JP2004225132A - High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor - Google Patents

High strength cold rolled steel sheet and plated steel sheet having excellent deep drawability, steel tube having excellent workability, and production method therefor Download PDF

Info

Publication number
JP2004225132A
JP2004225132A JP2003016432A JP2003016432A JP2004225132A JP 2004225132 A JP2004225132 A JP 2004225132A JP 2003016432 A JP2003016432 A JP 2003016432A JP 2003016432 A JP2003016432 A JP 2003016432A JP 2004225132 A JP2004225132 A JP 2004225132A
Authority
JP
Japan
Prior art keywords
steel sheet
deep drawability
rolled steel
strength
strength cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003016432A
Other languages
Japanese (ja)
Other versions
JP4280078B2 (en
Inventor
Ken Kimura
謙 木村
Naoki Yoshinaga
直樹 吉永
Manabu Takahashi
学 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003016432A priority Critical patent/JP4280078B2/en
Publication of JP2004225132A publication Critical patent/JP2004225132A/en
Application granted granted Critical
Publication of JP4280078B2 publication Critical patent/JP4280078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steel sheet which has excellent deep drawability, to provide a steel tube which has excellent workability, and to provide their production methods. <P>SOLUTION: The high strength cold rolled steel sheet having excellent deep drawability has a composition comprising, by mass, 0.025 to 0.25% C, 0.001 to 3.0% Si, 0.01 to 3.0% Mn, 0.001 to 0.15% P, ≤0.05% S, 0.0005 to 0.010% N, <0.008% Al and 0.0005 to 0.010% B, and the balance iron with inevitable impurities, has a metallic structure comprising one or more kinds selected from bainite, austenite, martensite and pearlite by a volume ratio of ≥2%, and has a mean r value of ≥1.1. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、自動車のパネル類、足廻り、メンバー、フレームなどに用いられる鋼板と鋼管、及び、その製造方法に関するものである。
【0002】
本発明の鋼板は、表面処理をしない冷延鋼板と、防錆のために溶融亜鉛めっき、電気めっきなどの表面処理を施したものの両方を含む。亜鉛めっきとは、純亜鉛のほか、主成分が亜鉛である合金のめっきも含む。また、本発明の鋼管はハイドロフォーム成形用の鋼管素材としても好適である。
【0003】
本発明によれば、成形性に優れた高強度鋼板と鋼管を安価に得ることができるため、地球環境保全に貢献し得るものと考えられる。
【0004】
【従来の技術】
自動車の軽量化ニーズに伴い、鋼板の高強度化が望まれている。鋼板を高強度化することで、板厚減少による軽量化や衝突時の安全性向上が可能となる。
【0005】
しかしながら、高強度で成形性特に深絞り性が優れた鋼板を得ようとすると、従来では、例えば、特許文献1に開示されているように、C量を著しく減じた極低炭素アルミキルド鋼にSi、Mn、Pなどを添加して強化することが必須であった。
【0006】
C量を低減するためには製鋼工程で真空脱ガスを行わねばならず、製造過程でCOを多量に発生することになり、地球環境保全の観点で必ずしも最良なものとは言い難い。
【0007】
これに対して、C量が比較的多く、かつ深絞り性の良好な鋼板についても開示されている。例えば、特許文献2、3などに開示されている。しかしながら、これらはアルミキルド鋼の箱焼鈍が前提となっており、連続焼鈍や連続溶融亜鉛めっきプロセスなどに比較すると生産性に劣る。
【0008】
また、箱焼鈍では、高温焼鈍が困難であること、また、一般に強制冷却装置が備わっていないのでオーステナイト相やマルテンサイト相などを得ることが困難で、組織強化を活用しにくい。したがって、合金添加量の割には強度が低い点も問題である。
【0009】
Al量に関しては、特許文献1及び特許文献2に開示された発明は、いずれも、NをAlNとして固定するために、0.02%以上添加することを必須とするものである。
【0010】
また、特許文献3に記載された発明は、Alを0.005〜0.100%含有するものであるが、その目的は、特許文献1、2開示の発明と同様に、NをAlNとして固定するためであり、Al量を0.008%未満としてAlNの析出を抑制して、B添加によりr値の向上を図るという本発明の技術的思想とは何れも異なる。
【0011】
【特許文献1】
特開昭56−139654号公報
【特許文献2】
特公昭57−47746号公報
【特許文献3】
特公平1−37456号公報
【0012】
【発明が解決しようとする課題】
本発明は、C量の比較的多い鋼において、成形性の良好な高強度鋼板と鋼管を高いコストをかけることなく、また、地球環境に過度の負荷をかけることなく,良好な深絞り性を有する鋼板、及び、良好な加工性を有する鋼管、並びに、それらの製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
上記のような課題を解決すべく鋭意検討を進めたところ、C量が比較的多くても深絞り性の良好な鋼板、鋼管を得ることが可能であることを発見した。しかも従来のような箱焼鈍プロセスに頼る必要もない。
【0014】
すなわち、Alを低減してB及びNを微量添加した鋼種を用いることにより、最終焼鈍を生産性の良い連続ラインで実施しても、冷延焼鈍後の深絞り性を向上させることが可能であることを見出したものである。
【0015】
この理由は必ずしも明らかではないが、次のように考えられる。
【0016】
一般にC量の比較的多い鋼では、冷延時にせん断歪が導入されやすい。このため、これを焼鈍すると、せん断歪の多い箇所から優先的に再結晶が生じる。このとき、再結晶粒の結晶方位は深絞り性に好ましくない場合が多く、このためC量が多い鋼では、r値が1.0以下となってしまうものと考えられる。
【0017】
Alを低減してB及びNを微量添加すれば、再結晶初期の深絞り成形に好ましくない方位の核生成及び成長を抑制し、深絞り成形に好ましい方位の再結晶粒の核生成及び成長を促すものと考えられる。
【0018】
本発明の要旨とするところは、
(1)質量%で、C:0.025〜0.25%、Si:0.001〜3.0%、Mn:0.01〜3.0%、P:0.001〜0.15%、S:0.05%以下、N:0.0005〜0.010%、Al:0.008%未満、B:0.0005〜0.010%を満たす範囲で含有し、残部が鉄及び不可避的不純物からなり、金属組織がベイナイト、オーステナイト、マルテンサイト、パーライトの1種又は2種以上を体積率で2%以上含有し、平均r値が1.1以上であることを特徴とする深絞り性に優れた高強度冷延鋼板。
【0019】
(2)圧延方向に対して直角方向のr値をrC、圧延方向のr値をrLとしたときに、rC≧rLであることを特徴とする前記(1)に記載の深絞り性に優れた高強度冷延鋼板。
【0020】
(3)Mn及びCを、Mn+11×C>1.5を満たす範囲で含有することを特徴とする前記(1)又は(2)に記載の深絞り性に優れた高強度冷延鋼板。
【0021】
(4)鋼板1/2板厚における板面の{111}、及び、{100}のX線反射面ランダム強度比が、それぞれ、2.0以上、及び、3.0以下であることを特徴とする前記(1)〜(3)のいずれかに記載の深絞り性に優れた高強度冷延鋼板。
【0022】
(5)Zr、Ce、Mgの1種又は2種以上を合計で0.0001〜0.5質量%含むことを特徴とする前記(1)〜(4)のいずれかに記載の深絞り性に優れた高強度冷延鋼板。
【0023】
(6)Ti、Nb、Vの1種又は2種以上を合計で0.001〜0.2質量%含むことを特徴とする前記(1)〜(5)のいずれかに記載の深絞り性に優れた高強度冷延鋼板。
【0024】
(7)Sn、Cr、Cu、Ni、Co、W、Moの1種又は2種以上を合計で0.001〜2.5質量%含むことを特徴とする前記(1)〜(6)のいずれかに記載の深絞り性に優れた高強度冷延鋼板。
