WO2020189530A1 - Steel sheet - Google Patents

Steel sheet Download PDF

Info

Publication number
WO2020189530A1
WO2020189530A1 PCT/JP2020/010946 JP2020010946W WO2020189530A1 WO 2020189530 A1 WO2020189530 A1 WO 2020189530A1 JP 2020010946 W JP2020010946 W JP 2020010946W WO 2020189530 A1 WO2020189530 A1 WO 2020189530A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
steel sheet
austenite
retained austenite
steel
Prior art date
Application number
PCT/JP2020/010946
Other languages
French (fr)
Japanese (ja)
Inventor
嘉宏 諏訪
林 宏太郎
力 岡本
孝彦 神武
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to CN202080008409.1A priority Critical patent/CN113272461B/en
Priority to JP2021507293A priority patent/JP7036274B2/en
Publication of WO2020189530A1 publication Critical patent/WO2020189530A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • Residual austenite is obtained by concentrating and stabilizing C in austenite.
  • a carbide precipitation inhibitoring element such as Si and Al
  • the austenite can be further stabilized and the amount of retained austenite can be increased. As a result, a steel sheet having excellent strength and elongation can be obtained.
  • Non-Patent Document 1 a steel to which Mn of 3.5% or more is added (Patent Document 2) and Mn of more than 4.0% are added. Steel (Non-Patent Document 1) has been proposed. Since the steel contains a large amount of Mn, the weight reduction effect on the members used is also remarkable.
  • Patent Document 2 and Non-Patent Document 1 requires a long-time heating process such as box annealing, and improvement in productivity is desired.
  • a short-time heating process such as continuous annealing suitable for manufacturing high-strength steel sheets for automobile members has not been sufficiently studied, and the requirement for enhancing the elongation characteristics in that case has not been clarified.
  • An object of the present invention is to solve the above problems and to provide a steel sheet having high strength, excellent uniform elongation characteristics and impact energy absorption ability.
  • the gist of the steel sheet of the present invention is the following steel sheet.
  • the chemical composition of the steel sheet is mass%.
  • C More than 0.10% and less than 0.55%, Si: 0.001% or more and less than 3.50%, Mn: More than 4.00% and less than 9.00%, sol. Al: 0.001% or more and less than 3.00%, P: 0.100% or less, S: 0.010% or less, N: Less than 0.050%, O: Less than 0.020%, Cr: 0% or more and less than 2.00%, Mo: 0-2.00%, W: 0 to 2.00%, Cu: 0-2.00%, Ni: 0 to 2.00%, Ti: 0 to 0.300%, Nb: 0 to 0.300%, V: 0 to 0.300%, B: 0 to 0.010%, Ca: 0 to 0.010%, Mg: 0 to 0.010%, Zr: 0 to 0.010%, REM: 0-0.010%, Sb: 0 to 0.050%, Sn: 0 to 0.050%, Bi: 0 to 0.050%, Remaining
  • Tempering martensite 25-90%, Ferrite: 5% or less, Residual austenite: 10-50%, and bainite: 5% or less, Residual austenite crystal grains having an area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more at a depth of 1/4 of the plate thickness from the surface of the cross section parallel to the rolling direction and the plate thickness direction of the steel sheet.
  • the ratio of the total area of is less than 50% of the total area of the retained austenite.
  • C Mn ⁇ Average Mn concentration (mass%) in retained austenite
  • C Mn ⁇ Average Mn concentration (% by mass) in ferrite and tempered martensite
  • the chemical composition is mass%.
  • Sb 0.0005 to 0.050%
  • Sn 0.0005 to 0.050%
  • Bi 0.0005 to 0.050% Contains one or more selected from The steel sheet according to any one of (1) to (4) above.
  • a hot-dip galvanized layer is provided on the surface of the steel sheet.
  • the steel sheet according to any one of (1) to (5) above.
  • the Charpy impact value at 0 ° C. is 20 J / cm 2 or more.
  • the yield ratio of the steel sheet is more than 0.40 and less than 0.80.
  • C More than 0.10% and less than 0.55% C is an extremely important element for increasing the strength of martensite and tempered martensite and ensuring retained austenite. In order to obtain a sufficient amount of austenite, a C content of more than 0.10% is required. On the other hand, if C is excessively contained, the toughness and weldability of the steel sheet are impaired. Therefore, the C content is more than 0.10% and less than 0.55%.
  • the C content is preferably 0.12% or more, more preferably 0.15% or more, and even more preferably 0.20% or more.
  • the C content is preferably 0.40% or less, more preferably 0.35% or less.
  • Si 0.001% or more and less than 3.50%
  • Si is an element effective for strengthening tempered martensite, homogenizing the structure, and improving workability.
  • Si also has an action of improving the uniform elongation property of the steel sheet by suppressing the precipitation of cementite and promoting the residual of austenite.
  • the Si content is set to 0.001% or more and less than 3.50%.
  • the Si content is preferably 0.005% or more, and more preferably 0.010% or more.
  • the Si content is preferably 3.00% or less, more preferably 2.50% or less.
  • Mn More than 4.00% and less than 9.00% Mn is an element that stabilizes austenite and enhances hardenability. Further, in the steel sheet of the present invention, Mn is concentrated in austenite to further stabilize austenite. More than 4.00% Mn is required to stabilize austenite at room temperature. On the other hand, if the steel sheet contains excess Mn, the toughness is impaired. Therefore, the Mn content is set to more than 4.00% and less than 9.00%. The Mn content is preferably 4.50% or more, more preferably 4.80% or more. The Mn content is preferably 8.50% or less, more preferably 8.00% or less.
  • P 0.100% or less
  • P is an impurity, and if the steel sheet contains an excess of P, the toughness and weldability are impaired. Therefore, the P content is set to 0.100% or less.
  • the P content is preferably 0.050% or less, more preferably 0.030% or less, and even more preferably 0.020% or less.
  • the P content may be 0.001% or more, but since the steel sheet according to the present invention does not require P, it is preferable to reduce it as much as possible.
  • S 0.010% or less
  • S is an impurity, and if the steel sheet contains an excess of S, MnS stretched by hot rolling is generated, and formability such as bendability and hole expansion property is lowered. Therefore, the S content is 0.010% or less.
  • the S content is preferably 0.007% or less, more preferably 0.003% or less.
  • the S content may be 0.001% or more, but since the steel sheet according to the present invention does not require S, it is preferable to reduce it as much as possible.
  • O Less than 0.020% O is an impurity, and if the steel sheet contains 0.020% or more of O, the uniform elongation property deteriorates. Therefore, the O content is set to less than 0.020%.
  • the O content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less.
  • the O content may be 0.001% or more, but since the steel sheet according to the present invention does not require O, it is preferable to reduce it as much as possible.
  • the steel sheet of the present invention further contains the following amounts of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and It may contain one or more selected from Bi.
  • Cr 0% or more and less than 2.00% Mo: 0 to 2.00% W: 0 to 2.00% Cu: 0 to 2.00%
  • Ni: 0 to 2.00% Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, surface scratches are likely to occur during hot rolling, and the strength of the hot rolled steel sheet becomes too high, which may reduce the cold rollability. Therefore, the Cr content is less than 2.00%, the Mo content is 2.00% or less, the W content is 2.00% or less, the Cu content is 2.00% or less, and the Ni content is 2.00%. It is as follows. In order to more reliably obtain the above-mentioned effects of these elements, it is preferable to contain at least 0.01% or more of the above-mentioned elements.
  • Ti, Nb, and V are elements that produce fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Therefore, one or more selected from Ti, Nb, and V may be contained. However, if these elements are excessively contained, the strength of the hot-rolled steel sheet may be excessively increased, and the cold rollability may be lowered. Therefore, the Ti content is 0.300% or less, the Nb content is 0.300% or less, and the V content is 0.300% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.005% or more.
  • B 0 to 0.010% Ca: 0 to 0.010% Mg: 0 to 0.010% Zr: 0 to 0.010% REM: 0 to 0.010%
  • Ca, Mg, Zr, and REM rare earth metals
  • the B content is 0.010% or less
  • the Ca content is 0.010% or less
  • the Mg content is 0.010% or less
  • the Zr content is 0.010% or less
  • the REM content is 0.010%. It is as follows.
  • the total content of one or more elements selected from B, Ca, Mg, Zr, and REM is 0.030% or less.
  • the REM referred to in the present specification refers to a total of 17 elements of Sc, Y, and lanthanoid, and the REM content refers to the total content of these elements.
  • REM is also generally supplied as mischmetal, which is an alloy of a plurality of types of REM. Therefore, one or more individual elements may be added so that the REM content is within the above range. For example, when added in the form of mischmetal, the REM content is within the above range. It may be contained so as to become.
  • Sb 0 to 0.050%
  • Sn 0 to 0.050%
  • Bi 0 to 0.050%
  • Sb, Sn, and Bi suppress that easily oxidizing elements such as Mn, Si, and / or Al in the steel sheet are diffused on the surface of the steel sheet to form an oxide, and improve the surface texture and plating property of the steel sheet. Therefore, one or more selected from these elements may be contained. However, even if it is contained in an excessive amount, the above effect is saturated. Therefore, the Sb content is 0.050% or less, the Sn content is 0.050% or less, and the Bi content is 0.050% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.0005% or more, and more preferably 0.0010% or more.
  • the balance is Fe and impurities.
  • the "impurities" are unavoidably mixed from the steel raw material or scrap and / or from the steelmaking process, and examples thereof include elements that are allowed as long as they do not impair the characteristics of the steel sheet according to the present invention.
  • the metallographic structure at a depth of 1/4 of the plate thickness from the surface is determined.
  • a cross section also referred to as “L cross section” parallel to the rolling direction and the thickness direction of the steel sheet according to the present invention and passing through the central axis of the steel sheet.
  • the metallographic structure at a depth of 1/4 of the plate thickness from the surface is determined.
  • the fraction of each structure varies depending on the annealing conditions and affects the strength, uniform elongation characteristics, toughness, and yield ratio of the steel sheet. The reasons for the limitation of each organization will be explained in detail.
  • Tempering martensite 25-90% Tempered martensite is a structure that enhances the strength of steel sheets, improves uniform elongation properties and toughness, and provides an appropriate yield ratio. When the area ratio of tempered martensite is less than 25% or more than 90%, it becomes difficult to obtain sufficient strength, uniform elongation, toughness, and yield ratio. Therefore, the area ratio of tempered martensite is 25 to 90%.
  • the area ratio of tempered martensite is preferably 30% or more, more preferably 35% or more, and even more preferably 50% or more. From the viewpoint of hydrogen embrittlement, the area ratio of tempered martensite is preferably 80% or less, more preferably 75% or less, and even more preferably 70% or less.
  • the area ratio of ferrite in the metal structure is increased, the uniform elongation property and toughness are significantly deteriorated. In addition, when the ferrite area ratio exceeds 50%, the yield ratio tends to be too large. Therefore, the area ratio of ferrite is set to 5% or less.
  • the area ratio of ferrite is preferably 3% or less, and more preferably 0%.
  • Residual austenite 10-50%
  • Residual austenite is a structure that enhances the ductility of steel sheets, especially the uniform elongation characteristics of steel sheets, by transformation-induced plasticity.
  • retained austenite can be transformed into the martensite phase by overhanging, drawing, stretching flange processing, or bending processing accompanied by tensile deformation, which contributes not only to various workability of the steel sheet but also to improvement of the strength of the steel sheet. To do. Therefore, the higher the area ratio of retained austenite, the more preferable.
  • the area ratio of retained austenite is limited to 50%. If Mn of more than 9.00% is contained, the area ratio of retained austenite can be more than 50%, but in this case, the uniform elongation property and castability of the steel sheet are impaired.
  • the area ratio of retained austenite is 10 to 50%.
  • the area ratio of retained austenite is preferably 14% or more, more preferably 18% or more, and even more preferably 20% or more.
  • the product “TS ⁇ uEL” of tensile strength and uniform elongation becomes 15000 MPa ⁇ % or more, and the uniform elongation characteristic can be maintained even at higher strength.
  • the residual structure other than tempered martensite, ferrite, retained austenite, and bainite in the metal structure of the steel plate according to the present invention is fresh martensite (that is, untempered martensite).
  • Bainite may also include tempered bainite, but is not distinguished herein. Further, pearlite is unlikely to be contained, and is substantially 0%.
  • Fresh martensite has a hard structure and is effective in ensuring the strength of steel sheets. However, the lower the area ratio of fresh martensite, the higher the bendability of the steel sheet. Therefore, the area ratio of fresh martensite is preferably more than 0%, more preferably 1% or more, and even more preferably 3% or more. The area ratio of fresh martensite is preferably 55% or less, more preferably 45% or less, and even more preferably 20% or less.
  • retained austenite crystal grains having an area of 1 ⁇ m 2 or more and a grain circularity of 0.1 or more.
  • the total area of is less than 50% of the total area of retained austenite.
  • Retained austenite with a crystal grain area of less than 1 ⁇ m 2 that is, a small crystal grain size, tends to uniformly concentrate Mn in a short time during annealing in the ferrite-austenite two-phase region, and has high stability. The transformation is delayed. Therefore, a steel sheet having excellent uniform elongation characteristics and toughness can be obtained.
  • the Mn concentration in the metal structure at a depth of 1/4 of the plate thickness from the surface of the L cross section satisfies the following formula (i).
  • the meanings of the symbols in the above equation (i) are as follows.
  • C Mn ⁇ Average Mn concentration (mass%) in retained austenite
  • C Mn ⁇ Average Mn concentration (% by mass) in ferrite and tempered martensite
  • Mn By heat-treating in a temperature range where the austenite phase fraction is 20 to 50%, Mn can be sufficiently concentrated in the portion where the austenite was. As a result, stable retained austenite can be obtained even after short-time annealing, and excellent uniform elongation characteristics, high strength, excellent toughness, and an appropriate yield ratio can be obtained.
  • the lvalue of Eq. (I) which is the Mn concentration ratio between retained austenite and ferrite and tempered martensite, is 1.2 or more, Mn distribution is sufficient and retained austenite can be obtained by annealing for a short time. it can. Therefore, the lvalue in equation (i) is set to 1.2 or more.
  • the lvalue of equation (i) is preferably 1.4 or more.
  • the lvalue of Eq. (I) is preferably less than 2.0.
  • the area ratio of retained austenite is measured by X-ray diffraction.
  • the test piece is chemically polished to reduce the plate thickness by 1/4 to obtain a test piece having a chemically polished surface.
  • X-ray diffraction analysis with a measurement range of 2 ⁇ of 45 to 105 degrees is performed three times using a Co tube.
  • the integrated intensities of the peaks (111), (200), and (220) are obtained, and for the bcc phase, the integrated intensities of the peaks (110), (200), and (211) are obtained.
  • the volume fraction of retained austenite is obtained by analyzing the integrated intensities and averaging the results of three X-ray diffraction analyzes, and the value is used as the area ratio of retained austenite.
  • ⁇ Measurement method of area ratio of tempered martensite, ferrite, bainite, and fresh martensite The area ratios of tempered martensite, ferrite, bainite, and fresh martensite are calculated from microstructure observation with a scanning electron microscope (SEM). After mirror polishing the L cross section of the steel sheet, a microstructure is revealed with 3% nital (3% nitric acid-ethanol solution). Then, at a magnification of 5000 times by SEM, a range of 0.1 mm in length (length in the plate thickness direction) ⁇ 0.3 mm in width (length in the rolling direction) at a depth position of 1/4 of the plate thickness from the surface of the steel plate. The microstructure can be observed and the area ratio of each tissue can be measured.
  • SEM scanning electron microscope
  • the area ratio is calculated by judging that among the white structures recognized by SEM observation, those whose substructure is confirmed in the crystal grains are tempered martensite.
  • the area ratio is calculated by discriminating ferrite as a gray base structure.
  • Bainite is a collection of lath-shaped crystal grains when observed by SEM, and is determined as a structure in which carbides extend in the same direction in the lath, and the area ratio is calculated.
  • Fresh martensite is recognized as a white tissue in the same way as retained austenite when observed by SEM. Therefore, it is difficult to distinguish between retained austenite and fresh martensite by SEM observation, but from the total area ratio of retained austenite and fresh martensite obtained by SEM observation, the retained austenite measured by X-ray diffraction method The area ratio of fresh martensite is calculated by subtracting the area ratio.
  • ⁇ Measurement method of C Mn ⁇ and C Mn ⁇ > C Mn ⁇ / C Mn ⁇ can be measured by EBSP, SEM, and electron probe microanalyzer (EPMA).
  • EBSP and SEM can be used to identify retained austenite, ferrite, and tempered martensite, and EPMA can be used to measure C Mn ⁇ and C Mn ⁇ to calculate C Mn ⁇ / C Mn ⁇ .
  • the tensile strength (TS) of the steel sheet according to the present invention is preferably 780 MPa or more, preferably 980 MPa, in order to reduce the plate thickness by increasing the strength and contribute to weight reduction. It is more preferably 1180 MPa or more, and further preferably 1180 MPa or more. Further, in order to use the steel sheet according to the present invention for press forming, it is desirable that the uniform elongation (uEL) is also excellent.
  • the TS ⁇ uEL of the steel sheet according to the present invention is preferably 12000 MPa ⁇ % or more, and more preferably 15,000 MPa ⁇ % or more.
  • the steel sheet according to the present invention also has excellent toughness.
  • the steel sheet according to the present invention preferably has an impact value of 20 J / cm 2 or more in the Charpy test at 0 ° C.
  • the steel sheet according to the present invention has an appropriate yield ratio.
  • the yield ratio YR is the ratio of the yield stress (YS) to the tensile strength (TS) and is an index indicated by YS / TS.
  • YS yield stress
  • TS tensile strength
  • the steel sheet according to the embodiment of the present invention can be obtained by a manufacturing method including, for example, the following casting step, hot rolling step, cold rolling step, primary annealing step and secondary annealing step. Further, if necessary, a plating step may be further included.
  • the steel sheet according to the present invention is prepared by melting steel having the above-mentioned chemical composition by a conventional method and casting it to prepare a steel material (hereinafter, also referred to as “slab”).
  • a steel material hereinafter, also referred to as “slab”.
  • the molten steel may be melted by a normal blast furnace method, and the raw material scraps a large amount of scrap like the steel produced by the electric furnace method. It may include.
  • the slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
  • Hot rolling can be performed using a normal continuous hot rolling line. Hot rolling is preferably carried out in a reducing atmosphere, for example, in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the slab to be subjected to the hot rolling step is preferably heated before the hot rolling.
  • the temperature of the slab to be subjected to hot rolling is preferably 1100 to 1300 ° C.
  • the temperature means the surface temperature of the central portion of the main surface of the slab, the hot-rolled steel sheet, or the cold-rolled steel sheet.
  • the holding time in the slab heating temperature range is not particularly limited, but in order to improve the bendability, it is preferably 30 min or more, and more preferably 1 h or more. Further, in order to suppress excessive scale loss, it is preferably 10 hours or less, and more preferably 5 hours or less.
  • the slab may be subjected to hot rolling as it is without being heat-treated.
  • Finish rolling start temperature 750-1000 ° C
  • the finish rolling start temperature is preferably 750 to 1000 ° C.
  • the finish rolling start temperature By setting the finish rolling start temperature to 750 ° C. or higher, the deformation resistance during rolling can be reduced.
  • the finish rolling start temperature by setting the finish rolling start temperature to 1000 ° C. or lower, deterioration of the surface texture of the steel sheet due to intergranular oxidation can be suppressed.
  • Winding temperature Less than 300 ° C After finish rolling, cool and wind at less than 300 ° C. As a result, a tempered martensite phase having an area ratio of 25% or more can be secured.
  • the hot-rolled sheet structure cannot be made into a full martensite structure, and Mn distribution and austenite reverse transformation are efficient in each of the heat treatment process of the hot-rolled steel sheet and the annealing process of the cold-rolled steel sheet. It becomes difficult to wake up.
  • Heat treatment of hot-rolled steel sheet The obtained hot-rolled steel sheet is heat-treated for 60 minutes or more in a temperature range where the austenite phase fraction is 20 to 50%. Mn is distributed to austenite by performing heat treatment in the temperature range where the austenite phase fraction is 20 to 50% in the temperature range of the two-phase region of Ac 1 and less than Ac 3 of the steel plate to obtain austenite. It stabilizes and contributes to excellent uniform elongation properties, high strength, excellent toughness, and an appropriate yield ratio. On the other hand, if the heat treatment is performed at a temperature where the austenite phase fraction is less than 20% or more than 50%, it becomes difficult to stabilize the austenite phase.
  • the heat treatment when the heat treatment is performed in less than 60 minutes, it becomes difficult to stabilize the austenite phase.
  • the metal structure at the position 1/4 of the thickness from the surface in the L cross section of the annealed steel sheet has an area ratio of 10% or more. Retained austenite can be included.
  • the temperature range in which the area ratio of austenite is 20 to 50% is determined by heating at a heating rate of 0.5 ° C / s from room temperature in an offline preliminary experiment, depending on the composition of the steel sheet, and from the volume change during heating, austenite It can be obtained by measuring the phase fraction.
  • the holding time of the heat treatment is preferably 2 hours or more, more preferably 3 hours or more. From the viewpoint of productivity, the heat treatment holding time is preferably 10 hours or less, more preferably 8 hours or less.
  • Heat treatment is performed in a temperature range where the austenite phase fraction is 20 to 50%, and then cooling is performed. As a result, the Mn distribution state obtained by the heat treatment can be maintained.
  • Cold rolling process The hot-rolled steel sheet after the heat treatment is pickled by a conventional method and then cold-rolled at a reduction rate of 30 to 70% to obtain a cold-rolled steel sheet. If the reduction ratio of cold rolling is less than 30%, the structure of the steel sheet after annealing cannot be refined, the reverse transformation of austenite is delayed, and retained austenite with a sufficient area ratio cannot be obtained. Further, from the viewpoint of suppressing breakage during cold rolling, the rolling reduction ratio of cold rolling is set to 70% or less.
  • light rolling before pickling improves pickling properties, promotes removal of surface-concentrating elements, and has the effect of improving chemical conversion treatment properties and plating treatment properties.
  • ⁇ Primary annealing process> The cold-rolled steel sheet obtained through the cold rolling step is heated and held in a temperature range of more than 750 ° C. for 10 seconds or more to perform the first annealing.
  • This annealing is referred to as "primary annealing" in the present invention.
  • primary annealing By primary annealing, the formation of ferrite in the final structure can be reduced to 5% or less in area ratio. This makes it possible to stably secure good uniform elongation characteristics and toughness. If the primary annealing temperature is lower than 750 ° C., ferrite formation in the final structure becomes excessive, and if the temperature is lowered, recrystallization may not proceed sufficiently.
  • Annealing may be performed in either an annealing furnace or a continuous annealing line, but it is preferable that both the primary annealing and the secondary annealing described later are performed using a continuous annealing line. Productivity can be improved by using a continuous annealing line. Annealing is preferably carried out in a reducing atmosphere, for example, in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • Primary annealing temperature Over 750 ° C.
  • the primary annealing temperature is preferably Ac 3 points or more. Recrystallization can be significantly promoted by setting the primary annealing temperature to Ac 3 or higher.
  • the three Ac points are calculated by the following method.
  • C More than 0.10% and less than 0.55%
  • Si 0.001% or more and less than 3.50%
  • Mn More than 4.00% and less than 9.00%
  • Al 0.001% or more and 3.00
  • Ac 3 910-200 ⁇ C + 44Si-25Mn + 44Al
  • the element symbol in the above formula represents the content (mass%) of each element contained in the steel.
  • the upper limit of the primary annealing temperature is preferably 950 ° C. or lower.
  • Primary annealing time 10 s or more
  • the annealing time is preferably 300 s or less.
  • the average heating rate from the heating start temperature (room temperature) to the annealing temperature in the primary annealing is preferably 5 to 30 ° C./s.
  • Final cooling temperature less than 100 ° C.
  • the temperature is cooled from the primary annealing temperature to less than 100 ° C.
  • the rasmartensite structure can be increased by lowering the final cooling temperature to less than 100 ° C.
  • the final cooling temperature is preferably room temperature (50 ° C. or lower).
  • an average cooling rate of 2 to 2000 ° C./s from the primary annealing temperature it is preferable to cool at an average cooling rate of 2 to 2000 ° C./s from the primary annealing temperature to a temperature range of 500 ° C. or lower.
  • the average cooling rate after annealing to 2 ° C./s or higher, grain boundary segregation can be suppressed and bendability can be improved.
  • the average cooling rate to 2000 ° C./s or less, the temperature distribution of the steel sheet after the cooling is stopped becomes uniform, so that the flatness of the steel sheet can be further improved.
  • the cooling stop temperature in cooling at an average cooling rate of 2 to 2000 ° C./s is 100 ° C. or higher.
  • the cooling stop temperature is 100 ° C. or higher.
  • the temperature range is preferably maintained in the temperature range of 100 to 500 ° C. for 10 to 1000 s.
  • the holding time in the temperature range of 100 to 500 ° C. to 10 s or more is preferably 1000 s or less. It is preferably 300 s or less.
  • the holding temperature By setting the holding temperature to 100 ° C. or higher, the efficiency of the continuous annealing line can be improved. On the other hand, by setting the holding temperature to 500 ° C. or lower, grain boundary segregation can be suppressed and bendability can be improved.
  • ⁇ Secondary annealing process> After performing the above primary annealing and cooling to room temperature, the mixture is heated to a temperature range of 600 ° C. or higher and less than 3 points of Ac at an average heating rate of 1 to 40 ° C./s, and held at that heating temperature for 5 seconds or longer. Perform the second annealing. This annealing is referred to as "secondary annealing" in the present invention.
  • Secondary annealing temperature 600 ° C. or higher and less than 3 points Ac
  • the area ratio of ferrite can be reduced and the uniform elongation characteristics and toughness can be improved.
  • the secondary annealing temperature is set to Ac 3 or higher, it becomes difficult to secure retained austenite in the subsequent cooling process. Further, since the Mn content is high and the martensitic transformation temperature is low, it is difficult to secure sufficient tempered martensite when the secondary annealing temperature is set to Ac 3 or higher.
  • Secondary annealing time From the viewpoint of dissolving cementite for 5 s or more and stably ensuring good toughness, the annealing time for holding in a temperature range of 600 ° C. or more and less than 3 points of Ac is set to 5 s or more. From the viewpoint of productivity, the secondary annealing time is preferably 300 s or less.
  • Average heating rate 1-40 ° C / s
  • the average rate of temperature rise in the secondary annealing is 1 ° C./s or higher, preferably 2 ° C./s or higher, and more preferably 3 ° C./s or higher.
  • the average rate of temperature rise in the secondary annealing is less than 40 ° C./s, preferably less than 20 ° C./s, more preferably less than 10 ° C./s.
  • the area ratio of coarse massive austenite to area can be less than 50%. If the rate of temperature rise is too fast, the driving force for austenite formation will increase, and austenite will be generated from the former austenite grain boundaries instead of martensite truss, resulting in an increase in coarse austenite.
  • Average cooling rate 5 ° C./s or higher After secondary annealing, the steel sheet is cooled to 100 ° C. or lower at an average cooling rate of 5 ° C./s or higher. If the average cooling rate is less than 5 ° C./s, soft bainite is excessively generated, and it may be difficult to secure high strength (tensile strength of 980 MPa or more) in the heat-treated steel material.
  • the average cooling rate is set to 500 ° C./s or less from the viewpoint of suppressing shrinkage of the steel sheet.
  • hot-dip galvanized steel sheet When hot-dip galvanized steel sheet is manufactured by hot-dip galvanizing the surface of the steel sheet, it is cooled to a temperature range of 430 to 500 ° C. at an average cooling rate of 5 ° C./s or more after secondary annealing, and then cold-rolled.
  • the steel sheet is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing.
  • the conditions of the plating bath may be within the normal range.
  • the product After the plating treatment, the product is cooled to a temperature range of 100 ° C. or lower at an average cooling rate of 5 ° C./s or higher.
  • the temperature is 450 to 620 ° C. after the steel sheet is hot-dip galvanized and before the steel sheet is cooled to room temperature.
  • the hot dip galvanizing process is alloyed at temperature.
  • the alloying treatment conditions may be within the usual range. After the alloying treatment, the mixture is cooled to a temperature range of 100 ° C. or lower at an average cooling rate of 5 ° C./s or higher.
  • Skin pass rolling may be performed on the annealed steel sheet or the plated steel sheet.
  • the rolling reduction of the skin pass rolling is preferably more than 0% and less than 5.0%.
  • hot-dip galvanizing or alloying hot-dip galvanizing is applied to the surface of the steel sheet, skin pass rolling is performed on the plated steel sheet.
  • the steel sheet according to the present invention can be obtained.
  • the obtained steel material (slab) was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet having a thickness of about 2.4 mm.
  • the obtained hot-rolled steel sheet was subjected to heat treatment, pickling, and cold rolling at the cold rolling ratio shown in Table 2 at a temperature and holding time at which the austenite phase fraction was shown in Table 2, and the thickness was 1.4 mm.
  • Cold-rolled steel sheet was obtained.
  • the hot rolling and heat treatment of the hot-rolled steel sheet were carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the obtained cold-rolled steel sheet was subjected to primary annealing and secondary annealing under the conditions shown in Table 3 to prepare an annealed cold-rolled steel sheet.
  • the two annealings on the cold-rolled steel sheet were carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
  • the average heating rate from the heating start temperature (room temperature) to the annealing temperature in the primary annealing was 15 ° C./s.
  • the temperature was cooled from the annealing temperature to 100 ° C. or lower at an average cooling rate of 50 ° C./s.
  • annealed cold-rolled steel sheets For some examples of annealed cold-rolled steel sheets, cooling after secondary annealing was stopped at 460 ° C., and the cold-rolled steel sheets were immersed in a hot-dip galvanizing bath at 460 ° C. for 2 seconds to perform hot-dip galvanizing treatment.
  • the conditions of the plating bath were the same as those of the conventional one.
  • the alloying treatment described later was not performed, the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s after holding at 460 ° C.
  • annealed cold-rolled steel sheets after hot-dip galvanizing treatment, they were subsequently alloyed without being cooled to room temperature. It was heated to 520 ° C. and held at 520 ° C. for 5 s for alloying treatment, and then cooled to room temperature at an average cooling rate of 10 ° C./s.
  • the annealed cold-rolled steel sheet thus obtained was temper-rolled at an elongation rate of 0.1% to prepare various evaluation steel sheets.
  • ⁇ Area ratio of metal structure The area ratios of tempered martensite, ferrite, retained austenite, bainite, and fresh martensite were calculated from microstructure observation by SEM and X-ray diffraction measurement. The L cross section of the steel plate was mirror-polished, then the microstructure was revealed by 3% nital, and the microstructure was observed at a magnification of 5000 times by SEM at a position 1/4 from the surface, and 0.1 mm ⁇ 0. Image analysis (Photoshop®) over a range of 3 mm calculated the area ratios of tempered martensite, ferrite, and bainite, as well as the total area ratio of retained austenite and fresh martensite.
  • a test piece having a width of 25 mm and a length of 25 mm was cut out from the obtained steel sheet, and the test piece was chemically polished to reduce the thickness by 1/4, and the surface of the test piece after the chemical polishing was subjected to chemical polishing.
  • X-ray diffraction analysis using Co tubes was performed three times, the obtained profiles were analyzed, and the area ratio of retained austenite was calculated by averaging each of them.
  • the area ratio of fresh martensite was calculated by subtracting the area ratio of retained austenite from the total area ratio of retained austenite and fresh martensite obtained by SEM observation.
  • EBSP Electron Back Scattering pattern
  • the EBSP data measurement conditions are as follows. An SEM equipped with an OIM (Orientation Imaging Microscopy) detector at a position 1/4 of the thickness from the surface of the L cross section of the steel sheet, observes a region of 50 ⁇ m ⁇ 50 ⁇ m at a magnification of 500 times, and EBSP at a measurement interval of 0.1 ⁇ m. The data was measured. The EBSP data was measured for the five regions by the above method, and the average value was calculated.
  • OIM Orientation Imaging Microscopy
  • ⁇ C Mn ⁇ / C Mn ⁇ > C Mn ⁇ / C Mn ⁇ was measured by EBSP, SEM, and EPMA.
  • EBSP and SEM Using EBSP and SEM, a region of 50 ⁇ m ⁇ 50 ⁇ m was observed at a magnification of 500, EBSP data was measured at a measurement interval of 0.1 ⁇ m, and retained austenite, ferrite, and tempered martensite were identified for the five regions.
  • point analysis by EPMA measurement was performed at 5 points and 5 regions, respectively, and the measured values were averaged to calculate C Mn ⁇ and C Mn ⁇ , and C Mn ⁇ / C. Mn ⁇ was determined.
  • ⁇ Tensile test method> Take JIS No. 5 tensile test pieces from the direction perpendicular to the rolling direction of the steel sheet, measure the tensile strength (TS), uniform elongation (uEL), and yield stress (YS), and determine the TS ⁇ uEL and yield ratio (YR). Calculated.
  • the tensile test was carried out using a JIS No. 5 tensile test piece by the method specified in JIS Z 2241: 2011.
  • the uniform elongation test was carried out by the method specified in JIS Z 2241: 2011 using a JIS No. 5 test piece having a parallel portion length of 60 mm and a reference point distance of 50 mm as a reference for measuring strain.
  • Uniform elongation is the elongation (strain measured between gauge points) obtained before reaching the maximum test strength (TS).
  • Table 4 shows the results of the above evaluation. An example in which TS ⁇ uEL of 12000 MPa ⁇ % or more, yield ratio of more than 0.40 and less than 0.80, and good toughness were obtained, a steel sheet having high impact energy absorption capacity, excellent uniform elongation characteristics, and high strength. Evaluated as. In Table 4, it was decided that the impact energy absorption capacity was excellent when the yield ratio was more than 0.40 and less than 0.80 and the toughness was good.
  • the steel sheet according to the present invention has high strength, good uniform elongation characteristics, excellent moldability, and high impact energy absorption capacity (excellent YR and toughness). Ideal for structural parts of automobiles such as side members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

