JP2004250749A - High strength thin steel sheet having burring property, and production method therefor - Google Patents

High strength thin steel sheet having burring property, and production method therefor Download PDF

Info

Publication number
JP2004250749A
JP2004250749A JP2003042144A JP2003042144A JP2004250749A JP 2004250749 A JP2004250749 A JP 2004250749A JP 2003042144 A JP2003042144 A JP 2003042144A JP 2003042144 A JP2003042144 A JP 2003042144A JP 2004250749 A JP2004250749 A JP 2004250749A
Authority
JP
Japan
Prior art keywords
steel sheet
burring
strength
rolling
thin steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003042144A
Other languages
Japanese (ja)
Other versions
JP4116901B2 (en
Inventor
Tatsuo Yokoi
龍雄 横井
Satoshi Akamatsu
聡 赤松
Teruki Hayashida
輝樹 林田
Koichi Dobashi
浩一 土橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003042144A priority Critical patent/JP4116901B2/en
Publication of JP2004250749A publication Critical patent/JP2004250749A/en
Application granted granted Critical
Publication of JP4116901B2 publication Critical patent/JP4116901B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength thin steel sheet having burring properties, and to provide a production method therefor. <P>SOLUTION: The steel sheet consists of a steel comprising 0.01 to 0.1% C, 0.01 to 2% Si, 0.05 to 3% Mn, ≤0.1% P, ≤0.03% S, 0.005 to 0.02% Al, ≤0.005% N, 0.0005 to 0.003% Ca and 0.005 to 0.3% Ti, and comprising Ti in the range satisfying Ti-(48/12)C-(48/14)N-(48/32)S≥-0.03%, and the balance Fe with inevitable impurities, wherein the average diameter of the equivalent circle in Ti-containing nitrides is ≤7 μm. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、材質バラツキの少ない引張強度640MPa以上のバーリング性高強度薄鋼板およびその製造方法に関するものであり、特に、せん断加工端面が伸びフランジ成形される場合等の成形性指標である穴拡げ値のバラツキが少ない鋼板およびその製造方法に関する。
【0002】
【従来の技術】
近年、自動車の燃費向上などのために軽量化を目的として、Al合金等の軽金属や高強度鋼板の自動車部材への適用が進められている。ただし、Al合金等の軽金属は比強度が高いという利点があるものの鋼に比較して著しく高価であるため、その適用は特殊な用途に限られている。従ってより広い範囲で自動車の軽量化を推進するためには安価な高強度鋼板の適用が強く求められている。
【0003】
一般に材料は高強度になるほど延性が低下して成形性が悪くなる。鉄鋼材料においても例外ではなく、これまでに高強度と高延性の両立の試みがなされてきた。一方、自動車の足廻り部品等に使用される材料には、これらの特性に加えて伸びフランジ性、バーリング性が求められている。しかし、高強度化に伴って伸びフランジ性、バーリング性は低下する傾向を示すばかりでなく、そのバラツキも大きくなる場合があり、伸びフランジ性、バーリング性の平均値を向上させる試み(絶対値の向上による)とともにその下限値を向上させ、バラツキを低減することも、自動車の足廻り部品等への高強度鋼板の適用にあたっては重要な検討課題である。
【0004】
伸びフランジ性またはバーリング加工性に優れた高強度熱延鋼板として、伸びフランジ性の優れた高強度熱延鋼板を、Ti,Nbを添加することにより第二相を低減し主相であるポリゴナルフェライト中にTiC,NbCを析出強化させることによって得る発明が開示されている(例えば特許文献1)。
しかし、高い伸びフランジ性を得るために面積率で85%以上のポリゴナルフェライトが必須であるが、85%以上のポリゴナルフェライトを得るためには熱間圧延後にフェライト粒の成長を促進するため長時間の保持が必要であり、操業コスト上好ましくない。
【0005】
また、Ti,Nbを添加することにより第二相を低減してミクロ組織をアシキュラーフェライトとし、TiC,NbCで析出強化することによって伸びフランジ性の優れた高強度熱延鋼板を得る発明が開示されている(例えば特許文献2)。
しかし、転位密度が高いミクロ組織と微細なTiC及び/又はNbCの析出によって、784.5MPa(80kgf/mm)で17%程度の延性しかなく、成形性が不十分である。
【0006】
また、Ti,NbをC当量以上添加しミクロ組織をフェライト単相にすると共にCuを添加し、TiC,NbCと共にε−Cuを析出させることにより、高強度化した伸びフランジ加工性の優れた高強度熱延鋼板を得る発明が開示されている(例えば特許文献3)。
しかし、フェライト相にε−Cuを析出させているため、延性が低下して加工性が悪くなる可能性がある。
【0007】
さらに、Ti,NbをC当量以上添加しミクロ組織をフェライト単相にすると共にNi/Cuの値を規定してフェライトをポリゴナルからベイニティックに変化させて伸びフランジ性を向上させた伸びフランジ性の優れた高強度熱延鋼板を得る発明が開示されている(例えば特許文献4)。
しかし、転位密度が高いミクロ組織と微細なTiC及び/又はNbCの析出によって、784.5MPa(80kgf/mm)で20%程度の延性しかなく、成形性が不十分である。
【0008】
また、これまでに酸化物を核としたTiの窒化物を制御することにより鋼の特性改善を目指した発明としては、船舶、海洋構造物、中高層ビルなどに使用される鋼材を対象としたものがある(例えば特許文献5)。
しかし、その目的も超大入熱溶接時の溶接熱影響部のγ粒成長抑制による靭性向上であり、本発明とは全く異なっている。
【0009】
また、穴拡げ性の改善に関しては、Tiの窒化物の核となる酸化物としてMgの酸化物を用いる発明がある(例えば特許文献6)。
しかし、Tiの窒化物の核となる酸化物として、Mgの酸化物にCaを用いる本発明と異なっている。
【0010】
さらに、これらの発明はバラツキについては何ら言及していない。しかしながら、サスペンションアーム等一部の部品用鋼板においては、伸びフランジ性、バーリング性等の加工性とともにそのバラツキが非常に重要であり、上記従来技術では満足する特性が得られない。また、例え伸びフランジ性、バーリング性とそのバラツキの低減の両立が満足されたとしても、安価に安定して製造できる製造方法を提供することが重要であり、上記従来技術では不十分であると言わざるを得ない。
【0011】
【特許文献1】
特開平6−200351号公報
【特許文献2】
特開平7−011382号公報
【特許文献3】
特開平7−70696号公報
【特許文献4】
特開平8−157957号公報
【特許文献5】
特開平10−183295号公報
【特許文献6】
特開2001−342543号公報
【0012】
【発明が解決しようとする課題】
本発明は、せん断加工端面が伸びフランジ成形される場合等の成形性指標である穴拡げ値のバラツキが少ない鋼板およびその製造方法に関する。すなわち本発明は、穴拡げ値のバラツキが少ない引張強度640MPa以上のバーリング性高強度薄鋼板およびその鋼板を安価に安定して製造できる製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明者らは、現在通常に採用されている製造設備により工業的規模で生産されている高強度薄鋼板の製造プロセスを念頭において、引張強度640MPa以上のバーリング性高強度薄鋼板の穴拡げ値のバラツキを改善すべく鋭意研究を重ねた。
その結果、C:0.01〜0.1%、Si:0.01〜2%、Mn:0.05〜3%、P≦0.1%、S≦0.03%、Al:0.005〜0.02%、N≦0.005%、Ca:0.0005〜0.003%、Ti:0.005〜0.3%、を含み、さらにTi−(48/12)C−(48/14)N−(48/32)S≧−0.03%を満たす範囲でTiを含有し、残部がFe及び不可避的不純物からなる鋼であって、そのミクロ組織が主にフェライトから成り、鋼中に含まれるTiを含む窒化物の平均円相当径が7μm以下であり、さらにTiを含む窒化物のうちその個数の3割以上にCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物を含有することが、引張強度640MPa以上のバーリング性高強度薄鋼板の穴拡げ値のバラツキ改善に非常に有効であることを新たに見出し、本発明をなしたものである。
【0014】
即ち、本発明の要旨は以下の通りである。
(1) 質量%にて、
C :0.01〜0.1%、 Si:0.01〜2%、
Mn:0.05〜3%、 P ≦0.1%、
S ≦0.03%、 Al:0.005〜0.02%、
N ≦0.005%、 Ca:0.0005〜0.003%、
Ti:0.005〜0.3%
を含み、さらにTi−(48/12)C−(48/14)N−(48/32)S≧−0.03%、を満たす範囲でTiを含有し、残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が主にフェライトから成り、鋼中に含まれるTiを含む窒化物の平均円相当径が7μm以下であることを特徴とするバーリング性高強度薄鋼板。
(2) 前記(1)に記載の鋼板中に含まれるTiを含む窒化物のうちその個数の3割以上にCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物を含有することを特徴とするバーリング性高強度薄鋼板。
(3) 前記(1)又は(2)に記載の鋼板が、さらに質量%にて、
Nb:0.01〜0.5%、 Mo:0.05〜1%、
V :0.02〜0.2%、 Cr:0.01〜1%
を含み、さらにTi+(48/93)Nb+(48/96)Mo+(48/51)V+(48/52)Cr−(48/12)C−(48/14)N−(48/32)S≧−0.03%を満たす範囲でTiとNb、Mo、V、Crのいずれか一種類以上を含有することを特徴とするバーリング性高強度薄鋼板。
(4) 前記(1)〜(3)のいずれか1項に記載の鋼板が、さらに質量%にて、B:0.0002〜0.002%を含有することを特徴とするバーリング性高強度薄鋼板。
(5) 前記(1)〜(4)のいずれか1項に記載の鋼板が、さらに質量%にて、REM:0.0005〜0.02%を含有することを特徴とするバーリング性高強度薄鋼板。
(6) 前記(1)〜(5)のいずれか1項に記載の鋼板が、さらに質量%にて、Cu:0.2〜1.2%、 Ni:0.1〜0.6%、
Zr:0.02〜0.2%
の一種または二種以上を含有することを特徴とするバーリング性高強度薄鋼板。
(7) 前記(1)〜(6)のいずれか1項に記載のバーリング性高強度薄鋼板に亜鉛めっきが施されていることを特徴とするバーリング性高強度薄鋼板。
【0015】
(8) 前記(1)〜(6)のいずれか1項に記載の成分を有する薄鋼板を得るための溶鋼を調整する際に、Si濃度が0.05〜0.2%、溶存酸素濃度が0.002〜0.008%になるように調整した溶鋼中に、最終含有量が0.005〜0.3%となる範囲でTiを添加して脱酸した後、最終含有量が0.005〜0.02%となるAlを添加し、さらに最終含有量が0.0005〜0.003%となるCaを添加し、その後、必要に応じて不足する合金を添加することを特徴とするバーリング性高強度薄鋼板の製造方法。
(9) 前記(8)で得られた溶鋼の鋳造後の鋼片を熱間圧延する際に、該鋼片を粗圧延後にAr3 変態点温度以上の温度域で仕上圧延を終了し、その後冷却して350℃以上700℃以下の温度範囲で巻き取ることを特徴とする高バーリング性高強度薄鋼板の製造方法。
(10) 前記(9)に記載の熱間圧延に際し、鋼片を粗圧延終了した後の粗バーを仕上げ圧延開始までの間、および/または粗バーの仕上げ圧延中に加熱することを特徴とするバーリング性高強度薄鋼板の製造方法。
(11) 前記(9)又は(10)に記載の熱間圧延に際し、粗圧延終了後、デスケーリングを行うことを特徴とするバーリング性高強度薄鋼板の製造方法。
(12) 前記(8)で得られた溶鋼の鋳造後の鋼片を熱間圧延、酸洗、冷間圧延をした後、800℃以上の温度域で5〜150秒間保持し、その後平均冷却速度が50℃/秒以上の冷却速度で700℃以下の温度域まで冷却する工程の熱処理をすることを特徴とするバーリング性高強度薄鋼板の製造方法。
(13) 前記(9)〜(10)のいずれか1項に記載の製造方法に際し、亜鉛めっき浴中に浸漬させて鋼板表面を亜鉛めっきすることを特徴とするバーリング性高強度薄鋼板の製造方法。
(14) 前記(13)に記載の製造方法に際し、亜鉛めっき浴中に浸漬して亜鉛めっき後、合金化処理することを特徴とするバーリング性高強度薄鋼板の製造方法。
【0016】
【発明の実施の形態】
以下に本発明の詳細を説明する。