【0025】
(8)Caを0.0001〜0.01質量%含むことを特徴とする前記(1)〜(7)のいずれかに記載の深絞り性に優れた高強度冷延鋼板。
【0026】
(9)前記(1)〜(8)のいずれかに記載の深絞り性に優れた高強度冷延鋼板を製造する方法であって、前記(1)、(3)、(5)〜(8)のいずれかに記載の化学成分を有し、かつ、少なくとも板厚の1/4〜3/4においては、ベイナイト相及びマルテンサイト相のうち1種又は2種の体積率が合計で70%以上である組織を有する熱延鋼板に、圧下率25%以上95%以下の冷間圧延を施し、再結晶温度以上1000℃以下で連続焼鈍することを特徴する深絞り性に優れた高強度冷延鋼板の製造方法。
【0027】
(10)前記(1)〜(8)のいずれかに記載の深絞り性に優れた高強度冷延鋼板を製造する方法であって、前記(1)、(3)、(5)〜(8)のいずれかに記載の化学成分を有する鋼を熱間圧延して、(Ar3−50)℃以上で熱間圧延を完了し、熱延仕上げ温度から550℃までを平均冷却速度30℃/s以上で冷却し、550℃以下の温度で巻き取り、次いで、冷間圧延、連続焼鈍を施すことを特徴する深絞り性に優れた高強度冷延鋼板の製造方法。
【0028】
(11)前記(9)又は(10)に記載の連続焼鈍に引き続き、亜鉛めっきを施すことを特徴とする深絞り性に優れた高強度亜鉛めっき鋼板の製造方法。
【0029】
(12)前記(1)〜(8)のいずれかに記載の鋼板からなる鋼管であることを特徴とする加工性に優れた高強度鋼管。
【0030】
(13)前記(9)〜(11)のいずれかに記載の深絞り性に優れた高強度冷延鋼板又は高強度亜鉛めっき鋼板の製造方法にしたがって製造した鋼板を接合して鋼管とすることを特徴とする加工性に優れた高強度鋼管の製造方法。
にある。
【0031】
【発明の実施の形態】
以下に、本発明を詳細に説明する。
【0032】
C:高強度化と良成形性を両立させるのに有効な元素であるため、積極的に添加する。0.025質量%以上の添加とするが、良好なr値や溶接性を得るためには過度の添加は好ましいものではなく、上限を0.25質量%とする。0.05〜0.17質量%が望ましい範囲である。より好ましくは、0.08〜0.16質量%である。
【0033】
Si:安価に機械的強度を高めることが可能であり、要求される強度レベルに応じて添加する。また、Siは熱延板中に存在する炭化物の量を低減したり、炭化物の大きさを微細にすることを通じて、r値を高める効果を有する。
【0034】
一方で、過剰の添加は、メッキのぬれ性や加工性の劣化を招くだけでなく、熱延板組織の主相をベイナイトやマルテンサイトとすることが困難となるので、上限を3.0質量%とし、2.5質量%以下とすることが好ましい。
【0035】
下限を0.001%としたのは、これ未満とするのが製鋼技術上困難なためである。r値を向上せしめる観点からは、0.4〜2.3質量%が、より好ましい範囲である。
【0036】
Mn:高強度化に有効であるばかりでなく、熱延組織をベイナイトやマルテンサイトを主相とする組織とするのに有効な元素である。一方で、過度の添加は、r値を劣化させるので、3.0質量%を上限とする。0.01質量%未満にするには製鋼コストが上昇し、また、Sに起因する熱間圧延割れを誘発するので、0.01質量%を下限とする。0.8〜2.4質量%が良好な深絞り性を得るために好ましい範囲である。
【0037】
P:高強度化に有効な元素であるので、0.001質量%以上添加する。0.15質量%超を添加すると、溶接性や溶接部の疲労強度、さらには耐2次加工脆性が劣化するので、0.15質量%を上限とする。好ましくは0.06質量%が上限である。また、特に良好な溶接部の疲労強度が求められる場合には、0.015質量%が上限となる。
【0038】
S:不純物であり、低いほど好ましく、熱間割れを防止するために、0.05質量%以下とし、0.03質量%以下とすることが好ましい。より好ましくは、0.015質量%以下である。また、Mn量との関係において、Mn/S>10であることが好ましい。
【0039】
N:Bと結合して再結晶初期の核生成及び成長を制御する重要な元素である。多すぎると熱延時に析出して、再結晶初期段階での結晶方位制御作用が損なわれ、さらには耐常温時効性を劣化させるため、上限を0.010質量%とする。
【0040】
また、Nを0.0005質量%未満とすると、前述の結晶方位制御が困難となるばかりか、製鋼コストの大幅な増加を招くため、0.0005質量%を下限とする。0.0015〜0.0050質量%が、深絞り性に対してより好ましい範囲である。
【0041】
Al:Alの成分範囲は本発明の特徴である。すなわち、本発明においては、Alを添加しないか、もしくは、含有量を極微量にとどめることが、良加工性を得るためには極めて重要であることを見出した。
【0042】
この理由は定かではないが、Al量が多すぎるとNと結合してAlNが析出して、後述のBの効果を抑制するためと考えられる。
【0043】
Alは、通常、脱酸元素として用いられるが、前述の理由により、加工性を低下させたり、また、アルミナ(Al)クラスター起因のキズが発生しやすくなり、これを抑制するためには、Alを極力低減することが好ましく、上限を0.008質量%未満とする。
【0044】
また、下限は特に規定はしないが、精錬時に不可避的に混入するレベルを考慮し、0.0001質量%とすることが好ましい。加工性及び安定製造性の点で、好ましい上限は0.005質量%未満である。
【0045】
B:Bは、本発明において重要な元素であり、焼鈍時の加熱速度や冷間圧延率等の製造条件によらず安定的に良好なr値を得るために、0.0005質量%以上添加する。ただし、過度に添加すると加工性を低下させたり、再結晶温度の高温化を招くため、上限を0.010質量%とする。好ましくは0.0008〜0.0035質量%である。
【0046】
本発明の鋼板の組織は、以下のとおりである。すなわち、ベイナイト、オーステナイト、マルテンサイト、パーライトの1種又は2種以上を、合計で、少なくとも2%含有する組織であることが好ましい。5%以上がさらに好ましい。残部はフェライトで構成されることが望ましい。ベイナイト、オーステナイト、マルテンサイト、パーライトは、鋼の機械的強度を高めるのに有効だからである。
【0047】
また、よく知られているように、ベイナイトはバーリング加工性や穴広げ性を向上させ、オーステナイトはn値や伸びを向上させ、マルテンサイトはYR(降伏強度/引張強度)を低くする効果を有するので、製品板に対する要求特性に応じて、適宜、上記の各相の体積率を変化させればよい。
【0048】
ただし、その体積率が2%未満では、あまり明確な効果が期待できない。例えば、バーリング特性を向上させるためには、90%以上のベイナイトと10%以下のフェライトからなる組織が好ましく、また、伸びを向上させるためには、5%以上の残留オーステナイトと95%以下のフェライトからなる組織が好ましい。
【0049】
なお、ここでのベイナイトとは、上部ベイナイトや下部ベイナイトのほか、アシキュラーフェライトやベイニティックフェライトを含む。パ−ライトは、特に加工性を向上させるものではないが、不可避的に得られる場合があり、また、箱焼鈍をして得られる炭化物と区別する意味であえて規定した。組織を判定する際には、析出物や炭化物は除外することとする。
【0050】
組織の体積率は、光学顕微鏡組織より、任意の500点を選択して組織を判断する、いわゆるポイントカウント法で測定することが好ましい。但し、オーステナイトについては、組織からの判断が困難であるため、X線回折により結晶構造から判断することが好ましい。
【0051】
本発明によって得られる鋼板の平均r値は1.1以上である。より好ましくは、平均r値が、1.2超である。なお、平均r値は、(rL+2×rD+rC)/4で与えられる。ここで、rLは圧延方向のr値、rDは圧延方向と45度のr値、rCは圧延方向に対して直角方向のr値である。
【0052】
r値は、JIS13号B又はJIS5号B試験片を用いた引張試験を行い、10%又は15%引張後の標点間距離の変化と板幅変化からr値の定義にしたがって算出すればよい。均一伸びが10%に満たない場合には、3%以上で均一伸び以下の引張変形を与えて評価すればよい。
【0053】
また、一般的にL方向に比べてC方向の加工性が悪いが、rC≧rLであれば、加工性の異方性を低減できるため、好ましい。
【0054】
Mn量及びC量は、Mn+11×C>1.5を満たすように含有することが好ましい。この条件を満足することで、熱延組織をベイナイトやマルテンサイトを主相とする組織にしやすいためである。より好ましくは、Mn+11×C>2.0である。
【0055】
本発明によって得られる鋼板は、少なくとも板厚中心における板面のX線反射面ランダム強度比が、{111}面、及び、{100}面について、それぞれ、2.0以上、及び3.0以下であることが好ましい。より好ましくは、それぞれ、2.0以上、及び、2.0以下である。
【0056】
ランダム強度比とは、ランダムサンプルのX線強度を基準としたときの相対的な強度である。板厚中心とは、板厚の3/8〜5/8の範囲を指し、測定は、この範囲の任意の面で行えばよい。級数展開法によって計算された3次元集合組織のφ2=45°断面上の(111)[1−10]、(111)[1−21]、及び、(554)[−2−25]の強度は、それぞれ、2.0以上、2.5以上、及び、2.5以上であることが望ましい。
【0057】
なお、本発明においては、{110}面のX線強度が0.1以上となる場合があり、このとき、上記のφ2=45°断面において(110)[001]の強度が1.0以上となることがある。このためrCがrLに対して大きくなることが多い。
【0058】
Zr、Ce及びMgは脱酸元素として有効である。一方、過剰の添加は、酸化物、硫化物や窒化物の多量の晶出や析出を招き、清浄度が劣化して、延性を低下させてしまう上、メッキ性を損なう。したがって、必要に応じて、これらの1種又は2種以上の合計を、0.0001〜0.5質量%添加することが好ましい。
【0059】