A steel sheet having the following chemical composition in mass%: C: greater than 0.10% and less than 0.55%, Si: at least 0.001% and less than 3.50%, Mn: greater than 4.00% and less than 9.00%, sil.Al: at least 0.001% and less than 3.00%, P: not more than 0.100%, S: not more than 0.010%, N: less than 0.050%, O: less than 0.020%, Cr: at least 0% and less than 2.00%, Mo: 0 to 2.00%, W: 0 to 2.00%, Cu: 0 to 2.00%, Ni: 0 to 2.00%, Ti: 0 to 0.300%, Nb: 0 to 0.300%, V: 0 to 0.300%, B: 0 to 0.010%, Ca: 0 to 0.010%, Mg: 0 to 0.010%, Zr: 0 to 0.010%, REM: 0 to 0.010%, Sb: 0 to 0.050%, Sn: 0 to 0.050%, Bi: 0 to 0.050%, and balance: Fe and impurities. In the L-cross section, at a position one-fourth of the thickness from the surface, the steel sheet has a metallographic composition, as an area ratio, of tempered martensite: 25 to 90%, ferrite: not more than 5%, retained austenite: 10 to 50%, and bainite: not more than 5%, wherein the area ratio of the total area of retained austenite crystal grains satisfying an area of at least 1 μm2 and a grain circularity of at least 0.1, to the total area of the retained austenite, is less than 50%. The steel sheet satisfies CMnγ/CMnα ≥ 1.2.

