JP2000054070A - Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture - Google Patents

Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture

Info

Publication number
JP2000054070A
JP2000054070A JP22195398A JP22195398A JP2000054070A JP 2000054070 A JP2000054070 A JP 2000054070A JP 22195398 A JP22195398 A JP 22195398A JP 22195398 A JP22195398 A JP 22195398A JP 2000054070 A JP2000054070 A JP 2000054070A
Authority
JP
Japan
Prior art keywords
rolling
temperature
steel sheet
steel
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22195398A
Other languages
Japanese (ja)
Inventor
Masatoshi Araya
昌利 荒谷
Akio Tosaka
章男 登坂
Osamu Furukimi
古君  修
Makoto Araya
誠 荒谷
Hideo Kukuminato
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP22195398A priority Critical patent/JP2000054070A/en
Publication of JP2000054070A publication Critical patent/JP2000054070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel sheet free from the occurrence of surface roughing and stretcher strain pattern after press forming by controlling the composition of an extra low carbon steel sheet and its manufacturing conditions and specifying the average value of crystal grain size and the value of aging index AI, respectively. SOLUTION: A steel composition, consisting of, by mass, 0.0005-0.0050% C, >0.50-1.5% Mn, 0.015-0.15% Al, <=0.0050% N, and the balance Fe, is provided. A slab of the steel is heated to a temperature between the Ac3 point and 1150 deg.C, roughed, and cooled rapidly at >=50 deg.C/sec cooling rate, by which the surface temperature of the resultant sheet bar is regulated to a value between the Ac1 point and Ac1 -30 deg.C. Successively, finish rolling is started within 1 to 5 sec and rolling is finished at a temperature not lower than the Ar3 point, and, within 1 sec, the resultant steel plate is cooled rapidly at a rate of 50 deg.C/sec until a plate surface temperature of <=600 deg.C is reached, followed by coiling at 450 to 600 deg.C. Then, cold rolling is performed at 80 to 95% draft, and the resultant steel sheet is temper rolled at 0. 5 to 3% draft after recrystallization annealing. By this method, the average value of grain size is regulated to <=10 μm in the region between the surface layer and a position at a depth of 20% of overall thickness and to 10 to 15 μm in the region of overall thickness, and also the value of aging index AI is regulated to <=30 MPa.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、食品缶、飲料缶な
どの用途に用いられる缶用鋼板に係り、とくにプレス加
工、曲げ加工、拡缶加工等の加工時に発生する肌荒れや
ストレッチャーストレイン模様の発生防止に関する。な
お、本発明でいう鋼板とは、鋼帯をも含むものとする。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for cans used for applications such as food cans and beverage cans, and particularly to roughened skin and stretcher strain patterns generated during processing such as press working, bending work, and can expanding work. Prevention of occurrence. In addition, the steel plate referred to in the present invention includes a steel strip.

【0002】[0002]

【従来の技術】深絞り缶、DRD(Drawn and Redrawn
)缶、DI(Drawn and Ironined)缶などの2ピース
缶に用いられる冷延鋼板には、つぎのような特性が要求
されている。すなわち、 プレス加工性に優れ、加工時に割れ等の欠陥が発生し
ないこと。
2. Description of the Related Art Deep drawn cans, DRD (Drawn and Redrawn)
The following properties are required for cold-rolled steel sheets used for two-piece cans such as cans and DI (Drawn and Ironined) cans. In other words, it has excellent press workability and does not generate defects such as cracks during processing.

【0003】プレス加工後の鋼板表面の肌荒れが小さ
く仕上がり外観が良好なこと。 異方性が小さくイヤリング性に優れ深絞り加工後の耳
発生が小さいこと。 が挙げられる。このような要求に対し、例えば、特開昭
59-129733 号公報には、NbあるいはTiなどの炭窒化物形
成元素を添加することにより、固溶Cおよび固溶Nを低
減し、缶用鋼板のr値および耐時効性を向上させる方法
が提案されている。
[0003] The surface roughness of the steel sheet after pressing is small and the finished appearance is good. Low anisotropy, excellent earrings, and low ear formation after deep drawing. Is mentioned. In response to such a request, for example,
JP-A-59-129733 discloses a method for reducing the solute C and solute N by adding a carbonitride forming element such as Nb or Ti to improve the r value and aging resistance of a steel sheet for cans. Proposed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、缶用鋼
板にTiを添加すると、耐食性が劣化する、結晶粒が粗大
化しプレス加工後に肌荒れが発生する、などの問題に加
えて、結晶粒の粗大化に伴い材質が極端に軟質化し、ぶ
りきの最軟質規格であるT1レベル(HR30T :49±3 )
を満足させるために圧下率:5%以上の高圧下調質圧延
を施す必要が生じるという問題もあった。
However, when Ti is added to a steel sheet for a can, the corrosion resistance is deteriorated, the crystal grains are coarsened and the surface is roughened after press working, and the crystal grains are coarsened. T1 level (HR30T: 49 ± 3) which is the softest standard for tinplate
In order to satisfy the above, there is a problem that it is necessary to perform high-pressure temper rolling at a reduction ratio of 5% or more.

【0005】圧下率:3%以下の調質圧延では、圧延油
を必要としないドライスキンパス仕様で圧延できるが、
圧下率:3%を超える調質圧延では圧延油を必要とする
ウェットスキンパス仕様で圧延する必要がある。したが
って、圧下率:3%を超える調質圧延を行うと、圧延油
使用によるコスト増加や、ドライからウェットへのスキ
ンパス仕様変更による生産性の著しい低下などを招く。
このため、ドライスキンパス仕様の調質圧延で、T1レ
ベルからT3レベルまでのぶりきが製造できることが強
く要望されていた。
[0005] In temper rolling at a rolling reduction of 3% or less, rolling can be performed with a dry skin pass specification that does not require rolling oil.
In the temper rolling in which the rolling reduction exceeds 3%, it is necessary to perform rolling with a wet skin pass specification requiring rolling oil. Therefore, when temper rolling with a reduction ratio of more than 3% is performed, a cost increase due to the use of rolling oil and a significant decrease in productivity due to a change in skin pass specification from dry to wet are caused.
For this reason, it has been strongly desired that tinplate from the T1 level to the T3 level can be manufactured by the passivation rolling of the dry skin pass specification.

【0006】また、缶用鋼板にNbを添加すると、結晶粒
が微細化しプレス成形後の肌荒れが防止され、さらに、
結晶粒微細化に伴い材質が硬質化し、ドライスキンパス
仕様の調質圧延で、T1レベルからT3レベルまでのぶ
りきが製造できるという利点がある。しかし、Nbの添加
により再結晶温度が極端に上昇し、焼鈍温度を800 ℃に
近い高温とする必要があり、薄肉缶用鋼板の連続焼鈍に
おいては、バックリングや破断といったトラブルが発生
した。さらに、コイル長手方向前後端部では、NbC の析
出不良に起因して再結晶温度が著しく高温となる。この
ため、焼鈍後の組織が未再結晶組織となりやすく、プレ
ス時に割れが発生するという問題が頻発した。
[0006] When Nb is added to a steel sheet for cans, the crystal grains become finer and roughening after press forming is prevented.
There is an advantage that tinning from the T1 level to the T3 level can be manufactured by temper rolling of a dry skin pass specification as the material becomes harder as the crystal grains become finer. However, the recrystallization temperature rises extremely by the addition of Nb, and it is necessary to set the annealing temperature to a high temperature close to 800 ° C. In the continuous annealing of the steel sheet for thin cans, troubles such as buckling and breakage have occurred. Further, at the front and rear ends in the longitudinal direction of the coil, the recrystallization temperature becomes extremely high due to the poor precipitation of NbC. For this reason, the structure after annealing tends to be an unrecrystallized structure, and the problem that cracks occur during pressing frequently occurred.

【0007】本発明は、上記した問題を解決し、ドライ
スキンパス仕様の調質圧延でT1レベルからT3レベル
までのぶりきが製造でき、しかもプレス成形後の肌荒れ
やストレッチャーストレイン模様の発生のない、耐肌荒
れ性および耐時効性に優れた缶用鋼板を提供することを
目的とする。
[0007] The present invention solves the above-mentioned problems, and tinplate from T1 level to T3 level can be manufactured by temper rolling of a dry skin pass specification, and furthermore, there is no occurrence of roughened skin and stretcher strain pattern after press forming. It is an object of the present invention to provide a steel sheet for cans having excellent skin roughness resistance and aging resistance.

【0008】[0008]

【課題を解決するための手段】本発明者らは、上記した
課題を達成するために、Ti、Nb無添加の極低炭素鋼の耐
肌荒れ性および耐時効性について鋭意検討した。その結
果、N含有量を0.0050mass%以下に低減するとともに、
Mn添加量を0.50mass%以上に増加し、さらにスラブ加熱
温度を1150℃以下と低温化することにより、耐時効性が
著しく向上するという知見を得た。また、耐肌荒れ性と
プレス成形性を両立させるためには、鋼板の組織を板厚
方向で表裏層とその内側の層とで結晶粒径の異なる複合
型の組織とすることが有効であるという新規な知見を得
た。
Means for Solving the Problems In order to achieve the above-mentioned object, the present inventors diligently studied the surface roughening resistance and the aging resistance of an ultra-low carbon steel without addition of Ti and Nb. As a result, while reducing the N content to 0.0050 mass% or less,
It was found that the aging resistance was remarkably improved by increasing the amount of Mn added to 0.50 mass% or more and further reducing the slab heating temperature to 1150 ° C or less. In addition, in order to achieve both surface roughness resistance and press formability, it is effective to make the structure of the steel sheet a composite type structure having different crystal grain sizes between the front and back layers and the inner layer in the thickness direction. New knowledge was obtained.