Ti、Nb、Vも必要に応じて添加する。これらは、Bと同様に、熱延組織をベイナイトやマルテンサイト組織とすることを介してr値を向上させるほか、炭化物、窒化物もしくは炭窒化物を形成することによって、鋼材を高強度化したり、穴広げ性などの加工性を向上するのにも有効であるので、これらの1種又は2種以上を、合計で0.001質量%以上添加する。
【0060】
その合計が0.2質量%を越えた場合には、母相であるフェライト粒内もしくは粒界に、多量の炭化物、窒化物もしくは炭窒化物として析出して、延性を低下させることから、添加範囲を0.001〜0.2質量%とする。より好ましくは0.01〜0.03質量%である。
【0061】
Sn、Cr、Cu、Ni、Co、W、Moは強化元素であり、必要に応じて、これらの1種又は2種以上を、合計で、必要に応じて、0.001質量%以上添加する。過剰の添加は、コストアップや延性の低下を招くことから、2.5質量%以下とした。
【0062】
Ca:介在物制御のほか脱酸に有効な元素で、適量の添加は熱間加工性を向上させるが、過剰の添加は逆に熱間脆化を助長させるため、必要に応じて、0.0001〜0.01質量%添加する。
【0063】
また、不可避的不純物として、O、Zn、Pb、As、Sbなどを、それぞれ、0.02質量%以下の範囲で含んでも、本発明の効果を失するものではない。
【0064】
冷間圧延に供する熱延板の組織は、少なくとも板厚1/4〜3/4の範囲においては、ベイナイト相及びマルテンサイト相の1種又は2種の体積率を、合計で70%以上とすることが好ましい。
【0065】
これによって、成分によって達成されるr値の向上効果を助長できる。上記体積率は80%以上が好ましく、90%で以上であればさらに好ましい。また、板厚の全範囲にわたってこのような組織を有することが好ましいことは言うまでもない。
【0066】
熱延組織をベイナイトやマルテンサイトとすることが冷延焼鈍後の深絞り性を向上させる理由は、必ずしも明らかではないが、熱延板における炭化物を微細にすること、さらには、結晶粒径を微細にする効果によるものと推測される。
【0067】
なお、ここでのベイナイトとは、上部ベイナイトや下部ベイナイトのほか、アシキュラーフェライトやベイニティックフェライトを含む。炭化物を微細化する観点からは、上部ベイナイトよりも下部ベイナイトの方が好ましいことは言うまでもない。
【0068】
また、最終組織である冷延鋼板、亜鉛めっき鋼板のベイナイトも上部ベイナイトや下部ベイナイトのほか、アシキュラーフェライトやベイニティックフェライトを含むものとする。
【0069】
製造にあたっては、高炉、転炉、電炉等による溶製に続き、各種の2次製錬を行い、インゴット鋳造や連続鋳造を行い、連続鋳造の場合には、室温付近まで冷却することなく熱間圧延するCC−DRなどの製造方法を組み合わせて製造してもかまわない。鋳造インゴットや鋳造スラブを再加熱して熱間圧延を行っても良いのは言うまでもない。
【0070】
熱間圧延の加熱温度は特に限定するものではないが、後述する仕上げ温度を確保するためには、1100℃以上とすることが好ましい。
【0071】
熱間圧延の1パス以上について潤滑を施しても良い。また、粗圧延バーを互いに接合し、連続的に仕上げ熱延を行っても良い。粗圧延バーは一度巻き取って再度巻き戻してから仕上げ熱延に供してもかまわない。
【0072】
熱延の仕上げ温度は、(Ar3−50)℃以上で行うことが好ましい。さらに好ましくはAr3変態温度以上である。熱延仕上げ温度がこれよりも低いと、熱延組織をベイナイトやマルテンサイトとすることが困難となる。仕上温度の上限は特に限定しないが、均一な熱延組織を得るためには、1000℃以下とすることが好ましい。
【0073】
熱延後の冷却速度は、550℃までを平均冷却速度30℃/s以上で冷却することが好ましい。このことによって熱延組織がベイナイトやマルテンサイトを主体とした組織が得られる。一方、平均冷却速度の上限は特に限定しないが、現存する設備の能力を考慮すると、200℃/s以下とすることが好ましい。
【0074】
巻取温度は550℃以下とするのが好ましい。さらに好ましくは、400℃以下である。熱延板をベイナイトやマルテンサイトが主相の組織とし、粗大な炭化物の析出を抑制することで、冷延焼鈍後に良好なr値を得るためである。一方、巻取温度の下限は特に定めることなく本発明の効果を得ることができるが、固溶Cを低減する観点から200℃以上とすることが好ましい。
【0075】
熱間圧延後は酸洗することが望ましい。
【0076】
熱延後の冷間圧延における圧下率は、25〜95%とすることが好ましい。冷延率が25%未満又は95%超であると、r値が低くなるので,25〜95%に限定する。35〜70%がより好ましい範囲である。
【0077】
焼鈍温度は、再結晶温度以上1000℃以下とすることが好ましい。本発明における再結晶温度とは、10sの保定を伴う連続焼鈍ラインにて焼鈍を実施した際に、再結晶が開始する温度を示す。焼鈍温度が再結晶温度未満であると、良好な集合組織が発達せずr値も劣悪となりやすい。
【0078】
また、連続焼鈍や連続溶融亜鉛めっき工程にて焼鈍する場合には、焼鈍温度を1000℃超とすると、ヒートバックル等を誘発し、板破断などの原因となるので、1000℃を上限とする。
【0079】
焼鈍後にベイナイト、オーステナイト、マルテンサイトの第2相を得たい場合には、焼鈍温度をα+γ2相領域又はγ単相域にて加熱し、それぞれの相を得るのに適した冷却速度と過時効条件、溶融亜鉛めっきを施す場合には、めっき浴温度や、引き続く合金化温度を選択する必要があることは言うまでもない。なお、本発明では、焼鈍は連続ラインに限定しており、箱焼鈍は含まない。
【0080】
焼鈍の後、亜鉛を主体とするめっきを施しても構わない。亜鉛めっきは連続溶融亜鉛めっきラインで焼鈍とめっきを連続で行うことが好ましい。溶融亜鉛めっき浴に浸漬の後、加熱して亜鉛めっきと地鉄との合金化を促す処理を行っても良い。また、溶融亜鉛めっきのほか、亜鉛を主体とする種々の電気めっきを行っても良いことは言うまでもない。
【0081】
焼鈍後や亜鉛めっき後のスキンパスは、形状矯正や強度調整、さらには常温非時効性を確保する観点から必要に応じて行う。0.3〜5.0%が好ましい圧下率である。
【0082】
本発明で得られる鋼板の引張強度は340MPa以上である。
【0083】
このようにして製造された鋼板を接合して鋼管とすることができる。鋼板の圧延方向が管軸方向と一致することが望ましい。圧延方向以外、例えば、圧延方向と直角方向が管軸方向となるようにしても、ハイドロフォーム用として特に劣るものではないが、鋼管製造の生産性が低下するためである。
【0084】
鋼管の製造にあたっては、通常は電縫溶接を用いるが、TIG、MIG、レーザー溶接、UOや鍛接等の溶接・造管手法等を用いることもできる。これらの溶接鋼管製造において、溶接熱影響部は、必要とする特性に応じて局部的な固溶化熱処理を単独あるいは複合して、場合によっては、複数回重ねて行っても良く、本発明の効果をさらに高める。
【0085】
この熱処理は、溶接部と溶接熱影響部のみに付加することが目的であって、製造時にオンラインで、あるいはオフラインで施行できる。
【0086】
鋼管のr値については、鋼板のそれと同じ特徴を持つ。鋼管のr値の測定は、鋼管から試験片を切り出し、プレスによって平板とし、さらに引張試験片に加工して行う。
【0087】
鋼管の径や試験片の採取方向によっては、JIS13号B試験片を採取することが困難な場合があるが、その際には、JIS6号やJIS14号B試験片等の小型試験片を用いて、均一伸びの範囲内で評価する。なお、鋼管から試験片を切り出す際には、鋼管の溶接部が引張試験片の平行部内に含まれないように注意する。
【0088】
X線測定は、鋼管そのものでは測定することができないので、次のようにして行う。まず、鋼管を適当に切断して、プレス等により板状とする。これを測定板厚まで、機械研磨などによって減厚し、最終的には、1平均結晶粒径以上を目安に30〜100μm程度減厚させるよう化学研磨によって仕上げる。
【0089】
本発明の鋼管は表面粗度が小さい。すなわち、JISB0601で規定されるRaが0.8μm以下であることが好ましい。高温縮経加工によって製造された鋼管のRaが0.8μm超であるのとは対照的である。より好ましくは0.6μm以下である。
【0090】
【実施例】
表1に示す成分の各鋼を溶製して1250℃に加熱後、仕上げ温度をAr3変態温度以上とする熱間圧延を行い、表2に示す条件で冷却後、巻き取った。そのとき得られた熱延組織も表2中に示す。さらに、表2に示す条件で冷延を行い、1.0mmの鋼板を得た。次いで、焼鈍時間を60sの連続焼鈍及び鋼種によっては過時効処理(180s)を行った。焼鈍温度及び過時効温度は表2に示すとおりである。さらに0.8%のスキンパスを施した。
【0091】
得られた鋼板のr値をJIS13号B試験片で、その他の引張特性はJIS5号試験片を用いた引張試験により評価した。また、X線測定に供する試料は、機械研磨によって板厚中心付近まで減厚し、化学研磨によって仕上げることにより作製した。
【0092】
得られた鋼板を電縫溶接によって造管し、直径60mmの鋼管とした。得られた鋼管の加工性の評価は以下の方法で行った。前もって鋼管に10mmφのスクライブドサークルを転写し、内圧と軸押し量を制御して、円周方向への張り出し成形を行った。
【0093】
バースト直前での最大拡管率を示す部位(拡管率=成形後の最大周長/母管の周長)の軸方向の歪εΦと円周方向の歪εθを測定した。
【0094】
この2つの歪の比ρ=εΦ/εθと最大拡管率をプロットし、ρ=−0.5となる拡管率Reをもってハイドロフォームの成形性指標とした。引張強度と伸びの評価はJIS12号弧状試験片を用いて行った。
【0095】
また、鋼管のr値の測定は、鋼管から試験片を切り出し、プレスによって平板とし、さらに引張試験片に加工して行い、JIS13号B試験片を用いて行った。
【0096】
表3(表2の続き)及び表4より明らかなとおり、本発明例によれば、良好な加工性を得ることができる。また、熱延板の組織にベイナイトやマルテンサイトを残存させた場合には、r値がさらに向上する。しかも、フェライトの他に、適量のオーステナイトやマルテンサイトが分散した複合組織鋼とすることができた。
【0097】
【表1】