Description

鋼板Steel plate
 本発明は、鋼板に関係する。 The present invention relates to steel sheets.
 近年、自動車の燃費の向上および衝突安全性の向上を目的に、高強度鋼板の適用による車体軽量化の取り組みが盛んに行われている。しかしながら、一般的に、鋼板の強度が高いほど、成形性に影響する伸び、および衝突特性に影響する靱性が低下する。そのため、高強度鋼板の開発において、伸びおよび靱性を低下させずに高強度化を図ることは重要な課題である。 In recent years, efforts have been actively made to reduce the weight of the vehicle body by applying high-strength steel plates for the purpose of improving the fuel efficiency and collision safety of automobiles. However, in general, the higher the strength of the steel sheet, the lower the elongation that affects the formability and the toughness that affects the collision characteristics. Therefore, in the development of high-strength steel sheets, it is an important issue to increase the strength without lowering the elongation and toughness.
 伸びを向上させるために、これまでに、残留オーステナイト(残留γ)の変態誘起塑性を利用した、いわゆるTRIP鋼が提案されている(例えば、特許文献1)。 So-called TRIP steels that utilize the transformation-induced plasticity of retained austenite (residual γ) have been proposed so far in order to improve elongation (for example, Patent Document 1).
 残留オーステナイトは、Cをオーステナイト中に濃化させて安定化させることによって得られる。例えば、SiおよびAl等の炭化物析出抑制元素を鋼板に含有させることにより、鋼板の製造段階において鋼板に生じるベイナイト変態の間に、Cをオーステナイト中に濃化させることが可能である。この技術では、鋼板に含有させるC含有量が多ければ、オーステナイトがさらに安定化し、残留オーステナイト量を増やすことができる。そして、その結果、強度と伸びとの両方が優れた鋼板が得られる。 Residual austenite is obtained by concentrating and stabilizing C in austenite. For example, by incorporating a carbide precipitation inhibitoring element such as Si and Al into the steel sheet, it is possible to concentrate C in austenite during the bainite transformation that occurs in the steel sheet during the manufacturing stage of the steel sheet. In this technique, if the C content contained in the steel sheet is large, the austenite can be further stabilized and the amount of retained austenite can be increased. As a result, a steel sheet having excellent strength and elongation can be obtained.
 また、残留オーステナイト量が上記TRIP鋼よりも多く、延性が上記TRIP鋼を超える鋼板として、3.5%以上のMnを添加した鋼(特許文献2)、ならびに4.0%超のMnを添加した鋼(非特許文献1)が提案されている。上記鋼は多量のMnを含有するので、その使用部材に対する軽量化効果も顕著である。 Further, as a steel sheet having a larger amount of retained austenite than the above-mentioned TRIP steel and a ductility exceeding the above-mentioned TRIP steel, a steel to which Mn of 3.5% or more is added (Patent Document 2) and Mn of more than 4.0% are added. Steel (Non-Patent Document 1) has been proposed. Since the steel contains a large amount of Mn, the weight reduction effect on the members used is also remarkable.
特開平5-59429号公報Japanese Unexamined Patent Publication No. 5-59429 特開2013-76162号公報Japanese Unexamined Patent Publication No. 2013-76162
 鋼板が構造部材に使用される場合、鋼板に溶接が行われることが多いが、鋼板中のC含有量が多いと溶接性が悪くなるため、構造部材として使用することに制限がかかる。したがって、C含有量を増加することなく、鋼板の成形性と強度との両方を向上することが望まれている。 When a steel sheet is used as a structural member, welding is often performed on the steel sheet, but if the C content in the steel sheet is high, the weldability deteriorates, so that the use as a structural member is restricted. Therefore, it is desired to improve both the formability and the strength of the steel sheet without increasing the C content.
 また、特許文献2および非特許文献1に開示された鋼は、箱焼鈍のような長時間加熱プロセスを要件としており、生産性の向上が望まれる。しかしながら、自動車用の部材に供する高強度鋼板の製造に適する連続焼鈍のような短時間加熱プロセスにおける材料設計は十分に検討されておらず、その場合の伸び特性を高める要件は明らかでなかった。 Further, the steel disclosed in Patent Document 2 and Non-Patent Document 1 requires a long-time heating process such as box annealing, and improvement in productivity is desired. However, the material design in a short-time heating process such as continuous annealing suitable for manufacturing high-strength steel sheets for automobile members has not been sufficiently studied, and the requirement for enhancing the elongation characteristics in that case has not been clarified.
 さらには、衝突特性を向上させるためには、衝突部材、特に、フロントサイドメンバーのように部材が大きく変形することで衝撃エネルギー吸収量を稼ぐことが有効であるが、変形の局所化による座屈を防ぐため、高い加工硬化率と良好な衝撃特性とを両立させる必要があった。 Furthermore, in order to improve the collision characteristics, it is effective to increase the amount of impact energy absorption by significantly deforming the collision member, especially the front side member, but buckling due to the localization of the deformation. In order to prevent this, it was necessary to achieve both a high work hardening rate and good impact characteristics.
 本発明は上記の課題を解決し、高い強度、ならびに優れた均一伸び特性および衝撃エネルギー吸収能を有する鋼板を提供することを目的とする。 An object of the present invention is to solve the above problems and to provide a steel sheet having high strength, excellent uniform elongation characteristics and impact energy absorption ability.
 本発明の鋼板は、下記の鋼板を要旨とする。 The gist of the steel sheet of the present invention is the following steel sheet.
 (1)鋼板の化学組成が、質量%で、
 C:0.10%超0.55%未満、
 Si:0.001%以上3.50%未満、
 Mn:4.00%超9.00%未満、
 sol.Al:0.001%以上3.00%未満、
 P:0.100%以下、
 S:0.010%以下、
 N:0.050%未満、
 O:0.020%未満、
 Cr:0%以上2.00%未満、
 Mo:0~2.00%、
 W:0~2.00%、
 Cu:0~2.00%、
 Ni:0~2.00%、
 Ti:0~0.300%、
 Nb:0~0.300%、
 V:0~0.300%、
 B:0~0.010%、
 Ca:0~0.010%、
 Mg:0~0.010%、
 Zr:0~0.010%、
 REM:0~0.010%、
 Sb:0~0.050%、
 Sn:0~0.050%、
 Bi:0~0.050%、
 残部:Feおよび不純物であり、
 前記鋼板の圧延方向および板厚方向に平行な断面において、表面から板厚の1/4深さ位置における金属組織が、面積%で、
 焼戻しマルテンサイト:25~90%、
 フェライト:5%以下、
 残留オーステナイト:10~50%、および
 ベイナイト:5%以下であり、
 前記鋼板の圧延方向および板厚方向に平行な断面の表面から板厚の1/4深さ位置において、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の合計面積の割合が、前記残留オーステナイトの全体の面積に対して50%未満であり、
 下記(i)式を満足する、
 鋼板。
 CMnγ/CMnα≧1.2   ・・・(i)
 但し、上記(i)式中の記号の意味は以下のとおりである。
 CMnγ:残留オーステナイト中の平均Mn濃度(質量%)
 CMnα:フェライトおよび焼戻しマルテンサイト中の平均Mn濃度(質量%)
(1) The chemical composition of the steel sheet is mass%.
C: More than 0.10% and less than 0.55%,
Si: 0.001% or more and less than 3.50%,
Mn: More than 4.00% and less than 9.00%,
sol. Al: 0.001% or more and less than 3.00%,
P: 0.100% or less,
S: 0.010% or less,
N: Less than 0.050%,
O: Less than 0.020%,
Cr: 0% or more and less than 2.00%,
Mo: 0-2.00%,
W: 0 to 2.00%,
Cu: 0-2.00%,
Ni: 0 to 2.00%,
Ti: 0 to 0.300%,
Nb: 0 to 0.300%,
V: 0 to 0.300%,
B: 0 to 0.010%,
Ca: 0 to 0.010%,
Mg: 0 to 0.010%,
Zr: 0 to 0.010%,
REM: 0-0.010%,
Sb: 0 to 0.050%,
Sn: 0 to 0.050%,
Bi: 0 to 0.050%,
Remaining: Fe and impurities,
In the cross section parallel to the rolling direction and the plate thickness direction of the steel plate, the metal structure at a depth of 1/4 of the plate thickness from the surface is, in% area.
Tempering martensite: 25-90%,
Ferrite: 5% or less,
Residual austenite: 10-50%, and bainite: 5% or less,
Residual austenite crystal grains having an area of 1 μm 2 or more and a grain circularity of 0.1 or more at a depth of 1/4 of the plate thickness from the surface of the cross section parallel to the rolling direction and the plate thickness direction of the steel sheet. The ratio of the total area of is less than 50% of the total area of the retained austenite.
Satisfy the following equation (i),
Steel plate.
C Mnγ / C Mnα ≧ 1.2 ・ ・ ・ (i)
However, the meanings of the symbols in the above equation (i) are as follows.
C Mnγ : Average Mn concentration (mass%) in retained austenite
C Mnα : Average Mn concentration (% by mass) in ferrite and tempered martensite
 (2)前記化学組成が、質量%で、
 Cr:0.01%以上2.00%未満、
 Mo:0.01~2.00%、
 W:0.01~2.00%、
 Cu:0.01~2.00%、および
 Ni:0.01~2.00%
 から選択される1種以上を含有する、
 上記(1)に記載の鋼板。
(2) The chemical composition is mass%.
Cr: 0.01% or more and less than 2.00%,
Mo: 0.01-2.00%,
W: 0.01-2.00%,
Cu: 0.01 to 2.00%, and Ni: 0.01 to 2.00%
Contains one or more selected from
The steel sheet according to (1) above.
 (3)前記化学組成が、質量%で、
 Ti:0.005~0.300%、
 Nb:0.005~0.300%、および
 V:0.005~0.300%
 から選択される1種以上を含有する、
 上記(1)または(2)に記載の鋼板。
(3) The chemical composition is mass%.
Ti: 0.005 to 0.300%,
Nb: 0.005 to 0.300%, and V: 0.005 to 0.300%
Contains one or more selected from
The steel sheet according to (1) or (2) above.
 (4)前記化学組成が、質量%で、
 B:0.0001~0.010%、
 Ca:0.0001~0.010%、
 Mg:0.0001~0.010%、
 Zr:0.0001~0.010%、および
 REM:0.0001~0.010%
 から選択される1種以上を含有する、
 上記(1)から(3)までのいずれかに記載の鋼板。
(4) The chemical composition is mass%.
B: 0.0001 to 0.010%,
Ca: 0.0001 to 0.010%,
Mg: 0.0001 to 0.010%,
Zr: 0.0001 to 0.010%, and REM: 0.0001 to 0.010%
Contains one or more selected from
The steel sheet according to any one of (1) to (3) above.
 (5)前記化学組成が、質量%で、
 Sb:0.0005~0.050%、
 Sn:0.0005~0.050%、および
 Bi:0.0005~0.050%
 から選択される1種以上を含有する、
 上記(1)から(4)までのいずれかに記載の鋼板。
(5) The chemical composition is mass%.
Sb: 0.0005 to 0.050%,
Sn: 0.0005 to 0.050%, and Bi: 0.0005 to 0.050%
Contains one or more selected from
The steel sheet according to any one of (1) to (4) above.
 (6)前記鋼板の表面に溶融亜鉛めっき層を有する、
 上記(1)から(5)までのいずれかに記載の鋼板。
(6) A hot-dip galvanized layer is provided on the surface of the steel sheet.
The steel sheet according to any one of (1) to (5) above.
 (7)前記鋼板の表面に合金化溶融亜鉛めっき層を有する、
 上記(1)から(5)までのいずれかに記載の鋼板。
(7) An alloyed hot-dip galvanized layer is provided on the surface of the steel sheet.
The steel sheet according to any one of (1) to (5) above.
 (8)0℃におけるシャルピー衝撃値が20J/cm以上である、
 上記(1)から(7)までのいずれかに記載の鋼板。
(8) The Charpy impact value at 0 ° C. is 20 J / cm 2 or more.
The steel sheet according to any one of (1) to (7) above.
 (9)前記鋼板の降伏比が、0.40超0.80未満である、
 上記(1)から(8)までのいずれかに記載の鋼板。
(9) The yield ratio of the steel sheet is more than 0.40 and less than 0.80.
The steel sheet according to any one of (1) to (8) above.
 本発明によれば、高い強度、ならびに優れた均一伸び特性および衝撃エネルギー吸収能を有する鋼板を提供することができる。 According to the present invention, it is possible to provide a steel sheet having high strength, excellent uniform elongation characteristics and impact energy absorption ability.
 以下、本発明の各要件について詳しく説明する。 Hereinafter, each requirement of the present invention will be described in detail.
 (A)化学組成
 各元素の限定理由は下記のとおりである。なお、以下の説明において含有量についての「%」は、「質量%」を意味する。
(A) Chemical composition The reasons for limiting each element are as follows. In the following description, "%" for the content means "mass%".
 C:0.10%超0.55%未満
 Cは、マルテンサイトおよび焼戻しマルテンサイトの強度を高め、残留オーステナイトを確保するために、極めて重要な元素である。十分量のオーステナイトを得るためには、0.10%超のC含有量が必要となる。一方、Cを過剰に含有させると鋼板の靱性および溶接性を損なう。したがって、C含有量は0.10%超0.55%未満とする。C含有量は0.12%以上であるのが好ましく、0.15%以上であるのがより好ましく、0.20%以上であるのがさらに好ましい。また、C含有量は0.40%以下であるのが好ましく、0.35%以下であるのがより好ましい。
C: More than 0.10% and less than 0.55% C is an extremely important element for increasing the strength of martensite and tempered martensite and ensuring retained austenite. In order to obtain a sufficient amount of austenite, a C content of more than 0.10% is required. On the other hand, if C is excessively contained, the toughness and weldability of the steel sheet are impaired. Therefore, the C content is more than 0.10% and less than 0.55%. The C content is preferably 0.12% or more, more preferably 0.15% or more, and even more preferably 0.20% or more. The C content is preferably 0.40% or less, more preferably 0.35% or less.
 Si:0.001%以上3.50%未満
 Siは、焼戻しマルテンサイトの強化、組織の均一化、および加工性の改善に有効な元素である。また、Siは、セメンタイトの析出を抑制し、オーステナイトの残留を促進することで、鋼板の均一伸び特性を向上させる作用も有する。一方、Siを過剰に含有させると鋼板のめっき性および化成処理性を損なう。したがって、Si含有量は0.001%以上3.50%未満とする。Si含有量は0.005%以上であるのが好ましく、0.010%以上であるのがより好ましい。Si含有量は3.00%以下であるのが好ましく、2.50%以下であるのがより好ましい。
Si: 0.001% or more and less than 3.50% Si is an element effective for strengthening tempered martensite, homogenizing the structure, and improving workability. In addition, Si also has an action of improving the uniform elongation property of the steel sheet by suppressing the precipitation of cementite and promoting the residual of austenite. On the other hand, if Si is excessively contained, the plating property and chemical conversion treatment property of the steel sheet are impaired. Therefore, the Si content is set to 0.001% or more and less than 3.50%. The Si content is preferably 0.005% or more, and more preferably 0.010% or more. The Si content is preferably 3.00% or less, more preferably 2.50% or less.
 Mn:4.00%超9.00%未満
 Mnは、オーステナイトを安定化させ、焼入れ性を高める元素である。また、本発明の鋼板においては、Mnをオーステナイト中に濃化させ、オーステナイトをより安定化させる。室温でオーステナイトを安定化させるためには、4.00%超のMnが必要である。一方、鋼板に過剰のMnを含有させると靱性を損なう。したがって、Mn含有量は4.00%超9.00%未満とする。Mn含有量は4.50%以上であるのが好ましく、4.80%以上であるのがより好ましい。また、Mn含有量は8.50%以下であるのが好ましく、8.00%以下であるのがより好ましい。
Mn: More than 4.00% and less than 9.00% Mn is an element that stabilizes austenite and enhances hardenability. Further, in the steel sheet of the present invention, Mn is concentrated in austenite to further stabilize austenite. More than 4.00% Mn is required to stabilize austenite at room temperature. On the other hand, if the steel sheet contains excess Mn, the toughness is impaired. Therefore, the Mn content is set to more than 4.00% and less than 9.00%. The Mn content is preferably 4.50% or more, more preferably 4.80% or more. The Mn content is preferably 8.50% or less, more preferably 8.00% or less.
 sol.Al:0.001%以上3.00%未満
 Alは、脱酸剤であり、sol.Alとして0.001%以上含有させる必要がある。また、Alは、焼鈍時の二相域の温度範囲を広げるため、材質安定性を高める作用も有する。Alの含有量が多いほどその効果は大きくなるが、Alを過剰に含有させると、表面性状、塗装性、および溶接性を維持することが難しくなる。したがって、sol.Al含有量は0.001%以上3.00%未満とする。sol.Al含有量は0.005%以上であるのが好ましく、0.010%以上であるのがより好ましく、0.020%以上であるのがさらに好ましい。また、sol.Al含有量は2.00%以下であるのが好ましく、1.00%以下であるのがより好ましい。なお、本明細書にいう「sol.Al」は、「酸可溶性Al」を意味する。
sol. Al: 0.001% or more and less than 3.00% Al is a deoxidizing agent, and sol. It is necessary to contain 0.001% or more as Al. In addition, Al also has an action of improving material stability because it widens the temperature range of the two-phase region at the time of annealing. The higher the Al content, the greater the effect, but if the Al content is excessive, it becomes difficult to maintain the surface texture, paintability, and weldability. Therefore, sol. The Al content is 0.001% or more and less than 3.00%. sol. The Al content is preferably 0.005% or more, more preferably 0.010% or more, and further preferably 0.020% or more. In addition, sol. The Al content is preferably 2.00% or less, more preferably 1.00% or less. In addition, "sol.Al" referred to in this specification means "acid-soluble Al".
 P:0.100%以下
 Pは不純物であり、鋼板に過剰のPを含有させると、靱性および溶接性を損なう。したがって、P含有量は0.100%以下とする。P含有量は0.050%以下であるのが好ましく、0.030%以下であるのがより好ましく、0.020%以下であるのがさらに好ましい。なお、P含有量は0.001%以上であってもよいが、本発明に係る鋼板はPを必要としないので、可能な限り低減することが好ましい。
P: 0.100% or less P is an impurity, and if the steel sheet contains an excess of P, the toughness and weldability are impaired. Therefore, the P content is set to 0.100% or less. The P content is preferably 0.050% or less, more preferably 0.030% or less, and even more preferably 0.020% or less. The P content may be 0.001% or more, but since the steel sheet according to the present invention does not require P, it is preferable to reduce it as much as possible.
 S:0.010%以下
 Sは不純物であり、鋼板に過剰のSを含有させると、熱間圧延によって伸張したMnSが生成し、曲げ性および穴拡げ性などの成形性が低下する。したがって、S含有量は0.010%以下とする。S含有量は0.007%以下であるのが好ましく、0.003%以下であるのがより好ましい。なお、S含有量は0.001%以上であってもよいが、本発明に係る鋼板はSを必要としないので、可能な限り低減することが好ましい。
S: 0.010% or less S is an impurity, and if the steel sheet contains an excess of S, MnS stretched by hot rolling is generated, and formability such as bendability and hole expansion property is lowered. Therefore, the S content is 0.010% or less. The S content is preferably 0.007% or less, more preferably 0.003% or less. The S content may be 0.001% or more, but since the steel sheet according to the present invention does not require S, it is preferable to reduce it as much as possible.