【0009】まず、本発明者らが行った基礎的な実験結
果を説明する。0.0025mass%C−0.2 mass%Mn−0.04ma
ss%Alを含有し、N含有量を0.0050、0.0070、0.0100ma
ss%に変化した極低炭素鋼スラブを、加熱温度:1100〜
1200℃の各温度に加熱(保持60min )したのち、仕上げ
圧延温度:900 ℃とする熱間圧延を施し熱延板とし、巻
取り温度:500 ℃で巻き取った。ついで、これら熱延板
に圧下率:90%の冷間圧延を施したのち、650 ℃で焼鈍
した。冷延焼鈍板について、固溶N量を求めた。図1
に、スラブ加熱温度と、固溶N率(固溶N量/全N量×
100 %)との関係を示す。
First, the results of basic experiments performed by the present inventors will be described. 0.0025mass% C-0.2mass% Mn-0.04ma
Contains ss% Al, N content 0.0050, 0.0070, 0.0100ma
Ultra low carbon steel slab changed to ss%, heating temperature: 1100 ~
After heating (maintaining 60 minutes) to each temperature of 1200 ° C., hot rolling was performed at a finish rolling temperature of 900 ° C. to form a hot-rolled sheet, which was wound at a winding temperature of 500 ° C. Next, these hot-rolled sheets were subjected to cold rolling at a rolling reduction of 90%, and then annealed at 650 ° C. The amount of solute N in the cold rolled annealed sheet was determined. FIG.
The slab heating temperature and the solid solution N ratio (solid solution N amount / total N amount ×
100%).

【0010】図1から、スラブ加熱温度を1150℃以下と
することにより固溶N率が顕著に低下することがわか
る。スラブ加熱温度を低下すれば固溶N率が顕著に低下
し、固溶Nに起因する時効を低減することが可能であ
る。しかし、鋼中の全N量が増大すれば、固溶N率は増
加する傾向にある。固溶N率を小さくし、時効を低減す
るためには、図1から、スラブ加熱温度を1150℃以下に
低下するとともに、さらに、鋼中の全N量を0.0050mass
%以下とするのが有効である。
From FIG. 1, it can be seen that the solid solution N ratio is significantly reduced by setting the slab heating temperature to 1150 ° C. or lower. If the slab heating temperature is lowered, the solute N ratio is significantly reduced, and aging caused by solute N can be reduced. However, when the total amount of N in steel increases, the solute N ratio tends to increase. In order to reduce the solid solution N ratio and reduce the aging, from FIG. 1, the slab heating temperature was reduced to 1150 ° C. or less, and further, the total N content in the steel was reduced to 0.0050 mass.
% Or less is effective.

【0011】つぎに、0.0025mass%C−0.0040mass%N
−0.04mass%Alを含有し、Mn含有量を0.1 〜1.3mass %
に変化した極低炭素鋼スラブを、加熱温度:1100℃に加
熱(保持60min )したのち、仕上げ圧延温度:900 ℃と
する熱間圧延を施し熱延板とし、巻取り温度:550 ℃で
巻き取った。ついで、これら熱延板に圧下率:90%の冷
間圧延を施し、650 ℃で焼鈍したのち、調質圧延を施し
た。これら冷延焼鈍調質板について、時効性指数AI値
を求めた。なお、AI値は、冷延焼鈍調質板に7.5 %の
引張予歪を付与したのち、100 ℃×30min の熱処理を施
して、引張試験を行い、熱処理前後の降伏応力の増加量
として求めた。図2に、AI値におよぼすMn含有量の影
響を示す。
Next, 0.0025 mass% C-0.0040 mass% N
-Contains 0.04 mass% Al and reduces the Mn content by 0.1 to 1.3 mass%
The ultra-low carbon steel slab that has been transformed into a hot rolled sheet is heated at a heating temperature of 1100 ° C (holding for 60 minutes), and then subjected to hot rolling at a finishing rolling temperature of 900 ° C to form a hot-rolled sheet and wound at a winding temperature of 550 ° C. I took it. Next, these hot-rolled sheets were subjected to cold rolling at a draft of 90%, annealed at 650 ° C., and then temper-rolled. The aging index AI value was determined for these cold-rolled annealed tempered sheets. The AI value was determined as the increase in yield stress before and after the heat treatment at a temperature of 100 ° C. for 30 min after a tensile prestrain of 7.5% was applied to the cold-rolled and annealed tempered sheet. . FIG. 2 shows the effect of the Mn content on the AI value.

【0012】図2から、詳細なメカニズムは現在のとこ
ろ不明であるが、Mn含有量の増加に伴いAI値が低下す
ることがわかる。すなわち、AI値は、Mn含有量を0.50
mass%超、好ましくは0.55mass%超とすることにより、
実質上ストレッチャーストレインの発生がなくなる30MP
a 以下まで低下するという知見を得た。つぎに、0.0010
〜0.0100mass%C−0.6 mass%Mn−0.0040mass%N−0.
04mass%Alを含有する極低炭素鋼スラブを、加熱温度:
1100℃に加熱(保持60min )したのち、仕上げ圧延温
度:900 ℃とする熱間圧延を施し熱延板とし、巻取り温
度:550 ℃で巻き取った。ついで、これら熱延板に圧下
率:90%の冷間圧延を施し、650 ℃で焼鈍したのち、調
質圧延を施した。これら冷延焼鈍調質板について、350g
缶サイズDI缶(外径6.83mm)に製缶し、4段ネック加
工(ネック径6.03mm)を施した。製缶後、とくにネック
加工部について肌荒れ状況を外観目視観察し、6段階で
評価した。また、製缶後、プレス割れ発生率を求めプレ
ス成形性を評価した。ネック加工部の肌荒れ状況、プレ
ス成形性と鋼板板厚全体(全厚)の平均結晶粒径との関
係を図3に示す。
FIG. 2 shows that although the detailed mechanism is unknown at present, the AI value decreases as the Mn content increases. That is, the AI value is obtained by setting the Mn content to 0.50.
By making it more than mass%, preferably more than 0.55mass%,
30MP virtually eliminates stretcher strain
a. Next, 0.0010
~ 0.0100mass% C-0.6mass% Mn-0.0040mass% N-0.
Ultra low carbon steel slab containing 04 mass% Al, heating temperature:
After heating to 1100 ° C. (holding 60 minutes), hot rolling was performed at a finish rolling temperature of 900 ° C. to form a hot-rolled sheet, which was wound at a winding temperature of 550 ° C. Next, these hot-rolled sheets were subjected to cold rolling at a draft of 90%, annealed at 650 ° C., and then temper-rolled. 350g of these cold rolled tempered sheets
The product was made into a can size DI can (outer diameter 6.83 mm) and subjected to four-step neck processing (neck diameter 6.03 mm). After can-making, the appearance of rough skin was visually observed, particularly for the neck processed portion, and evaluated on a 6-point scale. Further, after the can was made, the rate of occurrence of press cracking was determined to evaluate press formability. FIG. 3 shows the relationship between the surface roughness of the neck processed portion, the press formability, and the average grain size of the entire steel sheet thickness (total thickness).

【0013】図3から、肌荒れの程度が良好(評価3以
下)となるのは、平均結晶粒径が10μm 以下の場合であ
ることがわかる。また、プレス成形性は平均結晶粒径が
10〜15μm の範囲がもっとも良好であることがわかる。
平均結晶粒径が10μm 未満では、プレス成形荷重が大き
くなり、プレス割れが発生する。平均結晶粒径が15μm
を超えると、結晶粒が圧延方向に長く伸び、アスペクト
比が大きい粒となりイヤリングの発生が顕著となる。
FIG. 3 shows that the degree of skin roughness is good (evaluation 3 or less) when the average crystal grain size is 10 μm or less. In addition, press formability is determined by the average crystal grain size.
It can be seen that the range of 10 to 15 μm is the best.
If the average crystal grain size is less than 10 μm, the press forming load becomes large and press cracking occurs. Average grain size is 15μm
If the ratio exceeds 1, the crystal grains extend long in the rolling direction, become grains having a large aspect ratio, and the occurrence of earring becomes remarkable.

【0014】したがって、プレス成形性と耐肌荒れ性と
を両立させる平均結晶粒径の範囲がないことになる。そ
こで、本発明者らは、プレス成形性と耐肌荒れ性とを両
立させるには、鋼板の組織を板厚方向で表裏層とその内
側の層とで結晶粒径の異なる3層からなる複合型の組織
とするのがよいことに思い至った。
Therefore, there is no range of the average crystal grain size that achieves both the press formability and the rough surface resistance. In order to achieve both the press formability and the surface roughening resistance, the inventors of the present invention set the structure of the steel sheet to a composite type consisting of three layers having different crystal grain sizes between the front and back layers and the inner layer in the thickness direction. I thought that it would be good to have this organization.

【0015】鋼板の組織を複合型の組織とするために、
本発明者らは、熱間圧延後の冷却速度制御に注目し、つ
ぎのような実験を行った。0.0025mass%C−0.56mass%
Mn−0.0040mass%N−0.04mass%Alを含有し、残部は実
質的にFeである極低炭素鋼スラブ(Ar3変態点:860
℃、Ac1変態点820℃) を、加熱温度:1100℃に加熱
(保持60min )し、1000℃で粗圧延を終了したのち、超
高圧デスケーリング設備を用いて、冷却速度、冷却終点
温度を変えて、シートバー表面の冷却(水冷)を行った
のち、0.5 〜0.57sec 間後熱させた。ついで、仕上圧延
終了温度(FDT )を880 ℃とする仕上げ圧延を施した。
仕上圧延終了後、冷却開始時間、冷却速度および冷却終
点温度を変化した冷却を施し、コイルに巻き取った。な
お、コイル巻取り温度(CT)はNo.11 を除き、550 ℃と
した。熱延条件を表1に示す。
In order to make the structure of the steel sheet a composite structure,
The present inventors paid attention to cooling rate control after hot rolling, and conducted the following experiments. 0.0025mass% C-0.56mass%
An ultra-low carbon steel slab containing Mn-0.0040 mass% N-0.04 mass% Al and the balance being substantially Fe (Ar 3 transformation point: 860
℃, Ac 1 transformation point 820 ℃), heating temperature: 1100 ℃ (hold 60 minutes), after finishing the rough rolling at 1000 ℃, using ultra-high pressure descaling equipment, the cooling rate, cooling end point temperature After changing the sheet bar surface (water cooling), the sheet bar was heated for 0.5 to 0.57 seconds. Next, finish rolling was performed at a finish rolling end temperature (FDT) of 880 ° C.
After the finish rolling, cooling was performed while changing the cooling start time, the cooling rate, and the cooling end point temperature, and wound around a coil. The coil winding temperature (CT) was 550 ° C except for No.11. Table 1 shows the hot rolling conditions.