Figure 2004225132
【0098】
【表2】
Figure 2004225132
【0099】
【表3】
Figure 2004225132
【0100】
【表4】
Figure 2004225132
【0101】
【発明の効果】
本発明は、深絞り性に優れた高強度鋼板と鋼管、及び、その製造方法を提供するものであり、地球環境保全などに貢献するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a steel plate and a steel pipe used for, for example, automobile panels, suspensions, members, frames, and the like, and a method for manufacturing the same.
[0002]
The steel sheet of the present invention includes both a cold-rolled steel sheet that has not been subjected to a surface treatment and a steel sheet that has been subjected to a surface treatment such as galvanizing and electroplating for rust prevention. Zinc plating includes plating of an alloy whose main component is zinc, in addition to pure zinc. Further, the steel pipe of the present invention is also suitable as a steel pipe material for hydroforming.
[0003]
According to the present invention, since a high-strength steel sheet and a steel pipe excellent in formability can be obtained at low cost, it is considered that they can contribute to global environmental conservation.
[0004]
[Prior art]
With the need to reduce the weight of automobiles, higher strength of steel sheets is desired. By increasing the strength of the steel sheet, it is possible to reduce the weight by reducing the thickness of the steel sheet and to improve the safety in a collision.
[0005]
However, in order to obtain a steel sheet having high strength and excellent formability, especially deep drawability, conventionally, for example, as disclosed in Patent Document 1, ultra-low carbon aluminum killed steel with significantly reduced carbon content has been used. , Mn, P and the like had to be strengthened.
[0006]
In order to reduce the amount of C, vacuum degassing must be performed in the steel making process, and a large amount of CO 2 is generated in the manufacturing process, which is not always the best in terms of global environmental protection.
[0007]
On the other hand, a steel sheet having a relatively large C content and good deep drawability is also disclosed. For example, it is disclosed in Patent Documents 2 and 3. However, these are premised on box annealing of aluminum-killed steel, and are inferior in productivity as compared with continuous annealing or continuous hot-dip galvanizing process.
[0008]
Further, in box annealing, high-temperature annealing is difficult, and since a forced cooling device is not generally provided, it is difficult to obtain an austenite phase, a martensite phase, and the like, and it is difficult to utilize structure strengthening. Therefore, there is also a problem that the strength is low compared to the amount of the alloy added.
[0009]
Regarding the amount of Al, the inventions disclosed in Patent Literature 1 and Patent Literature 2 require that 0.02% or more be added in order to fix N as AlN.
[0010]
Further, the invention described in Patent Document 3 contains 0.005 to 0.100% of Al, but the purpose is to fix N as AlN as in the inventions disclosed in Patent Documents 1 and 2. This is different from the technical idea of the present invention in which the amount of Al is set to less than 0.008% to suppress the precipitation of AlN and to improve the r value by adding B.
[0011]
[Patent Document 1]
JP-A-56-139654 [Patent Document 2]
Japanese Patent Publication No. 57-47746 [Patent Document 3]
Japanese Patent Publication No. 37456/1993
[Problems to be solved by the invention]
The present invention provides a good deep drawability of a steel having a relatively high C content without increasing the cost of a high-strength steel sheet and a steel pipe having good formability and without imposing an excessive load on the global environment. It is an object of the present invention to provide a steel sheet having the same, a steel pipe having a good workability, and a method for producing the same.
[0013]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, it has been found that a steel sheet or a steel pipe having good deep drawability can be obtained even if the C content is relatively large. Moreover, there is no need to rely on the conventional box annealing process.
[0014]
That is, by using a steel type in which Al is reduced and B and N are added in trace amounts, it is possible to improve the deep drawability after cold rolling annealing even if the final annealing is performed in a continuous line with good productivity. I found something.
[0015]
The reason for this is not necessarily clear, but is considered as follows.
[0016]
Generally, in steel having a relatively high C content, shear strain is likely to be introduced during cold rolling. For this reason, when this is annealed, recrystallization occurs preferentially from a portion having a large shear strain. At this time, the crystal orientation of the recrystallized grains is often unfavorable for deep drawability. Therefore, it is considered that the r value of the steel having a large C content is 1.0 or less.
[0017]
By reducing Al and adding a small amount of B and N, nucleation and growth in an orientation unfavorable for deep drawing at the initial stage of recrystallization are suppressed, and nucleation and growth of recrystallized grains in an orientation preferable for deep drawing are suppressed. It is thought to encourage.
[0018]
The gist of the present invention is:
(1) In mass%, C: 0.025 to 0.25%, Si: 0.001 to 3.0%, Mn: 0.01 to 3.0%, P: 0.001 to 0.15% , S: 0.05% or less, N: 0.0005 to 0.010%, Al: less than 0.008%, B: 0.0005 to 0.010%, the balance being iron and inevitable. Characterized in that the metal structure contains one or more of bainite, austenite, martensite, and pearlite in a volume ratio of 2% or more and has an average r value of 1.1 or more. High-strength cold-rolled steel sheet with excellent heat resistance.
[0019]
(2) When the r value in the direction perpendicular to the rolling direction is rC and the r value in the rolling direction is rL, rC ≧ rL, and the deep drawability according to (1) is excellent. High strength cold rolled steel sheet.
[0020]
(3) The high-strength cold-rolled steel sheet according to (1) or (2), wherein Mn and C are contained in a range satisfying Mn + 11 × C> 1.5.
[0021]
(4) The random intensity ratio of the {111} and {100} X-ray reflecting surfaces of the plate surface at a steel plate thickness of 1/2 is 2.0 or more and 3.0 or less, respectively. The high-strength cold-rolled steel sheet excellent in deep drawability according to any one of the above (1) to (3).
[0022]
(5) The deep drawability according to any of (1) to (4), wherein one or more of Zr, Ce, and Mg are contained in a total of 0.0001 to 0.5% by mass. High strength cold rolled steel sheet.
[0023]
(6) The deep drawability according to any one of (1) to (5), wherein one or more of Ti, Nb, and V are contained in a total of 0.001 to 0.2% by mass. High strength cold rolled steel sheet.
[0024]
(7) The method according to (1) to (6), wherein one or more of Sn, Cr, Cu, Ni, Co, W, and Mo are contained in a total of 0.001 to 2.5% by mass. A high-strength cold-rolled steel sheet excellent in deep drawability according to any of the above.
[0025]
(8) The high-strength cold-rolled steel sheet according to any one of (1) to (7), which contains 0.0001 to 0.01% by mass of Ca.
[0026]
(9) A method for producing a high-strength cold-rolled steel sheet excellent in deep drawability according to any one of the above (1) to (8), wherein the (1), (3), (5) to (5) 8) and at least 1/4 to 3/4 of the plate thickness, the volume fraction of one or two of the bainite phase and the martensite phase is 70 in total. % Of hot-rolled steel sheet having a structure of not less than 25% by cold rolling at a rolling reduction of 25% or more and 95% or less and continuous annealing at a recrystallization temperature of 1000 ° C or less. Manufacturing method of cold rolled steel sheet.
[0027]
(10) A method for producing a high-strength cold-rolled steel sheet excellent in deep drawability according to any one of (1) to (8), wherein the (1), (3), (5) to (5) 8) The steel having the chemical composition according to any one of the above items is hot-rolled, hot rolling is completed at (Ar3-50) ° C. or more, and the average cooling rate from the hot-rolling finishing temperature to 550 ° C. is 30 ° C. / A method for producing a high-strength cold-rolled steel sheet excellent in deep drawability, characterized by cooling at a temperature of s or more, winding at a temperature of 550 ° C. or less, and then performing cold rolling and continuous annealing.
[0028]
(11) A method for producing a high-strength galvanized steel sheet excellent in deep drawability, characterized by applying galvanization subsequent to the continuous annealing according to (9) or (10).
[0029]
(12) A high-strength steel pipe excellent in workability, characterized by being a steel pipe made of the steel sheet according to any of (1) to (8).
[0030]
(13) A steel pipe formed by joining steel sheets manufactured according to the method for manufacturing a high-strength cold-rolled steel sheet or a high-strength galvanized steel sheet having excellent deep drawability according to any of (9) to (11) above. The method for producing a high-strength steel pipe excellent in workability characterized by the following.
It is in.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
[0032]
C: Since it is an element effective for achieving both high strength and good moldability, it is positively added. The addition is made 0.025% by mass or more, but excessive addition is not preferable in order to obtain a good r value and weldability, and the upper limit is made 0.25% by mass. 0.05 to 0.17% by mass is a desirable range. More preferably, it is 0.08 to 0.16% by mass.
[0033]
Si: The mechanical strength can be increased at low cost, and is added according to the required strength level. Further, Si has an effect of increasing the r value by reducing the amount of carbide present in the hot-rolled sheet or reducing the size of the carbide.
[0034]
On the other hand, excessive addition not only deteriorates the wettability and workability of the plating but also makes it difficult for the main phase of the hot-rolled sheet structure to be bainite or martensite, so the upper limit is 3.0 mass%. %, And preferably 2.5% by mass or less.
[0035]
The lower limit is set to 0.001% because it is difficult to make the lower limit from the viewpoint of steelmaking technology. From the viewpoint of improving the r value, 0.4 to 2.3% by mass is a more preferable range.
[0036]