 N:0.050%未満
 Nは不純物であり、鋼板に0.050%以上のNを含有させると靱性が低下する。したがって、N含有量は0.050%未満とする。N含有量は0.010%以下であるのが好ましく、0.006%以下であるのがより好ましい。なお、N含有量は0.002%以上であってもよいが、本発明に係る鋼板はNを必要としないので、可能な限り低減することが好ましい。
N: Less than 0.050% N is an impurity, and if the steel sheet contains 0.050% or more of N, the toughness decreases. Therefore, the N content is set to less than 0.050%. The N content is preferably 0.010% or less, more preferably 0.006% or less. The N content may be 0.002% or more, but since the steel sheet according to the present invention does not require N, it is preferable to reduce it as much as possible.
 O:0.020%未満
 Oは不純物であり、鋼板に0.020%以上のOを含有させると均一伸び特性が低下する。したがって、O含有量は0.020%未満とする。O含有量は0.010%以下であるのが好ましく、0.005%以下であるのがより好ましく、0.003%以下であるのがさらに好ましい。なお、O含有量は0.001%以上であってもよいが、本発明に係る鋼板はOを必要としないので、可能な限り低減することが好ましい。
O: Less than 0.020% O is an impurity, and if the steel sheet contains 0.020% or more of O, the uniform elongation property deteriorates. Therefore, the O content is set to less than 0.020%. The O content is preferably 0.010% or less, more preferably 0.005% or less, and even more preferably 0.003% or less. The O content may be 0.001% or more, but since the steel sheet according to the present invention does not require O, it is preferable to reduce it as much as possible.
 本発明の鋼板には、上記の元素に加えてさらに、下記に示す量のCr、Mo、W、Cu、Ni、Ti、Nb、V、B、Ca、Mg、Zr、REM、Sb、SnおよびBiから選択される1種以上を含有させてもよい。 In addition to the above elements, the steel sheet of the present invention further contains the following amounts of Cr, Mo, W, Cu, Ni, Ti, Nb, V, B, Ca, Mg, Zr, REM, Sb, Sn and It may contain one or more selected from Bi.
 Cr:0%以上2.00%未満
 Mo:0~2.00%
 W:0~2.00%
 Cu:0~2.00%
 Ni:0~2.00%
 Cr、Mo、W、Cu、およびNiは、鋼板の強度を向上させる元素である。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱延時の表面傷が生成しやすくなり、さらには、熱延鋼板の強度が高くなりすぎて、冷間圧延性が低下する場合がある。したがって、Cr含有量は2.00%未満、Mo含有量は2.00%以下、W含有量は2.00%以下、Cu含有量は2.00%以下、Ni含有量は2.00%以下とする。これらの元素の上記効果をより確実に得るには、上記元素の少なくともいずれかを0.01%以上含有させることが好ましい。
Cr: 0% or more and less than 2.00% Mo: 0 to 2.00%
W: 0 to 2.00%
Cu: 0 to 2.00%
Ni: 0 to 2.00%
Cr, Mo, W, Cu, and Ni are elements that improve the strength of the steel sheet. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, surface scratches are likely to occur during hot rolling, and the strength of the hot rolled steel sheet becomes too high, which may reduce the cold rollability. Therefore, the Cr content is less than 2.00%, the Mo content is 2.00% or less, the W content is 2.00% or less, the Cu content is 2.00% or less, and the Ni content is 2.00%. It is as follows. In order to more reliably obtain the above-mentioned effects of these elements, it is preferable to contain at least 0.01% or more of the above-mentioned elements.
 Ti:0~0.300%
 Nb:0~0.300%
 V:0~0.300%
 Ti、Nb、およびVは、微細な炭化物、窒化物または炭窒化物を生成する元素であるので、鋼板の強度向上に有効である。したがって、Ti、Nb、およびVから選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、熱延鋼板の強度が上昇しすぎて、冷間圧延性が低下する場合がある。したがって、Ti含有量は0.300%以下、Nb含有量は0.300%以下、V含有量は0.300%以下とする。これらの元素の上記効果をより確実に得るには、上記元素の少なくともいずれかを0.005%以上含有させることが好ましい。
Ti: 0 to 0.300%
Nb: 0 to 0.300%
V: 0 to 0.300%
Since Ti, Nb, and V are elements that produce fine carbides, nitrides, or carbonitrides, they are effective in improving the strength of the steel sheet. Therefore, one or more selected from Ti, Nb, and V may be contained. However, if these elements are excessively contained, the strength of the hot-rolled steel sheet may be excessively increased, and the cold rollability may be lowered. Therefore, the Ti content is 0.300% or less, the Nb content is 0.300% or less, and the V content is 0.300% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.005% or more.
 B:0~0.010%
 Ca:0~0.010%
 Mg:0~0.010%
 Zr:0~0.010%
 REM:0~0.010%
 B、Ca、Mg、Zr、およびREM(希土類金属)は、鋼板の局部延性および穴拡げ性を向上させる。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、これらの元素を過剰に含有させると、鋼板の加工性を低下させる場合がある。したがって、B含有量は0.010%以下、Ca含有量は0.010%以下、Mg含有量は0.010%以下、Zr含有量は0.010%以下、REM含有量は0.010%以下とする。また、B、Ca、Mg、Zr、およびREMから選択される1種以上の元素の含有量の合計を0.030%以下とすることが好ましい。これらの元素の上記効果をより確実に得るには、上記元素の少なくともいずれかを0.0001%以上含有させることが好ましく、0.0010%以上含有させることがより好ましい。
B: 0 to 0.010%
Ca: 0 to 0.010%
Mg: 0 to 0.010%
Zr: 0 to 0.010%
REM: 0 to 0.010%
B, Ca, Mg, Zr, and REM (rare earth metals) improve the local ductility and hole expandability of steel sheets. Therefore, one or more selected from these elements may be contained. However, if these elements are excessively contained, the workability of the steel sheet may be deteriorated. Therefore, the B content is 0.010% or less, the Ca content is 0.010% or less, the Mg content is 0.010% or less, the Zr content is 0.010% or less, and the REM content is 0.010%. It is as follows. Further, it is preferable that the total content of one or more elements selected from B, Ca, Mg, Zr, and REM is 0.030% or less. In order to more reliably obtain the above effects of these elements, it is preferable to contain at least one of the above elements in an amount of 0.0001% or more, and more preferably 0.0010% or more.
 なお、本明細書にいうREMとは、Sc、Y、およびランタノイドの合計17元素を指し、REM含有量とは、これらの元素の合計含有量を指す。また、REMは一般的には複数種のREMの合金であるミッシュメタルとしても供給されている。このため、個別の元素を1種以上添加してREM含有量が上記の範囲となるように含有させてもよいし、例えば、ミッシュメタルの形で添加して、REM含有量が上記の範囲となるように含有させてもよい。 The REM referred to in the present specification refers to a total of 17 elements of Sc, Y, and lanthanoid, and the REM content refers to the total content of these elements. REM is also generally supplied as mischmetal, which is an alloy of a plurality of types of REM. Therefore, one or more individual elements may be added so that the REM content is within the above range. For example, when added in the form of mischmetal, the REM content is within the above range. It may be contained so as to become.
 Sb:0~0.050%
 Sn:0~0.050%
 Bi:0~0.050%
 Sb、Sn、およびBiは、鋼板中のMn、Si、および/またはAl等の易酸化性元素が鋼板表面に拡散され酸化物を形成することを抑え、鋼板の表面性状およびめっき性を高める。したがって、これらの元素から選択される1種以上を含有させてもよい。しかし、過剰に含有させても、上記効果が飽和する。したがって、Sb含有量は0.050%以下、Sn含有量は0.050%以下、Bi含有量は0.050%以下とする。これらの元素の上記効果をより確実に得るには、上記元素の少なくともいずれかを0.0005%以上含有させることが好ましく、0.0010%以上含有させることがより好ましい。
Sb: 0 to 0.050%
Sn: 0 to 0.050%
Bi: 0 to 0.050%
Sb, Sn, and Bi suppress that easily oxidizing elements such as Mn, Si, and / or Al in the steel sheet are diffused on the surface of the steel sheet to form an oxide, and improve the surface texture and plating property of the steel sheet. Therefore, one or more selected from these elements may be contained. However, even if it is contained in an excessive amount, the above effect is saturated. Therefore, the Sb content is 0.050% or less, the Sn content is 0.050% or less, and the Bi content is 0.050% or less. In order to obtain the above-mentioned effects of these elements more reliably, it is preferable to contain at least one of the above-mentioned elements in an amount of 0.0005% or more, and more preferably 0.0010% or more.
 本発明の鋼板の化学組成において、残部はFeおよび不純物である。なお「不純物」とは、鋼原料もしくはスクラップからおよび/または製鋼過程から不可避的に混入するものであり、本発明に係る鋼板の特性を阻害しない範囲で許容される元素が例示される。 In the chemical composition of the steel sheet of the present invention, the balance is Fe and impurities. The "impurities" are unavoidably mixed from the steel raw material or scrap and / or from the steelmaking process, and examples thereof include elements that are allowed as long as they do not impair the characteristics of the steel sheet according to the present invention.
 (B)金属組織
 本発明に係る鋼板の金属組織について説明する。なお、以下の説明において面積率についての「%」は、「面積%」を意味する。
(B) Metal structure The metal structure of the steel sheet according to the present invention will be described. In the following description, "%" for the area ratio means "area%".
 本発明に係る鋼板の圧延方向および板厚方向に平行で、鋼板の中心軸を通る断面(「L断面」ともいう。)において、表面から板厚の1/4深さ位置における金属組織は、25~90%の焼戻しマルテンサイト、5%以下のフェライト、10~50%の残留オーステナイト、および5%以下のベイナイトを含む。各組織の分率は、焼鈍の条件によって変化し、鋼板の強度、均一伸び特性、靱性、および降伏比に影響を与える。各組織の限定理由について詳しく説明する。 In a cross section (also referred to as “L cross section”) parallel to the rolling direction and the thickness direction of the steel sheet according to the present invention and passing through the central axis of the steel sheet, the metallographic structure at a depth of 1/4 of the plate thickness from the surface is determined. Contains 25-90% tempered martensite, 5% or less ferrite, 10-50% retained austenite, and 5% or less baynite. The fraction of each structure varies depending on the annealing conditions and affects the strength, uniform elongation characteristics, toughness, and yield ratio of the steel sheet. The reasons for the limitation of each organization will be explained in detail.
 焼戻しマルテンサイト:25~90%
 焼戻しマルテンサイトは、鋼板の強度を高め、均一伸び特性および靱性を向上させ、適切な降伏比をもたらす組織である。焼戻しマルテンサイトの面積率が25%未満または90%超となると、十分な強度、均一伸び、靱性、および降伏比を得ることが困難となる。したがって、焼戻しマルテンサイトの面積率は25~90%とする。
Tempering martensite: 25-90%
Tempered martensite is a structure that enhances the strength of steel sheets, improves uniform elongation properties and toughness, and provides an appropriate yield ratio. When the area ratio of tempered martensite is less than 25% or more than 90%, it becomes difficult to obtain sufficient strength, uniform elongation, toughness, and yield ratio. Therefore, the area ratio of tempered martensite is 25 to 90%.
 焼戻しマルテンサイトの面積率は30%以上であるのが好ましく、35%以上であるのがより好ましく、50%以上であるのがさらに好ましい。また、水素脆化の観点から、焼戻しマルテンサイトの面積率は80%以下であるのが好ましく、75%以下であるのがより好ましく、70%以下であるのがさらに好ましい。 The area ratio of tempered martensite is preferably 30% or more, more preferably 35% or more, and even more preferably 50% or more. From the viewpoint of hydrogen embrittlement, the area ratio of tempered martensite is preferably 80% or less, more preferably 75% or less, and even more preferably 70% or less.
 フェライト:5%以下
 金属組織中のフェライトの面積率が多くなると、均一伸び特性および靱性が著しく低下する。加えて、フェライト面積率が50%を超える場合には、降伏比が大きくなりすぎる傾向がある。したがって、フェライトの面積率は5%以下とする。フェライトの面積率は3%以下であるのが好ましく、0%であるのがより好ましい。
Ferrite: 5% or less When the area ratio of ferrite in the metal structure is increased, the uniform elongation property and toughness are significantly deteriorated. In addition, when the ferrite area ratio exceeds 50%, the yield ratio tends to be too large. Therefore, the area ratio of ferrite is set to 5% or less. The area ratio of ferrite is preferably 3% or less, and more preferably 0%.
 残留オーステナイト:10~50%
 残留オーステナイトは、変態誘起塑性によって鋼板の延性、特に鋼板の均一伸び特性を高める組織である。また、残留オーステナイトは、引張変形を伴う張出し加工、絞り加工、伸びフランジ加工、または曲げ加工によってマルテンサイト相に変態し得るので、鋼板の各種加工性だけでなく、鋼板の強度の向上にも寄与する。そのため、残留オーステナイトの面積率は高いほど好ましい。
Residual austenite: 10-50%
Residual austenite is a structure that enhances the ductility of steel sheets, especially the uniform elongation characteristics of steel sheets, by transformation-induced plasticity. In addition, retained austenite can be transformed into the martensite phase by overhanging, drawing, stretching flange processing, or bending processing accompanied by tensile deformation, which contributes not only to various workability of the steel sheet but also to improvement of the strength of the steel sheet. To do. Therefore, the higher the area ratio of retained austenite, the more preferable.
 しかしながら、上述した化学組成を有する鋼板では、残留オーステナイトの面積率は50%が上限となる。9.00%超のMnを含有させれば、残留オーステナイトの面積率で50%超にすることができるが、この場合、鋼板の均一伸び特性および鋳造性が損なわれる。 However, in the steel sheet having the above-mentioned chemical composition, the area ratio of retained austenite is limited to 50%. If Mn of more than 9.00% is contained, the area ratio of retained austenite can be more than 50%, but in this case, the uniform elongation property and castability of the steel sheet are impaired.
 したがって、残留オーステナイトの面積率は10~50%とする。残留オーステナイトの面積率は、14%以上であるのが好ましく、18%以上であるのがより好ましく、20%以上であるのがさらに好ましい。特に、残留オーステナイトの面積率が18%以上になると、引張強さと均一伸びとの積「TS×uEL」が15000MPa・%以上となり、均一伸び特性がより高強度でも維持されるようになる。 Therefore, the area ratio of retained austenite is 10 to 50%. The area ratio of retained austenite is preferably 14% or more, more preferably 18% or more, and even more preferably 20% or more. In particular, when the area ratio of retained austenite is 18% or more, the product “TS × uEL” of tensile strength and uniform elongation becomes 15000 MPa ·% or more, and the uniform elongation characteristic can be maintained even at higher strength.
 ベイナイト:5%以下
 本発明に係る鋼板においては、金属組織中にベイナイトが存在すると、ベイナイト中に硬質な組織であるMA(Martensite-Austenite constituent)が内在する。MAが内在すると均一伸び特性および靱性が低下する。鋼板の均一伸び特性および靱性を低下させないために、ベイナイトの面積率を5%以下とし、好ましくは0%である。
Bainite: 5% or less In the steel sheet according to the present invention, when bainite is present in the metal structure, MA (Martensite-Austenite constituent), which is a hard structure, is inherent in the bainite. The presence of MA reduces uniform elongation properties and toughness. In order not to deteriorate the uniform elongation property and toughness of the steel sheet, the area ratio of bainite is 5% or less, preferably 0%.
 本発明に係る鋼板の金属組織における焼戻しマルテンサイト、フェライト、残留オーステナイト、およびベイナイト以外の残部組織としては、フレッシュマルテンサイト(すなわち、焼戻しされていないマルテンサイト)であることが望ましい。ベイナイトには、焼戻しベイナイトも含まれ得るが、本願明細書においては区別しない。また、パーライトについては、含まれる可能性は低く、実質的に0%である。 It is desirable that the residual structure other than tempered martensite, ferrite, retained austenite, and bainite in the metal structure of the steel plate according to the present invention is fresh martensite (that is, untempered martensite). Bainite may also include tempered bainite, but is not distinguished herein. Further, pearlite is unlikely to be contained, and is substantially 0%.
 フレッシュマルテンサイトは硬質の組織であり、鋼板の強度の確保に有効である。しかし、フレッシュマルテンサイトの面積率が低いほど、鋼板の曲げ性が高くなる。したがって、フレッシュマルテンサイトの面積率は、0%超であるのが好ましく、1%以上であるのがより好ましく、3%以上であるのがさらに好ましい。また、フレッシュマルテンサイトの面積率は、55%以下であるのが好ましく、45%以下であるのがより好ましく、20%以下であるのがさらに好ましい。 Fresh martensite has a hard structure and is effective in ensuring the strength of steel sheets. However, the lower the area ratio of fresh martensite, the higher the bendability of the steel sheet. Therefore, the area ratio of fresh martensite is preferably more than 0%, more preferably 1% or more, and even more preferably 3% or more. The area ratio of fresh martensite is preferably 55% or less, more preferably 45% or less, and even more preferably 20% or less.
 また、本発明に係る鋼板のL断面の表面から板厚の1/4深さ位置における金属組織において、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の合計面積が、残留オーステナイトの全体の面積に対して50%未満である。 Further, in the metal structure at a depth of 1/4 of the plate thickness from the surface of the L cross section of the steel sheet according to the present invention, retained austenite crystal grains having an area of 1 μm 2 or more and a grain circularity of 0.1 or more. The total area of is less than 50% of the total area of retained austenite.