【0016】[0016]

【表1】 [Table 1]

【0017】ついで、これら熱延板に圧下率:90%の冷
間圧延を施し、650 ℃で焼鈍したのち、調質圧延を施し
た。これら冷延焼鈍調質板について、板厚全厚の平均結
晶粒径、および表層から全厚の20%までの深さの表層領
域の平均結晶粒径を求めた。全厚の平均結晶粒径と表層
領域の平均結晶粒径との関係を図4に示す。なお、図4
には、図3に示した結晶粒径とプレス成形性、肌荒れの
程度の関係も併記してある。
Next, these hot-rolled sheets were subjected to cold rolling at a rolling reduction of 90%, annealed at 650 ° C., and then temper-rolled. With respect to these cold-rolled annealed sheets, the average grain size of the entire thickness and the average grain size of the surface layer from the surface layer to a depth of 20% of the total thickness were determined. FIG. 4 shows the relationship between the average crystal grain size of the entire thickness and the average crystal grain size of the surface layer region. FIG.
3 also shows the relationship between the crystal grain size shown in FIG. 3, the press formability, and the degree of surface roughness.

【0018】図4から、圧延終了後、表層部を冷却速度
50℃/s以上でAc1点以下に急冷し、その後、1sec 以上
5sec 以下の間に仕上げ圧延を開始し、Ar3点以上で仕
上げ圧延を終了し、1sec 以内に冷却速度50℃/s以上で
600 ℃以下まで急冷し、450〜600 ℃の温度範囲で巻取
ることにより、表層から全厚の20%深さまでの表層領域
の平均結晶粒径が10μm 以下、全厚の平均結晶粒径が10
〜15μm を有する複合型の組織を有する冷延焼鈍板とす
るとができることがわかる。このような複合型の組織を
有する冷延焼鈍板は、DI缶成形後の肌荒れ、プレス成
形時の割れの発生は全く見られなかった。
FIG. 4 shows that after the rolling is completed, the surface layer is cooled at a cooling rate.
Rapid cooling to 1 point or less of Ac at 50 ° C / s or more, then start finish rolling in 1 second to 5 seconds, finish finish rolling in 3 points or more of Ar, and cool at 50 ° C / s or less within 1 second. so
By rapidly cooling to 600 ° C or lower and winding in a temperature range of 450 to 600 ° C, the average grain size of the surface layer from the surface layer to a depth of 20% of the total thickness is 10 μm or less, and the average grain size of the entire thickness is 10 μm or less.
It can be seen that a cold-rolled annealed sheet having a composite structure having a thickness of about 15 μm can be obtained. In the cold-rolled annealed sheet having such a composite type structure, roughening of the surface after forming the DI can and generation of cracks during press forming were not observed at all.

【0019】上記した粗圧延後の急冷、仕上げ圧延後の
急冷、巻取り温度条件を満足するように調整され、さら
にMn添加量を調整することにより、図5に示すように、
調質圧延の圧下率を0.5 〜1.5 %のドライスキンパス使
用でT1〜T3の全ての鋼板を製造できる。本発明は、
上記した知見に基づいて構成されたものである。
The quenching after the rough rolling, the quenching after the finish rolling, and the winding temperature are adjusted so as to satisfy the above conditions. Further, by adjusting the amount of Mn added, as shown in FIG.
All steel sheets T1 to T3 can be manufactured by using a dry skin pass with a rolling reduction of 0.5 to 1.5% in temper rolling. The present invention
It is configured based on the above findings.

【0020】すなわち、第1の本発明は、mass%で、
C:0.0005〜0.0050%、Mn:0.50超〜1.5 %、Al:0.01
5 〜0.15%、N:0.0050%以下を含み、残部Feおよび不
可避的不純物からなる組成と、結晶粒径の平均値が、表
層から板厚全厚の20%までの深さの表層領域で10μm 以
下、板厚全厚で10〜15μm である組織を有し、かつ時効
性指数AI値が30MPa 以下であることを特徴とする耐肌
荒れ性および耐時効性に優れる缶用鋼板である。また、
本発明では、前記組成に加えて、さらにmass%で、B:
0.0003〜0.003 %を含有するのが好ましい。
That is, in the first aspect of the present invention,
C: 0.0005 to 0.0050%, Mn: more than 0.50 to 1.5%, Al: 0.01
5 to 0.15%, N: 0.0050% or less, the composition consisting of the balance of Fe and unavoidable impurities, and the average value of the crystal grain size are 10 μm in the surface layer region having a depth from the surface layer to 20% of the total thickness. A steel sheet for cans having a structure having a total thickness of 10 to 15 μm and an aging index AI value of 30 MPa or less, which is excellent in surface roughening resistance and aging resistance. Also,
In the present invention, in addition to the above-mentioned composition, B:
It preferably contains 0.0003 to 0.003%.

【0021】また、第2の本発明は、mass%で、C:0.
0005〜0.0050%、Mn:0.50超〜1.5%、Al:0.015 〜0.1
5%、N:0.0050%以下、あるいはさらにB:0.0003〜
0.003 %を含有する鋼スラブを、Ac3変態点〜1150℃の
温度範囲に加熱し、粗圧延を施したのち、50℃/s以上の
冷却速度でシートバー表面温度をAc1変態点以上(Ac1
−30℃) 以下の温度まで急冷し、引続き1〜5sec 間に
仕上げ圧延を開始し、Ar3変態点以上で仕上げ圧延を終
了し熱延板とし、ついで仕上げ圧延終了後1sec 以内に
冷却を開始し、50℃/s以上の冷却速度で該熱延板表面の
温度が600 ℃以下となるまで急冷し、巻取り温度:450
〜600 ℃で巻取ったのち、前記熱延板に圧下率:80〜95
%の冷間圧延を施し冷延板とし、ついで該冷延板に再結
晶終了温度以上の温度で焼鈍を施したのち圧下率:0.5
〜3%の調質圧延を施すことを特徴とする耐肌荒れ性お
よび耐時効性に優れる缶用鋼板の製造方法である。
In the second invention, the mass% and C: 0.
0005 to 0.0050%, Mn: more than 0.50 to 1.5%, Al: 0.015 to 0.1
5%, N: 0.0050% or less, or B: 0.0003 ~
A steel slab containing 0.003% is heated to a temperature range from the Ac 3 transformation point to 1150 ° C., subjected to rough rolling, and then, at a cooling rate of 50 ° C./s or more, the sheet bar surface temperature is raised to the Ac 1 transformation point or more ( Ac 1
-30 ℃) Rapid cooling to the temperature below, then finish rolling is started in 1-5 seconds, finish rolling is finished at Ar 3 transformation point or more, and it becomes hot rolled sheet. Then, cooling is started within 1 second after finishing rolling is completed. And rapidly cooled at a cooling rate of 50 ° C./s or more until the surface temperature of the hot-rolled sheet becomes 600 ° C. or less, and a winding temperature: 450 ° C.
After winding at ~ 600 ° C, rolling reduction: 80 ~ 95
% Cold-rolled to give a cold-rolled sheet, and then annealed at a temperature equal to or higher than the recrystallization end temperature, and then the rolling reduction: 0.5
This is a method for producing a steel sheet for cans having excellent skin roughness resistance and aging resistance, characterized in that temper rolling of up to 3% is performed.

【0022】[0022]

【発明の実施の形態】まず、本発明鋼板の化学組成の限
定理由について説明する。 C:0.0005〜0.0050% Cは、鋼板の強度を増加、伸びを低下させ、さらに時効
性を高める元素であり、プレス加工性、耐時効性の観点
からはできるだけ低減するのが望ましいが、少なすぎる
と鋼板が過度に軟質化され缶体強度の確保ができなくな
るとともに、結晶粒が粗大化してプレス加工後に肌荒れ
が発生する。このようなことから、C含有量の下限は0.
0005%とした。一方、C含有量が0.0050%を超えると、
加工性が低下するほか、時効性が大きくなり、プレス加
工時にストレッチャーストレイン模様が発生する。この
ため、C含有量の上限を0.0050%とした。
First, the reasons for limiting the chemical composition of the steel sheet of the present invention will be described. C: 0.0005% to 0.0050% C is an element that increases the strength, reduces elongation, and further enhances aging of a steel sheet. From the viewpoint of press workability and aging resistance, it is desirable to reduce as much as possible, but too little. In addition, the steel sheet is excessively softened and the strength of the can body cannot be ensured, and the crystal grains are coarsened to cause roughening after press working. For this reason, the lower limit of the C content is 0.
0005%. On the other hand, when the C content exceeds 0.0050%,
In addition to a decrease in workability, the aging property is increased, and a stretcher strain pattern is generated during press working. For this reason, the upper limit of the C content is set to 0.0050%.

【0023】Mn:0.50超〜1.5 % Mnは、Sと結合し熱延中の赤熱脆性を防止し、さらに時
効性を低減し、鋼板を硬質化させる有効な元素であり、
本発明において重要な元素の1つである。C、N含有量
を低減しMn含有量を0.50%超とすることにより、時効性
指数AI値が30MPa 以下となる。一方、1.5 %を超える
Mnの含有は、圧延中の割れや、鋼板の過度の硬質化をも
たらす。このため、Mnは0.5 〜1.5 %の範囲に限定し
た。なお、好ましくは、0.50超〜1.0 %である。Mn含有
量を0.5 〜1.5 %の範囲とすることにより、図5に示す
ように、圧下率:0.51〜3%のドライスキンパス仕様の
調質圧延で調質度T1からT3レベルのぶりきの製造が
可能となる。なお、図5の縦軸はリフロー後の鋼板表面
硬さ(HR30T )である。
Mn: more than 0.50% to 1.5% Mn is an effective element that combines with S to prevent red embrittlement during hot rolling, further reduce aging, and harden a steel sheet.
It is one of the important elements in the present invention. By reducing the content of C and N and increasing the content of Mn to more than 0.50%, the aging index AI value becomes 30 MPa or less. On the other hand, more than 1.5%
Mn content causes cracking during rolling and excessive hardening of the steel sheet. For this reason, Mn is limited to the range of 0.5 to 1.5%. Preferably, it is more than 0.50% to 1.0%. By adjusting the Mn content to be in the range of 0.5 to 1.5%, as shown in FIG. 5, the production of tinplates having a tempering degree of T1 to T3 by temper rolling of a dry skin pass specification with a draft of 0.51 to 3%. Becomes possible. The vertical axis in FIG. 5 is the surface hardness of the steel sheet after reflow (HR30T).

【0024】Al:0.015 〜0.15% Alは、脱酸剤として作用するとともに、固溶NをAlN と
して固定する有効な元素であるが、Al含有量が0.015 %
未満では、脱酸効果が認められず、固溶N量が増加し時
効性が大きくなる。このため、Al含有量は0.015 %を下
限とした。一方、0.15%を超えて含有しても、効果が飽
和し、添加量に見合う効果が期待できないため経済的に
不利となる。このため、Alは0.15%を上限とした。
Al: 0.015% to 0.15% Al is an effective element that acts as a deoxidizing agent and fixes solid solution N as AlN. The Al content is 0.015%.
If it is less than 30, the deoxidizing effect is not recognized, the amount of solid solution N increases, and the aging property increases. Therefore, the lower limit of the Al content is 0.015%. On the other hand, if the content exceeds 0.15%, the effect saturates and an effect commensurate with the added amount cannot be expected, which is economically disadvantageous. Therefore, the upper limit of Al content is 0.15%.

【0025】N:0.0050%以下 Nは、時効性を高める元素であり、できるだけ低減する
のが望ましいが、0.0050%までは許容できる。しかし、
N含有量が0.0050%を超えると、鋼板が硬質化して伸び
が著しく低下しプレス加工性が劣化し、さらに時効性が
高くなる。 B:0.0003〜0.003 % Bは、窒化物を形成して固溶Nを低減し時効性を低下さ
せるとともに、伸びを向上させる元素であり、必要に応
じ添加できる。このような効果は0.0003%以上の含有で
認められるが、0.003 %を超えて含有すると再結晶終了
温度を著しく上昇させる。このため、Bは0.0003〜0.00
3 %の範囲に限定するのが好ましい。
N: 0.0050% or less N is an element that enhances aging, and it is desirable to reduce it as much as possible, but N is allowable up to 0.0050%. But,
If the N content exceeds 0.0050%, the steel sheet becomes hardened, the elongation is significantly reduced, the press workability is deteriorated, and the aging property is further increased. B: 0.0003% to 0.003% B is an element that forms nitrides to reduce solid solution N, thereby reducing aging properties and improving elongation, and can be added as necessary. Such an effect is observed when the content is 0.0003% or more, but when the content exceeds 0.003%, the recrystallization end temperature is significantly increased. Therefore, B is 0.0003 to 0.00
Preferably it is limited to the range of 3%.

【0026】残部は、Feおよび不可避的不純物である。
不可避的不純物として、Si:0.10%以下、P:0.02%以
下、S:0.02%以下が許容できる。 Si:0.10%以下、 Siは、鋼板を極端に硬質化させるとともに、耐食性に有
害な元素であり、缶用鋼板ではできるだけ低減するのが
望ましいが、0.10%までは許容できる。
The balance is Fe and inevitable impurities.
As unavoidable impurities, Si: 0.10% or less, P: 0.02% or less, and S: 0.02% or less are acceptable. Si: 0.10% or less, Si extremely hardens the steel sheet and is an element harmful to the corrosion resistance. It is desirable to reduce as much as possible in steel sheets for cans, but it is acceptable up to 0.10%.

【0027】P:0.02%以下 Pは、鋼板の強度を増加させ、さらに耐食性を著しく低
下させるため、0.02%以下とするのが望ましい。 S:0.02%以下 Sは、赤熱脆性を引き起こす有害な元素であり、できる
だけ低減するのが望ましいが、0.02%までは許容でき
る。
P: 0.02% or less Since P increases the strength of the steel sheet and remarkably lowers the corrosion resistance, it is preferable to set P to 0.02% or less. S: 0.02% or less S is a harmful element that causes red hot brittleness, and it is desirable to reduce it as much as possible, but up to 0.02% is acceptable.

【0028】本発明の鋼板は、上記した組成に加えて、
鋼板の表層から板厚全厚の20%深さまでの表層領域の平
均結晶粒径がで10μm 以下で、かつ板厚全厚での平均結
晶粒径が10〜15μm であるハイブリッド型の組織を有す
る。これにより、プレス成形性と耐肌荒れ性を両立させ
ることができる。表層領域の平均結晶粒径が10μm を超
えると、上記したようにプレス成形時に肌荒れが発生す
る。全厚での平均結晶粒径が10μm 未満と微細化する
と、プレス成形時に割れが発生し、一方、15μm を超え
るとイヤリングの発生が大きくなる。
The steel sheet of the present invention has, in addition to the above-described composition,
Has a hybrid type structure in which the average crystal grain size in the surface layer from the surface layer of the steel sheet to a depth of 20% of the total thickness is 10 μm or less and the average crystal grain size in the entire thickness is 10 to 15 μm . This makes it possible to achieve both the press formability and the rough surface resistance. If the average crystal grain size in the surface region exceeds 10 μm, as described above, surface roughness occurs during press molding. When the average crystal grain size in the entire thickness is reduced to less than 10 μm, cracks occur during press molding, while when it exceeds 15 μm, earrings increase.

【0029】つぎに、本発明鋼板の製造条件について説
明する。本発明では、上記組成を有する溶鋼を転炉等の
公知の溶製方法で溶製し、連続鋳造法あるいは造塊・分
塊圧延法の通常の方法によりスラブとしたのち、該スラ
ブを加熱し、粗圧延、仕上げ圧延からなる熱間圧延によ
り熱延板とする。ついで熱延板に酸洗を施し、冷間圧延
により所定の寸法の冷延板とする。ついで、冷延板は再
結晶焼鈍を施されたのち、調質圧延、必要に応じ錫めっ
きを施されて製品板とされる。
Next, the manufacturing conditions of the steel sheet of the present invention will be described. In the present invention, the molten steel having the above composition is smelted by a known smelting method such as a converter, and slab is formed by a normal method such as a continuous casting method or an ingot-bulking rolling method, and then the slab is heated. A hot rolled sheet is formed by hot rolling including rough rolling and finish rolling. Next, the hot-rolled sheet is subjected to pickling and cold-rolled to obtain a cold-rolled sheet having a predetermined size. Next, the cold-rolled sheet is subjected to recrystallization annealing, then temper-rolled, and if necessary, tin-plated to obtain a product sheet.

【0030】熱間圧延加熱温度:Ac3変態点〜1150℃ 耐時効性を向上させるために、AlN の再固溶を抑制し固
溶Nをできるだけ低減する必要からスラブの加熱温度は
1150℃以下に限定するのが望ましい。一方、加熱温度が
Ac3変態点未満では、熱間圧延がフェライト域圧延とな
り、焼鈍後の組織が混粒組織となるため所望のプレス加
工性が確保できない。
Hot rolling heating temperature: Ac 3 transformation point to 1150 ° C. In order to improve the aging resistance, it is necessary to suppress the re-dissolution of AlN and to reduce the solute N as much as possible.
It is desirable to limit the temperature to 1150 ° C or lower. On the other hand, if the heating temperature is lower than the Ac 3 transformation point, hot rolling becomes ferrite region rolling and the structure after annealing becomes a mixed grain structure, so that desired press workability cannot be secured.

【0031】粗圧延の温度範囲は、とくに限定する必要
はないが、(Ar3変態点+150 ℃)〜(Ar3変態点+50
℃)の温度範囲とするのが望ましい。(Ar3変態点+15
0 ℃)を超えると、圧延ロールの損耗が激しく圧延ロー
ル寿命が短くなる。一方、(Ar3変態点+50℃)未満で
は、仕上げ圧延がフェライト域となり、焼鈍後の組織が
混粒組織となり、プレス加工性、耐肌荒れ性が劣化す
る。
The temperature range of the rough rolling is not particularly necessary to limit, (Ar 3 transformation point +150 ℃) ~ (Ar 3 transformation point + 50
(° C.). (Ar 3 transformation point +15
When the temperature exceeds 0 ° C.), the wear of the rolling rolls is severe and the life of the rolling rolls is shortened. On the other hand, if it is less than (Ar 3 transformation point + 50 ° C.), the finish rolling becomes a ferrite region, the structure after annealing becomes a mixed grain structure, and the press workability and the surface roughening resistance deteriorate.

【0032】粗圧延後の冷却条件:50℃/s以上の冷却速
度でシートバー表面温度をAc1〜(Ac1−30℃)の温度
まで急冷 シートバー表層を50℃/s以上の冷却速度で急冷し、フェ
ライト相に変態させた後に、その後の鋼材の内部顕熱お
よび仕上げ圧延時の加工発熱により再びオートテナイト
相に逆変態させることで、結晶粒を微細化させる。この
ため、急冷終点温度をAc1点以下とする。しかし、過度
に冷却すると、仕上げ圧延温度がAr3変態点以上になら
ないために、冷却の下限を(Ac1−30℃)とするのが望
ましい。また、冷却温度が50℃/s未満では、仕上げ圧延
開始までの時間に表層のみをAc1点以下に低下させるこ
とが困難である。
Cooling conditions after rough rolling: rapidly cooling sheet bar surface temperature to a temperature of Ac 1 to (Ac 1 -30 ° C.) at a cooling rate of 50 ° C./s or more, cooling rate of sheet bar surface layer to 50 ° C./s or more And rapidly transform the steel into a ferrite phase, and then reverse transform again into an autotenite phase by the internal sensible heat of the steel material and the heat generated during the finish rolling, thereby refining the crystal grains. For this reason, the quenching end point temperature is set to the Ac 1 point or less. However, if the cooling is excessive, the finish rolling temperature does not become higher than the Ar 3 transformation point, so it is desirable to set the lower limit of cooling to (Ac 1 -30 ° C.). If the cooling temperature is lower than 50 ° C./s, it is difficult to lower only the surface layer to the Ac 1 point or less in the time until the start of the finish rolling.

【0033】なお、上記の急冷を行うには、仕上げ圧延
機前に高圧水によるデスケーリング行う設備を設けデス
ケーリングと同時に冷却を行うことがコスト上好まし
い。ここで好ましいデスケーリングの条件は、シートバ
ー(鋼板) 表面での衝突圧p:25kgf/cm2 以上かつ液量
密度が0.002 リットル/cm2以上の超高圧水を用いる。こ
こで、液量密度とはデスケーリングでのシートバー(鋼
板)の単位面積当りに投入される総液量を表す。また、
衝突圧pは一般にノズルの突出圧P及び吐出量Q、鋼板
表面とノズル間の距離Hから次式により求められる。
(「鉄と鋼」, vol.77(1991),No.9,p11450) p=5.64PQ/H2 ただし、p:鋼板表面での衝突圧(MPa ) P:吐出圧(MPa ) Q:吐出量(1/sec ) H:鋼板表面とノズルの間の距離(cm2 ) 衝突圧(p)が25kgf/cm2 以上という超高圧にすると、
表層の凹凸が消滅して平滑化し、局部的に鋼帯が冷やさ
れることなく、均一な組織が得られ、水量密度が0.002
リットル/cm2以上とすることにより極表面のみが効果的
に冷却されるものと考えられる。因に、従来のデスケー
リングの衝突圧は1.0 〜4.0kgf/cm2程度であり、その10
倍にあたる超高圧を採用することで上記の有利な冷却効
果を発現するものと思われる。
In order to perform the above-mentioned rapid cooling, it is preferable in terms of cost to provide equipment for performing descaling using high-pressure water before the finish rolling mill, and to perform cooling simultaneously with descaling. Preferred descaling conditions here are ultrahigh-pressure water having a collision pressure p on the sheet bar (steel plate) surface of 25 kgf / cm 2 or more and a liquid density of 0.002 liter / cm 2 or more. Here, the liquid amount density indicates the total amount of liquid supplied per unit area of a sheet bar (steel plate) in descaling. Also,
In general, the collision pressure p is determined from the following equation from the projection pressure P and discharge amount Q of the nozzle, and the distance H between the steel sheet surface and the nozzle.
(“Iron and Steel”, vol. 77 (1991), No. 9, p11450) p = 5.64 PQ / H 2 where p: collision pressure on the steel sheet surface (MPa) P: discharge pressure (MPa) Q: discharge Amount (1 / sec) H: distance between steel plate surface and nozzle (cm 2 ) When the collision pressure (p) is made to be an extremely high pressure of 25 kgf / cm 2 or more,
The unevenness of the surface layer disappears and is smoothed, the steel strip is not locally cooled, a uniform structure is obtained, and the water density is 0.002.
It is considered that by setting the volume to 1 liter / cm 2 or more, only the pole surface is effectively cooled. In this connection, the collision pressure of the conventional descaling is about 1.0 ~4.0kgf / cm 2, the 10
It is considered that the above-mentioned advantageous cooling effect is exhibited by employing an ultra-high pressure that is twice as high.

【0034】シートバー急冷後、仕上げ圧延開始までの
時間:1〜5sec シートバーの急冷終了後、仕上げ圧延開始までの時間
を、1sec 以上5sec 以下とする。1sec 未満では内部
顕熱による復熱が十分でなく、フェライトを低温で加工
することになり、仕上げ圧延過程での回復・再結晶が十
分でに起きずに、十分な微細化効果が得られない。一
方、5sec を超えると、仕上げ圧延開始前に逆変態が進
行し、オーステナイト分率が高くなるため、昇温過程で
の加工による微細化効果が得られない。
Time from quenching of the sheet bar to the start of finish rolling: 1 to 5 seconds The time from the end of quenching of the sheet bar to the start of finish rolling is from 1 second to 5 seconds. If it is shorter than 1 second, the recuperation due to the internal sensible heat is not sufficient, and the ferrite is processed at a low temperature, and the recovery / recrystallization in the finish rolling process does not occur sufficiently, and a sufficient refining effect cannot be obtained. . On the other hand, when the time exceeds 5 seconds, the reverse transformation proceeds before the start of the finish rolling, and the austenite fraction increases, so that the effect of fineness by working in the temperature raising process cannot be obtained.

【0035】仕上げ圧延終了温度:Ar3変態点〜(Ar3
+50℃) 本発明鋼板のように、Nb、Ti等の炭窒化物形成元素を含
有しない極低炭素鋼においては粒成長速度が大きい。こ
のため、表層領域の結晶粒を微細化するためには、仕上
げ圧延温度は低いほど、オーステナイト粒の成長を抑制
することができる。しかし、薄肉の缶用鋼板では鋼板温
度が低下しやすく、Ar3変態点未満で圧延される恐れが
ある。仕上げ圧延の終了温度が、Ar3変態点未満となる
と、圧延後に異方性が大きくなり、さらに焼鈍後の組織
が粗大な結晶粒と比較的微細な粒の混粒組織となるた
め、プレス加工性、耐肌荒れ性が劣化する。一方、(A
r3+50℃)を超えると、表層領域での結晶粒微細化が得
られないうえ、バーニングスケールが発生し酸洗性が顕
著に劣化する。このため、仕上げ圧延終了温度はAr3
態点〜(Ar3+50℃)の範囲とするのが望ましい。
Finish rolling end temperature: Ar 3 transformation point to (Ar 3
(+ 50 ° C.) In an ultra-low carbon steel that does not contain carbonitride forming elements such as Nb and Ti as in the steel sheet of the present invention, the grain growth rate is high. For this reason, in order to refine the crystal grains in the surface layer region, the lower the finish rolling temperature, the more the growth of austenite grains can be suppressed. However, in the case of a thin steel plate for a can, the temperature of the steel plate tends to decrease, and there is a possibility that the steel plate is rolled below the Ar 3 transformation point. If the finish temperature of the finish rolling is lower than the Ar 3 transformation point, the anisotropy increases after rolling, and the structure after annealing becomes a mixed grain structure of coarse crystal grains and relatively fine grains. Properties and rough skin resistance deteriorate. On the other hand, (A
When the temperature exceeds (r 3 + 50 ° C.), the crystal grains cannot be refined in the surface layer region, and a burning scale is generated to significantly deteriorate the pickling property. For this reason, the finish rolling end temperature is desirably in the range from the Ar 3 transformation point to (Ar 3 + 50 ° C.).

【0036】仕上げ圧延後の急冷条件: 急冷開始時間:仕上げ圧延終了後1sec 以内 仕上げ圧延終了後1sec 以内に急冷を開始し、オーステ
ナイト粒の成長を抑え、表層領域の結晶粒を微細化す
る。急冷開始までの時間が1sec を超えると、表層領域
の結晶粒が粗大化しプレス加工後に肌荒れが発生する。
Conditions for rapid cooling after finish rolling: Start time of rapid cooling: Within 1 sec after finish rolling Finish rapid cooling within 1 sec after finish rolling is completed to suppress the growth of austenite grains and refine crystal grains in the surface layer region. If the time until the start of quenching exceeds 1 sec, the crystal grains in the surface layer become coarse and the surface becomes rough after pressing.

【0037】冷却速度:50℃/s以上 オーステナイト粒の成長を抑制するため、冷却速度は、
できるだけ大きくするのが望ましい。冷却速度が50℃/s
未満では、表層領域の結晶粒が粗大化し、プレス加工後
に肌荒れが発生する。また、冷却速度を50℃/s以上好ま
しくは80℃/s以下とすることにより、表層領域の結晶
粒の微細化に加えて板厚全厚の結晶粒をプレス加工性が
良好になる結晶粒径10〜15μm とすることができる。
Cooling rate: 50 ° C./s or more To suppress the growth of austenite grains, the cooling rate is
It is desirable to make it as large as possible. Cooling rate 50 ° C / s
If it is less than 1, the crystal grains in the surface layer region become coarse, and roughening occurs after press working. In addition, by setting the cooling rate to 50 ° C./s or more, preferably 80 ° C./s or less, in addition to the refinement of the crystal grains in the surface layer region, the crystal grains having the entire thickness and good press workability are obtained. The diameter can be 10 to 15 μm.

【0038】急冷終了温度:熱延板表面の温度で600 ℃
以下 仕上げ圧延終了後の冷却は、オーステナイト粒の粒成長
を抑制し、さらに、オーステナイト粒からのフェライト
粒の核生成、フェライト粒の成長を抑制する。微細フェ
ライト粒とするために、熱延板表面の温度が600 ℃以下
となるまで冷却する。熱延板表面の温度が600 ℃を超え
る高温で冷却を終了すると、表層領域およびそれ以外の
内層の結晶粒が粗大化する。なお、急冷終了後は450 ℃
以上とするのが好ましい。450 ℃未満では、巻取り温度
を所望の範囲とすることができないうえ、冷却速度によ
っては、結晶粒が過度に細粒化する可能性がある。
Rapid cooling end temperature: 600 ° C. at the temperature of the hot rolled sheet surface
Cooling after finishing rolling suppresses grain growth of austenite grains, and further suppresses nucleation of ferrite grains from austenite grains and growth of ferrite grains. In order to obtain fine ferrite grains, the surface of the hot-rolled sheet is cooled until the surface temperature becomes 600 ° C. or less. When cooling is completed at a high temperature of the hot-rolled sheet surface exceeding 600 ° C., the crystal grains in the surface layer region and other inner layers become coarse. After quenching, 450 ° C
It is preferable to make the above. If the temperature is lower than 450 ° C., the winding temperature cannot be in the desired range, and depending on the cooling rate, the crystal grains may be excessively refined.

【0039】巻取り温度:450 〜600 ℃ 本発明では、巻取り温度は低温巻取りを行ってもよい
が、巻取り温度が450 ℃未満では、熱延板の形状が不良
となったり、巻取り操業自体が困難となる場合がある。
このため、巻取り温度は450 ℃以上とするのが望まし
い。また、巻取り温度が600 ℃を超えると、スケール生
成が顕著となり酸洗性が劣化する。このため、巻取り温
度は450 〜600 ℃の範囲とするのが望ましい。
Winding temperature: 450 to 600 ° C. In the present invention, the winding temperature may be low, but if the winding temperature is lower than 450 ° C., the shape of the hot rolled sheet becomes poor, The picking operation itself may be difficult.
For this reason, it is desirable that the winding temperature be 450 ° C. or higher. On the other hand, when the winding temperature exceeds 600 ° C., scale formation is remarkable, and the pickling property deteriorates. For this reason, the winding temperature is desirably in the range of 450 to 600 ° C.

【0040】得られた熱延板は、表層領域が微細化され
た3種構造からなる複合型の組織を有する。この複合型
の組織は、冷延、焼鈍後にも継承される。このような複
合型の組織を有することになるメカニズムについては、
明確ではないが、次のように推定される。すなわち、圧
延終了後にシートバー表面を急冷することで、シートバ
ー表層部は一度Ac1点以下まで冷却され、フェライト相
に変態する。しかし、冷却終了後、鋼帯の内部顕熱によ
り表層は復熱し再び昇温される。昇温過程でフェライト
相は仕上げ圧延により加工されることになる。昇温過程
での加工では、通常の降温過程での加工に比べて高いフ
ェライト分率が得られるとともに、フェライトをより高
温域で加工することができる。したがって、高い歪みを
蓄積したフェライトは容易に回復・再結晶を繰り返し、
さらに仕上げ圧延による加工熱でオーステナイトへ逆変
態を起こし、鋼材の表層部において超微細粒組織となる
ものと考えられる。ただし、仕上げ圧延終了後にフェラ
イト粒の粒成長が起きにくい低温域まで急冷する必要が
ある。
The obtained hot rolled sheet has a composite type structure composed of three types of structures in which the surface layer region is fined. This composite structure is inherited even after cold rolling and annealing. Regarding the mechanism that will have such a complex type organization,
Although it is not clear, it is estimated as follows. In other words, by quenching the sheet bar surface after completion of rolling, the sheet bar surface layer part is cooled to below once Ac 1 point, transformed to ferrite phase. However, after cooling is completed, the surface layer is regained by the internal sensible heat of the steel strip, and the temperature is raised again. During the heating process, the ferrite phase is processed by finish rolling. In the processing in the temperature raising process, a higher ferrite fraction can be obtained than in the processing in the normal temperature lowering process, and the ferrite can be processed in a higher temperature range. Therefore, the ferrite that has accumulated high strain easily recovers and recrystallizes,
Further, it is considered that the reverse transformation to austenite is caused by the processing heat of the finish rolling, and an ultrafine grain structure is formed in the surface layer of the steel material. However, after the finish rolling, it is necessary to rapidly cool to a low temperature region where grain growth of ferrite grains does not easily occur.

【0041】冷間圧延圧下率:80〜95% 冷間圧延の圧下率は、その後の焼鈍工程で所望の集合組
織、結晶粒径を有する組織とするため、および鋼板の薄
肉化に対応して80%以上とするのが望ましい。一方、圧
下率が95%を超えると、r値が低下し深絞り性が劣化
し、さらにΔrが増大しイヤリングが大きくなる。この
ようなことから、冷間圧下率は80〜95%の範囲とするの
が望ましい。
Cold rolling reduction: 80 to 95% The rolling reduction in the cold rolling is performed in order to obtain a texture having a desired texture and crystal grain size in a subsequent annealing step, and in accordance with the reduction in thickness of the steel sheet. It is desirable to make it 80% or more. On the other hand, when the rolling reduction exceeds 95%, the r value decreases, the deep drawability deteriorates, Δr further increases, and the earring increases. For this reason, it is desirable that the cold reduction is in the range of 80 to 95%.

【0042】焼鈍温度:再結晶終了温度以上 冷延板の焼鈍は、生産性の点から連続焼鈍とするのが好
ましいが、箱焼鈍でもよいのはいうまでもない。焼鈍温
度は、再結晶終了温度以上として組織を再結晶組織とす
る。しかし、焼鈍温度が高すぎると結晶粒の異常成長に
より粒が粗大化して、プレス加工後の肌荒れが発生す
る。また、焼鈍温度が高すぎると薄物材の連続焼鈍で
は、焼鈍炉内での板破断、あるいはバックリングが発生
する危険性が増大するため、焼鈍温度は750 ℃を上限と
するのが望ましい。
Annealing temperature: at or above the recrystallization end temperature Annealing of the cold-rolled sheet is preferably continuous annealing from the viewpoint of productivity, but it goes without saying that box annealing may be used. The annealing temperature is equal to or higher than the recrystallization end temperature to make the structure a recrystallized structure. However, if the annealing temperature is too high, the grains become coarse due to abnormal growth of the crystal grains, resulting in rough surface after press working. On the other hand, if the annealing temperature is too high, continuous annealing of a thin material increases the risk of plate breakage or buckling in the annealing furnace. Therefore, the upper limit of the annealing temperature is desirably 750 ° C.

【0043】調質圧延圧下率:0.5 〜3% 冷延焼鈍板は、ついで調質圧延を施される。調質圧延の
圧下率は、製品板の調質度に応じ適宜決定されるが、ス
トレッチャーストレインの発生を防止するために0.5 %
以上とするのが望ましい。一方、圧下率が3%を超える
調質圧延は、圧延油を使用して圧延するウェットスキン
パス仕様とする必要があるため、生産性が低下する。さ
らに圧下率が3%を超える調質圧延を行うと、鋼板が硬
質化しプレス加工性が劣化する。このようなことから、
調質圧延の圧下率は0.5 〜3%とするのが望ましい。
Temper rolling reduction: 0.5 to 3% The cold-rolled annealed sheet is then subjected to temper rolling. The rolling reduction of the temper rolling is determined appropriately according to the temper degree of the product sheet, but 0.5% to prevent the occurrence of stretcher strain
It is desirable to make the above. On the other hand, in the temper rolling in which the rolling reduction exceeds 3%, it is necessary to use a wet skin pass specification in which rolling is performed using a rolling oil, so that productivity is reduced. Further, when temper rolling with a rolling reduction exceeding 3% is performed, the steel sheet becomes hard and the press workability deteriorates. From such a thing,
The rolling reduction of the temper rolling is desirably 0.5 to 3%.

【0044】上記した組成と、上記した製造条件を満足
させることにより、鋼板の表層から板厚全厚の20%深さ
までの表層領域の平均結晶粒径が10μm 以下で、かつ板
厚全厚での平均結晶粒径が10〜15μm である複合型の組
織を有する鋼板とすることができ、プレス成形性と耐肌
荒れ性に優れた缶用鋼板となる。
By satisfying the above composition and the above manufacturing conditions, the average grain size of the surface layer from the surface layer of the steel sheet to a depth of 20% of the total thickness of the steel sheet is 10 μm or less and the total thickness of the steel sheet is reduced. Can have a composite type structure having an average crystal grain size of 10 to 15 µm, and can be a steel sheet for cans excellent in press formability and surface roughness resistance.

【0045】[0045]

【実施例】表2に示す化学組成を有する溶鋼を転炉で溶
製し、連続鋳造によりスラブとした。これらスラブを表
3に示す条件で熱延、冷延、焼鈍および調質圧延を施
し、さらに25番目付で錫めっきを施し製品板とした。こ
れら製品板について、結晶粒径、硬さ、r値、AI値を
求めた。
EXAMPLE Molten steel having the chemical composition shown in Table 2 was melted in a converter and slab was formed by continuous casting. These slabs were subjected to hot rolling, cold rolling, annealing, and temper rolling under the conditions shown in Table 3, and further tin-plated at the 25th to give product sheets. The crystal grain size, hardness, r value, and AI value were determined for these product plates.

【0046】また、これら製品板を用いて、350gサイズ
のDI缶(缶ふた径60.3mmφ、缶胴部径68.3mmφ、高さ
123mm )に製缶し、4段ネック加工(蓋径206 径)を施
した。製缶後の肌荒れ性、ストレッチャーストレイン模
様、プレス割れの発生状況を調査した。調査方法は、下
記のとおりである。 (1)結晶粒度試験 製品板の圧延方向に垂直な断面を研摩し、腐食して光学
顕微鏡により結晶粒径を測定した。結晶粒径は、JIS G
0552の規定に準拠して、板厚全厚と、表層から板厚の20
%深さまでの表層領域について測定し、それぞれ平均値
を求めた。 (2)引張試験 各製品板の圧延方向、圧延方向と45°方向、圧延方向と
90°方向、からJIS 5号引張試験を採取し、引張試験を
実施し、各方向のr値を求め、平均r値およびr値の面
内異方性Δrを計算した。なお、平均r値、Δrは次式
で定義した。
Using these product plates, a 350 g DI can (can lid diameter 60.3 mmφ, can body diameter 68.3 mmφ, height
123 mm) and subjected to four-step neck processing (lid diameter: 206). The roughness of the skin, stretcher strain pattern, and occurrence of press cracking after can making were investigated. The survey method is as follows. (1) Grain size test A cross section perpendicular to the rolling direction of the product plate was polished, corroded, and the grain size was measured by an optical microscope. The crystal grain size is JIS G
In accordance with the provisions of 0552, the total thickness of the
% Was measured for the surface layer region up to the depth, and the respective average values were determined. (2) Tensile test Rolling direction, rolling direction and 45 ° direction of each product sheet, rolling direction
A JIS No. 5 tensile test was taken from the 90 ° direction, a tensile test was performed, the r value in each direction was determined, and the average r value and the in-plane anisotropy Δr of the r value were calculated. The average r value and Δr were defined by the following equations.

【0047】平均r値=(r0 +r90+2r45)/4 Δr=(r0 +r90−2r45)/2 なお、r0 、r90、r45はそれぞれ圧延方向、圧延方向
と90°、圧延方向と45°方向のr値である。 (3)硬さ試験 各めっき後の製品板について、リフロー相当処理(250
℃×3sec )の条件でオイルバス中で熱処理したのち、
表面硬さをJIS Z 2245の規定に準拠して、30Tスケール
のロックウェル硬さで測定した。なお、リフロー処理と
は、めっき後の鋼板を加熱してめっき層表面の形状、外
観を整える処理を指す。 (4)時効性試験 各製品板からJIS 5号引張試験を採取し、7.5 %の引張
予歪を付与したのち、100 ℃×30min の時効処理を施
し、ついで引張試験を行って、熱処理前後の降伏応力の
増加量をもとめ、AI値とした。 (5)製缶試験 各製品板(リフロー処理なし)を350gサイズのDI缶に
製缶後、各缶のネック部について表面粗さRaの測定を行
い、市販されている正常缶のRa(市販缶)に対し、Ra
(市販缶)+10%>Raの場合を肌荒れなし、Ra(市販
缶)+10%≦Raの場合を肌荒れ発生とし、耐肌荒れ性を
評価した。
Average r value = (r 0 + r 90 + 2r 45 ) / 4 Δr = (r 0 + r 90 -2r 45 ) / 2 where r 0 , r 90 , and r 45 are the rolling direction, the rolling direction, and 90 °, respectively. , The r value in the rolling direction and the 45 ° direction. (3) Hardness test For the product plate after each plating, treatment equivalent to reflow (250
℃ 3sec) after heat treatment in an oil bath.
The surface hardness was measured with a Rockwell hardness of 30T scale in accordance with JIS Z 2245. Note that the reflow treatment refers to a treatment for heating the plated steel sheet to adjust the shape and appearance of the surface of the plating layer. (4) Aging test A JIS No. 5 tensile test was taken from each product plate, a 7.5% tensile prestrain was applied, an aging treatment was performed at 100 ° C for 30 minutes, and a tensile test was performed. The amount of increase in yield stress was determined, and the value was taken as the AI value. (5) Can making test After making each product plate (without reflow treatment) into a DI can of 350 g size, the surface roughness Ra of the neck part of each can was measured, and Ra of commercially available normal cans (commercially available) Can) and Ra
(Commercially available cans) + 10%> Ra was not rough when Ra (commercially available) + 10% ≦ Ra was rough, and the rough skin resistance was evaluated.

【0048】また、製缶後、缶底部を目視観察しストレ
ッチャーストレイン模様発生の有無を調査した。また、
製缶後(各製品板ごとの製缶数は10000 個)、各缶のプ
レス割れの有無を測定し、各製品板ごとにプレス割れ発
生率(=割れ発生缶数/全製缶数×100 %)をもとめ、
プレス成形性を評価した。また、製缶後耳発生(イヤリ
ング)の程度を測定し、耳高さが3mm以上(缶高の約2
%以上)のものを「耳大」とした。
After the can was made, the bottom of the can was visually observed to check for the occurrence of a stretcher strain pattern. Also,
After making the cans (the number of cans for each product plate is 10,000), the presence or absence of press cracks in each can is measured, and the rate of press cracking for each product plate (= number of cans with cracks / total number of cans × 100) %)
Press formability was evaluated. In addition, the degree of ear generation (earring) after can making was measured, and the ear height was 3 mm or more (about 2 mm of the can height).
%).

【0049】これら各種試験の結果を表4に示す。Table 4 shows the results of these various tests.

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【表3】 [Table 3]

【0052】[0052]

【表4】 [Table 4]

【0053】[0053]

【表5】 [Table 5]

【0054】表4から、本発明例は、耐肌荒れ性、耐時
効性、プレス成形性に優れており、しかも調質度T1〜
T3レベルのぶりきがドライスキンパス仕様の調質圧延
で製造できている。これに比べ、本発明の範囲を外れる
比較例は、製缶後に肌荒れ、ストレッチャーストレイン
模様の発生、プレス割れが見られた。C、Mn、N、Alが
それぞれ本発明範囲から外れる鋼板No.22 〜No.25 は、
AI値が40〜50MPa と高い時効性を示し、製缶後にスト
レッチャーストレイン模様が発生している。また、Cま
たはN含有量が高い鋼板No.22 、鋼板No.24 では、硬質
化に伴う延性等の低下のためプレス割れが発生してい
る。Nbを含有する鋼板No.26 は結晶粒が細かすぎ、成形
性に劣るためプレス割れが、Tiを含有する鋼板No.27 は
結晶粒径が大きく肌荒れの発生が見られた。さらに、図
6に示すように、Nbを含有する鋼板No.26 の再結晶終了
温度は高く、しかも圧延方向各位置で大きく変化し、と
くにコイル前後端部で高くなっている。これに対し本発
明例の鋼板No.13 の再結晶終了温度は低く、コイル長手
方向での変化もほとんどない。
From Table 4, it can be seen that the examples of the present invention are excellent in rough surface resistance, aging resistance and press formability, and have a tempering degree of T1 to T1.
Tinplate of T3 level can be manufactured by temper rolling of dry skin pass specification. On the other hand, in Comparative Examples out of the scope of the present invention, rough skin, occurrence of a stretcher strain pattern, and press cracking were observed after can making. Steel sheets No. 22 to No. 25 in which C, Mn, N, and Al are out of the range of the present invention,
It shows high aging with an AI value of 40 to 50 MPa, and a stretcher strain pattern occurs after can making. Further, in steel sheets No. 22 and No. 24 having a high C or N content, press cracking occurs due to a decrease in ductility and the like due to hardening. The steel sheet No. 26 containing Nb had too fine crystal grains and was inferior in formability, so press cracking was observed, and the steel sheet No. 27 containing Ti had a large crystal grain size and rough surface was observed. Further, as shown in FIG. 6, the recrystallization ending temperature of the steel sheet No. 26 containing Nb is high, and changes greatly at each position in the rolling direction, especially at the front and rear ends of the coil. On the other hand, the recrystallization end temperature of the steel sheet No. 13 of the example of the present invention is low, and there is almost no change in the coil longitudinal direction.

【0055】Nbを添加した従来技術のIF鋼では、再結晶
終了温度が高く、再結晶不良の問題が発生していた。Nb
を添加しない本発明鋼では、コイル長手全長において、
再結晶終了温度が低く連続焼鈍の操業性、コスト低減の
点から優れている。
In the case of the conventional IF steel to which Nb was added, the recrystallization end temperature was high, and the problem of poor recrystallization occurred. Nb
In the steel of the present invention where no is added,
The recrystallization end temperature is low and excellent in operability of continuous annealing and cost reduction.

【0056】[0056]

【発明の効果】本発明によれば、プレス成形後の肌荒れ
やストレッチャーストレイン模様の発生のない、耐肌荒
れ性および耐時効性に優れた缶用鋼板を提供することが
でき、食品缶、飲料缶の素材として、2ピース缶に限ら
ず3ピース缶を含む各種金属缶に適用でき産業上格段の
効果を奏する。さらに、本発明鋼板の再結晶終了温度は
低く、しかも鋼板各位置でのばらつきが少なく再結晶不
良という問題の発生がないため、連続焼鈍における操業
性に優れ、したがってコスト低減が可能という効果もあ
る。また、食料缶・飲料缶以外にも乾電池内装缶から家
庭電気部品、自動車部品まで幅広い範囲への適用も期待
できる。
According to the present invention, it is possible to provide a steel sheet for cans which is free from rough surface after press molding and has no stretcher strain pattern, and which is excellent in rough surface resistance and aging resistance. It can be applied to various metal cans, including not only two-piece cans but also three-piece cans, as a material for cans, and has a remarkable industrial effect. Furthermore, since the recrystallization end temperature of the steel sheet of the present invention is low, and there is no problem of poor recrystallization due to little variation at each position of the steel sheet, the operability in continuous annealing is excellent, and thus there is also an effect that the cost can be reduced. . In addition to food and beverage cans, it can be expected to be applied to a wide range of applications, from dry cell interior cans to home electric parts and automobile parts.

【図面の簡単な説明】[Brief description of the drawings]

【図1】固溶N量におよぼすスラブ加熱温度、N含有量
の影響を示すグラフである。
FIG. 1 is a graph showing the influence of slab heating temperature and N content on the amount of solute N.

【図2】時効性指数AI値におよぼすMn含有量の影響を
示すグラフである。
FIG. 2 is a graph showing the effect of the Mn content on the aging index AI value.

【図3】肌荒れ、プレス成形性と結晶粒径の関係を示す
グラフである。
FIG. 3 is a graph showing the relationship between rough surface, press formability and crystal grain size.

【図4】良好なプレス成形性と良好な耐肌荒れ性を示す
板厚全厚の平均結晶粒径、表層領域の平均結晶粒径の関
係におよぼす熱延終了後の冷却の影響を示す説明図であ
る。
FIG. 4 is an explanatory diagram showing the effect of cooling after the end of hot rolling on the relationship between the average crystal grain size of the entire thickness and the average crystal grain size of the surface layer region showing good press formability and good surface roughness resistance. It is.

【図5】リフロー後の鋼板硬さにおよぼす調質圧延圧下
量の影響をしめすグラフである。
FIG. 5 is a graph showing the effect of the temper rolling reduction on the steel sheet hardness after reflow.

【図6】コイル圧延方向の再結晶終了温度分布の1例を
示すグラフである。
FIG. 6 is a graph showing an example of a recrystallization end temperature distribution in a coil rolling direction.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古君 修 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 荒谷 誠 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 (72)発明者 久々湊 英雄 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 Fターム(参考) 4K032 AA01 AA02 AA04 AA16 AA21 AA22 AA27 AA29 AA31 AA35 BA01 CA01 CA02 CC03 CC04 CD03 CD06 CE01 CG02 CH04 CM01 4K037 EA01 EA02 EA04 EA15 EA18 EA19 EA23 EA25 EA27 EA31 EB01 EB02 EB05 FA01 FA02 FB04 FC04 FC07 FD04 FD06 FE01 FE02 FE06 FH01 FM02 GA05 HA04 JA06  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Osamu Furukun 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Inside the Technical Research Institute of Kawasaki Steel Co., Ltd. (72) Makoto Aratani 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works (72) Inventor Hideo Kugaminato 1 Kawasaki-cho, Chuo-ku, Chiba City, Chiba Prefecture Kawasaki Steel Corporation Chiba Works F-term 4K032 AA01 AA02 AA04 AA16 AA21 AA22 AA27 AA29 AA35 CA01 CA02 CC03 CC04 CD03 CD06 CE01 CG02 CH04 CM01 4K037 EA01 EA02 EA04 EA15 EA18 EA19 EA23 EA25 EA27 EA31 EB01 EB02 EB05 FA01 FA02 FB04 FC04 FC07 FD04 FD06 FE01 FE02 FE06 FH01 FM06 GA05

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 mass%で、 C:0.0005〜0.0050%、 Mn:0.50超〜1.5 %、 Al:0.015 〜0.15%、 N:0.0050%以下、 を含み、残部Feおよび不可避的不純物からなる組成と、
結晶粒径の平均値が、表層から板厚全厚の20%までの深
さの表層領域で10μm 以下、板厚全厚で10〜15μm であ
る組織を有し、かつ時効性指数AI値が30MPa 以下であ
ることを特徴とする耐肌荒れ性および耐時効性に優れる
缶用鋼板。
1. A composition containing, by mass%, C: 0.0005 to 0.0050%, Mn: more than 0.50 to 1.5%, Al: 0.015 to 0.15%, and N: 0.0050% or less, with the balance being Fe and unavoidable impurities. ,
It has a structure in which the average value of the crystal grain size is 10 μm or less in the surface layer region from the surface layer to a depth of 20% of the total thickness, 10 to 15 μm in the total thickness, and the aging index AI value is A steel sheet for cans having excellent surface roughness and aging resistance, characterized by being 30 MPa or less.
【請求項2】 前記組成に加えて、さらにmass%で、
B:0.0003〜0.003 %を含有することを特徴とする請求
項1に記載の缶用鋼板。
2. In addition to the above composition, in mass%,
The steel sheet for cans according to claim 1, wherein the steel sheet contains B: 0.0003 to 0.003%.
【請求項3】 mass%で、 C:0.0005〜0.0050%、 Mn:0.50超〜1.5 %、 Al:0.015 〜0.15%、 N:0.0050%以下、 を含有する鋼スラブを、Ac3変態点〜1150℃の温度範囲
に加熱し、粗圧延を施したのち、50℃/s以上の冷却速度
でシートバー表面温度をAc1変態点以上(Ac1-30 ℃)
以下の温度まで急冷し、引続き1〜5sec 間に仕上げ圧
延を開始し、Ar3変態点以上で仕上げ圧延を終了し熱延
板とし、ついで仕上げ圧延終了後1sec 以内に冷却を開
始し、50℃/s以上の冷却速度で該熱延板表面の温度が60
0 ℃以下となるまで急冷し、巻取り温度:450 〜600 ℃
で巻取ったのち、前記熱延板に圧下率:80〜95%の冷間
圧延を施し冷延板とし、ついで該冷延板に再結晶終了温
度以上の温度で焼鈍を施したのち圧下率:0.5 〜3%の
調質圧延を施すことを特徴とする耐肌荒れ性および耐時
効性に優れる缶用鋼板の製造方法。
3. A steel slab containing, by mass%, C: 0.0005 to 0.0050%, Mn: more than 0.50 to 1.5%, Al: 0.015 to 0.15%, and N: 0.0050% or less, by transforming the Ac 3 transformation point to 1150 After heating to the temperature range of ℃ and rough rolling, the surface temperature of the sheet bar is raised above the Ac 1 transformation point (Ac 1 -30 ℃) at a cooling rate of 50 ℃ / s or more.
Rapidly cooled to the following temperature, followed by finish rolling in 1 to 5 seconds, finishing the finish rolling at the Ar 3 transformation point or more, turning it into a hot-rolled sheet, then cooling within 1 second after finishing rolling, and starting at 50 ° C. / s or more at a cooling rate of more than 60
Cool rapidly to 0 ° C or less, winding temperature: 450-600 ° C
The hot-rolled sheet is subjected to cold rolling at a reduction ratio of 80 to 95% to form a cold-rolled sheet, and then the cold-rolled sheet is annealed at a temperature equal to or higher than the recrystallization ending temperature, and then subjected to a reduction rate. : A method for producing a steel sheet for cans having excellent skin roughness resistance and aging resistance, which is characterized by subjecting to 0.5 to 3% temper rolling.
JP22195398A 1998-08-05 1998-08-05 Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture Pending JP2000054070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22195398A JP2000054070A (en) 1998-08-05 1998-08-05 Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22195398A JP2000054070A (en) 1998-08-05 1998-08-05 Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture

Publications (1)

Publication Number Publication Date
JP2000054070A true JP2000054070A (en) 2000-02-22

Family

ID=16774756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22195398A Pending JP2000054070A (en) 1998-08-05 1998-08-05 Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture

Country Status (1)

Country Link
JP (1) JP2000054070A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133175A1 (en) * 2007-04-18 2008-11-06 Nippon Steel Corporation Flexible tin-plated steel sheet and process for producing the same
JP2011094178A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Steel sheet for can having excellent roughening resistance and method for producing the same
CN103045937A (en) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 Secondary cold rolled steel and production method thereof
WO2014073205A1 (en) * 2012-11-07 2014-05-15 Jfeスチール株式会社 Steel sheet for three-piece can and manufacturing process therefor
JP2014531371A (en) * 2011-10-06 2014-11-27 フリッシュマン、エイブFRISHMAN,Abe Reduction gauge crown and how to make it
WO2015146137A1 (en) * 2014-03-28 2015-10-01 Jfeスチール株式会社 Steel plate for can and method for producing same
WO2016157761A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
WO2016170794A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Alloyed hot-dip galvanized sheet, production method therefor and alloyed hot-dip galvanized steel sheet
CN110462089A (en) * 2017-03-31 2019-11-15 杰富意钢铁株式会社 Steel plate and its manufacturing method and bottle cap and DRD tank
CN113070341A (en) * 2021-03-18 2021-07-06 鞍钢股份有限公司 Rolling method for reducing earing rate of hot continuous rolling low-carbon steel sheet

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133175A1 (en) * 2007-04-18 2008-11-06 Nippon Steel Corporation Flexible tin-plated steel sheet and process for producing the same
JP5099126B2 (en) * 2007-04-18 2012-12-12 新日鐵住金株式会社 Soft tin steel sheet and manufacturing method thereof
JP2011094178A (en) * 2009-10-29 2011-05-12 Jfe Steel Corp Steel sheet for can having excellent roughening resistance and method for producing the same
EP2479308A4 (en) * 2009-10-29 2017-07-19 JFE Steel Corporation Steel sheet for cans having excellent surface roughening resistance, and method for producing same
JP2014531371A (en) * 2011-10-06 2014-11-27 フリッシュマン、エイブFRISHMAN,Abe Reduction gauge crown and how to make it
WO2014073205A1 (en) * 2012-11-07 2014-05-15 Jfeスチール株式会社 Steel sheet for three-piece can and manufacturing process therefor
US10392682B2 (en) 2012-11-07 2019-08-27 Jfe Steel Corporation Steel sheet for three-piece can and method for manufacturing the same
KR101805277B1 (en) * 2012-11-07 2017-12-06 제이에프이 스틸 가부시키가이샤 Steel sheet for three-piece can and method for manufacturing the same
CN103045937A (en) * 2012-12-14 2013-04-17 宝山钢铁股份有限公司 Secondary cold rolled steel and production method thereof
WO2015146137A1 (en) * 2014-03-28 2015-10-01 Jfeスチール株式会社 Steel plate for can and method for producing same
US10851434B2 (en) 2014-03-28 2020-12-01 Jfe Steel Corporation Steel sheet for can and method for manufacturing the same
JP5900712B2 (en) * 2014-03-28 2016-04-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
JPWO2016157761A1 (en) * 2015-03-27 2017-07-06 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
WO2016157761A1 (en) * 2015-03-27 2016-10-06 Jfeスチール株式会社 Steel sheet for can and method for producing same
JPWO2016170794A1 (en) * 2015-04-21 2017-06-01 Jfeスチール株式会社 Alloyed hot-dip galvanized base plate, manufacturing method thereof, and alloyed hot-dip galvanized steel
CN107532264B (en) * 2015-04-21 2019-03-15 杰富意钢铁株式会社 Alloyed zinc hot dip galvanized raw sheet and its manufacturing method and alloyed hot-dip galvanized steel sheet
CN107532264A (en) * 2015-04-21 2018-01-02 杰富意钢铁株式会社 Alloyed zinc hot dip galvanized raw sheet and its manufacture method and alloyed hot-dip galvanized steel sheet
WO2016170794A1 (en) * 2015-04-21 2016-10-27 Jfeスチール株式会社 Alloyed hot-dip galvanized sheet, production method therefor and alloyed hot-dip galvanized steel sheet
CN110462089A (en) * 2017-03-31 2019-11-15 杰富意钢铁株式会社 Steel plate and its manufacturing method and bottle cap and DRD tank
CN110462089B (en) * 2017-03-31 2022-03-15 杰富意钢铁株式会社 Method for manufacturing steel sheet
CN113070341A (en) * 2021-03-18 2021-07-06 鞍钢股份有限公司 Rolling method for reducing earing rate of hot continuous rolling low-carbon steel sheet
CN113070341B (en) * 2021-03-18 2023-04-14 鞍钢股份有限公司 Rolling method for reducing earing rate of hot continuous rolling low-carbon steel sheet

Similar Documents

Publication Publication Date Title
US8795443B2 (en) Lacquered baked steel sheet for can
EP2690191B1 (en) A method of production of high strength thin-gauge steel sheet excellent in elongation and hole expandability
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
WO2001098552A1 (en) Thin steel sheet and method for production thereof
WO2005103316A1 (en) Steel sheet for can and method for production thereof
JP5924459B1 (en) Stainless steel for cold rolled steel
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP2000054070A (en) Steel sheet for can, excellent in surface roughing resistance and aging resistance, and its manufacture
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JPH09310150A (en) Steel sheet for can excellent in workability, nonearing property and resistance to surface roughening and its production
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP2003138348A (en) Ferritic stainless steel sheet, and production method therefor
JP4367205B2 (en) Strain aging treatment method for steel sheet and method for producing high-strength structural member
JP2007177293A (en) Ultrahigh-strength steel sheet and manufacturing method therefor
JPH1081919A (en) Production of steel sheet for two-piece can, excellent in non-earing characteristic and surface roughing resistance
JP2012158797A (en) High strength steel sheet and method for manufacturing the same
JPH11222647A (en) Original sheet for surface treated steel sheet excellent in aging resistance and small in generating rate of earing and its production
JP3735142B2 (en) Manufacturing method of hot-rolled steel sheet with excellent formability
KR102484992B1 (en) Plated steel sheet having excellent strength, formability and surface property and method for manufacturing the same
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JP3043901B2 (en) Method for producing high-strength cold-rolled steel sheet and galvanized steel sheet with excellent deep drawability
JPH0776381B2 (en) Manufacturing method of cold-rolled steel sheet for deep drawing
JP3680004B2 (en) Steel plate for thinned deep drawn ironing can with excellent workability
JP2023549373A (en) High-strength galvanized steel sheet with excellent formability and its manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20041105

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050329