まず、本発明に至った経緯であるが、特許文献7に記載のごとく、ミクロ組織中の鉄炭化物を低減すると穴拡げ性が向上することが知られている。そこで、Ti,Nb等の炭化物を形成する元素を添加してミクロ組織中の鉄炭化物を低減する試みがなされている。特にTiはその原子量が小さく、炭化物形成に必要な化学量論組成を得るために他の炭化物形成元素と比較して添加量が少なくて済むだけでなく、比較的安価であるため多用される。しかし、Tiは溶鋼を鋳造する際の凝固時に窒化物として晶出し、また低温でγ相に析出するため、その添加量が多くなると10μm超のサイズのTi窒化物がミクロ組織中に多数存在することになる。
【0017】
【特許文献7】
特開平5−295485号公報
【0018】
一方、本発明者らの調査によると、Tiを添加した鋼板において、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って評価するところの穴拡げ値であるλ値が100%程度である鋼板では、そのバラツキは40〜60%であることが判明した。
ここでλ値のバラツキとは、例えば板幅900L×板長さ600Wmmから碁盤の目状に150×150mmの板を24枚切出し、前記穴拡げ試験方法に従って得られた穴拡げ率の最大値と最小値の差で表され、少なくとも12枚で穴拡げ値を評価した場合の穴拡げ率の最大値と最小値の差と定義する。
【0019】
この原因を詳細に調査したところ、個々の試験片においてλ値を決定する板厚貫通き裂の発生位置は、圧延方向に平行にき裂が発生する位置が圧倒的に多く、またこの方向はランクフォード値が最も低い位置と一致していることが判明した。さらに、この位置にき裂が発生した場合のき裂発生位置を走査型電子顕微鏡で観察すると、平均値に対して低いλ値の試験片のき裂発生位置に10μm超のTiを含む窒化物がほとんど例外なく観察された。
【0020】
これらの調査結果より、き裂が発生するランクフォード値が低い位置にTiNが存在するとλ値が低下し、当該位置に10μm超のTiを含む窒化物が存在することが低いλ値が存在する(バラツキが生ずる)原因であることが強く示唆された。
実際に、本発明の要件のごとく10μm超のTiを含む窒化物の生成を抑制し、Tiを含む窒化物のサイズを小さくした鋼板においては、そのバラツキの範囲が10〜30%と半減した。このバラツキはTiを含む窒化物のサイズが小さいほど小さくなる傾向を示すが、少なくとも平均円相当径で7μm以下ならば、バラツキ低減の効果が上記方法での見積もりで30%以下程度に明確になる。
【0021】
さらに、これらTiを含む窒化物を詳細に観察した結果、その多くに核となった微細な酸化物が観察され、これらを分析するとCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物であることが判明した。従って、これら微細な複合酸化物がTiを含む窒化物の晶出もしくは析出核となり、Tiを含む窒化物が数多く微細になることが穴拡げ値の低値を改善する効果があると推察される。
【0022】
次に本発明の構成について詳しく説明する。
本発明における鋼板のミクロ組織は、優れたバーリング加工性(穴拡げ性)を確保するためにフェライト単相が望ましい。ただし、必要に応じ一部ベイナイトを含むことを許容するものである。なお、良好なバーリング加工性を確保するためには、ベイナイトの体積分率は10%以下が望ましい。ただし、不可避的なマルテンサイト、残留オーステナイトおよびパーライトを含むことを許容するものである。
【0023】
なお、ここで言うフェライトとは、ベイニティックフェライトおよびアシュキュラーフェライト組織も含む。また、良好な疲労特性を確保するためには、粗大な炭化物を含むパーライトの体積分率は5%以下が望ましい。また、良好なバーリング性(穴拡げ性)を確保するためには、残留オーステナイトおよびマルテンサイトを合わせた体積分率は5%未満が望ましい。
ここで、フェライト、ベイナイト、残留オーステナイト、パーライト、マルテンサイトの体積分率とは、鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い200〜500倍の倍率で観察された板厚の1/4tにおけるミクロ組織の面積分率で定義される。
【0024】
一方、鋼中に含まれるTiを含む窒化物の平均円相当径は、7μm超であると穴拡げ値の低値を顕著に低下させ、そのバラツキを増大させる。従って、Tiを含む窒化物の平均円相当径は7μm以下とする。さらに、Tiを含む窒化物のサイズを小さくするためには、その析出核としてCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物があることが望ましく、その効果を得るためには少なくともTiを含む窒化物の3割以上にこれら複合酸化物が含まれることが必要であった。ただし、複合酸化物に若干のMg,Ce,Zrが含まれることは許容される。
【0025】
ここで、Tiを含む窒化物の平均円相当径とは、鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い1000倍の倍率で観察された板厚の1/4tにおける20視野以上のミクロ組織写真から画像処理装置等より得られる値を採用し、その平均値と定義される。
【0026】
また、Tiを含む窒化物の核となるCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物の割合は、上記ミクロ写真で観察されたTiを含む窒化物のうち核となる複合酸化物を含むものの割合で、(核となる複合酸化物を含むTiを含む窒化物の個数)/(観察されたTiを含む窒化物の総数)と定義される。さらに、その核の複合酸化物組成の特定は各視野で1個以上を分析することとし、走査型電子顕微鏡に付加されているエネルギー分散型X線分光(Energy Dispersive X−ray Spectroscope:EDS)や、電子エネルギー損失分光(Electron Energy Loss Spectroscope :EELS)にて確認した。
【0027】
続いて、本発明の化学成分の限定理由について説明する。
Cは、0.1%超含有していると加工性及び溶接性が劣化するので、0.1%以下とする。また0.01%未満であると強度が低下するので、0.01%以上とする。
【0028】
Siは、予備脱酸に必要な元素であると共に固溶強化元素として強度上昇に有効である。所望の強度を得るためには0.01%以上含有する必要がある。しかし、2%超含有すると加工性が劣化する。そこでSiの含有量は0.01%以上、2%以下とする。
【0029】
Mnは、固溶強化元素として強度上昇に有効である。所望の強度を得るためには0.05%以上必要である。また、Mn以外にSによる熱間割れの発生を抑制するTiなどの元素が十分に添加されない場合には、質量%でMn/S≧20となるMn量を添加することが望ましい。一方、3%超添加するとスラブ割れを生ずるため、3%以下とする。
【0030】
Pは、不純物であり低いほど望ましく、0.1%超含有すると加工性や溶接性に悪影響を及ぼすと共に疲労特性も低下させるので、0.1%以下とする。
【0031】
Sは、多すぎると熱間圧延時の割れを引き起こすので極力低減させるべきであるが、0.03%以下ならば許容できる範囲である。
【0032】
Alは、溶鋼脱酸時に微細な酸化物を多数分散させるために必要な元素であり、その効果を得るためには0.005%以上添加する。一方、過剰に添加するとその効果が失われるため、その上限を0.02%とする。
【0033】
Nは、Cよりも高温にてTiおよびNbと析出物を形成し、Cを固定するのに有効なTi及びNbを減少させるばかりでなく、穴拡げ値のバラツキを増大させる大きなサイズのTi窒化物を形成する。従って極力低減させるべきであるが、0.005%以下ならば許容できる範囲である。
【0034】
Caは、溶鋼脱酸時に微細な酸化物を多数分散させるために必要な元素であり、その効果を得るためには0.0005%以上添加する。一方、0.003%超添加してもその効果が飽和するので、その上限を0.003%とする。
【0035】
Tiは、本発明における最も重要な元素の一つである。すなわち、Tiは析出強化により鋼板の強度上昇に寄与する。ただし、0.05%未満ではこの効果が不十分であり、0.3%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。従ってTiの含有量は0.05%以上、0.3%以下とする。
【0036】
さらに、バーリング加工性を劣化させるセメンタイト等の炭化物の原因となるCを析出固定し、バーリング加工性の向上に寄与するためには、Ti−(48/12)C≧0であることが望ましいが、SおよびNはCよりも比較的高温域でTiと析出物を形成するので、上記条件を満たすためには必然的にTi−(48/12)C−(48/14)N−(48/32)S≧0%の条件を満たすことが望ましい。ただし、Ti−(48/12)C−(48/14)N−(48/32)S≧−0.03%であれば、例えば780MPa級の鋼板であっても穴拡げ率λを70%程度確保でき、バーリング加工性がそれほど劣化せず許容できる範囲なので、本発明においてTiとC、N、Sの関係は、Ti−(48/12)C− (48/14)N−(48/32)S≧−0.03%とする。
またTiは、溶鋼脱酸時に微細な酸化物を多数分散させるために必要な元素でもあり、さらに、これら微細な酸化物を核としてTiを含む窒化物が微細に晶出または析出するため、Tiを含む窒化物の平均円相当径を小さくし、穴拡げ値のバラツキを低減する。
【0037】
Nb,Mo,V,Crは、Tiと同様に析出強化により鋼板の強度上昇に寄与し、また、結晶粒を細粒化してバーリング加工性を改善する効果もあるので、必要に応じてこれらの少なくとも1種を含有させる。ただし、それぞれ0.01%、0.05%、0.02%、0.01%未満ではこの効果が不十分であり、0.5%、1%、0.2%、1%超含有してもその効果が飽和するだけでなく合金コストの上昇を招く。
【0038】
さらに、バーリング加工性を劣化させるセメンタイト等の炭化物の原因となるCを析出固定し、バーリング加工性の向上に寄与するためには、前記と同様にTi+(48/93)Nb+(48/96)Mo+(48/51)V+(48/52)Cr−(48/12)C−(48/14)N−(48/32)S≧0%の条件を満たすことが望ましい。
ただし前記と同様に、Ti+(48/93)Nb+(48/96)Mo+(48/51)V+(48/52)Cr−(48/12)C−(48/14)N− (48/32)S≧−0.03%であれば、例えば780MPa級の鋼板であっても穴拡げ率λを70%程度確保でき、バーリング加工性がそれほど劣化せず許容できる範囲なので、本発明においてTi,Nb,Mo,V,CrとC,N,Sの関係は、Ti+(48/93)Nb+(48/96)Mo+(48/51)V+(48/52)Cr−(48/12)C−(48/14)N−(48/32)S≧−0.03%とする。
【0039】
Bは、固溶C量の減少が原因と考えられるPによる粒界脆化を抑制することによって疲労限を上昇させる効果があるので、必要に応じ添加する。ただし、0.0002%未満ではその効果を得るために不十分であり、0.002%超添加するとスラブ割れが起こる。よってBの添加は、0.0002%以上、0.002%以下とする。
【0040】
REMは、破壊の起点となったり、加工性を劣化させる非金属介在物の形態を変化させて無害化する元素である。ただし、0.0005%未満添加してもその効果がなく、0.02%超添加してもその効果が飽和するので、0.0005〜0.02%添加する。
【0041】
さらに、強度を付与するために、Cu,Ni,Zrの析出強化もしくは固溶強化元素の一種または二種以上を添加してもよい。ただし、それぞれ0.2%、0.1%、0.02%未満ではその効果を得ることができない。また、それぞれ1.2%、0.6%、0.2%を超え添加してもその効果は飽和する。
【0042】
なお、これらを主成分とする鋼にSn,Co,Zn,W,Mgを合計で1%以下含有しても構わない。しかしながらSnは熱間圧延時に疵が発生する恐れがあるので、0.05%以下が望ましい。
【0043】
次に、本発明の製造方法の限定理由について、以下に詳細に述べる。
本発明は、鋳造後、熱間圧延後冷却ままもしくは、熱間圧延後冷却・酸洗し冷延した後に熱処理、あるいは熱延鋼板もしくは冷延鋼板を溶融めっきラインにて熱処理を施したまま、更にはこれらの鋼板に別途表面処理を施すことによっても得られる。
【0044】
本発明において熱間圧延に先行する製造方法のうち、鋼成分を調整する溶製工程以外は特に限定するものではない。すなわち、高炉や電炉等による溶製に引き続き各種の2次製錬で目的の成分含有量になるように、後述する方法で成分調整を行い、次いで通常の連続鋳造、インゴット法による鋳造の他、薄スラブ鋳造などの方法で鋳造すればよい。原料にはスクラップを使用しても構わない。連続鋳造よって得たスラブの場合には、高温鋳片のまま熱間圧延機に直送してもよいし、室温まで冷却後に加熱炉にて再加熱した後に熱間圧延してもよい。
【0045】
溶製工程は本発明の最も重要な製造工程の一つである。すなわち、目的とする組成及び大きさのTiを含む窒化物を得るためには、脱酸工程で鋼中にCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物を微細に分散させる必要がある。これは、脱酸工程で強脱酸元素を逐次添加することで初めて実現できる。
【0046】
弱強逐次脱酸とは、弱脱酸元素酸化物が存在する溶鋼へ強脱酸元素を添加することで弱脱酸元素酸化物が還元され、遅い供給速度かつ、過飽和度が小さい状態で酸素が放出されると添加された強脱酸元素から生成する酸化物は微細になるという現象を適用したもので、弱脱酸元素であるSiから順次Ti、Al、強脱酸元素であるCaと段階的に脱酸元素を添加することで、これらの効果を最大限に発揮させる脱酸方法である。以下に順を追って説明する。
【0047】
まず、脱酸処理を行う前にTiよりも弱脱酸元素であるSi量を調整して、Si量と平衡する溶存酸素濃度を0.002〜0.008%とする。この溶存酸素濃度が0.002%未満では、最終的にTiを含む窒化物のサイズを小さくするのに十分な量のCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物が得られない。一方、0.008%超では、生成した複合酸化物が粗大化してTiを含む窒化物のサイズを小さくする効果が失われる。
また、脱酸処理を行う前段階において溶存酸素濃度を安定的に調整するためには、Siの添加が必要であり、Si濃度が0.05%未満ではSiと平衡する溶存酸素濃度が0.008%超となり、0.2%超ではSiと平衡する溶存酸素濃度が0.002%未満となる、従って、脱酸処理を行う前段階でのSi濃度は0.002%以上、0.008%以下とする。
【0048】