 結晶粒の面積が1μm以上かつ結晶粒の粒円形度が0.1以上の残留オーステナイト組織が、残留オーステナイトの組織全体に占める面積率が、50%未満であることによって、均一伸び特性および靱性に優れた鋼板を得ることができる。結晶粒の面積が大きくかつ粒円形度が大きい残留オーステナイトが、残留オーステナイトの組織全体の50%以上を占めると、鋼板の均一伸び特性および靱性が低下する。 The area ratio of the retained austenite structure having a crystal grain area of 1 μm 2 or more and the grain circularity of the crystal grains of 0.1 or more to the entire structure of the retained austenite is less than 50%. It is possible to obtain an excellent steel plate. When the retained austenite having a large crystal grain area and a large grain circularity occupies 50% or more of the entire structure of the retained austenite, the uniform elongation property and toughness of the steel sheet deteriorate.
 結晶粒の面積が1μm未満、すなわち結晶の粒径が小さい残留オーステナイトは、フェライト-オーステナイト二相域での焼鈍時に短い時間でMnが均一に濃縮し易く安定性が高いので、高歪側まで変態が遅延する。そのため、均一伸び特性および靱性に優れた鋼板を得ることができる。 Retained austenite with a crystal grain area of less than 1 μm 2 , that is, a small crystal grain size, tends to uniformly concentrate Mn in a short time during annealing in the ferrite-austenite two-phase region, and has high stability. The transformation is delayed. Therefore, a steel sheet having excellent uniform elongation characteristics and toughness can be obtained.
 残留オーステナイトにおいて、結晶粒の面積が1μm以上、すなわち結晶の粒径が大きい残留オーステナイトでも、粒円形度が0.1未満である場合は、結晶粒の多くがマルテンサイト間または焼戻しマルテンサイトラス間に存在するので、周囲からの空間拘束により、高歪域側まで変態が遅延する。そのため、均一伸び特性および靱性に優れた鋼板を得ることができる。 In retained austenite, if the area of crystal grains is 1 μm 2 or more, that is, even if retained austenite having a large crystal grain size has a grain roundness of less than 0.1, most of the crystal grains are between martensites or between tempered martensites. Since it exists in, the transformation is delayed to the high distortion region side due to space constraints from the surroundings. Therefore, a steel sheet having excellent uniform elongation characteristics and toughness can be obtained.
 さらに、本発明の鋼材において、L断面の表面から板厚の1/4深さ位置における金属組織中のMn濃度が、下記(i)式を満足する。
 CMnγ/CMnα≧1.2   ・・・(i)
 但し、上記(i)式中の記号の意味は以下のとおりである。
 CMnγ:残留オーステナイト中の平均Mn濃度(質量%)
 CMnα:フェライトおよび焼戻しマルテンサイト中の平均Mn濃度(質量%)
Further, in the steel material of the present invention, the Mn concentration in the metal structure at a depth of 1/4 of the plate thickness from the surface of the L cross section satisfies the following formula (i).
C Mnγ / C Mnα ≧ 1.2 ・ ・ ・ (i)
However, the meanings of the symbols in the above equation (i) are as follows.
C Mnγ : Average Mn concentration (mass%) in retained austenite
C Mnα : Average Mn concentration (% by mass) in ferrite and tempered martensite
 オーステナイト相分率が20~50%となる温度域で熱処理することにより、オーステナイトであった箇所にMnを十分に濃化させることができる。これにより、短時間焼鈍でも安定した残留オーステナイトを得ることができ、優れた均一伸び特性、高強度、優れた靱性、および適切な降伏比が得られる。 By heat-treating in a temperature range where the austenite phase fraction is 20 to 50%, Mn can be sufficiently concentrated in the portion where the austenite was. As a result, stable retained austenite can be obtained even after short-time annealing, and excellent uniform elongation characteristics, high strength, excellent toughness, and an appropriate yield ratio can be obtained.
 残留オーステナイトとフェライトおよび焼戻しマルテンサイトとの間のMn濃度比である(i)式左辺値が1.2以上であると、Mnの分配が十分であり、残留オーステナイトを短時間焼鈍で得ることができる。したがって、(i)式左辺値は1.2以上とする。(i)式左辺値は1.4以上であるのが好ましい。また、オーステナイトが過剰に安定になることを抑制して均一伸び特性向上効果の低下を抑制するために、(i)式左辺値は2.0未満であるのが好ましい。 When the lvalue of Eq. (I), which is the Mn concentration ratio between retained austenite and ferrite and tempered martensite, is 1.2 or more, Mn distribution is sufficient and retained austenite can be obtained by annealing for a short time. it can. Therefore, the lvalue in equation (i) is set to 1.2 or more. The lvalue of equation (i) is preferably 1.4 or more. Further, in order to suppress excessive stabilization of austenite and suppress a decrease in the effect of improving uniform elongation characteristics, the lvalue of Eq. (I) is preferably less than 2.0.
 金属組織の面積率、残留オーステナイト結晶粒の面積および粒円形度、ならびにCMnγおよびCMnαの算出方法について以下に説明する。 The area ratio of the metal structure, the area and grain circularity of the retained austenite crystal grains, and the calculation method of C Mnγ and C Mn α will be described below.
 <残留オーステナイトの面積率の測定方法>
 残留オーステナイトの面積率はX線回折法により測定される。まず、鋼板の主面中央部から幅25mm(圧延方向の長さ)、長さ25mm(圧延直角方向の長さ)、および焼鈍した試料の厚さままの板厚方向の厚さを有する試験片を切り出す。そして、この試験片に化学研磨を施して板厚1/4分を減厚し、化学研磨された表面を有する試験片を得る。試験片の表面に対して、Co管球を用い、測定範囲2θを45~105度とするX線回折分析を3回実施する。
<Measurement method of area ratio of retained austenite>
The area ratio of retained austenite is measured by X-ray diffraction. First, a test piece having a width of 25 mm (length in the rolling direction), a length of 25 mm (length in the direction perpendicular to rolling), and a thickness in the plate thickness direction of the annealed sample as it is from the center of the main surface of the steel sheet. Cut out. Then, the test piece is chemically polished to reduce the plate thickness by 1/4 to obtain a test piece having a chemically polished surface. On the surface of the test piece, X-ray diffraction analysis with a measurement range of 2θ of 45 to 105 degrees is performed three times using a Co tube.
 fcc相に関しては、(111)、(200)、(220)の各ピークの積分強度を求め、bcc相に関しては、(110)、(200)、(211)の各ピークの積分強度を求める。それらの積分強度を解析し、3回のX線回折分析結果を平均することで、残留オーステナイトの体積率を求め、その値を残留オーステナイトの面積率とする。 For the fcc phase, the integrated intensities of the peaks (111), (200), and (220) are obtained, and for the bcc phase, the integrated intensities of the peaks (110), (200), and (211) are obtained. The volume fraction of retained austenite is obtained by analyzing the integrated intensities and averaging the results of three X-ray diffraction analyzes, and the value is used as the area ratio of retained austenite.
 <焼戻しマルテンサイト、フェライト、ベイナイト、およびフレッシュマルテンサイトの面積率の測定方法>
 焼戻しマルテンサイト、フェライト、ベイナイト、およびフレッシュマルテンサイトの面積率は、走査電子顕微鏡(SEM)による組織観察から算出される。鋼板のL断面を鏡面研磨した後に、3%ナイタール(3%硝酸-エタノール溶液)によりミクロ組織を現出させる。そして、SEMにより倍率5000倍で、鋼板の表面から板厚の1/4深さ位置における縦0.1mm(板厚方向の長さ)×横0.3mm(圧延方向の長さ)の範囲のミクロ組織を観察し、それぞれの組織の面積率を測定することができる。
<Measurement method of area ratio of tempered martensite, ferrite, bainite, and fresh martensite>
The area ratios of tempered martensite, ferrite, bainite, and fresh martensite are calculated from microstructure observation with a scanning electron microscope (SEM). After mirror polishing the L cross section of the steel sheet, a microstructure is revealed with 3% nital (3% nitric acid-ethanol solution). Then, at a magnification of 5000 times by SEM, a range of 0.1 mm in length (length in the plate thickness direction) × 0.3 mm in width (length in the rolling direction) at a depth position of 1/4 of the plate thickness from the surface of the steel plate. The microstructure can be observed and the area ratio of each tissue can be measured.
 焼戻しマルテンサイトは、SEMによる観察において認識された白色の組織のうち、結晶粒内に下部組織が確認されたものを焼戻しマルテンサイトと判断することにより面積率を算出する。フェライトは灰色の下地組織として判別して面積率を算出する。ベイナイトは、SEMによる観察において、ラス状の結晶粒の集合であり、ラス内に炭化物が同一方向に延びた組織として判別し、面積率を算出する。 For tempered martensite, the area ratio is calculated by judging that among the white structures recognized by SEM observation, those whose substructure is confirmed in the crystal grains are tempered martensite. The area ratio is calculated by discriminating ferrite as a gray base structure. Bainite is a collection of lath-shaped crystal grains when observed by SEM, and is determined as a structure in which carbides extend in the same direction in the lath, and the area ratio is calculated.
 フレッシュマルテンサイトは、SEMによる観察において残留オーステナイトと同様に白色の組織として認識される。そのため、SEMによる観察では残留オーステナイトとフレッシュマルテンサイトとの区別が難しいが、SEMによる観察で得られた残留オーステナイトとフレッシュマルテンサイトとの合計面積率から、X線回折法より測定された残留オーステナイトの面積率を差し引くことによって、フレッシュマルテンサイトの面積率を算出する。 Fresh martensite is recognized as a white tissue in the same way as retained austenite when observed by SEM. Therefore, it is difficult to distinguish between retained austenite and fresh martensite by SEM observation, but from the total area ratio of retained austenite and fresh martensite obtained by SEM observation, the retained austenite measured by X-ray diffraction method The area ratio of fresh martensite is calculated by subtracting the area ratio.
 <残留オーステナイト結晶粒の面積および粒円形度の測定方法>
 粒円形度および結晶粒の面積は、TSL社製OIM Analysis version 7の標準機能(MapおよびGrain Shape Circularity)を用いて、後方散乱電子回折(EBSP:Electron Back Scatter Diffraction Patterns)分析を行うことによって、測定することができる。粒円形度(Grain shape circularity)は、下記式により求められる。
 粒円形度=4πA/P
 但し、上記式中の記号の意味は以下のとおりである。
 A:結晶粒の面積
 P:結晶粒の周囲長さ
<Measurement method of residual austenite crystal grain area and grain roundness>
The grain circularity and crystal grain area are determined by performing backscattered electron diffraction (EBSP) analysis using the standard functions (Map and Grain Shape Circularity) of OIM Analysis 7 manufactured by TSL. Can be measured. Grain shape circularity is calculated by the following formula.
Grain roundness = 4πA / P 2
However, the meanings of the symbols in the above formula are as follows.
A: Area of crystal grains P: Peripheral length of crystal grains
 <CMnγおよびCMnαの測定方法>
 CMnγ/CMnαは、EBSP、SEM、および電子線マイクロアナライザ(EPMA)により測定することができる。EBSPおよびSEMにより、残留オーステナイト、フェライト、および焼戻しマルテンサイトを特定し、EPMAにより、CMnγおよびCMnαを測定して、CMnγ/CMnαを算出することができる。
<Measurement method of C Mnγ and C Mnα >
C Mnγ / C Mnα can be measured by EBSP, SEM, and electron probe microanalyzer (EPMA). EBSP and SEM can be used to identify retained austenite, ferrite, and tempered martensite, and EPMA can be used to measure C Mnγ and C Mnα to calculate C Mnγ / C Mnα .
 (C)機械的特性
 次に、本発明に係る鋼板の機械的特性について説明する。
(C) Mechanical Properties Next, the mechanical properties of the steel sheet according to the present invention will be described.
 鋼板を自動車の素材として使用する際、高強度化によって板厚を減少させ、軽量化に寄与するため、本発明に係る鋼板の引張強さ(TS)は、780MPa以上であるのが好ましく、980MPa以上であるのがより好ましく、1180MPa以上であるのがさらに好ましい。また、本発明に係る鋼板をプレス成形に供するために、均一伸び(uEL)も優れることが望ましい。本発明に係る鋼板のTS×uELは、12000MPa・%以上であるのが好ましく、15000MPa・%以上であるのがより好ましい。 When a steel sheet is used as a material for automobiles, the tensile strength (TS) of the steel sheet according to the present invention is preferably 780 MPa or more, preferably 980 MPa, in order to reduce the plate thickness by increasing the strength and contribute to weight reduction. It is more preferably 1180 MPa or more, and further preferably 1180 MPa or more. Further, in order to use the steel sheet according to the present invention for press forming, it is desirable that the uniform elongation (uEL) is also excellent. The TS × uEL of the steel sheet according to the present invention is preferably 12000 MPa ·% or more, and more preferably 15,000 MPa ·% or more.
 本発明に係る鋼板はまた、優れた靱性を有する。本発明に係る鋼板は、0℃でのシャルピー試験の衝撃値が20J/cm以上であることが好ましい。 The steel sheet according to the present invention also has excellent toughness. The steel sheet according to the present invention preferably has an impact value of 20 J / cm 2 or more in the Charpy test at 0 ° C.
 本発明に係る鋼板は適切な降伏比を有する。降伏比YRは、引張強さ(TS)に対する降伏応力(YS)の比率でありYS/TSで示される指標である。YRが0.80未満であることにより高い加工硬化率が得られ、大きく変形することによる大きなエネルギー吸収が可能となる。また、YRが0.40超であることにより、変形初期における衝撃エネルギー吸収量も十分に得ることができる。したがって、本発明に係る鋼板の降伏比YRは、0.40超0.80未満であるのが好ましい。 The steel sheet according to the present invention has an appropriate yield ratio. The yield ratio YR is the ratio of the yield stress (YS) to the tensile strength (TS) and is an index indicated by YS / TS. When YR is less than 0.80, a high work hardening rate can be obtained, and large energy absorption due to large deformation becomes possible. Further, when the YR is more than 0.40, the amount of impact energy absorbed at the initial stage of deformation can be sufficiently obtained. Therefore, the yield ratio YR of the steel sheet according to the present invention is preferably more than 0.40 and less than 0.80.
 (D)製造方法
 次に、本発明に係る鋼板の製造方法について説明する。本発明の一実施形態に係る鋼板は、例えば以下に示す鋳造工程、熱間圧延工程、冷間圧延工程、一次焼鈍工程および二次焼鈍工程を含む製造方法によって得ることができる。また、必要に応じて、めっき工程をさらに含んでもよい。
(D) Manufacturing Method Next, a manufacturing method for a steel sheet according to the present invention will be described. The steel sheet according to the embodiment of the present invention can be obtained by a manufacturing method including, for example, the following casting step, hot rolling step, cold rolling step, primary annealing step and secondary annealing step. Further, if necessary, a plating step may be further included.
 <鋳造工程>
 本発明に係る鋼板は、上述の化学組成を有する鋼を常法で溶製し、鋳造して鋼材(以下、「スラブ」ともいう。)を作製する。本発明に係る鋼板が上述の化学組成を有する限り、溶鋼は、通常の高炉法で溶製されたものであってもよく、電炉法で作成された鋼のように、原材料がスクラップを多量に含むものでもよい。スラブは、通常の連続鋳造プロセスで製造されたものでもよいし、薄スラブ鋳造で製造されたものでもよい。
<Casting process>
The steel sheet according to the present invention is prepared by melting steel having the above-mentioned chemical composition by a conventional method and casting it to prepare a steel material (hereinafter, also referred to as “slab”). As long as the steel sheet according to the present invention has the above-mentioned chemical composition, the molten steel may be melted by a normal blast furnace method, and the raw material scraps a large amount of scrap like the steel produced by the electric furnace method. It may include. The slab may be manufactured by a normal continuous casting process or may be manufactured by thin slab casting.
 <熱間圧延工程>
 熱間圧延は、通常の連続熱間圧延ラインを用いて行うことができる。熱間圧延は、還元雰囲気で行われることが好ましく、例えば窒素98%および水素2%の還元雰囲気で行ってもよい。
<Hot rolling process>
Hot rolling can be performed using a normal continuous hot rolling line. Hot rolling is preferably carried out in a reducing atmosphere, for example, in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
 スラブ加熱温度:1100~1300℃
 熱間圧延工程に供するスラブは、熱間圧延の前に加熱されることが好ましい。熱間圧延に供するスラブの温度を1100℃以上にすることにより、熱間圧延時の変形抵抗をより小さくすることができる。一方、熱間圧延に供するスラブの温度を1300℃以下にすることにより、スケールロス増加による歩留まりの低下を抑制することができる。したがって、熱間圧延に供するスラブの温度は、1100~1300℃とすることが好ましい。本願明細書において、温度とは、スラブ、熱延鋼板、または冷延鋼板の主面中央部の表面温度をいう。
Slab heating temperature: 1100 to 1300 ° C
The slab to be subjected to the hot rolling step is preferably heated before the hot rolling. By setting the temperature of the slab to be subjected to hot rolling to 1100 ° C. or higher, the deformation resistance during hot rolling can be further reduced. On the other hand, by setting the temperature of the slab to be subjected to hot rolling to 1300 ° C. or lower, it is possible to suppress a decrease in yield due to an increase in scale loss. Therefore, the temperature of the slab to be subjected to hot rolling is preferably 1100 to 1300 ° C. In the present specification, the temperature means the surface temperature of the central portion of the main surface of the slab, the hot-rolled steel sheet, or the cold-rolled steel sheet.
 上記スラブ加熱温度域における保持時間は特に制限されないが、曲げ性を向上させるためには、30min以上とすることが好ましく、1h以上にすることがより好ましい。また、過度のスケールロスを抑制するためには、10h以下とすることが好ましく、5h以下とすることがより好ましい。直送圧延または直接圧延を行う場合は、スラブに加熱処理を施さずにそのまま熱間圧延に供してもよい。 The holding time in the slab heating temperature range is not particularly limited, but in order to improve the bendability, it is preferably 30 min or more, and more preferably 1 h or more. Further, in order to suppress excessive scale loss, it is preferably 10 hours or less, and more preferably 5 hours or less. When direct rolling or direct rolling is performed, the slab may be subjected to hot rolling as it is without being heat-treated.
 仕上圧延開始温度:750~1000℃
 仕上圧延開始温度は750~1000℃とすることが好ましい。仕上圧延開始温度を750℃以上とすることにより、圧延時の変形抵抗を小さくすることができる。一方、仕上圧延開始温度を1000℃以下にすることにより、粒界酸化による鋼板の表面性状の低下を抑制することができる。
Finish rolling start temperature: 750-1000 ° C
The finish rolling start temperature is preferably 750 to 1000 ° C. By setting the finish rolling start temperature to 750 ° C. or higher, the deformation resistance during rolling can be reduced. On the other hand, by setting the finish rolling start temperature to 1000 ° C. or lower, deterioration of the surface texture of the steel sheet due to intergranular oxidation can be suppressed.
 巻取温度:300℃未満
 仕上圧延を行った後、冷却を行い300℃未満で巻取りを行う。これにより、25%以上の面積率の焼戻しマルテンサイト相を確保することができる。300℃以上で巻き取ると、熱延板組織をフルマルテンサイト組織とすることができず、熱延鋼板の熱処理工程および冷延鋼板の焼鈍工程のそれぞれにおいて、Mn分配とオーステナイト逆変態とを効率的に起こすことが困難となる。
Winding temperature: Less than 300 ° C After finish rolling, cool and wind at less than 300 ° C. As a result, a tempered martensite phase having an area ratio of 25% or more can be secured. When wound at 300 ° C. or higher, the hot-rolled sheet structure cannot be made into a full martensite structure, and Mn distribution and austenite reverse transformation are efficient in each of the heat treatment process of the hot-rolled steel sheet and the annealing process of the cold-rolled steel sheet. It becomes difficult to wake up.
 熱延鋼板の熱処理:
 得られた熱延鋼板に、オーステナイト相分率が20~50%となる温度域にて60min以上の熱処理を行う。鋼板のAc超Ac未満の2相域の温度範囲内のうち、オーステナイト相分率が20~50%となる温度範囲内で熱処理を行うことにより、オーステナイトにMnを分配して、オーステナイトを安定化させて、優れた均一伸び特性、高強度、優れた靱性、および適切な降伏比を得ることに寄与する。一方、当該熱処理においてオーステナイト相分率が20%未満または50%超の温度で熱処理を行うと、オーステナイト相を安定化させることが困難となる。
Heat treatment of hot-rolled steel sheet:
The obtained hot-rolled steel sheet is heat-treated for 60 minutes or more in a temperature range where the austenite phase fraction is 20 to 50%. Mn is distributed to austenite by performing heat treatment in the temperature range where the austenite phase fraction is 20 to 50% in the temperature range of the two-phase region of Ac 1 and less than Ac 3 of the steel plate to obtain austenite. It stabilizes and contributes to excellent uniform elongation properties, high strength, excellent toughness, and an appropriate yield ratio. On the other hand, if the heat treatment is performed at a temperature where the austenite phase fraction is less than 20% or more than 50%, it becomes difficult to stabilize the austenite phase.
 また、当該熱処理を60min未満で行う場合も、オーステナイト相を安定化させることが困難となる。オーステナイト相分率が20~50%となる温度で60min以上熱処理を行うことによって、焼鈍後の鋼板のL断面における表面から厚みの1/4位置における金属組織が、面積率で、10%以上の残留オーステナイトを含むことができる。 Also, when the heat treatment is performed in less than 60 minutes, it becomes difficult to stabilize the austenite phase. By performing heat treatment for 60 minutes or more at a temperature at which the austenite phase fraction is 20 to 50%, the metal structure at the position 1/4 of the thickness from the surface in the L cross section of the annealed steel sheet has an area ratio of 10% or more. Retained austenite can be included.
 オーステナイトの面積率が20~50%となる温度範囲は、鋼板の成分に応じて、オフラインの予備実験で室温から0.5℃/sの加熱速度で加熱し、加熱中の体積変化から、オーステナイト相分率を測定することで求めることができる。熱処理の保持時間は、好ましくは2h以上、より好ましくは3h以上である。熱処理の保持時間は、生産性の観点から、好ましくは10h以下、より好ましくは8h以下である。 The temperature range in which the area ratio of austenite is 20 to 50% is determined by heating at a heating rate of 0.5 ° C / s from room temperature in an offline preliminary experiment, depending on the composition of the steel sheet, and from the volume change during heating, austenite It can be obtained by measuring the phase fraction. The holding time of the heat treatment is preferably 2 hours or more, more preferably 3 hours or more. From the viewpoint of productivity, the heat treatment holding time is preferably 10 hours or less, more preferably 8 hours or less.
 オーステナイト相分率が20~50%となる温度範囲で熱処理を行った後、冷却を行う。これにより、熱処理で得たMn分配状態を維持することができる。 Heat treatment is performed in a temperature range where the austenite phase fraction is 20 to 50%, and then cooling is performed. As a result, the Mn distribution state obtained by the heat treatment can be maintained.
 <冷間圧延工程>
 熱処理後の熱延鋼板は、常法により酸洗を施された後に、30~70%の圧下率で冷間圧延が行われ、冷延鋼板とされる。冷間圧延の圧下率を30%未満とすると、焼鈍後の鋼板の組織を微細化することができず、オーステナイト逆変態が遅れてしまい、十分な面積率の残留オーステナイトを得ることができない。また、冷間圧延中の破断を抑制する観点から、冷間圧延の圧下率を70%以下とする。
<Cold rolling process>
The hot-rolled steel sheet after the heat treatment is pickled by a conventional method and then cold-rolled at a reduction rate of 30 to 70% to obtain a cold-rolled steel sheet. If the reduction ratio of cold rolling is less than 30%, the structure of the steel sheet after annealing cannot be refined, the reverse transformation of austenite is delayed, and retained austenite with a sufficient area ratio cannot be obtained. Further, from the viewpoint of suppressing breakage during cold rolling, the rolling reduction ratio of cold rolling is set to 70% or less.
 冷間圧延の前であって酸洗の前または後に0%超~5%程度の軽度の圧延を行って形状を修正すると、平坦確保の点で有利となるので好ましい。また、酸洗前に軽度の圧延を行うことより酸洗性が向上し、表面濃化元素の除去が促進され、化成処理性およびめっき処理性を向上させる効果がある。 It is preferable to perform light rolling of about 0% to 5% before or after cold rolling before or after pickling to correct the shape because it is advantageous in terms of ensuring flatness. In addition, light rolling before pickling improves pickling properties, promotes removal of surface-concentrating elements, and has the effect of improving chemical conversion treatment properties and plating treatment properties.
 <一次焼鈍工程>
 冷間圧延工程を経て得られた冷延鋼板を加熱して、750℃超の温度域で10s以上保持して、1回目の焼鈍を行う。この焼鈍を本発明では「一次焼鈍」と呼ぶ。一次焼鈍によって、最終組織において、フェライトの生成を、面積率で5%以下に低減することができる。これにより、良好な均一伸び特性および靱性を安定して確保することが可能となる。一次焼鈍温度が750℃を下回ると最終組織におけるフェライト生成が過剰となり、さらに、温度が低下すると再結晶が十分に進展しない可能性がある。
<Primary annealing process>
The cold-rolled steel sheet obtained through the cold rolling step is heated and held in a temperature range of more than 750 ° C. for 10 seconds or more to perform the first annealing. This annealing is referred to as "primary annealing" in the present invention. By primary annealing, the formation of ferrite in the final structure can be reduced to 5% or less in area ratio. This makes it possible to stably secure good uniform elongation characteristics and toughness. If the primary annealing temperature is lower than 750 ° C., ferrite formation in the final structure becomes excessive, and if the temperature is lowered, recrystallization may not proceed sufficiently.
 焼鈍は、焼鈍炉および連続焼鈍ラインのどちらで行ってもよいが、一次焼鈍および後述する二次焼鈍はいずれも、連続焼鈍ラインを用いて行うことが好ましい。連続焼鈍ラインを用いることにより、生産性を向上することができる。焼鈍は、還元雰囲気で行われることが好ましく、例えば窒素98%および水素2%の還元雰囲気で行ってもよい。 Annealing may be performed in either an annealing furnace or a continuous annealing line, but it is preferable that both the primary annealing and the secondary annealing described later are performed using a continuous annealing line. Productivity can be improved by using a continuous annealing line. Annealing is preferably carried out in a reducing atmosphere, for example, in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
 一次焼鈍温度:750℃超
 一次焼鈍温度を750℃超にすることにより、焼鈍後の鋼板中のフェライトの分布を均一にすることができ、均一伸び特性および強度を向上することができる。一次焼鈍温度はAc点以上であることが好ましい。一次焼鈍温度をAc点以上にすることにより、再結晶を著しく促進することができる。
Primary annealing temperature: Over 750 ° C. By setting the primary annealing temperature to over 750 ° C., the distribution of ferrite in the steel sheet after annealing can be made uniform, and uniform elongation characteristics and strength can be improved. The primary annealing temperature is preferably Ac 3 points or more. Recrystallization can be significantly promoted by setting the primary annealing temperature to Ac 3 or higher.
 ここで、Ac点は以下の手法で算出する。C:0.10%超0.55%未満、Si:0.001%以上3.50%未満、Mn:4.00%超9.00%未満、およびAl:0.001%以上3.00%未満を含有する複数種類の冷延鋼板について加熱速度0.5~50℃/sでAc点を計測し検討した結果、下記式が得られ、この式を用いてAc点を算出することができる。
 Ac=910-200√C+44Si-25Mn+44Al
 但し、上記式中の元素記号は、鋼中に含まれる各元素の含有量(質量%)を表す。
Here, the three Ac points are calculated by the following method. C: More than 0.10% and less than 0.55%, Si: 0.001% or more and less than 3.50%, Mn: More than 4.00% and less than 9.00%, and Al: 0.001% or more and 3.00 As a result of measuring and examining 3 points of Ac at a heating rate of 0.5 to 50 ° C./s for a plurality of types of cold-rolled steel sheets containing less than%, the following formula is obtained, and 3 points of Ac are calculated using this formula. be able to.
Ac 3 = 910-200√C + 44Si-25Mn + 44Al
However, the element symbol in the above formula represents the content (mass%) of each element contained in the steel.
 一方で、一次焼鈍温度の上限値は、好ましくは950℃以下である。焼鈍温度を950℃以下とすることにより、焼鈍炉の損傷を抑制して、生産性を向上させることができる。 On the other hand, the upper limit of the primary annealing temperature is preferably 950 ° C. or lower. By setting the annealing temperature to 950 ° C. or lower, damage to the annealing furnace can be suppressed and productivity can be improved.
 一次焼鈍時間:10s以上
 一次焼鈍の冷却後にラスマルテンサイト組織を増加させマルテンサイト主体の組織とするために、一度、オーステナイト主体の組織とする目的から750℃超の温度域で保持するが焼鈍時間を10s以上とする。焼鈍時間が10sに満たない場合、一次焼鈍の効果が十分に得られず、均一伸びおよび靱性が低下する可能性がある。生産性の観点からは、焼鈍時間を300s以内とすることが好ましい。
Primary annealing time: 10 s or more In order to increase the martensite structure after cooling the primary annealing and make it a martensite-based structure, it is once held in a temperature range of over 750 ° C for the purpose of making it an austenite-based structure, but the annealing time. Is 10 s or more. If the annealing time is less than 10 s, the effect of the primary annealing may not be sufficiently obtained, and uniform elongation and toughness may decrease. From the viewpoint of productivity, the annealing time is preferably 300 s or less.
 平均昇温温度:5~30℃/s
 一次焼鈍における加熱開始温度(室温)から焼鈍温度までの平均昇温速度は、好ましくは5~30℃/sである。一次焼鈍における昇温速度をこの範囲にすることにより、金属組織中のフェライトの面積率をより低減することができる。
Average temperature rise: 5 to 30 ° C / s
The average heating rate from the heating start temperature (room temperature) to the annealing temperature in the primary annealing is preferably 5 to 30 ° C./s. By setting the heating rate in the primary annealing within this range, the area ratio of ferrite in the metallographic structure can be further reduced.
 最終冷却温度:100℃未満
 一次焼鈍後の冷却においては、一次焼鈍温度から100℃未満まで冷却する。最終冷却温度を100℃未満にすることにより、ラスマルテンサイト組織を増加させることができる。鋼板の搬送時の安全確保の観点から、最終冷却温度は、室温(50℃以下)とすることが好ましい。
Final cooling temperature: less than 100 ° C. In the cooling after the primary annealing, the temperature is cooled from the primary annealing temperature to less than 100 ° C. The rasmartensite structure can be increased by lowering the final cooling temperature to less than 100 ° C. From the viewpoint of ensuring safety during transportation of the steel sheet, the final cooling temperature is preferably room temperature (50 ° C. or lower).
 また、一次焼鈍温度から500℃以下の温度範囲まで、2~2000℃/sの平均冷却速度で冷却することが好ましい。焼鈍後の平均冷却速度を2℃/s以上とすることによって、粒界偏析を抑制し、曲げ性を向上することができる。一方、平均冷却速度を2000℃/s以下とすることにより、冷却停止した後の鋼板温度分布が均一になるので、鋼板の平坦性をより向上させることができる。 Further, it is preferable to cool at an average cooling rate of 2 to 2000 ° C./s from the primary annealing temperature to a temperature range of 500 ° C. or lower. By setting the average cooling rate after annealing to 2 ° C./s or higher, grain boundary segregation can be suppressed and bendability can be improved. On the other hand, by setting the average cooling rate to 2000 ° C./s or less, the temperature distribution of the steel sheet after the cooling is stopped becomes uniform, so that the flatness of the steel sheet can be further improved.
 好ましくは、2~2000℃/sの平均冷却速度での冷却における冷却停止温度を100℃以上とする。冷却停止温度を100℃以上にすることにより、マルテンサイト変態に伴うひずみ発生を抑制でき、鋼板の平坦性を向上させることができる。 Preferably, the cooling stop temperature in cooling at an average cooling rate of 2 to 2000 ° C./s is 100 ° C. or higher. By setting the cooling stop temperature to 100 ° C. or higher, strain generation due to martensitic transformation can be suppressed, and the flatness of the steel sheet can be improved.
 さらに、一次焼鈍温度から500℃以下までの温度範囲を平均冷却速度2~2000℃/sで冷却した後、好ましくは100~500℃の温度域で10~1000s保持する。100~500℃の温度域における保持時間を10s以上とすることにより、オーステナイトへのC分配が十分に進行して、最終熱処理前の組織にオーステナイトを増加させることができ、その結果、最終熱処理後の組織に塊状のオーステナイトが生成することを抑制し、強度特性の変動をより小さくすることができる。一方、上記保持時間が1000s超であっても、上記作用による効果は飽和して、生産性が低下するだけであるため、100~500℃の温度域における保持時間は、好ましくは1000s以下、より好ましくは300s以下である。 Further, after cooling the temperature range from the primary annealing temperature to 500 ° C. or lower at an average cooling rate of 2 to 2000 ° C./s, the temperature range is preferably maintained in the temperature range of 100 to 500 ° C. for 10 to 1000 s. By setting the holding time in the temperature range of 100 to 500 ° C. to 10 s or more, C distribution to austenite proceeds sufficiently and austenite can be increased in the structure before the final heat treatment, and as a result, after the final heat treatment. It is possible to suppress the formation of austenite in the structure of the tissue and further reduce the fluctuation of the strength characteristics. On the other hand, even if the holding time exceeds 1000 s, the effect of the above action is saturated and the productivity is only lowered. Therefore, the holding time in the temperature range of 100 to 500 ° C. is preferably 1000 s or less. It is preferably 300 s or less.
 上記保持温度を100℃以上にすることにより、連続焼鈍ラインの効率を向上することができる。一方、保持温度を500℃以下にすることにより、粒界偏析を抑制し、曲げ性を向上することができる。 By setting the holding temperature to 100 ° C. or higher, the efficiency of the continuous annealing line can be improved. On the other hand, by setting the holding temperature to 500 ° C. or lower, grain boundary segregation can be suppressed and bendability can be improved.
 <二次焼鈍工程>
 上記の一次焼鈍を行い室温まで冷却した後に、1~40℃/sの平均昇温速度で600℃以上Ac点未満の温度域に加熱して、その加熱温度で5s以上保持して、2回目の焼鈍を行う。この焼鈍を本発明では「二次焼鈍」と呼ぶ。
<Secondary annealing process>
After performing the above primary annealing and cooling to room temperature, the mixture is heated to a temperature range of 600 ° C. or higher and less than 3 points of Ac at an average heating rate of 1 to 40 ° C./s, and held at that heating temperature for 5 seconds or longer. Perform the second annealing. This annealing is referred to as "secondary annealing" in the present invention.
 二次焼鈍温度:600℃以上Ac点未満
 二次焼鈍温度を600℃以上Ac点未満にすることにより、フェライトの面積率を低減し、均一伸び特性および靱性を向上することができる。二次焼鈍温度をAc点以上とすると、その後の冷却過程において残留オーステナイトの確保が難しくなる。また、Mn含有量が高くマルテンサイト変態温度が低いため、二次焼鈍温度をAc点以上とすると、十分な焼戻しマルテンサイトの確保も難しくなる。
Secondary annealing temperature: 600 ° C. or higher and less than 3 points Ac By setting the secondary annealing temperature to 600 ° C. or higher and less than 3 points, the area ratio of ferrite can be reduced and the uniform elongation characteristics and toughness can be improved. When the secondary annealing temperature is set to Ac 3 or higher, it becomes difficult to secure retained austenite in the subsequent cooling process. Further, since the Mn content is high and the martensitic transformation temperature is low, it is difficult to secure sufficient tempered martensite when the secondary annealing temperature is set to Ac 3 or higher.
 二次焼鈍時間:5s以上
 セメンタイトを溶解させ、良好な靱性を安定して確保する観点から、600℃以上Ac点未満の温度域で保持する焼鈍時間を5s以上とする。生産性の観点から、二次焼鈍時間を300s以内とすることが好ましい。
Secondary annealing time: From the viewpoint of dissolving cementite for 5 s or more and stably ensuring good toughness, the annealing time for holding in a temperature range of 600 ° C. or more and less than 3 points of Ac is set to 5 s or more. From the viewpoint of productivity, the secondary annealing time is preferably 300 s or less.
 平均昇温速度:1~40℃/s
 二次焼鈍における平均昇温速度は、1℃/s以上、好ましくは2℃/s以上、より好ましくは3℃/s以上である。このような平均昇温速度で昇温することにより、フェライト相の面積率を5%以下にすることができる。
Average heating rate: 1-40 ° C / s
The average rate of temperature rise in the secondary annealing is 1 ° C./s or higher, preferably 2 ° C./s or higher, and more preferably 3 ° C./s or higher. By raising the temperature at such an average heating rate, the area ratio of the ferrite phase can be reduced to 5% or less.
 二次焼鈍における平均昇温速度は、40℃/s未満、好ましくは20℃/s未満、より好ましくは10℃/s未満である。このような平均昇温速度で昇温することにより、粗大な塊状オーステナイト、すなわち、面積が1μm以上且つ粒円形度が0.1以上の残留オーステナイトの生成を抑制して、残留オーステナイトの全体の面積に対する粗大な塊状オーステナイトの面積率を50%未満にすることができる。昇温速度が速すぎると、オーステナイトの生成駆動力が大きくなり、マルテンサイトラスではなく旧オーステナイト粒界からオーステナイトが生成するため、粗大な塊状オーステナイトが増加する。 The average rate of temperature rise in the secondary annealing is less than 40 ° C./s, preferably less than 20 ° C./s, more preferably less than 10 ° C./s. By raising the temperature at such an average heating rate, the formation of coarse massive austenite, that is, retained austenite having an area of 1 μm 2 or more and a grain circularity of 0.1 or more is suppressed, and the entire retained austenite is suppressed. The area ratio of coarse massive austenite to area can be less than 50%. If the rate of temperature rise is too fast, the driving force for austenite formation will increase, and austenite will be generated from the former austenite grain boundaries instead of martensite truss, resulting in an increase in coarse austenite.
 平均冷却速度:5℃/s以上
 二次焼鈍後に、鋼板は、5℃/s以上の平均冷却速度で100℃以下まで冷却される。平均冷却速度が5℃/s未満では、軟質なベイナイトが過度に生成し、熱処理後の鋼材において高強度(980MPa以上の引張強さ)を確保することが困難となるおそれがある。好ましくは、鋼板の焼割れを抑制する観点から、平均冷却速度を500℃/s以下とする。
Average cooling rate: 5 ° C./s or higher After secondary annealing, the steel sheet is cooled to 100 ° C. or lower at an average cooling rate of 5 ° C./s or higher. If the average cooling rate is less than 5 ° C./s, soft bainite is excessively generated, and it may be difficult to secure high strength (tensile strength of 980 MPa or more) in the heat-treated steel material. Preferably, the average cooling rate is set to 500 ° C./s or less from the viewpoint of suppressing shrinkage of the steel sheet.
 <めっき工程>
 鋼板にめっきする場合には、以下のようにして製造する。
<Plating process>
When plating a steel sheet, it is manufactured as follows.
 鋼板の表面に溶融亜鉛めっきを施して溶融亜鉛めっき鋼板を製造する場合には、二次焼鈍後に、5℃/s以上の平均冷却速度で430~500℃の温度域まで冷却し、次いで冷延鋼板を溶融亜鉛のめっき浴に浸漬して溶融亜鉛めっき処理を行う。めっき浴の条件は通常の範囲内とすればよい。めっき処理後は、平均冷却速度5℃/s以上で100℃以下の温度域まで冷却する。 When hot-dip galvanized steel sheet is manufactured by hot-dip galvanizing the surface of the steel sheet, it is cooled to a temperature range of 430 to 500 ° C. at an average cooling rate of 5 ° C./s or more after secondary annealing, and then cold-rolled. The steel sheet is immersed in a hot-dip galvanizing bath to perform hot-dip galvanizing. The conditions of the plating bath may be within the normal range. After the plating treatment, the product is cooled to a temperature range of 100 ° C. or lower at an average cooling rate of 5 ° C./s or higher.
 鋼板の表面に合金化溶融亜鉛めっきを施して合金化溶融亜鉛めっき鋼板を製造する場合には、鋼板に溶融亜鉛めっき処理を施した後、鋼板を室温まで冷却する前に、450~620℃の温度で溶融亜鉛めっきの合金化処理を行う。合金化処理条件は、通常の範囲内とすればよい。合金化処理後は、平均冷却速度5℃/s以上で100℃以下の温度域まで冷却する。 When the surface of a steel sheet is hot-dip galvanized to produce an alloyed hot-dip galvanized steel sheet, the temperature is 450 to 620 ° C. after the steel sheet is hot-dip galvanized and before the steel sheet is cooled to room temperature. The hot dip galvanizing process is alloyed at temperature. The alloying treatment conditions may be within the usual range. After the alloying treatment, the mixture is cooled to a temperature range of 100 ° C. or lower at an average cooling rate of 5 ° C./s or higher.
 焼鈍後の鋼板、またはめっき後の鋼板に、スキンパス圧延を行ってもよい。スキンパス圧延を行う場合、スキンパス圧延の圧下率は0%超5.0%未満であることが好ましい。なお、鋼板の表面に溶融亜鉛めっきまたは合金化溶融亜鉛めっきを施す場合は、めっき後の鋼板にスキンパス圧延を行う。 Skin pass rolling may be performed on the annealed steel sheet or the plated steel sheet. When skin pass rolling is performed, the rolling reduction of the skin pass rolling is preferably more than 0% and less than 5.0%. When hot-dip galvanizing or alloying hot-dip galvanizing is applied to the surface of the steel sheet, skin pass rolling is performed on the plated steel sheet.
 以上のように鋼板を製造することによって、本発明に係る鋼板を得ることができる。 By manufacturing the steel sheet as described above, the steel sheet according to the present invention can be obtained.
 以下、実施例によって本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
 1.評価用鋼板の製造
 表1に示す化学成分を有する鋼を転炉で溶製し、連続鋳造により245mm厚のスラブを得た。
1. 1. Production of Steel Sheet for Evaluation The steel having the chemical components shown in Table 1 was melted in a converter and continuously cast to obtain a slab having a thickness of 245 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 得られた鋼材(スラブ)を、表2に示す条件で熱間圧延し、厚さ2.4mm程度の熱延鋼板を得た。得られた熱延鋼板に、表2に示すオーステナイト相分率となる温度および保持時間で熱処理、酸洗、および表2に示す冷間圧延率で冷間圧延を施して、厚さ1.4mmの冷延鋼板を得た。熱間圧延および熱延鋼板の熱処理は、窒素98%および水素2%の還元雰囲気で行った。 The obtained steel material (slab) was hot-rolled under the conditions shown in Table 2 to obtain a hot-rolled steel sheet having a thickness of about 2.4 mm. The obtained hot-rolled steel sheet was subjected to heat treatment, pickling, and cold rolling at the cold rolling ratio shown in Table 2 at a temperature and holding time at which the austenite phase fraction was shown in Table 2, and the thickness was 1.4 mm. Cold-rolled steel sheet was obtained. The hot rolling and heat treatment of the hot-rolled steel sheet were carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 得られた冷延鋼板について、表3に示す条件で、一次焼鈍および二次焼鈍を施して焼鈍冷延鋼板を作製した。冷延鋼板に対する2回の焼鈍は、窒素98%および水素2%の還元雰囲気で行った。一次焼鈍における加熱開始温度(室温)から焼鈍温度までの平均昇温速度は、15℃/sとした。二次焼鈍において、焼鈍温度から50℃/sの平均冷却速度で100℃以下まで冷却した。 The obtained cold-rolled steel sheet was subjected to primary annealing and secondary annealing under the conditions shown in Table 3 to prepare an annealed cold-rolled steel sheet. The two annealings on the cold-rolled steel sheet were carried out in a reducing atmosphere of 98% nitrogen and 2% hydrogen. The average heating rate from the heating start temperature (room temperature) to the annealing temperature in the primary annealing was 15 ° C./s. In the secondary annealing, the temperature was cooled from the annealing temperature to 100 ° C. or lower at an average cooling rate of 50 ° C./s.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 一部の焼鈍冷延鋼板例については、二次焼鈍後の冷却を460℃で停止し、冷延鋼板を460℃の溶融亜鉛のめっき浴に2s浸漬して、溶融亜鉛めっき処理を行った。めっき浴の条件は従来のものと同じであった。後述する合金化処理を施さない場合、460℃の保持後に、平均冷却速度10℃/sで室温まで冷却した。 For some examples of annealed cold-rolled steel sheets, cooling after secondary annealing was stopped at 460 ° C., and the cold-rolled steel sheets were immersed in a hot-dip galvanizing bath at 460 ° C. for 2 seconds to perform hot-dip galvanizing treatment. The conditions of the plating bath were the same as those of the conventional one. When the alloying treatment described later was not performed, the mixture was cooled to room temperature at an average cooling rate of 10 ° C./s after holding at 460 ° C.
 一部の焼鈍冷延鋼板例については、溶融亜鉛めっき処理を行った後に、室温に冷却せずに、続いて合金化処理を施した。520℃まで加熱し、520℃で5s保持して合金化処理を行い、その後、平均冷却速度10℃/sで室温まで冷却した。 For some examples of annealed cold-rolled steel sheets, after hot-dip galvanizing treatment, they were subsequently alloyed without being cooled to room temperature. It was heated to 520 ° C. and held at 520 ° C. for 5 s for alloying treatment, and then cooled to room temperature at an average cooling rate of 10 ° C./s.
 このようにして得られた焼鈍冷延鋼板を伸び率0.1%で調質圧延し、各種評価用鋼板を準備した。 The annealed cold-rolled steel sheet thus obtained was temper-rolled at an elongation rate of 0.1% to prepare various evaluation steel sheets.
 2.評価方法
 各例で得られた焼鈍冷延鋼板について、ミクロ組織観察、引張試験、均一伸び試験、および靱性試験を実施して、焼戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、およびフレッシュマルテンサイトの面積率、残留オーステナイト結晶粒の粒円形度および面積、CMnγ/CMnα、ならびに引張強さ、均一伸び特性、靱性、および降伏比を評価した。各評価の方法は次のとおりである。
2. 2. Evaluation method The areas of tempered martensite, ferrite, retained austenite, bainite, and fresh martensite were subjected to microstructure observation, tensile test, uniform elongation test, and toughness test on the annealed cold-rolled steel sheets obtained in each example. Rate, grain roundness and area of retained austenite grains, C Mnγ / C Mnα , and tensile strength, uniform elongation properties, toughness, and yield ratio were evaluated. The method of each evaluation is as follows.
 <金属組織の面積率>
 焼戻しマルテンサイト、フェライト、残留オーステナイト、ベイナイト、およびフレッシュマルテンサイトの面積率は、SEMによる組織観察およびX線回折測定から算出した。鋼板のL断面について、鏡面研磨を行い、次いで3%ナイタールによりミクロ組織を現出させて、SEMにより倍率5000倍で、表面から1/4位置におけるミクロ組織を観察し、0.1mm×0.3mmの範囲について画像解析(Photoshop(登録商標))により、焼戻しマルテンサイト、フェライト、およびベイナイトの面積率、ならびに残留オーステナイトとフレッシュマルテンサイトとの合計の面積率を算出した。
<Area ratio of metal structure>
The area ratios of tempered martensite, ferrite, retained austenite, bainite, and fresh martensite were calculated from microstructure observation by SEM and X-ray diffraction measurement. The L cross section of the steel plate was mirror-polished, then the microstructure was revealed by 3% nital, and the microstructure was observed at a magnification of 5000 times by SEM at a position 1/4 from the surface, and 0.1 mm × 0. Image analysis (Photoshop®) over a range of 3 mm calculated the area ratios of tempered martensite, ferrite, and bainite, as well as the total area ratio of retained austenite and fresh martensite.
 また、得られた鋼板から幅25mm、長さ25mmの試験片を切り出し、この試験片に化学研磨を施して板厚1/4分を減厚し、化学研磨後の試験片の表面に対して、Co管球を用いたX線回折分析を3回実施し、得られたプロファイルを解析し、それぞれを平均して残留オーステナイトの面積率を算出した。SEM観察により得られた残留オーステナイトとフレッシュマルテンサイトとの合計の面積率から残留オーステナイトの面積率を差し引いて、フレッシュマルテンサイトの面積率を算出した。 Further, a test piece having a width of 25 mm and a length of 25 mm was cut out from the obtained steel sheet, and the test piece was chemically polished to reduce the thickness by 1/4, and the surface of the test piece after the chemical polishing was subjected to chemical polishing. , X-ray diffraction analysis using Co tubes was performed three times, the obtained profiles were analyzed, and the area ratio of retained austenite was calculated by averaging each of them. The area ratio of fresh martensite was calculated by subtracting the area ratio of retained austenite from the total area ratio of retained austenite and fresh martensite obtained by SEM observation.
 <残留オーステナイト結晶粒の粒円形度および面積>
 結晶粒の粒円形度および面積は、TSL社製OIM Analysis version 7の標準機能(MapおよびGrain Shape Circularity)を用いて、後方散乱電子回折(EBSP:Electron Back Scattering pattern)分析を行うことによって、測定した。
<Granularity and area of retained austenite crystal grains>
The grain circularity and area of the crystal grains are measured by performing backscattered electron diffraction (EBSP: Electron Back Scattering pattern) analysis using the standard functions (Map and Grain Shape Circularity) of OIM Analysis 7 manufactured by TSL. did.
 EBSPデータ測定条件は、以下の通りである。鋼板のL断面の表面から厚みの1/4位置において、OIM(Orientation Imaging Microscopy)検出器を備えたSEMで、50μm×50μmの領域を倍率500倍で観察して、測定間隔0.1μmでEBSPデータを測定した。5つの領域について前記方法でEBSPデータを測定し、その平均値を算出した。 The EBSP data measurement conditions are as follows. An SEM equipped with an OIM (Orientation Imaging Microscopy) detector at a position 1/4 of the thickness from the surface of the L cross section of the steel sheet, observes a region of 50 μm × 50 μm at a magnification of 500 times, and EBSP at a measurement interval of 0.1 μm. The data was measured. The EBSP data was measured for the five regions by the above method, and the average value was calculated.
 <CMnγ/CMnα
 CMnγ/CMnαは、EBSP、SEM、およびEPMAにより測定した。EBSPおよびSEMを用いて、50μm×50μmの領域を倍率500倍で観察して、測定間隔0.1μmでEBSPデータを測定し、5つの領域について残留オーステナイト、フェライト、および焼戻しマルテンサイトを特定した。次いで、特定したオーステナイトと、フェライトおよび焼戻しマルテンサイトとについて、EPMA測定による点分析を5点、5つの領域でそれぞれ行い、測定値を平均してCMnγおよびCMnαを算出し、CMnγ/CMnαを求めた。
<C Mnγ / C Mnα >
C Mnγ / C Mnα was measured by EBSP, SEM, and EPMA. Using EBSP and SEM, a region of 50 μm × 50 μm was observed at a magnification of 500, EBSP data was measured at a measurement interval of 0.1 μm, and retained austenite, ferrite, and tempered martensite were identified for the five regions. Next, for the identified austenite, ferrite and tempered martensite, point analysis by EPMA measurement was performed at 5 points and 5 regions, respectively, and the measured values were averaged to calculate C Mnγ and C Mnα , and C Mnγ / C. Mnα was determined.
 <引張試験方法>
 鋼板の圧延方向に直角方向からJIS5号引張試験片を採取し、引張強さ(TS)、均一伸び(uEL)、および降伏応力(YS)を測定し、TS×uELおよび降伏比(YR)を算出した。引張試験は、JIS5号引張試験片を用いて、JIS Z 2241:2011に規定される方法で行った。均一伸び試験は、平行部の長さが60mmで、歪を測定する基準となる標点距離が50mmのJIS5号試験片を用いて、JIS Z 2241:2011に規定される方法で行った。均一伸びは、最大試験強さ(TS)に到達するまでに得られる伸び(標点間で測定した歪)である。
<Tensile test method>
Take JIS No. 5 tensile test pieces from the direction perpendicular to the rolling direction of the steel sheet, measure the tensile strength (TS), uniform elongation (uEL), and yield stress (YS), and determine the TS × uEL and yield ratio (YR). Calculated. The tensile test was carried out using a JIS No. 5 tensile test piece by the method specified in JIS Z 2241: 2011. The uniform elongation test was carried out by the method specified in JIS Z 2241: 2011 using a JIS No. 5 test piece having a parallel portion length of 60 mm and a reference point distance of 50 mm as a reference for measuring strain. Uniform elongation is the elongation (strain measured between gauge points) obtained before reaching the maximum test strength (TS).
 <靱性試験方法>
 熱処理後の各鋼材を、積層のために厚さが1.2mmとなるように表裏面研削し、Vノッチ試験片を作製した。その試験片を4枚積層してねじ止めした後、JIS Z 2242:2005に準じてシャルピー衝撃試験に供した。靱性は、0℃での衝撃値が20J/cm以上の場合を良好とし、20J/cm未満である場合を不良とした。
<Toughness test method>
Each steel material after the heat treatment was ground on the front and back surfaces so as to have a thickness of 1.2 mm for lamination to prepare a V-notch test piece. After stacking four of the test pieces and screwing them together, they were subjected to a Charpy impact test according to JIS Z 2242: 2005. The toughness was good when the impact value at 0 ° C. was 20 J / cm 2 or more, and poor when it was less than 20 J / cm 2 .
 3.評価結果
 上記の評価の結果を表4に示す。12000MPa・%以上のTS×uEL、0.40超0.80未満の降伏比、および良好な靱性が得られた例を、高い衝撃エネルギー吸収能、優れた均一伸び特性、および高強度を有する鋼板として評価した。なお、表4において、0.40超0.80未満の降伏比および良好な靱性を有する場合に、衝撃エネルギー吸収能に優れると判断することとした。
3. 3. Evaluation Results Table 4 shows the results of the above evaluation. An example in which TS × uEL of 12000 MPa ·% or more, yield ratio of more than 0.40 and less than 0.80, and good toughness were obtained, a steel sheet having high impact energy absorption capacity, excellent uniform elongation characteristics, and high strength. Evaluated as. In Table 4, it was decided that the impact energy absorption capacity was excellent when the yield ratio was more than 0.40 and less than 0.80 and the toughness was good.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明に係る鋼板は上記のように、高い強度を有し、均一伸び特性も良好であり成形性に優れており、さらには高い衝撃エネルギー吸収能(優れたYRおよび靱性)を有するので、フロントサイドメンバーなどの自動車の構造部品用途に最適である。

 
As described above, the steel sheet according to the present invention has high strength, good uniform elongation characteristics, excellent moldability, and high impact energy absorption capacity (excellent YR and toughness). Ideal for structural parts of automobiles such as side members.

Claims (9)

  1.  鋼板の化学組成が、質量%で、
     C:0.10%超0.55%未満、
     Si:0.001%以上3.50%未満、
     Mn:4.00%超9.00%未満、
     sol.Al:0.001%以上3.00%未満、
     P:0.100%以下、
     S:0.010%以下、
     N:0.050%未満、
     O:0.020%未満、
     Cr:0%以上2.00%未満、
     Mo:0~2.00%、
     W:0~2.00%、
     Cu:0~2.00%、
     Ni:0~2.00%、
     Ti:0~0.300%、
     Nb:0~0.300%、
     V:0~0.300%、
     B:0~0.010%、
     Ca:0~0.010%、
     Mg:0~0.010%、
     Zr:0~0.010%、
     REM:0~0.010%、
     Sb:0~0.050%、
     Sn:0~0.050%、
     Bi:0~0.050%、
     残部:Feおよび不純物であり、
     前記鋼板の圧延方向および板厚方向に平行な断面において、表面から板厚の1/4深さ位置における金属組織が、面積%で、
     焼戻しマルテンサイト:25~90%、
     フェライト:5%以下、
     残留オーステナイト:10~50%、および
     ベイナイト:5%以下であり、
     前記鋼板の圧延方向および板厚方向に平行な断面の表面から板厚の1/4深さ位置において、面積が1μm以上であり、かつ粒円形度が0.1以上である残留オーステナイト結晶粒の合計面積の割合が、前記残留オーステナイトの全体の面積に対して50%未満であり、
     下記(i)式を満足する、
     鋼板。
     CMnγ/CMnα≧1.2   ・・・(i)
     但し、上記(i)式中の記号の意味は以下のとおりである。
     CMnγ:残留オーステナイト中の平均Mn濃度(質量%)
     CMnα:フェライトおよび焼戻しマルテンサイト中の平均Mn濃度(質量%)
    The chemical composition of the steel sheet is mass%,
    C: More than 0.10% and less than 0.55%,
    Si: 0.001% or more and less than 3.50%,
    Mn: More than 4.00% and less than 9.00%,
    sol. Al: 0.001% or more and less than 3.00%,
    P: 0.100% or less,
    S: 0.010% or less,
    N: Less than 0.050%,
    O: Less than 0.020%,
    Cr: 0% or more and less than 2.00%,
    Mo: 0-2.00%,
    W: 0 to 2.00%,
    Cu: 0-2.00%,
    Ni: 0 to 2.00%,
    Ti: 0 to 0.300%,
    Nb: 0 to 0.300%,
    V: 0 to 0.300%,
    B: 0 to 0.010%,
    Ca: 0 to 0.010%,
    Mg: 0 to 0.010%,
    Zr: 0 to 0.010%,
    REM: 0-0.010%,
    Sb: 0 to 0.050%,
    Sn: 0 to 0.050%,
    Bi: 0 to 0.050%,
    Remaining: Fe and impurities,
    In the cross section parallel to the rolling direction and the plate thickness direction of the steel plate, the metal structure at a depth of 1/4 of the plate thickness from the surface is, in% area.
    Tempering martensite: 25-90%,
    Ferrite: 5% or less,
    Residual austenite: 10-50%, and bainite: 5% or less,
    Residual austenite crystal grains having an area of 1 μm 2 or more and a grain circularity of 0.1 or more at a depth of 1/4 of the plate thickness from the surface of the cross section parallel to the rolling direction and the plate thickness direction of the steel sheet. The ratio of the total area of is less than 50% of the total area of the retained austenite.
    Satisfy the following equation (i),
    Steel plate.
    C Mnγ / C Mnα ≧ 1.2 ・ ・ ・ (i)
    However, the meanings of the symbols in the above equation (i) are as follows.
    C Mnγ : Average Mn concentration (mass%) in retained austenite
    C Mnα : Average Mn concentration (% by mass) in ferrite and tempered martensite
  2.  前記化学組成が、質量%で、
     Cr:0.01%以上2.00%未満、
     Mo:0.01~2.00%、
     W:0.01~2.00%、
     Cu:0.01~2.00%、および
     Ni:0.01~2.00%
     から選択される1種以上を含有する、
     請求項1に記載の鋼板。
    When the chemical composition is mass%,
    Cr: 0.01% or more and less than 2.00%,
    Mo: 0.01-2.00%,
    W: 0.01-2.00%,
    Cu: 0.01 to 2.00%, and Ni: 0.01 to 2.00%
    Contains one or more selected from
    The steel plate according to claim 1.
  3.  前記化学組成が、質量%で、
     Ti:0.005~0.300%、
     Nb:0.005~0.300%、および
     V:0.005~0.300%
     から選択される1種以上を含有する、
     請求項1または請求項2に記載の鋼板。
    When the chemical composition is mass%,
    Ti: 0.005 to 0.300%,
    Nb: 0.005 to 0.300%, and V: 0.005 to 0.300%
    Contains one or more selected from
    The steel sheet according to claim 1 or 2.
  4.  前記化学組成が、質量%で、
     B:0.0001~0.010%、
     Ca:0.0001~0.010%、
     Mg:0.0001~0.010%、
     Zr:0.0001~0.010%、および
     REM:0.0001~0.010%
     から選択される1種以上を含有する、
     請求項1から請求項3のいずれかに記載の鋼板。
    When the chemical composition is mass%,
    B: 0.0001 to 0.010%,
    Ca: 0.0001 to 0.010%,
    Mg: 0.0001 to 0.010%,
    Zr: 0.0001 to 0.010%, and REM: 0.0001 to 0.010%
    Contains one or more selected from
    The steel plate according to any one of claims 1 to 3.
  5.  前記化学組成が、質量%で、
     Sb:0.0005~0.050%、
     Sn:0.0005~0.050%、および
     Bi:0.0005~0.050%
     から選択される1種以上を含有する、
     請求項1から請求項4のいずれかに記載の鋼板。
    When the chemical composition is mass%,
    Sb: 0.0005 to 0.050%,
    Sn: 0.0005 to 0.050%, and Bi: 0.0005 to 0.050%
    Contains one or more selected from
    The steel plate according to any one of claims 1 to 4.
  6.  前記鋼板の表面に溶融亜鉛めっき層を有する、
     請求項1から請求項5のいずれかに記載の鋼板。
    A hot-dip galvanized layer is provided on the surface of the steel sheet.
    The steel plate according to any one of claims 1 to 5.
  7.  前記鋼板の表面に合金化溶融亜鉛めっき層を有する、
     請求項1から請求項5のいずれかに記載の鋼板。
    Having an alloyed hot-dip galvanized layer on the surface of the steel sheet.
    The steel plate according to any one of claims 1 to 5.
  8.  0℃におけるシャルピー衝撃値が20J/cm以上である、
     請求項1から請求項7のいずれかに記載の鋼板。
    The Charpy impact value at 0 ° C. is 20 J / cm 2 or more.
    The steel plate according to any one of claims 1 to 7.
  9.  前記鋼板の降伏比が、0.40超0.80未満である、
     請求項1から請求項8のいずれかに記載の鋼板。

     
    The yield ratio of the steel sheet is more than 0.40 and less than 0.80.
    The steel plate according to any one of claims 1 to 8.

PCT/JP2020/010946 2019-03-15 2020-03-12 Steel sheet WO2020189530A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080008409.1A CN113272461B (en) 2019-03-15 2020-03-12 Steel plate
JP2021507293A JP7036274B2 (en) 2019-03-15 2020-03-12 Steel plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-048416 2019-03-15
JP2019048416 2019-03-15

Publications (1)

Publication Number Publication Date
WO2020189530A1 true WO2020189530A1 (en) 2020-09-24

Family

ID=72519339

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/010946 WO2020189530A1 (en) 2019-03-15 2020-03-12 Steel sheet

Country Status (3)

Country Link
JP (1) JP7036274B2 (en)
CN (1) CN113272461B (en)
WO (1) WO2020189530A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200164A1 (en) * 2020-04-03 2021-10-07 日本製鉄株式会社 Steel sheet and method for producing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150227B (en) * 2021-12-07 2022-11-18 武汉科技大学 High-toughness hot stamping steel rolled by medium and thin slabs with Rm more than or equal to 1500MPa and production method
KR20240087898A (en) * 2022-12-12 2024-06-20 주식회사 포스코 High-strength hot-dip galvanized steel sheet, and method for the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050337A (en) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 High strength high ductility steel sheet
WO2016067626A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP2017053001A (en) * 2015-09-09 2017-03-16 新日鐵住金株式会社 Galvanized steel sheet, galvannealed steel sheet, and their production methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015200013A (en) * 2014-03-31 2015-11-12 株式会社神戸製鋼所 High-strength cold-rolled steel sheet, high-strength galvanized steel sheet, and high-strength alloy galvanized steel sheet having excellent ductility, stretch-flangeability, and weldability
JP6554397B2 (en) * 2015-03-31 2019-07-31 株式会社神戸製鋼所 High strength cold rolled steel sheet having a tensile strength of 980 MPa or more excellent in workability and impact property, and a method of manufacturing the same
CN108495943B (en) * 2016-03-25 2021-05-28 日本制铁株式会社 High-strength steel sheet and high-strength galvanized steel sheet
JP6860420B2 (en) * 2017-05-24 2021-04-14 株式会社神戸製鋼所 High-strength steel sheet and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050337A (en) * 2014-08-29 2016-04-11 株式会社神戸製鋼所 High strength high ductility steel sheet
WO2016067626A1 (en) * 2014-10-30 2016-05-06 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same
JP2017053001A (en) * 2015-09-09 2017-03-16 新日鐵住金株式会社 Galvanized steel sheet, galvannealed steel sheet, and their production methods

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200164A1 (en) * 2020-04-03 2021-10-07 日本製鉄株式会社 Steel sheet and method for producing same
JPWO2021200164A1 (en) * 2020-04-03 2021-10-07
JP7364963B2 (en) 2020-04-03 2023-10-19 日本製鉄株式会社 Steel plate and its manufacturing method

Also Published As

Publication number Publication date
CN113272461A (en) 2021-08-17
JP7036274B2 (en) 2022-03-15
JPWO2020189530A1 (en) 2021-10-21
CN113272461B (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4737319B2 (en) High-strength galvannealed steel sheet with excellent workability and fatigue resistance and method for producing the same
JP6465256B1 (en) steel sheet
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
WO2017168957A1 (en) Thin steel sheet, plated steel sheet, method for producing hot-rolled steel sheet, method for producing cold-rolled full hard steel sheet, method for producing thin steel sheet, and method for producing plated steel sheet
JP7036274B2 (en) Steel plate
KR102692691B1 (en) High-strength steel plate and manufacturing method thereof
CN111868282B (en) Steel plate
KR102245332B1 (en) High-strength steel sheet and its manufacturing method
JP6930682B1 (en) High-strength steel plate and its manufacturing method
JP6744003B1 (en) Steel plate
JP2018003114A (en) High strength steel sheet and manufacturing method therefor
JP6947334B1 (en) High-strength steel plate and its manufacturing method
JP6760543B1 (en) Steel plate and steel plate manufacturing method
CN111868283B (en) Steel plate
WO2021172298A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
WO2021172297A1 (en) Steel sheet, member, and methods respectively for producing said steel sheet and said member
JP2018003115A (en) High strength steel sheet and manufacturing method therefor
JP7364963B2 (en) Steel plate and its manufacturing method
JP7417169B2 (en) Steel plate and its manufacturing method
JP7063414B2 (en) Steel plate
JP2006233318A (en) Method for producing high strength steel sheet having excellent shape-fixability and deep drawability
JP2021134389A (en) High strength steel sheet, method for manufacturing the same, member and method for manufacturing the same
KR20230128080A (en) High-strength steel sheet and its manufacturing method
KR20230128081A (en) High-strength steel sheet and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20772647

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021507293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20772647

Country of ref document: EP

Kind code of ref document: A1