Kobe Steel Ltd Aluminum alloy clad plate for forming, excellent in filiform corrosion resistance
JP4274674B2 (en) * 2000-04-12 2009-06-10 トヨタ自動車株式会社 Aluminum alloy member excellent in crushability and manufacturing method thereof
JP4019082B2 (en) * 2005-03-25 2007-12-05 株式会社神戸製鋼所 Aluminum alloy plate for bottle cans with excellent high temperature characteristics
CN100429330C (en) * 2005-08-19 2008-10-29 株式会社神户制钢所 Shaping method of aluminium alloy section
JP5059423B2 (en) * 2007-01-18 2012-10-24 株式会社神戸製鋼所 Aluminum alloy plate
JP5260883B2 (en) * 2007-04-17 2013-08-14 株式会社神戸製鋼所 Aluminum alloy plate for warm forming and warm forming method
JP2009173972A (en) * 2008-01-22 2009-08-06 Kobe Steel Ltd Aluminum alloy sheet having excellent ridging mark property upon forming
JP5203772B2 (en) * 2008-03-31 2013-06-05 株式会社神戸製鋼所 Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP2013163835A (en) * 2012-02-09 2013-08-22 Kobe Steel Ltd Aluminum alloy sheet for di can body
JP5925667B2 (en) * 2012-11-19 2016-05-25 株式会社神戸製鋼所 Aluminum alloy material for high-pressure hydrogen gas container and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110791720A (en) * 2019-11-25 2020-02-14 重庆文理学院 Processing method for inhibiting recrystallization of aluminum-lithium alloy
CN110791720B (en) * 2019-11-25 2020-11-24 重庆文理学院 Processing method for inhibiting recrystallization of aluminum-lithium alloy

Also Published As

Publication number Publication date
CN106978553A (en) 2017-07-25
US20170204503A1 (en) 2017-07-20

Similar Documents

Publication Publication Date Title
KR102121156B1 (en) Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
JP2017125240A (en) Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet
WO2016140335A1 (en) Aluminum alloy plate
JP6810508B2 (en) High-strength aluminum alloy plate
WO2015141647A1 (en) Aluminum alloy sheet for structural material
JP2019026897A (en) Aluminum alloy sheet for structural member, and manufacturing method of aluminum alloy structural member
JP2016160516A (en) Aluminum alloy sheet
JP6506678B2 (en) Aluminum alloy sheet for automobile structural member and method of manufacturing the same
US20170114431A1 (en) Aluminum alloy sheet having good formability
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
JP7116394B2 (en) Magnesium alloy and method for producing magnesium alloy
JP2018204116A (en) Aluminum alloy sheet
JP6810178B2 (en) High-strength aluminum alloy and its manufacturing method, aluminum alloy plate and aluminum alloy member using the aluminum alloy
JP2017210673A (en) Aluminum alloy sheet for press molding small in anisotropy of r value and manufacturing method therefor
WO2019163161A1 (en) Magnesium alloy and method for producing magnesium alloy
WO2019189521A1 (en) High-strength aluminum alloy, and aluminum alloy sheet and aluminum alloy member using said aluminum alloy
JP4588338B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP2018100435A (en) Aluminum alloy sheet
JP5918187B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP2017179469A (en) Aluminum alloy sheet and aluminum alloy structural member
JP2017133044A (en) Aluminum alloy sheet and aluminum alloy structural member