次に、この溶存酸素濃度の状態で最終含有量が0.005〜0.3%となる範囲でTiを添加して脱酸した後、直ちに最終含有量が0.005〜0.02%となるAlを添加する。このときTi投入後時間の経過と共に生成したTi酸化物は成長、凝集粗大化して浮上してしまうので、Alの投入は直ちに行う。ただし、5分以内であればTi酸化物の浮上がそれほど顕著ではないので、Alの投入はTi投入後5分以内が望ましい。また、Alの投入量が最終含有量0.005%未満になるような量であると、Ti酸化物は成長、凝集粗大化して浮上してしまう。一方、Alの投入量が最終含有量0.02%超になるような量であると、Ti酸化物が完全に還元されてしまい、最終的にCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物が十分に得られない。
【0049】
続いて、Ti,Alより更に強脱酸元素であるCaを最終含有量が0.0005〜0.003%となるように望ましくは5分以内に投入する。ただしその後、必要に応じて、これら元素およびこれら以外の元素を加えてもよい。ここでCaの投入量が最終含有量0.0005%未満になるような量であると、Caを含み、TiとAlのいずれか一種類以上を含む複合酸化物が十分に得られない。0.003%超になるように添加しても効果が飽和する。
【0050】
続いて、熱間圧延工程以降であるが、再加熱温度については特に制限はないが、1400℃以上であると、スケールオフ量が多量になり歩留まりが低下するので、再加熱温度は1400℃未満が望ましい。また、1000℃未満の加熱はスケジュール上操業効率を著しく損なうため、再加熱温度は1000℃以上が望ましい。さらには、1100℃未満での加熱はTiおよび/またはNbを含む析出物がスラブ中で再溶解せず粗大化し析出強化能を失うばかりでなく、バーリング加工性にとって望ましいサイズと分布のTiおよび/またはNbを含む析出物が析出しなくなるので、再加熱温度は1100℃以上が望ましい。
【0051】
粗圧延終了から後の粗バーを仕上げ圧延開始までの間、および/または粗バーの仕上げ圧延中に加熱は必要に応じて行う。特に本発明のうちでも優れた破断延びを安定して得るためには、MnS等の微細析出を抑制することが有効である。通常、MnS等の析出物は1250℃程度のスラブ再加熱で再固溶が起こり、後の熱間圧延中に微細析出する。従って、スラブ再加熱温度を1150℃程度に制御しMnS等の再固溶を抑制できれば延性を改善できる。
ただし、スラブ再加熱温度が1150℃程度になると圧延終了温度がAr3 未満となる場合があり、圧延終了温度を本発明の範囲にするためには、粗圧延終了から仕上圧延開始までの間および/または仕上げ圧延中での粗バーまたは圧延材の加熱が有効な手段となる。
【0052】
粗圧延終了と仕上げ圧延開始の間にデスケーリングを行う場合は、鋼板表面での高圧水の衝突圧P(MPa)×流量L(リットル/cm)≧0.0025の条件を満たすことが望ましい。
鋼板表面での高圧水の衝突圧Pは以下のように記述される(「鉄と鋼」1991,vol.77,No.9,p1450参照)。
P(MPa)=5.64×P×V/H
ただし、
(MPa):液圧力
V(リットル/min):ノズル流液量
H(cm):鋼板表面とノズル間の距離
【0053】
流量Lは以下のように記述される。
L(リットル/cm)=V/(W×v)
ただし、
V(リットル/min):ノズル流液量
W(cm):ノズル当たり噴射液が鋼板表面に当たっている幅
v(cm/min):通板速度
衝突圧P×流量Lの上限は、本発明の効果を得るためには特に定める必要はないが、ノズル流液量を増加させるとノズルの摩耗が激しくなる等の不都合が生じるため、0.02以下とすることが望ましい。
【0054】
さらに、仕上げ圧延後の鋼板表面の最大高さRyがJIS B 0601で定義するところの15μm(最大高さ15μm,基準長さ2.5mm,評価長さ12.5mm)以下であることが望ましい。これは、例えば「金属材料疲労設計便覧」、日本材料学会編、84頁に記載されている通り、熱延または酸洗ままの鋼板の疲労強度は鋼板表面の最大高さRyと相関があることから明らかである。またその後の仕上げ圧延は、デスケーリング後に再びスケールが生成してしまうのを防ぐために5秒以内に行うのが望ましい。
また、粗圧延後またはそれに続くデスケーリング後にシートバーを接合し、連続的に仕上げ圧延をしてもよい。その際に粗バーを一旦コイル状に巻き、必要に応じて保温機能を有するカバーに格納し、再度巻き戻してから接合を行ってもよい。
【0055】
仕上げ圧延は、熱延鋼板として最終製品にする場合においては、その仕上げ圧延をAr3 変態点温度以上の温度域で終了する必要がある。ここでAr3 変態点温度とは、例えば以下の計算式により鋼成分との関係で簡易的に示される。すなわち、
Ar3 =910−310×%C+25×%Si−80×%Mn
熱間圧延中に圧延温度がAr3 変態点を切ると、ひずみが残留して延性が低下するためである。仕上げ温度の上限は、本発明の効果を得るためには特に定める必要はないが、操業上スケール疵が発生する可能性があるのため、1000℃以下とすることが望ましい。
【0056】
本発明において仕上圧延を終了した後、所定の巻取温度(CT)で巻取るまでの工程については特に定めないが、バーリング性をそれほど劣化させずに延性との両立を目指す場合は、Ar3 変態点からAr1 変態点までの温度域(フェライトとオーステナイトの二相域)で1〜20秒間滞留させてもよい。ここでの滞留は、二相域でフェライト変態を促進させるために行うが、1秒未満では、二相域におけるフェライト変態が不十分なため、十分な延性が得られず、20秒超では、Tiおよび/またはNbを含む析出物のサイズが粗大化し、析出強化による強度上昇に寄与しなくなる恐れがある。
また、1〜20秒間の滞留をさせる温度域は、フェライト変態を容易に促進させるためにはAr1 変態点以上860℃以下が望ましい。さらに、1〜20秒間の滞留時間は生産性を極端に低下させないためには、1〜10秒間とすることが望ましい。
【0057】
また、これらの条件を満たすためには、仕上げ圧延終了後20℃/s以上の冷却速度で当該温度域に迅速に到達させることが必要である。冷却速度の上限は特に定めないが、冷却設備の能力上300℃/s以下が妥当な冷却速度である。さらに、あまりにもこの冷却速度が早いと冷却終了温度を制御できず、オーバーシュートしてAr1 変態点以下まで過冷却されてしまう可能性があり、延性改善の効果が失われるので、ここでの冷却速度は150℃/s以下が望ましい。
【0058】
次に、その温度域から所定の巻取温度(CT)まで冷却するが、その冷却速度は本発明の効果を得るためには特に定める必要はない。ただし冷却速度があまりに遅いと、Tiおよび/またはNbを含む析出物のサイズが粗大化し、析出強化による強度上昇に寄与しなくなる恐れがあるので、冷却速度の下限は20℃/s以上が望ましい。また、巻取温度までの冷却速度の上限は特に定めることなく本発明の効果を得ることができるが、熱ひずみによる板そりが懸念されることから、300℃/s以下とすることが望ましい。
【0059】
次に巻取温度が350℃未満では、十分なTiおよび/またはNbを含む析出物が生じなくなり、鋼中に固溶Cが残留して加工性を低下させる恐れがあり、700℃超ではTiおよび/またはNbを含む析出物のサイズが粗大化し、析出強化による強度上昇に寄与しなくなるばかりでなく、析出物が大きすぎると析出物と母相の界面にボイドが生じやすくなり、穴拡性が低下する恐れがある。従って巻取温度は350〜700℃とする。
【0060】
さらに、巻取り後の冷却速度は特に限定しないが、Cuを1%以上添加した場合、巻取温度(CT)が450℃超であると、巻取り後にCuが析出して加工性が劣化するばかりでなく、疲労特性向上に有効な固溶状態のCuが失われる恐れがあるので、巻取温度(CT)が450℃超の場合、巻取り後の冷却速度は200℃までを30℃/s以上とすることが望ましい。
【0061】
熱間圧延工程終了後は必要に応じて酸洗し、その後インラインまたはオフラインで圧下率10%以下のスキンパスまたは圧下率40%程度までの冷間圧延を施しても構わない。
【0062】
次に、冷延鋼板として最終製品にする場合であるが、熱間での仕上げ圧延条件は特に限定しない。また、仕上げ圧延の最終パス温度(FT)はAr3 変態点温度未満で終了しても差し支えないが、その場合は、圧延前もしくは圧延中に強い加工組織が残留するため、続く巻取処理または加熱処理により回復、再結晶させることが望ましい。続く酸洗後の冷間圧延工程は特に限定することなく本発明の効果が得られる。
【0063】
この様に冷間圧延された鋼板の熱処理は連続焼鈍工程を前提としている。まず、800℃以上の温度域で5〜150秒間行う。この熱処理温度が800℃未満の場合には、冷間圧延で加工されたフェライト相の再結晶が不十分であるばかりでなく、後の冷却においてバーリング加工性にとって好ましいベイニティックなフェライト,またはフェライトおよびベイナイトが得られない懸念があるので、熱処理温度は800℃以上とする。また、熱処理温度の上限は特に定めないが、連続焼鈍設備の制約上実質的に900℃以下である。
【0064】
一方、この温度域での保持時間は、5秒未満では、TiおよびNbの炭窒化物が再固溶するのに不十分であり、150秒超の熱処理を行ってもその効果が飽和するばかりでなく生産性を低下させるので、保持時間は5〜150秒間とする。
【0065】
次に冷却終了までの平均冷却速度であるが、50℃/秒以上が必要である。これは冷却終了までの平均冷却速度が50℃/秒未満であると、バーリング加工性にとって好ましいベイニティックなフェライト、またはフェライトおよびベイナイトの体積分率が減少する恐れがあるからである。また冷却速度の上限は、実際の工場設備能力等を考慮すると200℃/秒以下である。
【0066】
冷却終了温度は700℃以下の温度域であることが必要であるが、連続焼鈍設備を用いる場合、冷却終了温度が550℃超になることは通常はないので、特に配慮する必要はない。また冷却終了温度の下限は、本発明の効果を得るためには特に定める必要はない。
さらにその後、必要に応じてスキンパス圧延を施してもよい。
【0067】
酸洗後の熱延鋼板、もしくは上記の熱処理工程終了後の冷延鋼板に亜鉛めっきを施すためには、亜鉛めっき浴中に浸漬し、必要に応じて合金化処理してもよい。
【0068】
【実施例】
以下に、実施例により本発明をさらに説明する。
表1に示す化学成分を有するA〜Nの鋼は、転炉にて溶製して、CASまたはRHで二次精錬を実施した。脱酸処理は二次精錬工程にて実施し、表2に示すようにTi投入前に溶鋼の溶存酸素をSi濃度にて調整し、その後、表2に示すようにTi,Al,Caにて逐次脱酸を行った。これらの鋼は、連続鋳造後、表2に示す加熱温度で再加熱し、粗圧延に続く仕上げ圧延で1.2〜5.5mmの板厚にした後に巻き取った。
粗バーについては、FTがAr3 変態点を切らないように、粗圧延終了から仕上げ圧延中までの間で50〜100℃昇温するように加熱した(表中のバーヒータ適用)。表1中の化学組成についての表示は質量%である。なお、表2に示すように一部については熱間圧延工程後、酸洗、冷延、熱処理を行った。板厚は0.7〜2.3mmである。一方、上記鋼板のうち鋼E−5および鋼Iについては、亜鉛めっきを施した。
【0069】
製造条件の詳細を表2に示す。ここで、「SRT」はスラブ加熱温度、「FT」は最終パス仕上げ圧延温度、「冷却速度」とは、仕上げ圧延後の冷却開始から冷却停止までの平均冷却速度、「冷却終了温度」とは前記冷却停止での温度、「CT」は巻き取り温度である。ただし、後に冷延工程にて圧延を行う場合はこのような制限の限りではないので「―」とした。
【0070】
このようにして得られた熱延板の引張試験は、供試材を、まずJIS Z 2201記載の5号試験片に加工し、JIS Z 2241記載の試験方法に従って行った。表2に降伏強度(YP)、引張強度(TS)、破断伸び(El)を併せて示す。一方、バーリング加工性(穴拡げ性)については、日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って評価した。
表2に穴拡げ率(λ)を示す。穴拡げ率のバラツキ(Δλ)とは、例えば板幅900×板長さ600mmから碁盤の目状に150×150mmの板を24枚切出し、前記日本鉄鋼連盟規格JFS T 1001−1996記載の穴拡げ試験方法に従って得られた穴拡げ率の最大値と最小値の差と定義する。
【0071】
Tiを含む窒化物の平均円相当径とは、鋼板板幅の1/4Wもしくは3/4W位置より切出した試料を圧延方向断面に研磨し、ナイタール試薬を用いてエッチングし、光学顕微鏡を用い1000倍の倍率で観察された板厚の1/4tにおける20視野以上のミクロ組織写真から画像処理装置等より得られる値を採用し、その平均値と定義される。
【0072】
Tiを含む窒化物の核となるCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物の割合は、上記ミクロ写真で観察されたTiを含む窒化物のうち核となる複合酸化物を含むものの割合で、(核となる複合酸化物を含むTiを含む窒化物の個数)/(観察されたTiを含む窒化物の総数)と定義される。
さらに、その核の複合酸化物組成の特定は各視野で1個以上を分析することとし、走査型電子顕微鏡に付加されているエネルギー分散型X線分光(Energy Dispersive X−ray Spectroscope:EDS)や、電子エネルギー損失分光(Electron Energy Loss Spectroscope :EELS)にて確認した。
【0073】
本発明に沿うものは、鋼A、E−1、E−4、F、I、J、K、L、Mの9鋼であり、所定の量の鋼成分を含有し、鋼中に含まれるTiを含む窒化物の平均円相当径が7μm以下であることを特徴とするバーリング性高強度鋼板が得られている。従って、本発明記載の方法によって評価した従来鋼の穴拡げ率(λ)のバラツキ(Δλ)が40%以上であるのに対して有意差が認められる。
【0074】
上記以外の鋼は、以下の理由によって本発明の範囲外である。
すなわち、鋼Bは、溶製工程においてTi脱酸後のAlを投入するまでの時間が長くTi窒化物径が7μm超となり、穴拡げ率(λ)のバラツキ(Δλ)が大きい。鋼Cは、溶製工程においてTi投入前の溶存酸素量が小さくTi窒化物径7μm超となり、穴拡げ率(λ)のバラツキ(Δλ)が大きい。鋼Dは、溶製工程において逐次脱酸元素の投入順序が本発明の範囲外であり、Ti窒化物径7μm超となるので、穴拡げ率(λ)のバラツキ(Δλ)が大きい。
【0075】
鋼E−2は、仕上圧延終了温度が本発明の範囲外であるので、目的とするミクロ組織が得られず、十分な伸び(El)が得られていない。鋼E−3は、巻き取り温度が本発明の範囲外であるので、目的とするミクロ組織が得られず、十分な強度(TS)が得られていない。鋼Gは、Al含有量が本発明の範囲外であるので、穴拡げ率(λ)のバラツキ(Δλ)が大きい。鋼Hは、Ca含有量が本発明の範囲外であるので、穴拡げ率(λ)のバラツキ(Δλ)が大きい。鋼Nは、Ti*が本発明の範囲外であるので、所要の穴拡げ率(λ)が得られていない。
【0076】
【表1】

Figure 2004250749
【0077】
【表2】
Figure 2004250749
【0078】
【発明の効果】
以上詳述したように、本発明は、穴拡げ値のバラツキが少ないバーリング性高強度薄鋼板およびその製造方法に関するものであり、これらの高強度薄鋼板を用いることにより、プレス加工時の割れ等の成形不良が回避できるばかりでなく、歩留を向上させることもできるため、工業的価値が高い発明である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a burring high-strength thin steel sheet having a tensile strength of 640 MPa or more with less material variation and a method for producing the same, and particularly, a hole expansion value which is a formability index when a sheared end face is stretch-flanged. And a method of manufacturing the same.
[0002]
[Prior art]
BACKGROUND ART In recent years, application of light metals such as Al alloys and high-strength steel sheets to automobile members has been promoted for the purpose of weight reduction in order to improve fuel efficiency of automobiles. However, light metals such as Al alloys have the advantage of high specific strength, but are significantly more expensive than steel, so their application is limited to special applications. Therefore, in order to promote weight reduction of automobiles in a wider range, it is strongly required to use inexpensive high-strength steel sheets.
[0003]
In general, the higher the strength of a material, the lower the ductility and the worse the moldability. Steel materials are no exception, and attempts have been made to achieve both high strength and high ductility. On the other hand, in addition to these characteristics, stretch flangeability and burring properties are required for materials used for undercarriage parts of automobiles and the like. However, as the strength increases, the stretch flangeability and the burring property not only tend to decrease, but also the dispersion may increase. Attempts to improve the average value of the stretch flangeability and the burring property (absolute value) It is also an important issue to consider when applying high-strength steel sheets to undercarriage parts of automobiles, for example, by improving the lower limit and reducing the variation.
[0004]
As a high-strength hot-rolled steel sheet with excellent stretch flangeability or burring workability, a high-strength hot-rolled steel sheet with excellent stretch flangeability is obtained by adding Ti and Nb to reduce the second phase, and the main phase is polygonal. An invention obtained by precipitating and strengthening TiC and NbC in ferrite is disclosed (for example, Patent Document 1).
However, in order to obtain high stretch flangeability, polygonal ferrite having an area ratio of 85% or more is essential. To obtain polygonal ferrite having an area ratio of 85% or more, growth of ferrite grains after hot rolling is promoted. Long-term holding is required, which is not preferable in terms of operating costs.
[0005]
Also disclosed is the invention of obtaining a high-strength hot-rolled steel sheet having excellent stretch flangeability by adding Ti and Nb to reduce the second phase to make the microstructure an acicular ferrite and strengthening the precipitation with TiC and NbC. (For example, Patent Document 2).
However, due to the microstructure having a high dislocation density and the precipitation of fine TiC and / or NbC, 784.5 MPa (80 kgf / mm2) Is only about 17% ductility, and the moldability is insufficient.
[0006]
In addition, Ti and Nb are added in an amount of C equivalent or more to make the microstructure into a ferrite single phase and Cu is added, and ε-Cu is precipitated together with TiC and NbC, thereby enhancing the stretch flangeability with enhanced strength. An invention for obtaining a high-strength hot-rolled steel sheet is disclosed (for example, Patent Document 3).
However, since ε-Cu is precipitated in the ferrite phase, ductility may be reduced and workability may be deteriorated.
[0007]
Furthermore, the stretch flangeability in which the ferrite is changed from polygonal to bainitic by defining the value of Ni / Cu by adding Ti and Nb to the ferrite single phase by adding C equivalents or more to improve the stretch flangeability. To obtain a high-strength hot-rolled steel sheet excellent in the above (for example, Patent Document 4).
However, due to the microstructure having a high dislocation density and the precipitation of fine TiC and / or NbC, 784.5 MPa (80 kgf / mm2) Is only about 20% ductility, and the moldability is insufficient.
[0008]
In addition, the invention aimed at improving the characteristics of steel by controlling the nitride of Ti with oxide as a nucleus has been aimed at steel materials used in ships, marine structures, middle and high-rise buildings, and the like. (For example, Patent Document 5).
However, the purpose is also to improve the toughness by suppressing the growth of γ grains in the heat affected zone at the time of ultra-high heat input welding, which is completely different from the present invention.
[0009]
Regarding the improvement of hole expandability, there is an invention in which an oxide of Mg is used as an oxide serving as a nucleus of a nitride of Ti (for example, Patent Document 6).
However, this is different from the present invention in which Ca is used as an oxide of Mg as an oxide serving as a nucleus of a nitride of Ti.
[0010]
Further, these inventions do not mention any variation. However, in a steel plate for some parts such as a suspension arm, the variation is very important as well as the workability such as stretch flangeability and burring property, and the above-mentioned conventional technology cannot provide satisfactory characteristics. Further, even if both the stretch flangeability and the burring property and the reduction of the variation thereof are satisfied, it is important to provide a manufacturing method that can be manufactured stably at a low cost, and the above-mentioned conventional technology is insufficient. I have to say.
[0011]
[Patent Document 1]
JP-A-6-200351
[Patent Document 2]
JP-A-7-011382
[Patent Document 3]
JP-A-7-70669
[Patent Document 4]
JP-A-8-157957
[Patent Document 5]
JP-A-10-183295
[Patent Document 6]
JP 2001-342543 A
[0012]
[Problems to be solved by the invention]
The present invention relates to a steel sheet having a small variation in hole expansion value, which is an index of formability when a sheared end face is stretch-flange-formed, and a method of manufacturing the same. That is, an object of the present invention is to provide a burring high-strength thin steel sheet having a tensile strength of 640 MPa or more with less variation in hole expansion value and a manufacturing method capable of inexpensively and stably manufacturing the steel sheet.
[0013]
[Means for Solving the Problems]
The present inventors have in mind the manufacturing process of high-strength thin steel sheets produced on an industrial scale by currently used manufacturing equipment, and consider the hole expansion value of burring high-strength thin steel sheets having a tensile strength of 640 MPa or more. Intensive research to improve the variability.
As a result, C: 0.01 to 0.1%, Si: 0.01 to 2%, Mn: 0.05 to 3%, P ≦ 0.1%, S ≦ 0.03%, Al: 0. 005-0.02%, N ≦ 0.005%, Ca: 0.0005-0.003%, Ti: 0.005-0.3%, and further Ti- (48/12) C- ( 48/14) N- (48/32) S ≧ -0.03% is a steel containing Ti, the balance being Fe and unavoidable impurities, and the microstructure is mainly made of ferrite. The nitride containing Ti contained in the steel has an average equivalent circle diameter of 7 μm or less, and further contains 30% or more of Ca in the nitride containing Ti, and at least one of Ti and Al Inclusion of a composite oxide containing, can increase the hole opening of burring high strength thin steel plate with a tensile strength of 640 MPa or more Newly found that the variation improvement is very effective, it is obtained without the present invention.
[0014]
That is, the gist of the present invention is as follows.
(1) In mass%,
C: 0.01 to 0.1%, Si: 0.01 to 2%,
Mn: 0.05-3%, P ≦ 0.1%,
S ≦ 0.03%, Al: 0.005 to 0.02%,
N ≦ 0.005%, Ca: 0.0005 to 0.003%,
Ti: 0.005 to 0.3%
And further contains Ti in a range satisfying Ti- (48/12) C- (48/14) N- (48/32) S ≧ -0.03%, with the balance being Fe and unavoidable impurities. A burring high-strength thin steel sheet comprising: a microstructure mainly composed of ferrite; and an average circle-equivalent diameter of a nitride containing Ti contained in the steel being 7 μm or less.
(2) Among the nitrides containing Ti contained in the steel sheet according to (1), 30% or more of the nitrides contain Ca and contain a composite oxide containing at least one of Ti and Al. A burring high-strength thin steel sheet characterized by the following.
(3) The steel sheet according to (1) or (2), further in mass%,
Nb: 0.01 to 0.5%, Mo: 0.05 to 1%,
V: 0.02 to 0.2%, Cr: 0.01 to 1%
And Ti + (48/93) Nb + (48/96) Mo + (48/51) V + (48/52) Cr- (48/12) C- (48/14) N- (48/32) S A burring high-strength thin steel sheet containing Ti and one or more of Nb, Mo, V, and Cr in a range satisfying ≧ −0.03%.
(4) The burring high strength, wherein the steel sheet according to any one of (1) to (3) further contains B: 0.0002 to 0.002% by mass%. Sheet steel.
(5) The burring high strength characterized in that the steel sheet according to any one of (1) to (4) further contains REM: 0.0005 to 0.02% by mass%. Sheet steel.
(6) The steel sheet according to any one of the above (1) to (5) further comprises, by mass%, Cu: 0.2 to 1.2%, Ni: 0.1 to 0.6%,
Zr: 0.02-0.2%
A high-strength burring thin steel sheet comprising one or more of the following.
(7) A burring high-strength thin steel sheet, wherein the burring high-strength thin steel sheet according to any one of (1) to (6) is galvanized.
[0015]
(8) When adjusting molten steel for obtaining a thin steel sheet having the component according to any one of (1) to (6), the Si concentration is 0.05 to 0.2% and the dissolved oxygen concentration is Is added to Ti in molten steel adjusted to be 0.002 to 0.008% so as to have a final content of 0.005 to 0.3%, and then deoxidized. It is characterized by adding 0.005 to 0.02% Al, further adding Ca having a final content of 0.0005 to 0.003%, and then adding an insufficient alloy as necessary. Of burring high strength thin steel sheet.
(9) When hot rolling the cast slab of the molten steel obtained in (8) above, finish rolling in a temperature range not lower than the Ar3 transformation point after rough rolling of the slab and then cooling And producing a high-burring high-strength thin steel sheet at a temperature in the range of 350 ° C to 700 ° C.
(10) In the hot rolling according to (9), the rough bar after the rough rolling of the steel slab is heated until the start of finish rolling and / or during the finish rolling of the rough bar. Of burring high strength thin steel sheet.
(11) A method for producing a high-strength burring thin steel sheet, comprising performing descaling after the completion of rough rolling in the hot rolling according to (9) or (10).
(12) After hot-rolling, pickling, and cold-rolling the cast slab of the molten steel obtained in (8), the slab is held at a temperature of 800 ° C. or higher for 5 to 150 seconds, and then average cooled. A method for producing a high-strength burring thin steel sheet, comprising performing a heat treatment in a step of cooling to a temperature range of 700 ° C. or less at a cooling rate of 50 ° C./sec or more.
(13) Production of a burring high-strength thin steel sheet, characterized in that, in the production method according to any one of the above (9) to (10), the surface of the steel sheet is galvanized by immersion in a galvanizing bath. Method.
(14) The method for producing a burring high-strength thin steel sheet according to the method (13), wherein the steel sheet is dipped in a zinc plating bath, galvanized, and then alloyed.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
The details of the present invention will be described below.
First, as to the background of the present invention, as described in Patent Document 7, it is known that hole reduction is improved by reducing iron carbide in the microstructure. Therefore, attempts have been made to reduce the amount of iron carbide in the microstructure by adding an element that forms a carbide such as Ti or Nb. In particular, Ti is frequently used because it has a small atomic weight and requires a small amount of addition as compared with other carbide-forming elements in order to obtain a stoichiometric composition required for carbide formation, and is relatively inexpensive. However, since Ti crystallizes as a nitride during solidification when casting molten steel and precipitates in the γ phase at a low temperature, a large amount of Ti nitride having a size of more than 10 μm is present in the microstructure when the amount of addition increases. Will be.
[0017]
[Patent Document 7]
JP-A-5-295485
[0018]
On the other hand, according to a study by the present inventors, in a steel sheet to which Ti is added, a λ value, which is a hole expansion value evaluated according to a hole expansion test method described in the Japan Iron and Steel Federation Standard JFS T1001-1996, is about 100%. For some steel plates, the variation was found to be 40-60%.
Here, the variation in the λ value is, for example, cut out 24 plates of 150 × 150 mm in a grid pattern from a plate width of 900 L × plate length of 600 Wmm, and the maximum value of the hole expansion ratio obtained according to the hole expansion test method. It is represented by the difference between the minimum values, and is defined as the difference between the maximum value and the minimum value of the hole expansion rate when the hole expansion value is evaluated for at least 12 sheets.
[0019]
When the cause of this was investigated in detail, the location of the through-thickness crack that determines the λ value in each test specimen was predominantly at the location where the crack occurred parallel to the rolling direction, and this direction was The Rankford value was found to be consistent with the lowest position. Further, when a crack initiation position is observed at this position by a scanning electron microscope, a nitride containing more than 10 μm of Ti is found at the crack initiation position of a test piece having a lower λ value than the average value. Were observed almost exclusively.
[0020]
From these investigation results, the value of λ decreases when TiN is present at the position where the Rankford value where the crack occurs is low, and the presence of a nitride containing more than 10 μm of Ti at that position has a low value of λ. It is strongly suggested that this is the cause (variation occurs).
In fact, as in the requirements of the present invention, in a steel sheet in which the generation of nitride containing Ti exceeding 10 μm was suppressed and the size of the nitride containing Ti was reduced, the range of the variation was halved to 10 to 30%. This variation tends to be smaller as the size of the nitride containing Ti is smaller, but if the average equivalent circle diameter is 7 μm or less, the effect of reducing the variation becomes clear to about 30% or less as estimated by the above method. .
[0021]
Furthermore, as a result of observing these Ti-containing nitrides in detail, many fine oxides serving as nuclei were observed, and when these were analyzed, a composite containing Ca and containing at least one of Ti and Al was obtained. It turned out to be an oxide. Therefore, it is presumed that these fine composite oxides become crystallization or precipitation nuclei of nitrides containing Ti, and that many nitrides containing Ti become finer, which has the effect of improving the low hole expansion value. .
[0022]
Next, the configuration of the present invention will be described in detail.
The microstructure of the steel sheet in the present invention is desirably a ferrite single phase in order to secure excellent burring workability (hole expanding property). However, it is allowed to partially contain bainite as needed. In order to secure good burring workability, the volume fraction of bainite is desirably 10% or less. However, the inclusion of unavoidable martensite, retained austenite and pearlite is permitted.
[0023]
The ferrite referred to here includes bainitic ferrite and ashular ferrite structures. In order to secure good fatigue characteristics, the volume fraction of pearlite containing coarse carbides is desirably 5% or less. In addition, in order to secure good burring properties (hole expanding properties), it is desirable that the combined volume fraction of retained austenite and martensite is less than 5%.
Here, the volume fractions of ferrite, bainite, retained austenite, pearlite, and martensite are defined as follows: a sample cut from a 1/4 W or 3/4 W position of a steel sheet width is polished into a cross section in the rolling direction, and a nital reagent is used. It is defined as the area fraction of the microstructure at 1 / 4t of the plate thickness observed by etching and observed at a magnification of 200 to 500 times using an optical microscope.
[0024]
On the other hand, if the average circle-equivalent diameter of the nitride containing Ti contained in the steel is more than 7 μm, the low value of the hole expansion value is significantly reduced, and the variation is increased. Therefore, the average circle equivalent diameter of the nitride containing Ti is set to 7 μm or less. Furthermore, in order to reduce the size of the nitride containing Ti, it is desirable that there be a composite oxide containing Ca as a precipitation nucleus and containing at least one of Ti and Al. It was necessary that at least 30% or more of the nitride containing Ti contained these composite oxides. However, it is permissible that the composite oxide contains some Mg, Ce, and Zr.
[0025]
Here, the average circle equivalent diameter of the nitride containing Ti refers to a sample cut from a 1 / 4W or 3 / 4W position of the steel sheet width, polished into a cross section in the rolling direction, etched using a nital reagent, and etched with an optical microscope. And a value obtained from an image processing apparatus or the like from a microstructure photograph of 20 visual fields or more at 1 / 4t of the plate thickness observed at a magnification of 1000 times is defined as the average value.
[0026]
In addition, the proportion of the composite oxide containing Ca as the nucleus of the nitride containing Ti and containing at least one of Ti and Al is the nucleus of the nitride containing Ti observed in the microphotograph. The ratio of those containing the composite oxide is defined as (the number of nitrides containing Ti including the composite oxide serving as a nucleus) / (the total number of observed nitrides containing Ti). Further, the composition of the composite oxide of the nucleus is determined by analyzing at least one in each field of view, such as energy dispersive X-ray spectroscopy (EDS) added to the scanning electron microscope or energy dispersive X-ray spectrum. And Electron Energy Loss Spectroscopy (EELS).
[0027]
Next, the reasons for limiting the chemical components of the present invention will be described.
If the content of C exceeds 0.1%, the workability and the weldability deteriorate, so the content of C is set to 0.1% or less. If it is less than 0.01%, the strength is reduced.
[0028]
Si is an element necessary for preliminary deoxidation and is effective in increasing strength as a solid solution strengthening element. In order to obtain a desired strength, it is necessary to contain 0.01% or more. However, if the content exceeds 2%, the workability deteriorates. Therefore, the content of Si is set to 0.01% or more and 2% or less.
[0029]
Mn is effective for increasing strength as a solid solution strengthening element. To obtain the desired strength, 0.05% or more is required. When an element such as Ti that suppresses hot cracking due to S is not sufficiently added in addition to Mn, it is desirable to add an Mn amount that satisfies Mn / S ≧ 20 in mass%. On the other hand, if added over 3%, slab cracks occur, so the content is set to 3% or less.
[0030]
P is an impurity and is desirably as low as possible. If P exceeds 0.1%, workability and weldability are adversely affected and fatigue characteristics are deteriorated.
[0031]
If S is too large, it causes cracking during hot rolling, so it should be reduced as much as possible, but if it is 0.03% or less, it is in an acceptable range.
[0032]
Al is an element necessary for dispersing a large number of fine oxides at the time of deoxidation of molten steel. To obtain the effect, 0.005% or more is added. On the other hand, if the addition is excessive, the effect is lost, so the upper limit is made 0.02%.
[0033]
N forms precipitates with Ti and Nb at higher temperatures than C, and not only reduces Ti and Nb effective for fixing C, but also increases the size of Ti nitride, which increases the variation in hole expansion value. Form an object. Therefore, it should be reduced as much as possible, but if it is 0.005% or less, it is within an acceptable range.
[0034]
Ca is an element necessary for dispersing a large number of fine oxides at the time of deoxidation of molten steel, and 0.0005% or more is added to obtain the effect. On the other hand, even if added over 0.003%, the effect is saturated, so the upper limit is made 0.003%.
[0035]
Ti is one of the most important elements in the present invention. That is, Ti contributes to an increase in the strength of the steel sheet by precipitation strengthening. However, if it is less than 0.05%, this effect is insufficient, and if it exceeds 0.3%, not only the effect is saturated, but also the alloy cost is increased. Therefore, the content of Ti is set to 0.05% or more and 0.3% or less.
[0036]
Further, in order to precipitate and fix C, which causes carbide such as cementite, which deteriorates burring workability, and to contribute to improvement in burring workability, it is preferable that Ti− (48/12) C ≧ 0. , S, and N form precipitates with Ti in a relatively high temperature range than C, so that in order to satisfy the above conditions, Ti- (48/12) C- (48/14) N- (48 / 32) It is desirable to satisfy the condition of S ≧ 0%. However, if Ti- (48/12) C- (48/14) N- (48/32) S ≧ -0.03%, for example, even if it is a 780 MPa class steel plate, the hole expansion ratio λ is 70%. In this invention, the relationship between Ti, C, N, and S is Ti- (48/12) C- (48/14) N- (48 / 32) S ≧ −0.03%
Ti is also an element necessary for dispersing a large number of fine oxides during the deoxidation of molten steel. Further, since nitrides containing Ti are finely crystallized or precipitated using these fine oxides as nuclei, Ti To reduce the average equivalent circle diameter of the nitride containing, thereby reducing the variation of the hole expansion value.
[0037]
Nb, Mo, V, and Cr contribute to an increase in the strength of the steel sheet by precipitation strengthening similarly to Ti, and also have the effect of improving the burring workability by making the crystal grains finer. At least one type is contained. However, this effect is insufficient if it is less than 0.01%, 0.05%, 0.02%, and 0.01%, respectively, and 0.5%, 1%, 0.2%, and more than 1% are contained. However, this effect not only saturates but also raises alloy costs.
[0038]
Further, in order to precipitate and fix C, which is a cause of carbide such as cementite, which deteriorates burring workability, and to contribute to improvement of burring workability, Ti + (48/93) Nb + (48/96) It is desirable that the condition of Mo + (48/51) V + (48/52) Cr- (48/12) C- (48/14) N- (48/32) S ≧ 0% is satisfied.
However, similarly to the above, Ti + (48/93) Nb + (48/96) Mo + (48/51) V + (48/52) Cr− (48/12) C− (48/14) N− (48/32) ) If S ≧ −0.03%, for example, even in the case of a 780 MPa class steel sheet, a hole expansion ratio λ of about 70% can be ensured, and the burring workability does not deteriorate so much. The relationship between Nb, Mo, V, Cr and C, N, S is Ti + (48/93) Nb + (48/96) Mo + (48/51) V + (48/52) Cr- (48/12) C- (48/14) N− (48/32) S ≧ −0.03%.
[0039]
B has an effect of increasing the fatigue limit by suppressing grain boundary embrittlement due to P, which is considered to be caused by a decrease in the amount of solute C, and is added as necessary. However, if it is less than 0.0002%, it is insufficient to obtain the effect, and if it exceeds 0.002%, slab cracking occurs. Therefore, the addition of B is set to 0.0002% or more and 0.002% or less.
[0040]
REM is an element that becomes a starting point of destruction or changes the form of nonmetallic inclusions that degrade workability and renders them harmless. However, if less than 0.0005% is added, there is no effect, and if more than 0.02%, the effect is saturated, so 0.0005 to 0.02% is added.
[0041]
Further, in order to impart strength, one or more of Cu, Ni, and Zr precipitation strengthening or solid solution strengthening elements may be added. However, the effect cannot be obtained if it is less than 0.2%, 0.1%, and 0.02%, respectively. The effect is saturated even if they are added in excess of 1.2%, 0.6% and 0.2%, respectively.
[0042]
In addition, steel containing these as main components may contain Sn, Co, Zn, W, and Mg in a total amount of 1% or less. However, since Sn may cause flaws during hot rolling, 0.05% or less is desirable.
[0043]
Next, the reasons for limiting the production method of the present invention will be described in detail below.
The present invention, after casting, hot rolled as it is after cooling, or heat treatment after cooling, pickling and cold rolling after hot rolling, or heat-treated hot-rolled steel sheet or cold-rolled steel sheet in a hot-dip plating line, Furthermore, it can be obtained by separately performing a surface treatment on these steel sheets.
[0044]
In the present invention, of the production method prior to hot rolling, there is no particular limitation other than the melting step of adjusting the steel composition. In other words, following smelting with a blast furnace or an electric furnace, etc., the components are adjusted by the method described below so that the target component content is obtained in various secondary smelting, and then normal continuous casting, casting by ingot method, It may be cast by a method such as thin slab casting. Scrap may be used as a raw material. In the case of a slab obtained by continuous casting, the slab may be sent directly to a hot rolling mill as it is, or may be cooled to room temperature and then re-heated in a heating furnace before hot rolling.
[0045]
The smelting process is one of the most important manufacturing processes of the present invention. In other words, in order to obtain a nitride containing Ti having a desired composition and size, a complex oxide containing Ca in the steel in the deoxidation step and containing at least one of Ti and Al is finely dispersed. Need to be done. This can be realized only by sequentially adding strongly deoxidizing elements in the deoxidizing step.
[0046]
Weak and strong sequential deoxidation refers to the addition of a strong deoxidizing element to molten steel in which a weak deoxidizing element oxide is present, whereby the weak deoxidizing element oxide is reduced. When the oxide is released, the oxide generated from the added strong deoxidizing element is applied to a phenomenon that the oxide becomes fine, and in order from Si which is a weak deoxidizing element to Ti, Al, and Ca which is a strong deoxidizing element. This is a deoxidation method in which these effects are maximized by adding a deoxidizing element in stages. The description will be given in order below.
[0047]
First, before performing the deoxidizing treatment, the amount of Si, which is a weaker deoxidizing element than that of Ti, is adjusted so that the dissolved oxygen concentration equilibrating with the amount of Si is 0.002 to 0.008%. If the dissolved oxygen concentration is less than 0.002%, a composite oxide containing Ca in an amount sufficient to finally reduce the size of the nitride containing Ti and containing at least one of Ti and Al is obtained. I can't get it. On the other hand, if it exceeds 0.008%, the effect of reducing the size of the nitride containing Ti due to coarsening of the generated composite oxide is lost.
In addition, in order to stably adjust the dissolved oxygen concentration in the stage before performing the deoxidizing treatment, it is necessary to add Si. When the Si concentration is less than 0.05%, the dissolved oxygen concentration equilibrating with Si is 0.1%. If it exceeds 008%, and if it exceeds 0.2%, the dissolved oxygen concentration which is in equilibrium with Si is less than 0.002%. Therefore, the Si concentration before the deoxidizing treatment is 0.002% or more and 0.008% or more. % Or less.
[0048]
Next, in this dissolved oxygen concentration state, after adding Ti in a range where the final content becomes 0.005 to 0.3% and deoxidizing, immediately the final content becomes 0.005 to 0.02%. Is added. At this time, the Ti oxide generated with the lapse of time after the introduction of Ti grows, agglomerates and coarsens, and floats. Therefore, the introduction of Al is performed immediately. However, as long as the time is within 5 minutes, the floating of the Ti oxide is not so remarkable. If the amount of Al is less than 0.005%, the Ti oxide grows, agglomerates and coarsens, and floats. On the other hand, if the input amount of Al is such that the final content exceeds 0.02%, the Ti oxide is completely reduced, and eventually contains Ca, and any one of Ti and Al A composite oxide containing the above is not sufficiently obtained.
[0049]
Subsequently, Ca, which is a more strongly deoxidizing element than Ti and Al, is added preferably within 5 minutes so that the final content becomes 0.0005 to 0.003%. However, after that, these elements and other elements may be added as necessary. If the amount of Ca is less than 0.0005% of the final content, a complex oxide containing Ca and containing at least one of Ti and Al cannot be sufficiently obtained. The effect saturates even if added so as to exceed 0.003%.
[0050]
Subsequently, after the hot rolling step, there is no particular limitation on the reheating temperature, but if it is 1400 ° C or more, the scale-off amount becomes large and the yield decreases, so the reheating temperature is less than 1400 ° C. Is desirable. Further, since the heating at a temperature lower than 1000 ° C. significantly impairs the operation efficiency on a schedule, the reheating temperature is preferably 1000 ° C. or higher. Furthermore, heating at a temperature lower than 1100 ° C. not only causes the precipitate containing Ti and / or Nb not to be re-dissolved in the slab to coarsen and loses the precipitation strengthening ability, but also to have the desired size and distribution of Ti and / or N for burring workability. Alternatively, since a precipitate containing Nb does not precipitate, the reheating temperature is desirably 1100 ° C. or higher.
[0051]
Heating is performed as necessary between the end of rough rolling and the start of finish rolling of the rough bar and / or during finish rolling of the rough bar. In particular, in order to stably obtain excellent break elongation in the present invention, it is effective to suppress fine precipitation of MnS and the like. Normally, precipitates such as MnS are re-dissolved by slab reheating at about 1250 ° C. and precipitate finely during subsequent hot rolling. Therefore, ductility can be improved if the slab reheating temperature can be controlled to about 1150 ° C. to suppress resolid solution of MnS or the like.
However, when the slab reheating temperature is about 1150 ° C., the rolling end temperature may be lower than Ar 3, and in order to keep the rolling end temperature within the range of the present invention, between the end of rough rolling and the start of finish rolling and / or Alternatively, heating the rough bar or the rolled material during the finish rolling is an effective means.
[0052]
When descaling is performed between the end of the rough rolling and the start of the finish rolling, the collision pressure P (MPa) of the high-pressure water on the steel sheet surface × the flow rate L (liter / cm)2It is desirable that the condition of ≧ 0.0025 is satisfied.
The collision pressure P of the high-pressure water on the steel sheet surface is described as follows (see “Iron and Steel”, 1991, vol. 77, No. 9, p. 1450).
P (MPa) = 5.64 × Po× V / H2
However,
Po(MPa): liquid pressure
V (liter / min): Nozzle flow volume
H (cm): Distance between steel plate surface and nozzle
[0053]
The flow rate L is described as follows.
L (liter / cm2) = V / (W × v)
However,
V (liter / min): Nozzle flow volume
W (cm): Width of spray liquid per nozzle hitting steel sheet surface
v (cm / min): Passing speed
The upper limit of the collision pressure P × the flow rate L does not need to be particularly determined in order to obtain the effect of the present invention. However, if the flow rate of the nozzle is increased, inconvenience such as intensified wear of the nozzle occurs. It is desirable to make the following.
[0054]
Furthermore, it is desirable that the maximum height Ry of the steel sheet surface after the finish rolling be 15 μm (maximum height 15 μm, reference length 2.5 mm, evaluation length 12.5 mm) or less as defined by JIS B0601. This is because the fatigue strength of a hot-rolled or pickled steel sheet has a correlation with the maximum height Ry of the steel sheet surface, as described in, for example, “Handbook for Fatigue Design of Metallic Materials”, edited by The Society of Materials Science, Japan, page 84. It is clear from Further, the subsequent finish rolling is desirably performed within 5 seconds in order to prevent scale from being generated again after descaling.
Further, the sheet bars may be joined after the rough rolling or after the subsequent descaling, and the finish bar may be continuously subjected to the finish rolling. At that time, the coarse bar may be temporarily wound in a coil shape, stored in a cover having a heat retaining function as necessary, and then re-wound before joining.
[0055]
In the case where the finish rolling is made into a final product as a hot-rolled steel sheet, the finish rolling needs to be finished in a temperature range equal to or higher than the Ar3 transformation point temperature. Here, the Ar3 transformation point temperature is simply shown in relation to the steel composition by the following calculation formula, for example. That is,
Ar3 = 910-310 *% C + 25 *% Si-80 *% Mn
This is because if the rolling temperature falls below the Ar3 transformation point during hot rolling, strain remains and ductility decreases. The upper limit of the finishing temperature does not need to be particularly determined in order to obtain the effects of the present invention, but is desirably set to 1000 ° C. or less because scale flaws may occur during operation.
[0056]
In the present invention, the process from finishing the finish rolling to winding at a predetermined winding temperature (CT) is not particularly specified. However, when aiming for compatibility with ductility without significantly deteriorating the burring property, the Ar3 transformation is required. It may be kept for 1 to 20 seconds in a temperature range from the point to the Ar1 transformation point (two-phase area of ferrite and austenite). The residence here is performed in order to promote ferrite transformation in the two-phase region, but if less than 1 second, the ferrite transformation in the two-phase region is insufficient, so that sufficient ductility cannot be obtained. The size of the precipitate containing Ti and / or Nb may become coarse, and may not contribute to the increase in strength due to precipitation strengthening.
Further, the temperature range in which the retention is performed for 1 to 20 seconds is desirably from the Ar1 transformation point to 860 ° C. or less in order to easily promote the ferrite transformation. Further, the residence time of 1 to 20 seconds is desirably 1 to 10 seconds in order not to significantly reduce the productivity.
[0057]
In order to satisfy these conditions, it is necessary to quickly reach the temperature range at a cooling rate of 20 ° C./s or more after finishing rolling. The upper limit of the cooling rate is not particularly defined, but 300 ° C./s or less is a reasonable cooling rate in view of the capacity of the cooling equipment. Further, if the cooling rate is too high, the cooling end temperature cannot be controlled, and there is a possibility that the overshooting will cause overcooling to the Ar1 transformation point or lower, and the effect of improving ductility is lost. The speed is desirably 150 ° C./s or less.
[0058]
Next, cooling is performed from the temperature range to a predetermined winding temperature (CT), but the cooling rate does not need to be particularly determined in order to obtain the effects of the present invention. However, if the cooling rate is too slow, the size of the precipitate containing Ti and / or Nb may become coarse and may not contribute to the increase in strength due to precipitation strengthening. Therefore, the lower limit of the cooling rate is desirably 20 ° C./s or more. Further, the effect of the present invention can be obtained without any particular upper limit of the cooling rate up to the winding temperature. However, it is preferable to set the cooling rate to 300 ° C./s or less because there is a concern about warpage due to thermal strain.
[0059]
Next, if the winding temperature is lower than 350 ° C., precipitates containing sufficient Ti and / or Nb are not generated, and solid solution C may remain in the steel to deteriorate workability. Not only does the size of the precipitate containing Nb and / or Nb become coarse and does not contribute to the increase in strength due to precipitation strengthening, but if the precipitate is too large, voids are likely to be formed at the interface between the precipitate and the matrix, and the hole expansion property is increased. May decrease. Therefore, the winding temperature is set to 350 to 700 ° C.
[0060]
Furthermore, the cooling rate after winding is not particularly limited, but when Cu is added at 1% or more, if the winding temperature (CT) is higher than 450 ° C., Cu precipitates after winding and the workability is deteriorated. Not only that, there is a possibility that Cu in the solid solution state effective for improving the fatigue properties may be lost. Therefore, when the winding temperature (CT) is higher than 450 ° C., the cooling rate after winding is up to 200 ° C. at 30 ° C. / It is desirably at least s.
[0061]
After completion of the hot rolling step, pickling may be performed if necessary, and thereafter, a skin pass with a rolling reduction of 10% or less or cold rolling to a rolling reduction of about 40% may be performed in-line or off-line.
[0062]
Next, there is a case where the final product is formed as a cold-rolled steel sheet, but the hot finish rolling conditions are not particularly limited. The final pass temperature (FT) of the finish rolling may be lower than the Ar3 transformation point temperature, but in this case, since a strong work structure remains before or during the rolling, the subsequent winding or heating may be performed. It is desirable to recover and recrystallize by treatment. The effect of the present invention can be obtained without any particular limitation on the cold rolling step after pickling.
[0063]
The heat treatment of the cold-rolled steel sheet is based on a continuous annealing process. First, it is performed in a temperature range of 800 ° C. or more for 5 to 150 seconds. When the heat treatment temperature is lower than 800 ° C., not only recrystallization of the ferrite phase processed by cold rolling is insufficient, but also bainitic ferrite or ferrite which is preferable for burring workability in subsequent cooling. And since there is a concern that bainite cannot be obtained, the heat treatment temperature is set to 800 ° C. or higher. Although the upper limit of the heat treatment temperature is not particularly defined, it is substantially 900 ° C. or less due to the restriction of the continuous annealing equipment.
[0064]
On the other hand, if the holding time in this temperature range is less than 5 seconds, the carbonitrides of Ti and Nb are not sufficient for solid solution again, and even if heat treatment for more than 150 seconds is performed, the effect is only saturated. However, the holding time is set to 5 to 150 seconds because the productivity is lowered.
[0065]
Next, the average cooling rate up to the end of cooling is required to be 50 ° C./sec or more. This is because if the average cooling rate until the end of cooling is less than 50 ° C./sec, bainitic ferrite, which is preferable for burring workability, or the volume fraction of ferrite and bainite may decrease. The upper limit of the cooling rate is 200 ° C./second or less in consideration of the actual factory equipment capacity and the like.
[0066]
The cooling end temperature needs to be in a temperature range of 700 ° C. or lower, but when using continuous annealing equipment, the cooling end temperature does not usually exceed 550 ° C., so there is no particular need to be considered. The lower limit of the cooling end temperature does not need to be particularly determined in order to obtain the effects of the present invention.
Thereafter, skin pass rolling may be performed as necessary.
[0067]
In order to apply galvanization to the hot-rolled steel sheet after pickling or the cold-rolled steel sheet after the above-mentioned heat treatment step, the steel sheet may be immersed in a zinc plating bath and subjected to an alloying treatment as necessary.
[0068]
【Example】
Hereinafter, the present invention will be further described with reference to examples.
Steels A to N having the chemical components shown in Table 1 were melted in a converter and subjected to secondary refining with CAS or RH. The deoxidizing treatment is performed in the secondary refining process, and the dissolved oxygen of the molten steel is adjusted by the Si concentration before the addition of Ti as shown in Table 2, and thereafter, as shown in Table 2, by Ti, Al, Ca Sequential deacidification was performed. After continuous casting, these steels were reheated at the heating temperatures shown in Table 2, and were rolled after having a sheet thickness of 1.2 to 5.5 mm by rough rolling and finish rolling.
The coarse bar was heated so as to raise the temperature by 50 to 100 ° C. from the end of the rough rolling to the finish rolling so that the FT did not cross the Ar3 transformation point (the bar heater in the table was applied). The indication of the chemical composition in Table 1 is% by mass. In addition, as shown in Table 2, pickling, cold rolling and heat treatment were performed on a part after the hot rolling step. The plate thickness is 0.7 to 2.3 mm. On the other hand, among the above steel sheets, steel E-5 and steel I were galvanized.
[0069]
Table 2 shows details of the manufacturing conditions. Here, “SRT” is the slab heating temperature, “FT” is the final pass finish rolling temperature, “cooling rate” is the average cooling rate from the start of cooling to finish cooling after finish rolling, and “cooling end temperature”. The temperature at the cooling stop, "CT" is the winding temperature. However, when rolling is performed later in the cold rolling process, such a limitation is not applied, so "-" is used.
[0070]
The tensile test of the hot-rolled sheet obtained in this manner was performed by first processing a test material into a No. 5 test piece described in JIS Z 2201, and following the test method described in JIS Z 2241. Table 2 also shows the yield strength (YP), tensile strength (TS), and elongation at break (El). On the other hand, the burring workability (hole expanding property) was evaluated in accordance with the hole expanding test method described in Japan Iron and Steel Federation Standard JFST 1001-1996.
Table 2 shows the hole expansion ratio (λ). The variation of the hole expansion ratio (Δλ) is, for example, cut out 24 plates of 150 × 150 mm from a plate width of 900 × 600 mm in a grid pattern and described in the Japanese Iron and Steel Federation Standard JFS T1001-1996. It is defined as the difference between the maximum value and the minimum value of the hole expansion ratio obtained according to the test method.
[0071]
The average circle-equivalent diameter of the nitride containing Ti refers to a sample cut from a 1 / 4W or 3 / 4W position of the steel sheet width, polished into a cross section in the rolling direction, etched using a nital reagent, and then milled using an optical microscope. A value obtained from an image processing device or the like from a microstructure photograph of 20 visual fields or more at 1 / 4t of the plate thickness observed at a magnification of × is adopted and defined as an average value.
[0072]
The ratio of the composite oxide containing Ca, which serves as the nucleus of the nitride containing Ti, and containing at least one of Ti and Al is determined by the composite oxide serving as the nucleus of the nitride containing Ti, which is observed in the microphotograph. Is defined as (the number of nitrides containing Ti including a complex oxide serving as a nucleus) / (total number of observed nitrides containing Ti).
Further, the composition of the composite oxide of the nucleus is determined by analyzing at least one in each field of view, such as energy dispersive X-ray spectroscopy (EDS) added to the scanning electron microscope or energy dispersive X-ray spectrum. And Electron Energy Loss Spectroscopy (EELS).
[0073]
The steels according to the present invention are nine steels of steels A, E-1, E-4, F, I, J, K, L, and M, each containing a predetermined amount of a steel component and contained in the steel. A high-strength burring steel sheet characterized in that the average circle equivalent diameter of the nitride containing Ti is 7 μm or less. Therefore, a significant difference is recognized, while the variation (Δλ) of the hole expansion ratio (λ) of the conventional steel evaluated by the method according to the present invention is 40% or more.
[0074]
Steels other than the above are outside the scope of the present invention for the following reasons.
That is, in the steel B, the time until the introduction of Al after Ti deoxidation in the smelting process is long, the diameter of the Ti nitride exceeds 7 μm, and the variation (Δλ) of the hole expansion rate (λ) is large. Steel C has a small amount of dissolved oxygen before the introduction of Ti in the smelting process, has a Ti nitride diameter of more than 7 μm, and has a large variation (Δλ) in the hole expansion ratio (λ). Steel D has a large variation (Δλ) in the hole expansion rate (λ) because the order of sequentially adding the deoxidizing elements in the smelting process is out of the scope of the present invention and the diameter of the Ti nitride exceeds 7 μm.
[0075]
Since the finish rolling temperature of steel E-2 is out of the range of the present invention, a desired microstructure cannot be obtained, and a sufficient elongation (El) has not been obtained. Since the winding temperature of steel E-3 is out of the range of the present invention, a desired microstructure cannot be obtained, and sufficient strength (TS) has not been obtained. Since the steel G has an Al content outside the range of the present invention, the variation (Δλ) of the hole expansion rate (λ) is large. Since the steel H has a Ca content outside the range of the present invention, the variation (Δλ) of the hole expansion rate (λ) is large. Steel N does not have the required hole expansion ratio (λ) because Ti * is out of the range of the present invention.
[0076]
[Table 1]
Figure 2004250749
[0077]
[Table 2]
Figure 2004250749
[0078]
【The invention's effect】
As described above in detail, the present invention relates to a burring high-strength thin steel sheet having a small variation in hole expansion value and a method for producing the same, and by using these high-strength thin steel sheets, cracks during press working, etc. This is an invention of high industrial value because not only can molding defects be avoided, but also the yield can be improved.

Claims (14)

質量%にて、
C :0.01〜0.1%、
Si:0.01〜2%、
Mn:0.05〜3%、
P ≦0.1%、
S ≦0.03%、
Al:0.005〜0.02%、
N ≦0.005%、
Ca:0.0005〜0.003%、
Ti:0.005〜0.3%
を含み、さらに
Ti−(48/12)C−(48/14)N−(48/32)S≧−0.03%を満たす範囲でTiを含有し、
残部がFe及び不可避的不純物からなる鋼板であって、そのミクロ組織が主にフェライトから成り、鋼板中に含まれるTiを含む窒化物の平均円相当径が7μm以下であることを特徴とするバーリング性高強度薄鋼板。
In mass%,
C: 0.01-0.1%,
Si: 0.01 to 2%,
Mn: 0.05-3%,
P ≦ 0.1%,
S ≦ 0.03%,
Al: 0.005 to 0.02%,
N ≦ 0.005%,
Ca: 0.0005 to 0.003%,
Ti: 0.005 to 0.3%
And further contains Ti in a range satisfying Ti- (48/12) C- (48/14) N- (48/32) S ≧ −0.03%,
A burring characterized in that the balance is a steel sheet comprising Fe and inevitable impurities, the microstructure of which is mainly ferrite, and the average circle-equivalent diameter of a nitride containing Ti contained in the steel sheet is 7 μm or less. High strength thin steel sheet.
請求項1に記載の鋼板中に含まれるTiを含む窒化物のうちその個数の3割以上にCaを含み、TiとAlのいずれか一種類以上を含む複合酸化物を含有することを特徴とするバーリング性高強度薄鋼板。30% or more of the nitride containing Ti contained in the steel sheet according to claim 1 contains Ca, and contains a composite oxide containing at least one of Ti and Al. Burring high strength thin steel sheet. 請求項1又は2に記載の鋼板が、さらに質量%にて、
Nb:0.01〜0.5%、
Mo:0.05〜1%、
V :0.02〜0.2%、
Cr:0.01〜1%
を含み、さらに
Ti+(48/93)Nb+(48/96)Mo+(48/51)V+ (48/52)Cr−(48/12)C−(48/14)N−(48/32)S≧−0.03%
を満たす範囲でTiとNb、Mo、V、Crのいずれか一種類以上を含有する鋼板であることを特徴とするバーリング性高強度薄鋼板。
The steel sheet according to claim 1 or 2, further in mass%,
Nb: 0.01-0.5%,
Mo: 0.05-1%,
V: 0.02-0.2%,
Cr: 0.01-1%
And Ti + (48/93) Nb + (48/96) Mo + (48/51) V + (48/52) Cr- (48/12) C- (48/14) N- (48/32) S ≧ -0.03%
A high-strength burring steel sheet characterized by being a steel sheet containing at least one of Ti and Nb, Mo, V, and Cr within a range satisfying the following.
請求項1〜3のいずれか1項に記載の鋼板が、さらに質量%にて、
B:0.0002〜0.002%
を含有することを特徴とするバーリング性高強度薄鋼板。
The steel sheet according to any one of claims 1 to 3, further comprising:
B: 0.0002-0.002%
A burring high-strength thin steel sheet comprising:
請求項1〜4のいずれか1項に記載の鋼板が、さらに質量%にて、
REM:0.0005〜0.02%
を含有することを特徴とするバーリング性高強度薄鋼板。
The steel sheet according to any one of claims 1 to 4, further comprising:
REM: 0.0005-0.02%
A burring high-strength thin steel sheet comprising:
請求項1〜5のいずれか1項に記載の鋼板が、さらに質量%にて、
Cu:0.2〜1.2%、
Ni:0.1〜0.6%、
Zr:0.02〜0.2%
の一種または二種以上を含有することを特徴とするバーリング性高強度薄鋼板。
The steel sheet according to any one of claims 1 to 5, further comprising:
Cu: 0.2-1.2%,
Ni: 0.1 to 0.6%,
Zr: 0.02-0.2%
A high-strength burring thin steel sheet comprising one or more of the following.
請求項1〜6のいずれか1項に記載の鋼板に亜鉛めっきが施されていることを特徴とするバーリング性高強度薄鋼板。A burring high-strength thin steel sheet, wherein the steel sheet according to any one of claims 1 to 6 is galvanized. 請求項1〜6のいずれか1項に記載の成分を有する薄鋼板を得るための溶鋼を調整する際に、Si濃度が0.05〜0.2%、溶存酸素濃度が0.002〜0.008%になるように調整した溶鋼中に、最終含有量が0.005〜0.3%となる範囲でTiを添加して脱酸した後、最終含有量が0.005〜0.02%となるAlを添加し、さらに最終含有量が0.0005〜0.003%となるCaを添加し、その後、不足する合金を添加することを特徴とするバーリング性高強度薄鋼板の製造方法。When preparing molten steel for obtaining a thin steel sheet having the component according to any one of claims 1 to 6, the Si concentration is 0.05 to 0.2% and the dissolved oxygen concentration is 0.002 to 0. After adding Ti in a range of 0.005 to 0.3% to deoxidize molten steel adjusted to 0.0008%, the final content is 0.005 to 0.02. %, Further adding Ca having a final content of 0.0005 to 0.003%, and then adding an insufficient alloy. . 請求項8で得られた溶鋼の鋳造後の鋼片を熱間圧延する際に、該鋼片を粗圧延後にAr3 変態点温度以上の温度域で仕上圧延を終了し、その後冷却して350℃以上700℃以下の温度範囲で巻き取ることを特徴とする高バーリング性高強度薄鋼板の製造方法。When hot rolling the cast slab of the molten steel obtained in claim 8, finish rolling is performed in a temperature range not lower than the Ar3 transformation point after rough rolling of the slab, and then cooled to 350 ° C. A method for producing a high-burring high-strength thin steel sheet, wherein the high-burring high-strength steel sheet is wound in a temperature range of at least 700 ° C. 請求項9に記載の熱間圧延に際し、鋼片を粗圧延終了した後の粗バーを仕上げ圧延開始までと、粗バーの仕上げ圧延中のいずれか一方または両方の間に加熱することを特徴とするバーリング性高強度薄鋼板の製造方法。In the hot rolling according to claim 9, the rough bar after the rough rolling of the slab is heated until the start of the finish rolling and during one or both of the finishing rolling and the rough bar. Of burring high strength thin steel sheet. 請求項9または10に記載の熱間圧延に際し、粗圧延終了後、デスケーリングを行うことを特徴とするバーリング性高強度薄鋼板の製造方法。A method for producing a high-strength burring thin steel sheet, comprising performing descaling after the completion of rough rolling in the hot rolling according to claim 9 or 10. 請求項8で得られた溶鋼の鋳造後の鋼片を熱間圧延、酸洗、冷間圧延をした後、800℃以上の温度域で5〜150秒間保持し、その後平均冷却速度が50℃/秒以上の冷却速度で700℃以下の温度域まで冷却する工程の熱処理をすることを特徴とするバーリング性高強度薄鋼板の製造方法。The slab after casting of the molten steel obtained in claim 8 is subjected to hot rolling, pickling, and cold rolling, and then kept at a temperature range of 800 ° C. or more for 5 to 150 seconds, and then the average cooling rate is 50 ° C. A method for producing a high-strength burring thin steel sheet, comprising performing a heat treatment in a step of cooling to a temperature range of 700 ° C. or lower at a cooling rate of at least per second. 請求項9〜10のいずれか1項に記載の製造方法に際し、亜鉛めっき浴中に浸漬させて鋼板表面を亜鉛めっきすることを特徴とするバーリング性高強度薄鋼板の製造方法。The method for producing a high-strength burring thin steel sheet according to any one of claims 9 to 10, wherein the surface of the steel sheet is galvanized by dipping in a galvanizing bath. 請求項13に記載の製造方法に際し、亜鉛めっき浴中に浸漬して亜鉛めっき後、合金化処理することを特徴とするバーリング性高強度薄鋼板の製造方法。14. The method for producing a burring high-strength thin steel sheet according to claim 13, wherein the alloy is immersed in a galvanizing bath, galvanized, and then alloyed.
JP2003042144A 2003-02-20 2003-02-20 Burring high strength thin steel sheet and method for producing the same Expired - Fee Related JP4116901B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003042144A JP4116901B2 (en) 2003-02-20 2003-02-20 Burring high strength thin steel sheet and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003042144A JP4116901B2 (en) 2003-02-20 2003-02-20 Burring high strength thin steel sheet and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004250749A true JP2004250749A (en) 2004-09-09
JP4116901B2 JP4116901B2 (en) 2008-07-09

Family

ID=33025503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003042144A Expired - Fee Related JP4116901B2 (en) 2003-02-20 2003-02-20 Burring high strength thin steel sheet and method for producing the same

Country Status (1)

Country Link
JP (1) JP4116901B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103991A1 (en) 2005-03-28 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
JP2006316301A (en) * 2005-05-11 2006-11-24 Sumitomo Metal Ind Ltd High tensile strength hot rolled steel sheet, and method for producing the same
JP2009024226A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp High-strength thin steel sheet superior in stamped-hole expandability, and manufacturing method therefor
JP2009084643A (en) * 2007-09-28 2009-04-23 Kobe Steel Ltd Hot rolled steel sheet having excellent fatigue property and stretch flange formability balance
JP2010090476A (en) * 2008-09-11 2010-04-22 Nippon Steel Corp High strength hot rolled steel sheet having excellent hole expansibility and method for producing the same
JP2011058022A (en) * 2009-09-07 2011-03-24 Nippon Steel Corp High-strength hot-rolled steel sheet having excellent hole expansibility and method for producing the same
JP2013133524A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp High-tensile hot-rolled steel sheet excellent in blanking property and stretch flange formability, and manufacturing method therefor
CN103667880A (en) * 2013-11-29 2014-03-26 宝山钢铁股份有限公司 High hole expansion steel plate with tensile strength of 440MPa and manufacturing method thereof
KR20190014077A (en) 2016-08-05 2019-02-11 신닛테츠스미킨 카부시키카이샤 Steel plate and coated steel plate
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
WO2022070621A1 (en) * 2020-09-29 2022-04-07 日本製鉄株式会社 Hot rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204117A (en) * 1982-05-22 1983-11-28 Kawasaki Steel Corp Production of steel material containing uniformly dispersed fine inclusion
JPH10183295A (en) * 1996-12-19 1998-07-14 Nippon Steel Corp Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production
JP2000001736A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp High tensile strength steel plate excellent in deformability
JP2000008136A (en) * 1998-06-19 2000-01-11 Kawasaki Steel Corp High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP2002161340A (en) * 2000-11-24 2002-06-04 Nippon Steel Corp Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58204117A (en) * 1982-05-22 1983-11-28 Kawasaki Steel Corp Production of steel material containing uniformly dispersed fine inclusion
JPH10183295A (en) * 1996-12-19 1998-07-14 Nippon Steel Corp Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production
JP2000001736A (en) * 1998-06-18 2000-01-07 Kawasaki Steel Corp High tensile strength steel plate excellent in deformability
JP2000008136A (en) * 1998-06-19 2000-01-11 Kawasaki Steel Corp High strength steel plate excellent in stretch-flanging property and delayed fracture resistance
JP2002161340A (en) * 2000-11-24 2002-06-04 Nippon Steel Corp Hot rolled steel sheet superior in burring workability and fatigue characteristics, and manufacturing method therefor

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8486205B2 (en) 2005-03-28 2013-07-16 Kobe Steel, Ltd. High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
EP2351867A1 (en) 2005-03-28 2011-08-03 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
US8038809B2 (en) 2005-03-28 2011-10-18 Kobe Steel, Ltd. High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
WO2006103991A1 (en) 2005-03-28 2006-10-05 Kabushiki Kaisha Kobe Seiko Sho High strength hot rolled steel sheet excellent in bore expanding workability and method for production thereof
JP2006316301A (en) * 2005-05-11 2006-11-24 Sumitomo Metal Ind Ltd High tensile strength hot rolled steel sheet, and method for producing the same
JP2009024226A (en) * 2007-07-20 2009-02-05 Nippon Steel Corp High-strength thin steel sheet superior in stamped-hole expandability, and manufacturing method therefor
JP2009084643A (en) * 2007-09-28 2009-04-23 Kobe Steel Ltd Hot rolled steel sheet having excellent fatigue property and stretch flange formability balance
JP2010090476A (en) * 2008-09-11 2010-04-22 Nippon Steel Corp High strength hot rolled steel sheet having excellent hole expansibility and method for producing the same
JP2011058022A (en) * 2009-09-07 2011-03-24 Nippon Steel Corp High-strength hot-rolled steel sheet having excellent hole expansibility and method for producing the same
JP2013133524A (en) * 2011-12-27 2013-07-08 Jfe Steel Corp High-tensile hot-rolled steel sheet excellent in blanking property and stretch flange formability, and manufacturing method therefor
CN103667880A (en) * 2013-11-29 2014-03-26 宝山钢铁股份有限公司 High hole expansion steel plate with tensile strength of 440MPa and manufacturing method thereof
US10913988B2 (en) 2015-02-20 2021-02-09 Nippon Steel Corporation Hot-rolled steel sheet
US11401571B2 (en) 2015-02-20 2022-08-02 Nippon Steel Corporation Hot-rolled steel sheet
US10689737B2 (en) 2015-02-25 2020-06-23 Nippon Steel Corporation Hot-rolled steel sheet
US10752972B2 (en) 2015-02-25 2020-08-25 Nippon Steel Corporation Hot-rolled steel sheet
KR20190014077A (en) 2016-08-05 2019-02-11 신닛테츠스미킨 카부시키카이샤 Steel plate and coated steel plate
US10889879B2 (en) 2016-08-05 2021-01-12 Nippon Steel Corporation Steel sheet and plated steel sheet
US11236412B2 (en) 2016-08-05 2022-02-01 Nippon Steel Corporation Steel sheet and plated steel sheet
WO2022070621A1 (en) * 2020-09-29 2022-04-07 日本製鉄株式会社 Hot rolled steel sheet

Also Published As

Publication number Publication date
JP4116901B2 (en) 2008-07-09

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP5365216B2 (en) High-strength steel sheet and its manufacturing method
JP4072090B2 (en) High-strength steel sheet with excellent stretch flangeability and manufacturing method thereof
KR101264574B1 (en) Method for producing high-strength steel plate having superior deep drawing characteristics
JP4837426B2 (en) High Young&#39;s modulus thin steel sheet with excellent burring workability and manufacturing method thereof
JP4559969B2 (en) Hot-rolled steel sheet for processing and manufacturing method thereof
JP4580157B2 (en) Hot-rolled steel sheet having both BH property and stretch flangeability and manufacturing method thereof
WO2012002565A1 (en) High-strength hot-dip galvanized steel sheet with excellent processability and process for producing same
KR20130021460A (en) Hot-rolled steel sheet, cold-rolled steel sheet, galvanized steel sheet, and processes for producing these
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
WO2013160928A1 (en) High-strength steel sheet and method for manufacturing same
JP4291711B2 (en) High burring hot rolled steel sheet having bake hardenability and method for producing the same
JP4116901B2 (en) Burring high strength thin steel sheet and method for producing the same
WO2019151017A1 (en) High-strength cold-rolled steel sheet, high-strength plated steel sheet, and production methods therefor
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP2004256906A (en) High strength steel sheet with excellent stretch-flange formability and its manufacturing method
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP5678695B2 (en) High strength steel plate and manufacturing method thereof
JP6947334B1 (en) High-strength steel plate and its manufacturing method
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP3870840B2 (en) Composite structure type high-tensile cold-rolled steel sheet excellent in deep drawability and stretch flangeability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080418

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4116901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120425

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130425

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140425

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees