JP2521553B2 - Method for producing cold-rolled steel sheet for deep drawing having bake hardenability - Google Patents

Method for producing cold-rolled steel sheet for deep drawing having bake hardenability

Info

Publication number
JP2521553B2
JP2521553B2 JP2054591A JP5459190A JP2521553B2 JP 2521553 B2 JP2521553 B2 JP 2521553B2 JP 2054591 A JP2054591 A JP 2054591A JP 5459190 A JP5459190 A JP 5459190A JP 2521553 B2 JP2521553 B2 JP 2521553B2
Authority
JP
Japan
Prior art keywords
amount
less
cold
steel sheet
property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2054591A
Other languages
Japanese (ja)
Other versions
JPH03257124A (en
Inventor
浩作 潮田
直樹 吉永
治 秋末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2054591A priority Critical patent/JP2521553B2/en
Publication of JPH03257124A publication Critical patent/JPH03257124A/en
Application granted granted Critical
Publication of JP2521553B2 publication Critical patent/JP2521553B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、焼付硬化性(以後BH性と略称)を付与した
深絞り用冷延鋼板の製造方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing a cold-rolled steel sheet for deep drawing, which is provided with bake hardenability (hereinafter abbreviated as BH property).

〔従来の技術〕[Conventional technology]

自動車の外・内板パネルなどには深絞り用冷延鋼板が
用いられている。ここでいう冷延鋼板とは、表面処理を
しない狭義の冷延鋼板と、防錆のためにZnめっきや合金
化Znめっきなどの表面処理を施した冷延鋼板を意味す
る。これらの鋼板に要求される材料特性には、i)優れ
たプレス成形性と、ii)BH性がある。すなわち、i)は
最近の自動車用部品の一体成形性やスタリング性の改善
に関連するものである。すなわち、これらの鋼板には最
近益々厳しい成形性が要求されており、成形性のきわめ
て優れた冷延鋼板が必要である。一方、成形性が向上す
ると一般に材料は軟質化し、耐デント性が劣化する。上
記ii)のBH性は、このような問題を解決する重要な特性
であり、これによりプレス時の加工性を確保しつつ、プ
レス後の塗装工程で強度が上昇し、問題となる耐デント
性が改善される。また最近、地球環境問題が表面化する
中、車体の軽量化は燃費の向上にとって重要である。そ
のためには、成形性の優れたBH性を有するパネル用高強
度冷延鋼板が必要である。
Cold-rolled steel sheets for deep drawing are used for outer and inner panels of automobiles. The cold-rolled steel sheet here means a cold-rolled steel sheet in a narrow sense that is not surface-treated, and a cold-rolled steel sheet that has been subjected to surface treatment such as Zn plating or alloyed Zn plating for rust prevention. The material properties required for these steel sheets are i) excellent press formability and ii) BH property. That is, i) relates to the recent improvement in integral moldability and sterling of automobile parts. That is, these steel sheets are required to have more and more severe formability recently, and cold-rolled steel sheets having excellent formability are required. On the other hand, when the moldability is improved, the material is generally softened and the dent resistance is deteriorated. The above-mentioned ii) BH property is an important property that solves such problems, and as a result, the workability during pressing is ensured, and the strength increases in the painting process after pressing, which is a problem of dent resistance. Is improved. Also, as global environmental problems have come to the surface these days, weight reduction of the vehicle body is important for improving fuel efficiency. For that purpose, a high-strength cold-rolled steel sheet for panels having excellent BH property with excellent formability is required.

超加工性鋼板の製造は、高純度鋼(IF鋼)をベースに
連続焼鈍を用いて、あるいはIF鋼や低炭素鋼をベースに
バッチ式の脱炭焼鈍を用いて製造されるのが通例であ
る。材質の均一性や経済性の点から連続焼鈍する方が好
ましいことは周知であるが、この場合優れた加工性を満
足するためにTiやNbを添加してBH性に寄与する固溶C,N
をゼロあるいは極めて低い量に制御している。したがっ
て、超加工性鋼板にはBH性が消失するのが一般的であ
る。
Super-processable steel sheets are usually manufactured by continuous annealing based on high-purity steel (IF steel) or batch-type decarburization annealing based on IF steel or low carbon steel. is there. It is well known that continuous annealing is preferable from the viewpoint of material uniformity and economy, but in this case solid solution C that contributes to BH property by adding Ti or Nb to satisfy excellent workability, N
Is controlled to zero or an extremely low amount. Therefore, the BH property is generally lost in the super-workable steel sheet.

しかし、このような連続焼鈍したIF鋼にBH性を付与す
べく、従来から多くの検討がなされてきた。本発明で
は、深絞り性の指標である値と伸びのバランスが良好
と考えられるTiとNbを複合添加した鋼板を前提としてい
る。このような鋼板にBH性を付与する従来の技術には、
基本的に次の3つの考え方がある。
However, many studies have been made in the past to impart BH property to such continuously annealed IF steel. The present invention is premised on a steel sheet to which Ti and Nb are added in combination, which is considered to have a good balance between the value which is an index of deep drawability and elongation. Conventional techniques for imparting BH properties to such steel sheets include
There are basically the following three ideas.

第1は、特開昭59−31827号公報にみられるように、T
iでまずNを固定し、ストレッチャーストレインが発生
せずかつBH性が発現するように過剰固溶Cを残存すべく
Nbを調整して添加する技術である。上記技術と関連して
特開昭60−47328号公報では、これにさらにBを添加
し、固溶BのBH性への寄与を加えBH性の向上を狙ってい
る。第2は、特開昭61−26757号公報、特開昭62−7822
号公報によって開示されているものであり、ともにS量
を30ppm以下に極度に低減することにより、Tiの硫化物
や炭化物の析出挙動を変化させることによりBH性を増加
させることを特徴としている。第3は、特開昭61−2769
31号公報が開示するものであり連続焼鈍の均熱温度を85
0℃〜Ac3と高温にして炭化物を溶解させることによりBH
性を付与することを特徴としている。しかし、これらの
従来方法はいずれも次のような問題を有している。
The first is T as disclosed in JP-A-59-31827.
First, fix N with i and leave excess solid solution C so that stretcher strain does not occur and BH property is expressed.
This is a technique of adjusting and adding Nb. In connection with the above technique, Japanese Patent Laid-Open No. 60-47328 aims to improve BH property by further adding B to this to contribute to BH property of solid solution B. Secondly, Japanese Patent Laid-Open Nos. 61-26757 and 62-7822.
Both of them are characterized by increasing the BH property by changing the precipitation behavior of sulfides and carbides of Ti by extremely reducing the S content to 30 ppm or less. Thirdly, JP-A-61-2769.
No. 31 gazette discloses that the soaking temperature of continuous annealing is 85
0 ° C. to Ac 3 and BH by high temperature to dissolve the carbides
It is characterized by imparting sex. However, all of these conventional methods have the following problems.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

第1の従来方法では、NはTiで、Cの一部はNbで固定
するように役割を分担している。しかし、TiもNbも当量
以下しか添加せず、特にNbはBH性に寄与する過剰の固溶
Cを残存させるように添加量を少なく調整している。し
たがって、熱延板にも多量の固溶Cが存在し、このよう
な固溶Cは、冷延・焼鈍板の{111}集合組織の発達に
きわめて有害であり、値すなわち深絞り性が劣化する
問題がある。また、TiはNに対して当量以下しか添加し
ないのでSを固定することはもはや不可能であり、加工
性やBH性にとって重要なTi硫化物の活用ができない。ま
た、BH性を付与するために多量のBを添加することは、
品質を劣化させコスト上昇を招く。第2の従来方法で
は、Sを30ppm以下にするとTi添加極低炭素鋼にBH性が
付与されることを基本に、この技術をTiとNbを添加した
極低炭素鋼の場合まで拡張している。しかし、本発明者
らが詳細に検討した結果、TiとNbを複合添加した極低炭
素鋼では、i)S量を30ppm以下に低減してもBH量が増
加するわけでなく、むしろ減少し、かつii)BH性も充分
でないことが判明した。さらに、S量を30ppm以下に低
減することは大幅なコスト上昇をきたす問題もある。第
3の従来方法では、焼鈍温度が850℃以上と高いことが
前提となっている。高温焼鈍は、加工性を向上させたり
BHを付与するためには好ましいが、操業技術的には板破
断が生じやすく、また鋼板の平坦度も低下するなど問題
が多く、かつエネルギーコストも高くつく。
In the first conventional method, N is Ti and C is partially fixed with Nb. However, Ti and Nb are added only in an equivalent amount or less, and in particular, Nb is adjusted to a small amount so that an excessive amount of solid solution C contributing to BH property remains. Therefore, a large amount of solute C also exists in the hot rolled sheet, and such solute C is extremely harmful to the development of the {111} texture of the cold rolled / annealed sheet, and the value, that is, the deep drawability deteriorates. I have a problem to do. In addition, since Ti is added in an equivalent amount or less with respect to N, it is no longer possible to fix S, and it is not possible to utilize Ti sulfide, which is important for workability and BH property. In addition, adding a large amount of B to impart BH property is
It deteriorates the quality and raises the cost. In the second conventional method, when S is set to 30 ppm or less, BH property is imparted to the Ti-added ultra-low carbon steel, and this technique is extended to the case of the Ti- and Nb-added ultra-low carbon steel. There is. However, as a result of detailed study by the present inventors, in the ultra-low carbon steel to which Ti and Nb are added in combination, i) even if the S content is reduced to 30 ppm or less, the BH content does not increase, but rather decreases. Ii) It was also found that the BH property was not sufficient. Furthermore, reducing the amount of S to 30 ppm or less has a problem of causing a significant cost increase. The third conventional method is premised on that the annealing temperature is as high as 850 ° C or higher. High temperature annealing improves workability,
Although it is preferable for imparting BH, there are many problems such as plate breakage in terms of operation technology, and reduction in flatness of the steel plate, and energy costs are high.

本発明は、以上の問題点を解決して、BH特性を付与し
つつ極めて加工性に優れた鋼板を安定的かつ経済的に製
造する技術を提供するものである。
The present invention solves the above problems and provides a technique for stably and economically producing a steel sheet having BH characteristics and having excellent workability.

〔課題を解決するための手段〕[Means for solving the problem]

本発明においては、まず極めて優れた加工性を確保す
る基本的条件として、NとSの一部を固定するに充分な
Tiを添加する。この点が、既に述べたNの当量以下のTi
しか添加しない第1の従来方法と異なる。これにより、
Nはまず安定してTiNとして固定されるのみならず、か
なりの量のSもTiSとして固定される。これらの析出物
は高温で形成されるため粗大であり、粒成長をあまり阻
害しない。したがって、微細なTiCやNbCが析出する場合
より最終製品の結晶粒径が大きくなり加工性が著しく改
善される。また、TiによってSが固定される結果、従来
熱間脆性を防止する目的で添加されていたMnも低下する
ことが可能となり、これにより一層の加工性の向上も可
能となる。また、TiとNbを複合添加した極低炭素鋼にお
いては、Ti添加極低炭素鋼と異なり、むしろS量を増加
させる方がBH量を上昇させるという新知見を得た。すな
わち、Nより当量以上添加されるTiは、S量が低い場合
にはCはTiCとして固定することができるので、固溶C
量が低下する。一方、S量を増加させるとNより当量以
上のTiはまずSの固定に使用されるので、もはやCを固
定することは不可能となる。したがって、CはNbによっ
て固定されることになる。このような成分状況下におい
ては、850℃未満の焼鈍温度でも、NbがCに対して当量
以下の場合には、容易に固溶Cが残存しBH性が付与され
る。この場合、TiはN,Sを比較的大きな析出物として固
定し、さらにNbでCも固定しているので、粒成長性が良
好となり、極めて優れた加工性が得られる。当然なが
ら、850℃未満の操業が可能となることから高温焼鈍に
付随する。操業技術面の問題やエネルギーコスト上昇に
起因する経済性の問題が解決される。
In the present invention, first, as a basic condition for ensuring extremely excellent workability, it is sufficient to fix a part of N and S.
Add Ti. This is because the Ti content below the N equivalent
This is different from the first conventional method in which only addition is made. This allows
N is not only stably fixed as TiN but also a considerable amount of S is fixed as TiS. Since these precipitates are formed at high temperature, they are coarse and do not hinder grain growth. Therefore, the crystal grain size of the final product is larger than when fine TiC and NbC are precipitated, and the workability is significantly improved. Further, as a result of fixing S by Ti, Mn, which has been conventionally added for the purpose of preventing hot brittleness, can also be lowered, and thereby workability can be further improved. In addition, in the ultra low carbon steel in which Ti and Nb are added in combination, differently from the Ti added ultra low carbon steel, we have obtained new knowledge that increasing the S amount rather increases the BH amount. That is, Ti added in an amount equal to or more than N can fix C as TiC when the amount of S is low.
The amount decreases. On the other hand, when the amount of S is increased, Ti equal to or more than N is first used for fixing S, so that it becomes impossible to fix C anymore. Therefore, C is fixed by Nb. Under such a composition, even if the annealing temperature is lower than 850 ° C., when Nb is equal to or less than the equivalent amount of C, the solid solution C easily remains and the BH property is imparted. In this case, Ti fixes N and S as relatively large precipitates, and also fixes C with Nb, so that the grain growth property becomes good and extremely excellent workability can be obtained. As a matter of course, it is possible to operate at a temperature of less than 850 ° C, which is accompanied by high temperature annealing. The problems of operating technology and economic problems caused by the rise of energy costs will be solved.

また、以上に述べた冶金原理は、表面処理を施さない
冷延鋼板の製造に適用できることはもとより、電気Znめ
っき冷延鋼板の原板、さらにはライン内焼鈍方式の連続
溶融Znめっき設備によるZnめっきならびに合金化Znめっ
き冷延鋼板の製造にも適用が可能である。
Further, the metallurgical principle described above can be applied not only to the production of cold-rolled steel sheet that is not subjected to surface treatment, but also to the original plate of electric Zn-plated cold-rolled steel sheet, and further to Zn plating by continuous hot-dip Zn plating equipment of in-line annealing method. It can also be applied to the production of alloyed Zn-plated cold-rolled steel sheets.

本発明は、このような思想と新知見に基づいて構成さ
れたものであり、その要旨とするところは下記のとおり
である。
The present invention is constructed based on such an idea and a new finding, and the gist thereof is as follows.

(1)重量で、C:0.0005〜0.0040%、Si:0.8%以下、M
n:0.03〜1.0%、P:0.15%以下、S:0.004〜0.015%、Al:
0.01〜0.1%、N:0.0005〜0.0060%および残部Feと不可
避的不純物からなり、かつTiとNbを複合添加することを
必須条件とし、Tiは0.009〜0.05%で、かつ48/14・N<
Ti<48/14・N+48/32・Sを満たす範囲内で含有し、Nb
は0.009〜0.02%で、かつ93/12・(C−0.0015)≦Nb≦
93/12・Cを満たす範囲内で含有する鋼を(Ar3−100)
℃以上の仕上げ温度で熱間圧延したのち、500〜750℃の
温度で巻き取り、次いで圧下率60%以上で冷間圧延した
のち、700℃以上、850℃未満で連続焼鈍をすることを特
徴とする焼付硬化性を有する深絞り用冷延鋼板の製造方
法。
(1) By weight, C: 0.0005 to 0.0040%, Si: 0.8% or less, M
n: 0.03-1.0%, P: 0.15% or less, S: 0.004-0.015%, Al:
0.01-0.1%, N: 0.0005-0.0060%, balance Fe and unavoidable impurities, and Ti and Nb must be added together. Ti is 0.009-0.05% and 48 / 14N <48
Nb contained within the range that satisfies Ti <48/14 ・ N + 48/32 ・ S
Is 0.009 to 0.02%, and 93/12 · (C-0.0015) ≦ Nb ≦
The steel containing in a range satisfying 93/12 · C (Ar 3 -100)
Characterized by hot rolling at a finishing temperature of ℃ or more, winding at a temperature of 500 to 750 ℃, cold rolling at a rolling reduction of 60% or more, and continuous annealing at 700 ℃ or more and less than 850 ℃. A method for manufacturing a cold-rolled steel sheet for deep drawing having bake hardenability.

(2)重量で、C:0.0005〜0.0040%、Si:0.8%以下、M
n:0.03〜1.0%、P:0.15%以下、S:0.004〜0.015%、Al:
0.01〜0.1%、N:0.0005〜0.0060%、B:0.0002〜0.0010
%および残部Feと不可避的不純物からなり、かつTiとNb
を複合添加することを必須条件とし、Tiは0.009〜0.05
%で、かつ48/14・N<Ti<48/14・N+48/32・Sを満
たす範囲内で含有し、Nbは0.009〜0.02%で、かつ93/12
・(C−0.0015)≦Nb≦93/12・Cを満たす範囲内で含
有する鋼を(Ar3−100)℃以上の仕上げ温度で熱間圧延
したのち、500〜750℃の温度で巻き取り、次いで圧下率
60%以上で冷間圧延したのち、700℃以上、850℃未満で
連続焼鈍をすることを特徴とする焼付硬化性を有する深
絞り用冷延鋼板の製造方法。
(2) By weight, C: 0.0005 to 0.0040%, Si: 0.8% or less, M
n: 0.03-1.0%, P: 0.15% or less, S: 0.004-0.015%, Al:
0.01-0.1%, N: 0.0005-0.0060%, B: 0.0002-0.0010
% And balance Fe and unavoidable impurities, and Ti and Nb
It is an essential condition that Ti is 0.009-0.05.
%, And within the range of 48/14 · N <Ti <48/14 · N + 48/32 · S, Nb is 0.009 to 0.02%, and 93/12
・ (C-0.0015) ≦ Nb ≦ 93/12 ・ Steel contained within the range that satisfies C is hot-rolled at a finishing temperature of (Ar 3 −100) ° C. or higher and then wound at a temperature of 500 to 750 ° C. , Then the reduction rate
A method for producing a deep-drawn cold-rolled steel sheet having bake hardenability, which comprises cold rolling at 60% or more and then continuous annealing at 700 ° C or more and less than 850 ° C.

本発明によれば、1.8以上の値と3.0kgf/mm2のBH性
が得られる。
According to the present invention, a value of 1.8 or more and a BH property of 3.0 kgf / mm 2 can be obtained.

以下に、数値限定理由を述べ、本発明をさらに明確に
する。
The reasons for limiting numerical values will be described below to further clarify the present invention.

CはBH性に寄与する元素であり、その範囲は極めて重
要である。すなわち、C量は0.0005〜0.0040%でなけれ
ばならない。C量を0.0005%未満に低減することは技術
的に極めて困難であり、かつ著しいコスト上昇を招く。
C量が0.0040%超になると、C量を固定するためのNb量
が多くなり、i)Nbの合金コストの上昇を招き、かつi
i)微細なNbCが増加するので粒成長性が阻害され、値
の低下、伸びの劣化が著しく、超加工性鋼板の範疇外と
なる。
C is an element that contributes to the BH property, and its range is extremely important. That is, the C content must be 0.0005 to 0.0040%. It is technically extremely difficult to reduce the amount of C to less than 0.0005% and causes a significant cost increase.
If the C content exceeds 0.0040%, the Nb content for fixing the C content increases, and i) the alloy cost of Nb increases, and i
i) Since fine NbC is increased, grain growth is hindered, and the value is lowered and elongation is significantly deteriorated, which falls outside the range of super-workable steel sheets.

Siは伸びの劣化を抑えて強度を上昇させるので高強度
化のためには有効な元素であるが、0.8%超になると、
化成処理性が劣化したり、溶融亜鉛メッキ鋼板を製造す
る場合には、メッキ性が劣化する。したがって、その量
は0.8%以下とする。Siは低ければ低い程、加工性が向
上するので下限はもうけない。
Si is an effective element for high strength because it suppresses deterioration of elongation and increases strength, but if it exceeds 0.8%,
The chemical conversion treatment property deteriorates, and the plating property deteriorates when a hot-dip galvanized steel sheet is manufactured. Therefore, the amount should be 0.8% or less. The lower the Si, the better the workability, so there is no lower limit.

Mn量は0.03〜1.0%とする。その量が0.03%未満にな
ると、熱間脆化が生じる。また、1.0%超になると硬質
化しかつ加工性が劣化する。
The amount of Mn is 0.03 to 1.0%. If the amount is less than 0.03%, hot embrittlement occurs. Further, if it exceeds 1.0%, it hardens and the workability deteriorates.

P量は0.15%以下とする。Pは加工性の劣化を少なく
して強度を上昇させる有効な元素であるが、0.15%超に
なると硬質化しすぎ、かつ2次加工脆化をひきおこす。
The amount of P should be 0.15% or less. P is an effective element that reduces the deterioration of workability and increases strength, but if it exceeds 0.15%, it becomes too hard and causes secondary work embrittlement.

S量は本発明においてきわめて重要であり、その量を
0.004〜0.015%とする。S量が0.004%未満となるとN
を固定しても余剰となったTiは、Ti硫化物を形成する前
にTi炭化物を形成する。その結果、焼鈍後に固溶Cは残
存せずBH性も乏しくなる。また、このようなTi炭化物
は、Ti硫化物と比較して微細なため、焼鈍板の結晶粒径
が微細となり、加工性も劣化する。一方、S量が0.015
%超になると、熱間脆化が発生し、また冷延・焼鈍後の
加工性も著しく劣化する。本発明の範囲である0.004〜
0.015%Sにおいては、Nを固定しても余剰となったTi
が、Ti硫化物を形成する。その結果、CはNbに一定ある
いは全量固定されることになる。ところで、本発明のC
とNbとの成分範囲および焼鈍条件においては、焼鈍前か
ら固溶Cが残存あるいは焼鈍中にNbCが再溶解して固溶
Cが存在するのでBH性が発現する。また、比較的大きい
Ti硫化物が存在するので粒成長性も良好で、本発明材は
加工性にも優れる。
The amount of S is extremely important in the present invention.
It is 0.004 to 0.015%. When the amount of S is less than 0.004%, N
Even if is fixed, excess Ti forms Ti carbide before forming Ti sulfide. As a result, solid solution C does not remain after annealing and the BH property becomes poor. Further, since such Ti carbide is finer than Ti sulfide, the crystal grain size of the annealed plate becomes finer and the workability also deteriorates. On the other hand, S amount is 0.015
If it exceeds%, hot embrittlement occurs, and the workability after cold rolling / annealing remarkably deteriorates. The range of the present invention is 0.004 ~
At 0.015% S, excess Ti even if N is fixed
Form Ti sulfide. As a result, C is fixed to Nb or fixed in total amount. By the way, C of the present invention
In the composition range of Nb and Nb and annealing conditions, solid solution C remains before annealing, or NbC is redissolved during annealing and solid solution C exists, so that BH property is exhibited. Also relatively large
Since Ti sulfide is present, the grain growth property is good, and the material of the present invention is also excellent in workability.

Al量は0.01〜0.1%とする。AlはTi、Nb添加前の溶鋼
脱酸剤として加えるが、0.01%未満と少量すぎる場合に
は、TiやNbが酸化されこれらの歩留が低下する。一方、
0.1%超と多量に添加しすぎるとAl2O3介在物が増加し、
材質を劣化させる。
The amount of Al is 0.01 to 0.1%. Al is added as a molten steel deoxidizer before adding Ti and Nb, but if it is less than 0.01% and too small, Ti and Nb are oxidized and the yields thereof are reduced. on the other hand,
If it is added in excess of 0.1%, the amount of Al 2 O 3 inclusions increases,
Deteriorate the material.

N量は0.0005〜0.0060%とする。加工性という観点か
らするとN量は少ないほど好ましいが、0.0005%未満に
するには製鋼コストが著しく上昇する。一方、N量が0.
0060%超と多量にすぎると、これを固定するためのTiが
増加し、コスト上昇を招き好ましくない。
The N content is 0.0005 to 0.0060%. From the viewpoint of workability, the smaller the N content, the more preferable, but if it is less than 0.0005%, the steelmaking cost will remarkably increase. On the other hand, the amount of N is 0.
If it is too much, that is, too much, the amount of Ti for fixing the Ti will increase and the cost will increase, which is not preferable.

本発明においては、TiとNbとの複合添加を必須条件と
するが、まずTi添加量は0.009〜0.05%でかつ48/14・N
<Ti<48/14・N+48/32・Sでなければならない。すな
わち、TiはAl脱酸後に添加され鋼中のNをまずTiNとし
て固定するが、必ず余剰Tiが存在するように成分調整す
る必要がある。これは、S量の限定理由で述べたように
余剰TiがTi硫化物(TiSなど)を形成し、その結果、鋼
板の加工性が向上し、BH性が付与されるからである。し
たがって、まずTi>48/14・Nでなければならない。一
方、Ti量が48/14・N+48/32・Sを超えると、NとSを
固定してもなお残存するTiがCを固定するため、BH量が
低下したり、微量TiCによって加工性が劣化したりする
ため、Ti<48/14・N+48/32・Sでなければならない。
また、この条件が満たされてもTi添加量が0.009%未満
になるとTiNやTi硫化物を形成することは困難となる。
したがって、Tiは0.009%以上を添加する必要がある。
一方、Ti添加量が0.05%超になるとTiNやTi硫化物は形
成されるが、さらに余剰のTiが存在することになり、こ
れがCをTiCやTi4C2S2などという形で固定するため、残
存する固溶Cは極めてわずかになり、耐デント性を向上
するに有効なBH性を付与することは不可能となる。した
がって、Ti添加量は、0.05%以下とする。
In the present invention, the combined addition of Ti and Nb is an essential condition. First, the Ti addition amount is 0.009 to 0.05% and 48/14 · N.
It must be <Ti <48/14 ・ N + 48/32 ・ S. That is, Ti is added after deoxidation of Al to fix N in steel as TiN first, but it is necessary to adjust the composition so that excess Ti always exists. This is because excess Ti forms Ti sulfides (TiS etc.) as described in the reason for limiting the amount of S, and as a result, the workability of the steel sheet is improved and BH property is imparted. Therefore, Ti must first be> 48/14 · N. On the other hand, when the Ti amount exceeds 48/14 · N + 48/32 · S, the remaining Ti fixes C even when N and S are fixed, resulting in a decrease in BH amount and workability due to a small amount of TiC. Since it deteriorates, Ti <48/14 ・ N + 48/32 ・ S must be satisfied.
Even if this condition is satisfied, it becomes difficult to form TiN or Ti sulfide if the Ti addition amount is less than 0.009%.
Therefore, it is necessary to add 0.009% or more of Ti.
On the other hand, when the amount of Ti added exceeds 0.05%, TiN and Ti sulfide are formed, but there is an excess of Ti, which fixes C in the form of TiC or Ti 4 C 2 S 2. Therefore, the amount of remaining solid solution C becomes extremely small, and it becomes impossible to impart the BH property effective for improving the dent resistance. Therefore, the Ti addition amount is set to 0.05% or less.

Nb添加量は0.009〜0.02%でかつ93/12・(C−0.001
5)≦Nb≦93/12・Cでなければならない。微量のNb添加
により深絞り性は向上するが、添加量が0.009%未満で
はその効果は僅かである。一方、Nbが0.02%超になる
と、延性が著しく劣化し、かつBH性も極めて低い値にな
り、耐デント性が劣化する。すなわち、本発明では、基
本的にTiはNとSの一部を固定することにより消費され
るので、CはNbにより固定されることになる。この場
合、既に述べたC,Nb量の範囲に加えて、93/12・(C−
0.0015)≦Nb≦93/12・Cとする必要がある。原子比でN
b/Cが1以下の領域であればNbが不足して固溶Cが残存
し、高いBH量が得られる。これらの固溶Cが耐デント性
に有効なBH特性に寄与する。また、Nb量がNb<93/12・
〔C−0.0015〕となるとBH量は増加するが、固溶Cや微
細なNbCに起因して加工性が劣化する。一方Nb量の上限
は93/12・Cとする必要がある。Nb量がNb>93/12・Cと
なると、ほぼ全てのCがNbにより固定され、充分なBH量
が得られなくなる。
The amount of Nb added is 0.009 to 0.02% and 93/12 · (C-0.001
5) It must be ≤ Nb ≤ 93/12 · C. The deep drawability is improved by adding a small amount of Nb, but the effect is slight when the addition amount is less than 0.009%. On the other hand, when Nb exceeds 0.02%, the ductility is significantly deteriorated, the BH property is also extremely low, and the dent resistance is deteriorated. That is, in the present invention, since Ti is basically consumed by fixing a part of N and S, C is fixed by Nb. In this case, in addition to the ranges of C and Nb amounts already described, 93/12. (C-
0.0015) ≤ Nb ≤ 93/12 · C is required. N in atomic ratio
If b / C is in the range of 1 or less, Nb will be insufficient and solid solution C will remain, resulting in a high BH amount. These solute C contribute to the BH characteristic effective for dent resistance. Also, the amount of Nb is Nb <93/12
When it becomes [C-0.0015], the amount of BH increases, but the workability deteriorates due to solid solution C and fine NbC. On the other hand, the upper limit of Nb amount must be 93/12 · C. When the Nb amount becomes Nb> 93/12 · C, almost all C is fixed by Nb, and a sufficient BH amount cannot be obtained.

Bは2次加工性劣化を防止する目的で必要に応じて添
加されるもので、その添加量は0.0002〜0.0010%とす
る。添加量が0.0002%未満になると2次加工性劣化の防
止に効果がなく、一方、0.0010%を超えて添加しすぎる
と加工性が劣化したり、スラブ割れが生じたりする。
B is added as necessary for the purpose of preventing deterioration of secondary workability, and the addition amount is 0.0002 to 0.0010%. If the addition amount is less than 0.0002%, there is no effect in preventing deterioration of the secondary workability, while if over 0.0010% is added, the workability deteriorates and slab cracking occurs.

上記化学組成を有するスラブを熱間圧延する。熱延の
仕上げ温度は、冷延・焼鈍後の加工性を確保するという
観点から(Ar3−100)℃以上とする必要がある。また、
巻き取り温度は500〜750℃とする。巻き取り温度の下限
は、深絞り性や延性を確保する目的で決定され、上限は
コイル両端部での材質劣化に起因する歩留減少を防止す
る観点から決定される。
A slab having the above chemical composition is hot rolled. The finishing temperature for hot rolling needs to be (Ar 3 -100) ° C or higher from the viewpoint of ensuring workability after cold rolling and annealing. Also,
The winding temperature is 500-750 ℃. The lower limit of the winding temperature is determined for the purpose of ensuring deep drawability and ductility, and the upper limit thereof is determined from the viewpoint of preventing the yield reduction due to the deterioration of the material at both ends of the coil.

冷間圧延は通常の条件でよく、焼鈍後の深絞り性を確
保する目的から、その圧下率は60%以上とする。
Cold rolling may be performed under normal conditions, and the rolling reduction is 60% or more for the purpose of ensuring deep drawability after annealing.

連続焼鈍あるいはライン内焼鈍方式の連続溶融Znめつ
き設備の焼鈍温度は、700℃以上850℃未満とする。焼鈍
温度が700℃未満では、再結晶は不充分である。また、
加工性やBH性は焼鈍温度の上昇とともに向上するが、85
0℃以上では高温すぎて板破断や板の平坦度が悪化す
る。
The annealing temperature of continuous melting or in-line annealing continuous melting Zn plating equipment shall be 700 ℃ or more and less than 850 ℃. If the annealing temperature is less than 700 ° C, recrystallization is insufficient. Also,
The workability and BH property improve as the annealing temperature increases, but 85
If the temperature is 0 ° C or higher, the temperature is too high and the plate breaks or the flatness of the plate deteriorates.

次に、本発明を実施例にて説明する。 Next, the present invention will be described with reference to examples.

(実施例1) 第1表に示す化学成分を有する鋼を転炉にて出鋼し、
連続鋳造機にてスラブとし、その後1070℃に加熱し、仕
上げ温度がAr3変態点近傍の910℃、板厚が4.2mmとなる
ような熱間圧延を行った。ランアウトテーブルでの平均
冷却速度は40℃/sであり、その後700℃でコイルに巻き
取った。酸洗後0.8mmで冷間圧延を行い、続いて実機で
連続焼鈍を施した。連続焼鈍条件は、焼鈍温度:830℃,
均熱:1min,冷却速度:室温まで100℃/sである。その
後、0.6%の圧下率で調質圧延を行い、引張試験に供し
た。
(Example 1) Steel having the chemical composition shown in Table 1 was tapped in a converter,
A slab was made with a continuous casting machine, then heated to 1070 ° C, and hot rolling was performed so that the finishing temperature was 910 ° C near the Ar 3 transformation point and the plate thickness was 4.2 mm. The average cooling rate on the run-out table was 40 ° C / s, after which it was coiled at 700 ° C. After pickling, cold rolling was performed at 0.8 mm, followed by continuous annealing in an actual machine. Continuous annealing conditions are annealing temperature: 830 ℃,
Soaking: 1 min, cooling rate: 100 ℃ / s up to room temperature. Then, temper rolling was performed at a rolling reduction of 0.6%, and the steel was subjected to a tensile test.

試験結果を第2表に示した。ここで、引張試験はJIS5
号試験片を用いて評価した。BH性は、まず圧延方向に2
%の引張予歪を加え、一旦除荷し、170℃で20分間の塗
装焼付相当の熱処理を施してから、再度引張試験を行
い、このときの降伏応力の上昇量を求めることで評価し
た。また、r値は一般によく知られた方法で求めた。ま
た2次加工性は、絞り比2.5(シャーエッジ)で絞った
カップを−50℃に冷却し、圧壊して割れ発生状況を観察
することにより評価した。
The test results are shown in Table 2. Here, the tensile test is JIS5
Evaluation was performed using a No. test piece. The BH property is 2 in the rolling direction.
% Tensile prestrain was added, the load was once removed, heat treatment equivalent to paint baking was performed at 170 ° C. for 20 minutes, and then the tensile test was performed again, and the increase amount of the yield stress at this time was obtained and evaluated. The r value was obtained by a generally well known method. The secondary workability was evaluated by cooling a cup drawn at a drawing ratio of 2.5 (shear edge) to −50 ° C., crushing the cup, and observing the crack occurrence state.

第1表,第2表の鋼No.A−1〜E−1は、Pは約0.00
8%含まれる強度レベルが30kgf/mm2級の冷延鋼板であ
り、A−2〜E−2は、Pを約0.07%添加して強度レベ
ルが35kgf/mm2級の高強度冷延鋼板である。
Steel Nos. A-1 to E-1 in Tables 1 and 2 have P of about 0.00
8% Included intensity level is cold-rolled steel sheet 30 kgf / mm 2 grade, A-2~E-2 is a high strength cold rolled steel sheet of about 0.07% added to the intensity level of 35 kgf / mm 2 class P Is.

これらの表から明らかなように、本発明の範囲によっ
て製造された鋼では、所望の3kgf/mm2以上のBH量と1.8
以上のが得られる。すなわち、鋼A−1、E−1は強
度レベルが30kgf/mm2級でBH性が付与された超成形性冷
延鋼板となっており、鋼A−2,E−2は強度レベルが35k
gf/mm2級でBH性が付与された加工性に優れた高強度冷延
鋼板となっている。ここで、鋼B−1,B−2はS量が低
すぎるため、BH性が不充分である。一方、鋼C−1,C−
2はNb添加量が多すぎるため、加工性、特に延性に劣
り、さらにBH性が不充分である。また、鋼D−1はTi添
加量が多すぎるためBH性がほとんどない。鋼D−2にお
いては、C,Nb量がNb≧93/12・(C−0.0015)を満足し
ないので、加工性、特に値が低い。
As can be seen from these tables, the steel produced according to the scope of the invention has a desired BH content of 3 kgf / mm 2 or higher and 1.8
The above is obtained. That is, the steels A-1 and E-1 are superformable cold-rolled steel sheets having a strength level of 30 kgf / mm 2 and BH property, and the steels A-2 and E-2 have a strength level of 35k.
It is a gf / mm 2 grade high strength cold rolled steel sheet with BH properties and excellent workability. Here, the steels B-1 and B-2 have an insufficient amount of S and thus have an insufficient BH property. On the other hand, steel C-1, C-
In No. 2, since the amount of Nb added was too large, the workability, particularly ductility, was poor, and the BH property was insufficient. Further, Steel D-1 has almost no BH property because the Ti addition amount is too large. In Steel D-2, since the amounts of C and Nb do not satisfy Nb ≧ 93/12 · (C−0.0015), the workability, particularly the value, is low.

(実施例) 第1表に示す供試材のうち、A−1,B−1について実
施例1の場合と同一条件で冷間圧延まで行ったのち、実
機にて溶融Znめっき冷延鋼板を製造した。焼鈍の最高温
度は810℃であり、Znめっき浴の温度は460℃であった。
合金化処理を施した場合には、鋼板をZnめっき浴に浸漬
後520℃まで再加熱して約20秒保定したのち、ただちに
冷却した。第3表に実施例1と同様の方法で評価したBH
性の結果を示す。表から明らかなように、本発明鋼A−
1は合金化処理の有無にかかわらず、所望のBH量を有す
る。
(Example) Among the test materials shown in Table 1, A-1 and B-1 were cold-rolled under the same conditions as in Example 1, and then hot-dipped Zn-plated cold-rolled steel sheets were used in an actual machine. Manufactured. The maximum temperature of annealing was 810 ° C, and the temperature of the Zn plating bath was 460 ° C.
When the alloying treatment was performed, the steel sheet was immersed in a Zn plating bath, reheated to 520 ° C., held for about 20 seconds, and then immediately cooled. BH evaluated in the same manner as in Example 1 in Table 3
The result of sex is shown. As is clear from the table, the present invention steel A-
No. 1 has a desired amount of BH regardless of the presence or absence of alloying treatment.

〔発明の効果〕 以上の説明から明らかなように、本発明の製造方法に
よって、i)BH性を付加した強度レベルが30kgf/mm2
の超成形性冷延鋼板、およびii)BH性を付与した強度レ
ベルが35kgf/mm2級の深絞り用高強度冷延鋼板が得られ
る。本発明は、自動車用の難成形部品の成形を可能に
し、さらに一体成形性を可能にするのみならず、耐デン
ト性の向上にも多きな効果を発揮する。また、本発明に
より得られたBH性を有する高強度冷延鋼板を使用するこ
とにより自動車用パネル鋼板の板厚を減少し、車体重量
を軽減することも可能となる。したがって、本発明は燃
費の向上ひいては地球温暖化問題の対策としても貢献す
る。さらに、このような冷延鋼板が連続焼鈍あるいはラ
イン内焼鈍方式の連続溶融Znめっき設備で製造可能とな
るため、材質の均一性や経済性などの点においても連続
焼鈍のメリットを享受できる。
[Effects of the Invention] As is apparent from the above description, according to the production method of the present invention, i) a superformable cold-rolled steel sheet having a BH property added and a strength level of 30 kgf / mm 2 grade, and ii) a BH property A high strength cold rolled steel sheet for deep drawing having a strength level of 35 kgf / mm 2 grade can be obtained. INDUSTRIAL APPLICABILITY The present invention not only enables molding of a difficult-to-mold component for automobiles and further enables integral moldability, but also exerts many effects in improving dent resistance. Further, by using the high-strength cold-rolled steel sheet having BH property obtained by the present invention, it becomes possible to reduce the thickness of the automobile panel steel sheet and reduce the vehicle body weight. Therefore, the present invention contributes to the improvement of fuel consumption and eventually to the countermeasure against the global warming problem. Furthermore, since such a cold-rolled steel sheet can be manufactured by continuous annealing or in-line annealing type continuous hot-dip Zn plating equipment, the advantages of continuous annealing can be enjoyed in terms of material uniformity and economical efficiency.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】重量で、C:0.0005〜0.0040%、Si:0.8%以
下、Mn:0.03〜1.0%、P:0.15%以下、S:0.004〜0.015
%、Al:0.01〜0.1%、N:0.0005〜0.0060%および残部Fe
と不可避的不純物からなり、かつTiとNbを複合添加する
ことを必須条件とし、Tiは0.009〜0.05%で、かつ48/14
・N<Ti<48/14・N+48/32・Sを満たす範囲内で含有
し、Nbは0.009〜0.02%で、かつ93/12・(C−0.0015)
≦Nb≦93/12・Cを満たす範囲内で含有する鋼を(Ar3
100)℃以上の仕上げ温度で熱間圧延したのち、500〜75
0℃の温度で巻き取り、次いで圧下率60%以上で冷間圧
延したのち、700℃以上、850℃未満で連続焼鈍をするこ
とを特徴とする焼付硬化性を有する深絞り用冷延鋼板の
製造方法。
1. By weight, C: 0.0005 to 0.0040%, Si: 0.8% or less, Mn: 0.03 to 1.0%, P: 0.15% or less, S: 0.004 to 0.015
%, Al: 0.01 to 0.1%, N: 0.0005 to 0.0060% and balance Fe
And inevitable impurities, and the essential addition of Ti and Nb must be 0.009-0.05% and 48/14
・ N <Ti <48/14 ・ N + 48/32 ・ S contained within the range that satisfies S, Nb is 0.009-0.02%, and 93/12 ・ (C-0.0015)
Steel containing within the range of ≦ Nb ≦ 93/12 · C (Ar 3
After hot rolling at a finishing temperature of 100) ° C or higher, 500 to 75
A cold-rolled steel sheet for deep-drawing having bake hardenability, which is characterized in that it is wound at a temperature of 0 ° C, then cold-rolled at a rolling reduction of 60% or more, and then continuously annealed at 700 ° C or more and less than 850 ° C. Production method.
【請求項2】重量で、C:0.0005〜0.0040%、Si:0.8%以
下、Mn:0.03〜1.0%、P:0.15%以下、S:0.004〜0.015
%、Al:0.01〜0.1%、N:0.0005〜0.0060%、B:0.0002〜
0.0010%および残部Feと不可避的不純物からなり、かつ
TiとNbを複合添加することを必須条件とし、Tiは0.009
〜0.05%で、かつ48/14・N<Ti<48/14・N+48/32・
Sを満たす範囲内で含有し、Nbは0.009〜0.02%で、か
つ93/12・(C−0.0015)≦Nb≦93/12・Cを満たす範囲
内で含有する鋼を(Ar3−100)℃以上の仕上げ温度で熱
間圧延したのち、500〜750℃の温度で巻き取り、次いで
圧下率60%以上で冷間圧延したのち、700℃以上、850℃
未満で連続焼鈍をすることを特徴とする焼付硬化性を有
する深絞り用冷延鋼板の製造方法。
2. By weight, C: 0.0005 to 0.0040%, Si: 0.8% or less, Mn: 0.03 to 1.0%, P: 0.15% or less, S: 0.004 to 0.015
%, Al: 0.01 to 0.1%, N: 0.0005 to 0.0060%, B: 0.0002 to
0.0010% and balance Fe and inevitable impurities, and
The combined addition of Ti and Nb is an essential condition, Ti is 0.009
~ 0.05%, and 48/14 ・ N <Ti <48/14 ・ N + 48/32 ・
Steel containing N within the range satisfying S, 0.009 to 0.02%, and satisfying 93/12 · (C−0.0015) ≦ Nb ≦ 93/12 · C (Ar 3 −100) After hot rolling at a finishing temperature of ℃ or more, winding at a temperature of 500 to 750 ℃, then cold rolling at a rolling reduction of 60% or more, then 700 ℃ or more, 850 ℃
A method for producing a cold-rolled steel sheet for deep drawing having bake hardenability, which comprises performing continuous annealing at a temperature of less than 1.
JP2054591A 1990-03-06 1990-03-06 Method for producing cold-rolled steel sheet for deep drawing having bake hardenability Expired - Lifetime JP2521553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2054591A JP2521553B2 (en) 1990-03-06 1990-03-06 Method for producing cold-rolled steel sheet for deep drawing having bake hardenability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2054591A JP2521553B2 (en) 1990-03-06 1990-03-06 Method for producing cold-rolled steel sheet for deep drawing having bake hardenability

Publications (2)

Publication Number Publication Date
JPH03257124A JPH03257124A (en) 1991-11-15
JP2521553B2 true JP2521553B2 (en) 1996-08-07

Family

ID=12974969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2054591A Expired - Lifetime JP2521553B2 (en) 1990-03-06 1990-03-06 Method for producing cold-rolled steel sheet for deep drawing having bake hardenability

Country Status (1)

Country Link
JP (1) JP2521553B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05195148A (en) * 1992-01-20 1993-08-03 Nippon Steel Corp Cold-rolled steel sheet excellent in curing performance for baking paint and secondary workability, galvanized cold-rolled steel sheet and production thereof
JP2705437B2 (en) * 1992-02-19 1998-01-28 住友金属工業株式会社 High-strength cold-rolled steel sheet for deep drawing with bake hardenability and its manufacturing method
KR100415661B1 (en) * 1998-12-24 2004-06-04 주식회사 포스코 A method of manufacturing cold rolled steel sheet having superior formability and baking hardness
KR20010054260A (en) * 1999-12-04 2001-07-02 이계안 Bakehardenable tube material
KR100478726B1 (en) * 1999-12-21 2005-03-24 주식회사 포스코 Manufacturing of bake hardning type cold rolled steel sheet having hight formability and softning
KR100544617B1 (en) * 2001-12-24 2006-01-24 주식회사 포스코 High Strength Cold Rolled Steel Sheet with Excellent Bake Hardenability, and Method for Manufacturing the Steel Sheet
KR100564885B1 (en) * 2003-12-30 2006-03-30 주식회사 포스코 Bake Hardenable Cold Rolled Steel Sheet With Improved Aging Property And Bake Hardenability, And Manufacturing Method Thereof
CN110117758B (en) * 2019-05-31 2021-05-04 张家港扬子江冷轧板有限公司 Low-temperature impact resistant instrument shell part and preparation method thereof
CN111690874A (en) * 2020-06-22 2020-09-22 武汉钢铁有限公司 Band steel with excellent low-temperature secondary processing performance and tensile strength of 370MPa and production method thereof
CN111748735A (en) * 2020-06-22 2020-10-09 武汉钢铁有限公司 Band steel with excellent low-temperature secondary processing performance and tensile strength of 390MPa and production method thereof
CN111763882A (en) * 2020-06-22 2020-10-13 武汉钢铁有限公司 Strip steel with excellent low-temperature secondary processing performance and tensile strength of 340MPa and production method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6267120A (en) * 1985-09-19 1987-03-26 Kobe Steel Ltd Manufacture of cold rolled steel sheet having superior baking hardenability and vertical cracking resistance further high r value
JPH02194126A (en) * 1989-01-20 1990-07-31 Sumitomo Metal Ind Ltd Manufacture of steel sheet having baking hardenability

Also Published As

Publication number Publication date
JPH03257124A (en) 1991-11-15

Similar Documents

Publication Publication Date Title
KR100548864B1 (en) Steel plate and pipe exhibiting excellent deep drawing ability and method for producing the same
US8999085B2 (en) High manganese steel strips with excellent coatability and superior surface property, coated steel strips using steel strips and method for manufacturing the steel strips
US7959747B2 (en) Method of making cold rolled dual phase steel sheet
JP4214006B2 (en) High strength steel sheet with excellent formability and method for producing the same
JP2003064444A (en) High strength steel sheet with excellent deep drawability, and manufacturing method therefor
JP2020509162A (en) High strength cold rolled steel sheet for automobiles
JP3498504B2 (en) High ductility type high tensile cold rolled steel sheet and galvanized steel sheet
JP4414883B2 (en) High-strength cold-rolled steel sheet for ultra-deep drawing excellent in formability and weldability and its manufacturing method
JP2004225132A (en) High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor
JP4772431B2 (en) Manufacturing method of hot-dip galvanized high-strength steel sheet with excellent elongation and hole expansion
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP2006219737A (en) High-strength cold-rolled steel sheet excellent in deep drawability and method for producing the same
JP5031751B2 (en) Manufacturing method of high-strength cold-rolled steel sheet, hot-dipped steel sheet and cold-rolled steel sheet with excellent bake hardenability
JP3473480B2 (en) Hot-dip galvanized steel sheet excellent in strength and ductility and method for producing the same
JPH06145891A (en) High strength cold rolled steel sheet excellent in ductility and delayed fracture resistance and its production
JP3908964B2 (en) Hot-dip galvanized high-strength steel sheet with excellent formability and manufacturing method thereof
JP3247909B2 (en) High-strength hot-dip galvanized steel sheet excellent in ductility and delayed fracture resistance and method for producing the same
JP3404798B2 (en) Method for producing high-strength steel sheet having bake hardenability
JP3967868B2 (en) High-strength hot-rolled steel sheet, high-strength hot-dip galvanized steel sheet, high-strength galvannealed steel sheet excellent in formability, and manufacturing method thereof
JP3288514B2 (en) Manufacturing method of high-strength cold-rolled steel sheet for deep drawing
JP2002266032A (en) Galvanized steel sheet and production method therefor
JPH07268584A (en) Production of high strength galvannealed steel sheet excellent in resistance to secondary working brittleness
JP3266317B2 (en) High tensile cold rolled steel sheet excellent in deep drawability and method for producing the same
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet
JPH055156A (en) High strength steel sheet for forming and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080517

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090517

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100517

Year of fee payment: 14