Mn: an element that is effective not only for increasing the strength but also for changing the hot-rolled structure to a structure mainly composed of bainite or martensite. On the other hand, excessive addition deteriorates the r value, so the upper limit is 3.0% by mass. If the content is less than 0.01% by mass, steelmaking cost increases and hot rolling cracks caused by S are induced. Therefore, the lower limit is set to 0.01% by mass. 0.8 to 2.4% by mass is a preferable range for obtaining good deep drawability.
[0037]
P: an element effective for increasing the strength, so that 0.001% by mass or more is added. If more than 0.15% by mass is added, the weldability, the fatigue strength of the welded portion, and the resistance to secondary working brittleness deteriorate, so the upper limit is 0.15% by mass. Preferably, the upper limit is 0.06% by mass. Further, when particularly good fatigue strength of the welded portion is required, the upper limit is 0.015% by mass.
[0038]
S: It is an impurity, and the lower the better, the better. In order to prevent hot cracking, the content is set to 0.05% by mass or less, preferably 0.03% by mass or less. More preferably, the content is 0.015% by mass or less. Further, in relation to the amount of Mn, it is preferable that Mn / S> 10.
[0039]
N: An important element that combines with B and controls nucleation and growth at the initial stage of recrystallization. If it is too large, it precipitates during hot rolling, impairing the crystal orientation control action at the initial stage of recrystallization, and further deteriorates the aging resistance at room temperature. Therefore, the upper limit is made 0.010% by mass.
[0040]
If N is less than 0.0005% by mass, not only the above-described control of the crystal orientation becomes difficult, but also a significant increase in steel making cost is caused. Therefore, the lower limit is 0.0005% by mass. 0.0015 to 0.0050% by mass is a more preferable range for deep drawability.
[0041]
Al: The component range of Al is a feature of the present invention. That is, in the present invention, it has been found that not adding Al or keeping the content to a very small amount is extremely important for obtaining good workability.
[0042]
The reason for this is not clear, but it is considered that if the amount of Al is too large, it bonds with N to precipitate AlN, thereby suppressing the effect of B described later.
[0043]
Al is usually used as a deoxidizing element. However, for the reasons described above, the workability is reduced, and the scratches due to the alumina (Al 2 O 3 ) cluster are likely to be generated. Preferably reduces Al as much as possible, and sets the upper limit to less than 0.008% by mass.
[0044]
The lower limit is not particularly specified, but is preferably set to 0.0001% by mass in consideration of the level inevitably mixed during refining. A preferable upper limit is less than 0.005% by mass in view of processability and stable productivity.
[0045]
B: B is an important element in the present invention, and is added in an amount of 0.0005% by mass or more in order to stably obtain a good r value irrespective of production conditions such as a heating rate during annealing and a cold rolling rate. I do. However, an excessive addition lowers the workability and raises the recrystallization temperature, so the upper limit is made 0.010% by mass. Preferably it is 0.0008-0.0035 mass%.
[0046]
The structure of the steel sheet of the present invention is as follows. That is, the structure preferably contains at least 2% in total of one or more of bainite, austenite, martensite, and pearlite. 5% or more is more preferable. The remainder is desirably made of ferrite. Bainite, austenite, martensite, and pearlite are effective in increasing the mechanical strength of steel.
[0047]
Further, as is well known, bainite has an effect of improving burring workability and hole expanding property, austenite has an effect of improving n value and elongation, and martensite has an effect of reducing YR (yield strength / tensile strength). Therefore, the volume ratio of each of the above phases may be appropriately changed according to the required characteristics of the product plate.
[0048]
However, if the volume ratio is less than 2%, a very clear effect cannot be expected. For example, in order to improve burring characteristics, a structure composed of 90% or more of bainite and 10% or less of ferrite is preferable, and in order to improve elongation, 5% or more of retained austenite and 95% or less of ferrite. Is preferred.
[0049]
Here, the bainite includes upper bainite and lower bainite, as well as acicular ferrite and bainitic ferrite. Although pearlite does not particularly improve workability, it may be inevitably obtained, and is arbitrarily specified to distinguish it from carbide obtained by box annealing. When determining the structure, precipitates and carbides are excluded.
[0050]
It is preferable that the volume ratio of the tissue is measured by a so-called point count method in which an arbitrary 500 points are selected from the optical microscope structure to determine the tissue. However, since it is difficult to judge austenite from the structure, it is preferable to judge from a crystal structure by X-ray diffraction.
[0051]
The average r value of the steel sheet obtained by the present invention is 1.1 or more. More preferably, the average r value is greater than 1.2. Note that the average r value is given by (rL + 2 × rD + rC) / 4. Here, rL is the r value in the rolling direction, rD is the r value at 45 degrees to the rolling direction, and rC is the r value in the direction perpendicular to the rolling direction.
[0052]
The r value may be calculated according to the definition of the r value from a change in the gauge length and a change in the plate width after 10% or 15% tension after performing a tensile test using a JIS No. 13B or JIS No. 5B test piece. . When the uniform elongation is less than 10%, it may be evaluated by giving a tensile deformation of 3% or more and less than the uniform elongation.
[0053]
In general, the workability in the C direction is lower than that in the L direction, but rC ≧ rL is preferable because workability anisotropy can be reduced.
[0054]
The Mn content and the C content are preferably contained so as to satisfy Mn + 11 × C> 1.5. By satisfying this condition, the hot-rolled structure can be easily made into a structure mainly composed of bainite or martensite. More preferably, Mn + 11 × C> 2.0.
[0055]
In the steel sheet obtained by the present invention, the X-ray reflection surface random intensity ratio of the plate surface at least at the center of the plate thickness is 2.0 or more and 3.0 or less for the {111} surface and the {100} surface, respectively. It is preferable that More preferably, they are 2.0 or more and 2.0 or less, respectively.
[0056]
The random intensity ratio is a relative intensity based on the X-ray intensity of a random sample. The plate thickness center indicates a range of 3/8 to 5/8 of the plate thickness, and the measurement may be performed on any surface in this range. Intensities of (111) [1-10], (111) [1-21], and (554) [-2-25] on the φ2 = 45 ° cross section of the three-dimensional texture calculated by the series expansion method Is preferably 2.0 or more, 2.5 or more, and 2.5 or more, respectively.
[0057]
In the present invention, the X-ray intensity of the {110} plane may be 0.1 or more, and at this time, the intensity of (110) [001] is 1.0 or more in the above φ2 = 45 ° cross section. It may be. Therefore, rC is often larger than rL.
[0058]
Zr, Ce and Mg are effective as deoxidizing elements. On the other hand, excessive addition causes a large amount of crystallization or precipitation of oxides, sulfides or nitrides, deteriorating cleanliness, lowering ductility, and impairing plating properties. Therefore, if necessary, it is preferable to add one or more of these in an amount of 0.0001 to 0.5% by mass.
[0059]
Ti, Nb, and V are also added as needed. These improve the r-value by making the hot-rolled structure a bainite or martensitic structure, similarly to B, and also increase the strength of steel by forming carbide, nitride or carbonitride. One or more of these are added in a total amount of 0.001% by mass or more because they are effective in improving workability such as hole-expandability.
[0060]
If the sum exceeds 0.2% by mass, a large amount of carbides, nitrides or carbonitrides precipitate in ferrite grains or grain boundaries, which are the parent phase, and reduce ductility. The range is 0.001 to 0.2% by mass. More preferably, it is 0.01 to 0.03% by mass.
[0061]
Sn, Cr, Cu, Ni, Co, W, and Mo are strengthening elements, and if necessary, one or more of these are added in a total amount of 0.001% by mass or more, if necessary. . Excessive addition leads to an increase in cost and a reduction in ductility, so the content was made 2.5 mass% or less.
[0062]
Ca: an element effective for deoxidation in addition to controlling inclusions. Addition of an appropriate amount improves hot workability, but excessive addition conversely promotes hot embrittlement. 0001-0.01% by mass is added.
[0063]
The effects of the present invention are not lost even if O, Zn, Pb, As, Sb, and the like are included as unavoidable impurities in a range of 0.02% by mass or less.
[0064]
The structure of the hot-rolled sheet to be subjected to cold rolling has a volume ratio of one or two of the bainite phase and the martensite phase of at least 70% in a range of at least 1/4 to 3/4 of the sheet thickness. Is preferred.
[0065]
This can promote the effect of improving the r value achieved by the components. The volume ratio is preferably 80% or more, and more preferably 90% or more. Needless to say, it is preferable to have such a structure over the entire range of the plate thickness.
[0066]
The reason why the hot-rolled structure is made to be bainite or martensite improves the deep drawability after cold-rolling annealing is not necessarily clear, but it is necessary to make the carbide in the hot-rolled sheet finer, and furthermore, to reduce the crystal grain size. It is presumed to be due to the effect of making finer.
[0067]
Here, the bainite includes upper bainite and lower bainite, as well as acicular ferrite and bainitic ferrite. It goes without saying that from the viewpoint of making the carbide finer, lower bainite is more preferable than upper bainite.
[0068]
Further, the bainite of the cold-rolled steel sheet and the galvanized steel sheet, which is the final structure, includes not only upper bainite and lower bainite but also acicular ferrite and bainitic ferrite.
[0069]
In production, following smelting in a blast furnace, converter, electric furnace, etc., various secondary smelting is performed, ingot casting and continuous casting are performed, and in the case of continuous casting, hot cooling is performed without cooling to around room temperature. Rolling may be performed in combination with a manufacturing method such as CC-DR. It goes without saying that hot rolling may be performed by reheating the cast ingot or cast slab.
[0070]
The heating temperature of the hot rolling is not particularly limited, but is preferably 1100 ° C. or higher in order to secure a finishing temperature described later.
[0071]
Lubrication may be performed for one or more passes of hot rolling. Further, the rough rolling bars may be joined to each other, and the hot rolling may be continuously performed. The rough rolling bar may be wound once, rewound again, and then subjected to finish hot rolling.
[0072]
The finishing temperature of hot rolling is preferably performed at (Ar3-50) ° C or higher. It is more preferably at least the Ar3 transformation temperature. If the hot-rolling finishing temperature is lower than this, it is difficult to make the hot-rolled structure bainite or martensite. The upper limit of the finishing temperature is not particularly limited, but is preferably 1000 ° C. or lower in order to obtain a uniform hot-rolled structure.
[0073]
It is preferable that the cooling rate after hot rolling is up to 550 ° C. at an average cooling rate of 30 ° C./s or more. As a result, a structure in which the hot-rolled structure is mainly composed of bainite or martensite is obtained. On the other hand, the upper limit of the average cooling rate is not particularly limited, but is preferably 200 ° C./s or less in consideration of the capacity of existing equipment.
[0074]
The winding temperature is preferably 550 ° C. or lower. More preferably, it is 400 ° C. or lower. This is because the hot rolled sheet has a structure of bainite or martensite as a main phase and suppresses precipitation of coarse carbides, thereby obtaining a good r value after cold rolling annealing. On the other hand, although the lower limit of the winding temperature can be obtained without any particular effect, the temperature is preferably set to 200 ° C. or higher from the viewpoint of reducing solid solution C.
[0075]
After hot rolling, it is desirable to perform pickling.
[0076]
The rolling reduction in cold rolling after hot rolling is preferably 25 to 95%. If the cold rolling reduction is less than 25% or more than 95%, the r-value will be low, so it is limited to 25 to 95%. 35 to 70% is a more preferable range.
[0077]
It is preferable that the annealing temperature is not lower than the recrystallization temperature and not higher than 1000 ° C. The recrystallization temperature in the present invention indicates a temperature at which recrystallization starts when annealing is performed in a continuous annealing line with a retention of 10 s. If the annealing temperature is lower than the recrystallization temperature, a favorable texture is not developed, and the r-value tends to be poor.
[0078]
Further, in the case of annealing in a continuous annealing or continuous hot-dip galvanizing step, if the annealing temperature is higher than 1000 ° C., a heat buckle or the like is induced, which may cause a sheet break or the like.
[0079]
When it is desired to obtain a second phase of bainite, austenite, and martensite after annealing, the annealing temperature is heated in the α + γ2 phase region or γ single phase region, and a cooling rate and overaging conditions suitable for obtaining each phase. Needless to say, when hot-dip galvanizing is performed, it is necessary to select a plating bath temperature and a subsequent alloying temperature. In the present invention, annealing is limited to a continuous line and does not include box annealing.
[0080]
After annealing, plating mainly using zinc may be performed. It is preferable that the galvanizing is performed continuously by annealing and plating in a continuous hot-dip galvanizing line. After immersion in the hot-dip galvanizing bath, heating may be performed to promote alloying between the galvanizing and the base iron. It goes without saying that various electroplating mainly composed of zinc may be performed in addition to hot-dip galvanizing.
[0081]
The skin pass after annealing or galvanizing is performed as necessary from the viewpoint of shape correction and strength adjustment, and further ensuring non-aging at room temperature. 0.3 to 5.0% is a preferable rolling reduction.
[0082]
The steel sheet obtained by the present invention has a tensile strength of 340 MPa or more.
[0083]
The steel plates manufactured in this manner can be joined to form a steel pipe. It is desirable that the rolling direction of the steel plate coincides with the tube axis direction. If the pipe axis direction is other than the rolling direction, for example, the direction perpendicular to the rolling direction is the pipe axis direction, it is not particularly inferior for hydroforming, but this is because the productivity of steel pipe production decreases.
[0084]
In the production of steel pipes, usually, electric resistance welding is used, but welding and pipe forming techniques such as TIG, MIG, laser welding, UO and forging can also be used. In the production of these welded steel pipes, the weld heat-affected zone may be subjected to local solution heat treatment alone or in combination depending on the required properties, and in some cases, may be performed a plurality of times. Further enhance.
[0085]
This heat treatment is intended to be applied only to the welded portion and the weld heat affected zone, and can be performed online or offline during manufacturing.
[0086]
The r value of the steel pipe has the same characteristics as that of the steel plate. The measurement of the r value of the steel pipe is performed by cutting a test piece from the steel pipe, forming a flat plate by pressing, and further processing the tensile test piece.
[0087]
Depending on the diameter of the steel pipe and the direction of sample collection, it may be difficult to collect JIS No. 13 B test pieces. In this case, use small test pieces such as JIS No. 6 and JIS No. 14 B test pieces. , Within the range of uniform elongation. When cutting out the test piece from the steel pipe, care is taken that the welded portion of the steel pipe is not included in the parallel part of the tensile test piece.
[0088]
Since X-ray measurement cannot be performed with a steel pipe itself, it is performed as follows. First, a steel pipe is appropriately cut and formed into a plate shape by a press or the like. The thickness is reduced by mechanical polishing or the like to the thickness of the measurement plate, and finally finished by chemical polishing so as to reduce the thickness by about 30 to 100 μm with the average crystal grain size not less than 1 as a standard.
[0089]
The steel pipe of the present invention has a small surface roughness. That is, Ra defined by JIS B0601 is preferably 0.8 μm or less. This is in contrast to the case where the Ra of the steel pipe produced by the high-temperature warping is greater than 0.8 μm. More preferably, it is 0.6 μm or less.
[0090]
【Example】
Each steel having the components shown in Table 1 was melted and heated to 1250 ° C., then hot-rolled at a finishing temperature of Ar3 transformation temperature or higher, cooled under the conditions shown in Table 2, and wound up. The hot rolled structure obtained at that time is also shown in Table 2. Furthermore, cold rolling was performed under the conditions shown in Table 2 to obtain a steel sheet of 1.0 mm. Next, continuous annealing was performed for an annealing time of 60 s, and overaging treatment (180 s) was performed depending on the type of steel. The annealing temperature and the overaging temperature are as shown in Table 2. An additional 0.8% skin pass was applied.
[0091]
The r value of the obtained steel sheet was evaluated by a JIS No. 13 B test piece, and the other tensile properties were evaluated by a tensile test using a JIS No. 5 test piece. The sample to be subjected to the X-ray measurement was manufactured by reducing the thickness to near the center of the plate thickness by mechanical polishing and finishing by chemical polishing.
[0092]
The obtained steel plate was pipe-formed by electric resistance welding to obtain a steel pipe having a diameter of 60 mm. The workability of the obtained steel pipe was evaluated by the following method. A scribed circle having a diameter of 10 mm was transferred to a steel pipe in advance, and the inner pressure and the amount of axial pressing were controlled to perform overhang forming in the circumferential direction.
[0093]
The strain εΦ in the axial direction and the strain εθ in the circumferential direction of the portion showing the maximum expansion rate immediately before the burst (expansion rate = maximum perimeter after molding / perimeter of the mother pipe) were measured.
[0094]
The ratio ρ = εΦ / εθ of the two strains and the maximum expansion ratio were plotted, and the expansion ratio Re at which ρ = −0.5 was used as the formability index of the hydroform. Evaluation of tensile strength and elongation was performed using JIS No. 12 arc-shaped test pieces.
[0095]
The r value of the steel pipe was measured by cutting a test piece from the steel pipe, forming a flat plate by pressing, processing the test piece into a tensile test piece, and using a JIS No. 13B test piece.
[0096]
As is clear from Table 3 (continuation of Table 2) and Table 4, according to the examples of the present invention, good workability can be obtained. When bainite or martensite remains in the structure of the hot-rolled sheet, the r-value is further improved. Moreover, a composite structure steel in which an appropriate amount of austenite and martensite were dispersed in addition to ferrite was obtained.
[0097]
[Table 1]
Figure 2004225132
[0098]
[Table 2]
Figure 2004225132
[0099]
[Table 3]
Figure 2004225132
[0100]
[Table 4]
Figure 2004225132
[0101]
【The invention's effect】
The present invention provides a high-strength steel sheet and a steel pipe excellent in deep drawability, and a method for producing the same, and contributes to global environmental protection and the like.

Claims (13)

質量%で、
C :0.025〜0.25%、
Si:0.001〜3.0%、
Mn:0.01〜3.0%、
P :0.001〜0.15%、
S :0.05%以下、
N :0.0005〜0.010%、
Al:0.008%未満、
B :0.0005〜0.010%
を満たす範囲で含有し、残部が鉄及び不可避的不純物からなり、金属組織がベイナイト、オーステナイト、マルテンサイト、パーライトの1種又は2種以上を体積率で2%以上含有し、平均r値が1.1以上であることを特徴とする深絞り性に優れた高強度冷延鋼板。
In mass%,
C: 0.025 to 0.25%,
Si: 0.001 to 3.0%,
Mn: 0.01 to 3.0%,
P: 0.001 to 0.15%,
S: 0.05% or less,
N: 0.0005 to 0.010%,
Al: less than 0.008%,
B: 0.0005 to 0.010%
And the balance consists of iron and unavoidable impurities, and the metal structure contains at least 2% by volume of one or more of bainite, austenite, martensite, and pearlite, and an average r value of 1 A high-strength cold-rolled steel sheet excellent in deep drawability, characterized in that it is at least 1.
圧延方向に対して直角方向のr値をrC、圧延方向のr値をrLとしたときに、rC≧rLであることを特徴とする請求項1に記載の深絞り性に優れた高強度冷延鋼板。2. The high-strength cold steel with excellent deep drawability according to claim 1, wherein rC ≧ rL, where rC in the direction perpendicular to the rolling direction is rC and r-value in the rolling direction is rL. Rolled steel sheet. Mn及びCを、Mn+11×C>1.5を満たす範囲で含有することを特徴とする請求項1又は2に記載の深絞り性に優れた高強度冷延鋼板。The high-strength cold-rolled steel sheet according to claim 1 or 2, wherein Mn and C are contained in a range satisfying Mn + 11 x C> 1.5. 鋼板1/2板厚における板面の{111}、及び、{100}のX線反射面ランダム強度比が、それぞれ、2.0以上、及び、3.0以下であることを特徴とする請求項1〜3のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。The X-ray reflection surface random intensity ratio of {111} and {100} of the plate surface at a steel plate thickness of 1/2 is 2.0 or more and 3.0 or less, respectively. Item 4. A high-strength cold-rolled steel sheet excellent in deep drawability according to any one of Items 1 to 3. Zr、Ce、Mgの1種又は2種以上を合計で0.0001〜0.5質量%含むことを特徴とする請求項1〜4のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。The high drawability excellent in deep drawability according to any one of claims 1 to 4, wherein one or more of Zr, Ce, and Mg are contained in a total of 0.0001 to 0.5% by mass. Strength cold rolled steel sheet. Ti、Nb、Vの1種又は2種以上を合計で0.001〜0.2質量%含むことを特徴とする請求項1〜5のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。6. The high drawability excellent in deep drawability according to any one of claims 1 to 5, wherein one or more of Ti, Nb, and V are contained in a total of 0.001 to 0.2% by mass. Strength cold rolled steel sheet. Sn、Cr、Cu、Ni、Co、W、Moの1種又は2種以上を合計で0.001〜2.5質量%含むことを特徴とする請求項1〜6のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。7. The composition according to claim 1, wherein one or more of Sn, Cr, Cu, Ni, Co, W and Mo are contained in a total amount of 0.001 to 2.5% by mass. High strength cold rolled steel sheet with excellent deep drawability. Caを0.0001〜0.01質量%含むことを特徴とする請求項1〜7のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板。The high-strength cold-rolled steel sheet according to any one of claims 1 to 7, comprising 0.0001 to 0.01% by mass of Ca. 請求項1〜8のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板を製造する方法であって、請求項1、請求項3、請求項5〜8のいずれか1項に記載の化学成分を有し、かつ、少なくとも板厚の1/4〜3/4においては、ベイナイト相及びマルテンサイト相のうち1種又は2種の体積率が合計で70%以上である組織を有する熱延鋼板に、圧下率25%以上95%以下の冷間圧延を施し、再結晶温度以上1000℃以下で連続焼鈍することを特徴する深絞り性に優れた高強度冷延鋼板の製造方法。A method for producing a high-strength cold-rolled steel sheet having excellent deep drawability according to any one of claims 1 to 8, wherein the method is any one of claims 1, 3, and 5 to 8. And a structure in which at least 1/4 to 3/4 of the plate thickness has a total volume fraction of one or two of the bainite phase and the martensite phase of 70% or more. Production of a high-strength cold-rolled steel sheet excellent in deep drawability, characterized by subjecting a hot-rolled steel sheet having cold rolling to a rolling reduction of 25% or more and 95% or less and continuously annealing at a recrystallization temperature or more and 1000 ° C or less. Method. 請求項1〜8のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板を製造する方法であって、請求項1、請求項3、請求項5〜8のいずれか1項に記載の化学成分を有する鋼を熱間圧延して、(Ar3−50)℃以上で熱間圧延を完了し、熱延仕上げ温度から550℃までを平均冷却速度30℃/s以上で冷却し、550℃以下の温度で巻き取り、次いで、冷間圧延、連続焼鈍を施すことを特徴する深絞り性に優れた高強度冷延鋼板の製造方法。A method for producing a high-strength cold-rolled steel sheet having excellent deep drawability according to any one of claims 1 to 8, wherein the method is any one of claims 1, 3, and 5 to 8. The steel having the chemical composition described in (1) is hot-rolled, hot rolling is completed at (Ar3-50) ° C. or more, and the steel is cooled from the hot-rolling finishing temperature to 550 ° C. at an average cooling rate of 30 ° C./s or more. A method for producing a high-strength cold-rolled steel sheet having excellent deep drawability, comprising winding at a temperature of 550 ° C. or lower, followed by cold rolling and continuous annealing. 請求項9又は10に記載の連続焼鈍に引き続き、亜鉛めっきを施すことを特徴とする深絞り性に優れた高強度亜鉛めっき鋼板の製造方法。A method for producing a high-strength galvanized steel sheet having excellent deep drawability, wherein galvanizing is performed subsequent to the continuous annealing according to claim 9 or 10. 請求項1〜8のいずれか1項に記載の深絞り性に優れた高強度鋼板からなる鋼管であることを特徴とする加工性に優れた高強度鋼管。A high-strength steel pipe excellent in workability, characterized by being a steel pipe made of the high-strength steel sheet excellent in deep drawability according to any one of claims 1 to 8. 請求項9〜11のいずれか1項に記載の深絞り性に優れた高強度冷延鋼板又は高強度亜鉛めっき鋼板の製造方法にしたがって製造した鋼板を接合して鋼管とすることを特徴とする加工性に優れた高強度鋼管の製造方法。A steel pipe formed by joining steel sheets manufactured according to the method for manufacturing a high-strength cold-rolled steel sheet or a high-strength galvanized steel sheet having excellent deep drawability according to any one of claims 9 to 11. A method for manufacturing high-strength steel pipe with excellent workability.
JP2003016432A 2003-01-24 2003-01-24 High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof Expired - Fee Related JP4280078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003016432A JP4280078B2 (en) 2003-01-24 2003-01-24 High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003016432A JP4280078B2 (en) 2003-01-24 2003-01-24 High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof

Publications (2)

Publication Number Publication Date
JP2004225132A true JP2004225132A (en) 2004-08-12
JP4280078B2 JP4280078B2 (en) 2009-06-17

Family

ID=32903891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003016432A Expired - Fee Related JP4280078B2 (en) 2003-01-24 2003-01-24 High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof

Country Status (1)

Country Link
JP (1) JP4280078B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277699A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
WO2008108363A1 (en) * 2007-03-05 2008-09-12 Sumitomo Metal Industries, Ltd. Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
WO2009048838A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP2009091623A (en) * 2007-10-09 2009-04-30 Sumitomo Metal Ind Ltd Extralow carbon steel sheet, method for reining extralow carbon steel, and method for manufacturing extralow carbon steel sheet
JP2009108364A (en) * 2007-10-30 2009-05-21 Jfe Steel Corp High-strength steel sheet superior in deep drawability, and manufacturing method therefor
JP2009214118A (en) * 2008-03-07 2009-09-24 Nippon Steel Corp Press molding method and plate for press molding
JP2012508827A (en) * 2009-12-30 2012-04-12 ヒュンダイ スチール カンパニー Heat-treated reinforced steel sheet with excellent hot press workability and method for producing the same
WO2012141220A1 (en) * 2011-04-12 2012-10-18 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP2013501631A (en) * 2010-11-03 2013-01-17 ヒュンダイ ハイスコ Method for manufacturing automotive parts having locally different strength using heat-treated hardened steel sheet
JP2015147965A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 Cold rolled steel sheet and manufacturing method therefor
KR20160036992A (en) * 2014-09-26 2016-04-05 현대제철 주식회사 High strength hot-rolled steel sheet and method of manufacturing the same
WO2016060248A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Steel sheet for drawn can, and method for manufacturing same
WO2016080344A1 (en) * 2014-11-17 2016-05-26 新日鐵住金株式会社 Drawn-can steel sheet and manufacturing method therefor
JP2017031492A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of cold rolled steel sheet and cold rolled steel sheet
WO2019154819A1 (en) * 2018-02-07 2019-08-15 Tata Steel Nederland Technology B.V. High strength hot rolled or cold rolled and annealed steel and method of producing it
CN114737037A (en) * 2022-03-30 2022-07-12 马鞍山钢铁股份有限公司 550 MPa-grade high-ductility and toughness hot-dip galvanized steel plate based on CSP (cast steel plate) process and production method thereof
JPWO2022210867A1 (en) * 2021-03-31 2022-10-06

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277699A (en) * 2006-03-14 2007-10-25 Jfe Steel Kk Steel sheet and its production method
WO2008108363A1 (en) * 2007-03-05 2008-09-12 Sumitomo Metal Industries, Ltd. Cold-rolled steel sheet, galvannealed steel sheet and processes for production of both
US9771638B2 (en) 2007-03-05 2017-09-26 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet
US9340860B2 (en) 2007-03-05 2016-05-17 Nippon Steel & Sumitomo Metal Corporation Cold-rolled steel sheet and galvannealed steel sheet
JP2009091623A (en) * 2007-10-09 2009-04-30 Sumitomo Metal Ind Ltd Extralow carbon steel sheet, method for reining extralow carbon steel, and method for manufacturing extralow carbon steel sheet
US9157138B2 (en) 2007-10-10 2015-10-13 Nucor Corporation Complex metallographic structured high strength steel and method of manufacturing
WO2009048838A1 (en) * 2007-10-10 2009-04-16 Nucor Corporation Complex metallographic structured steel and method of manufacturing same
JP2009108364A (en) * 2007-10-30 2009-05-21 Jfe Steel Corp High-strength steel sheet superior in deep drawability, and manufacturing method therefor
JP2009214118A (en) * 2008-03-07 2009-09-24 Nippon Steel Corp Press molding method and plate for press molding
JP2012508827A (en) * 2009-12-30 2012-04-12 ヒュンダイ スチール カンパニー Heat-treated reinforced steel sheet with excellent hot press workability and method for producing the same
JP2013501631A (en) * 2010-11-03 2013-01-17 ヒュンダイ ハイスコ Method for manufacturing automotive parts having locally different strength using heat-treated hardened steel sheet
CN103328669A (en) * 2011-04-12 2013-09-25 新日铁住金株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP5413537B2 (en) * 2011-04-12 2014-02-12 新日鐵住金株式会社 High strength steel plate and high strength steel pipe excellent in deformation performance and low temperature toughness, and methods for producing them
WO2012141220A1 (en) * 2011-04-12 2012-10-18 新日本製鐵株式会社 High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
JP2015147965A (en) * 2014-02-05 2015-08-20 Jfeスチール株式会社 Cold rolled steel sheet and manufacturing method therefor
KR20160036992A (en) * 2014-09-26 2016-04-05 현대제철 주식회사 High strength hot-rolled steel sheet and method of manufacturing the same
KR101648267B1 (en) * 2014-09-26 2016-08-12 현대제철 주식회사 High strength hot-rolled steel sheet and method of manufacturing the same
CN106795609B (en) * 2014-10-17 2018-12-04 新日铁住金株式会社 Drawing steel plate for tanks and its manufacturing method
JP5930144B1 (en) * 2014-10-17 2016-06-08 新日鐵住金株式会社 Steel plate for squeezed can and method for manufacturing the same
CN106795609A (en) * 2014-10-17 2017-05-31 新日铁住金株式会社 Drawing steel plate for tanks and its manufacture method
WO2016060248A1 (en) * 2014-10-17 2016-04-21 新日鐵住金株式会社 Steel sheet for drawn can, and method for manufacturing same
JP6037084B2 (en) * 2014-11-17 2016-11-30 新日鐵住金株式会社 Steel plate for squeezed can and method for manufacturing the same
CN107109558A (en) * 2014-11-17 2017-08-29 新日铁住金株式会社 Drawing steel plate for tanks and its manufacture method
WO2016080344A1 (en) * 2014-11-17 2016-05-26 新日鐵住金株式会社 Drawn-can steel sheet and manufacturing method therefor
CN107109558B (en) * 2014-11-17 2019-01-18 新日铁住金株式会社 Drawing steel plate for tanks and its manufacturing method
JP2017031492A (en) * 2015-08-05 2017-02-09 新日鐵住金株式会社 Manufacturing method of cold rolled steel sheet and cold rolled steel sheet
WO2019154819A1 (en) * 2018-02-07 2019-08-15 Tata Steel Nederland Technology B.V. High strength hot rolled or cold rolled and annealed steel and method of producing it
CN111684084A (en) * 2018-02-07 2020-09-18 塔塔钢铁荷兰科技有限责任公司 High-strength hot-rolled or cold-rolled and annealed steel and method for the production thereof
US11884990B2 (en) 2018-02-07 2024-01-30 Tata Steel Nederland Technology B.V. High strength hot rolled or cold rolled and annealed steel and method of producing it
JPWO2022210867A1 (en) * 2021-03-31 2022-10-06
WO2022210867A1 (en) * 2021-03-31 2022-10-06 日本製鉄株式会社 Non-oriented electrical steel sheet, method for punching non-oriented electrical steel sheet, and die for punching non-oriented electrical steel sheet
JP7260841B2 (en) 2021-03-31 2023-04-19 日本製鉄株式会社 Punching method for non-oriented electrical steel sheet and die for punching non-oriented electrical steel sheet
CN114737037A (en) * 2022-03-30 2022-07-12 马鞍山钢铁股份有限公司 550 MPa-grade high-ductility and toughness hot-dip galvanized steel plate based on CSP (cast steel plate) process and production method thereof
CN114737037B (en) * 2022-03-30 2023-06-27 马鞍山钢铁股份有限公司 550 MPa-grade high-plastic-toughness hot-dip galvanized steel plate based on CSP process and production method thereof

Also Published As

Publication number Publication date
JP4280078B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
KR100548864B1 (en) Steel plate and pipe exhibiting excellent deep drawing ability and method for producing the same
JP6443593B1 (en) High strength steel sheet
JP6443592B1 (en) High strength steel sheet
JP4555693B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and manufacturing method thereof
JP4041296B2 (en) High strength steel plate with excellent deep drawability and manufacturing method
JP4280078B2 (en) High-strength cold-rolled steel sheet and plated steel sheet excellent in deep drawability, steel pipes excellent in workability, and production methods thereof
JP2004250749A (en) High strength thin steel sheet having burring property, and production method therefor
JP2521553B2 (en) Method for producing cold-rolled steel sheet for deep drawing having bake hardenability
JP4041295B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and its manufacturing method
WO2020189530A1 (en) Steel sheet
JP6947334B1 (en) High-strength steel plate and its manufacturing method
JP4102206B2 (en) High-strength steel pipe with excellent workability and its manufacturing method
JP4171281B2 (en) Steel plate excellent in workability and method for producing the same
JP3549483B2 (en) Hydroform forming steel pipe excellent in processability and manufacturing method
JP4171296B2 (en) Steel sheet excellent in deep drawability, manufacturing method thereof and steel pipe manufacturing method excellent in workability
JP5071125B2 (en) High-strength cold-rolled steel sheet excellent in square tube drawing formability and shape freezing property, manufacturing method thereof, and automotive parts excellent in product shape
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
CN114585758A (en) High-strength steel sheet, impact absorbing member, and method for producing high-strength steel sheet
JP4133003B2 (en) High-strength steel sheet with excellent formability and its manufacturing method
WO2020218575A1 (en) Steel sheet
JP3742559B2 (en) Steel plate excellent in workability and manufacturing method
CN117916398A (en) Cold-rolled steel sheet, method for producing same, and welded joint
JP2004285366A (en) Extra-thin ultrahigh tensile strength cold rolled steel sheet, and its production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090313

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4280078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees