JPH10183295A - Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production - Google Patents

Steel material excellent in toughness at heat-affected zone in large heat input weld, and its production

Info

Publication number
JPH10183295A
JPH10183295A JP35393996A JP35393996A JPH10183295A JP H10183295 A JPH10183295 A JP H10183295A JP 35393996 A JP35393996 A JP 35393996A JP 35393996 A JP35393996 A JP 35393996A JP H10183295 A JPH10183295 A JP H10183295A
Authority
JP
Japan
Prior art keywords
steel
toughness
added
oxide
final content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP35393996A
Other languages
Japanese (ja)
Other versions
JP3323414B2 (en
Inventor
Masanori Minagawa
昌紀 皆川
Tadashi Ishikawa
忠 石川
Akira Ito
昭 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP35393996A priority Critical patent/JP3323414B2/en
Publication of JPH10183295A publication Critical patent/JPH10183295A/en
Application granted granted Critical
Publication of JP3323414B2 publication Critical patent/JP3323414B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a steel material improved in toughness in HAZ to a greater extent by specifying the composition of a steel and incorporating a compound oxide which contains Ca, Ti, and Al and in which grain size and the number of grains are respectively specified. SOLUTION: A molten steel, having a composition consisting of, by weight, 0.03-0.18% C, <=0.50% Si, 0.40-2.0% Mn, <=0.02% P, 0.0010-0.010 S, 0.005-0.020% Al, 0.005-0.020% Ti, 0.0005-0.0030% Ca, 0.0020-0.0060% N, and the balance Fe, is cast and then rolled, by which a steel containing a compound oxide which contains Ca and Ti and/or Al and in which grain size and the number of grains are regulated, respectively, to 0.01-1.0μm and (5×10<3> to 1×10<5> ) pieces/mm<2> is obtained. After Ti of 0.005-0.20%, by weight, of final content is added to the molten steel in which Si concentration and dissolved oxygen concentration are regulated, respectively, to 0.05-0.20% and 20-80ppm, Al of 0.005-0.020% final content is added and further Ca of 0.0005-0.0030% final content is added, and then, Si in an amount compensating the shortage base on the final composition and other alloys are added, by which the steel material can be produced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、船舶、海洋構造
物、中高層ビルなどに使用される溶接熱影響部(以下H
AZと称す)の靭性に優れた溶接構造用鋼材およびその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding heat affected zone (hereinafter referred to as H) used for ships, offshore structures, middle and high rise buildings and the like.
AZ) and a method for producing the same.

【0002】[0002]

【従来の技術】近年、船舶、海洋構造物、中高層ビルな
どで用いられる大型構造物に使用される溶接用鋼材の材
質特性に対する要望は厳しさを増しており、鋼材自身の
靭性と同様に、HAZの靭性への要求も厳しさを増して
いる。
2. Description of the Related Art In recent years, the demand for material properties of welding steel materials used for large structures used in ships, marine structures, middle and high-rise buildings and the like has been increasing strictly. The requirements for the toughness of the HAZ are also increasing.

【0003】さらにそのような構造物を建造する際、溶
接の効率化を促進するため、フラックス−銅バッキング
溶接法、エレクトロガスアーク溶接法などに代表される
ような大入熱溶接法の適用が希望されている。
Further, when constructing such a structure, it is desired to apply a large heat input welding method typified by a flux-copper backing welding method, an electrogas arc welding method, etc. in order to promote the efficiency of welding. Have been.

【0004】従来、靭性の要求は小中入熱溶接を適用し
た部分に限られていたため、靭性を向上させる方法は、
例えば、特公平4−14179号公報や特開平4−11
6135号公報に開示されるように成分を規制すること
によって靭性を支配している島状マルテンサイトの生成
状態を制御するだけで充分であった。ところが、近年で
は大入熱溶接の適用が進められており、その場合島状マ
ルテンサイトを制御するだけでは不十分である。
[0004] Conventionally, the demand for toughness has been limited to the portion to which small-to-medium heat input welding is applied.
For example, Japanese Patent Publication No. 4-14179 and Japanese Patent Laid-Open No.
It was sufficient to control the state of formation of island martensite which controls toughness by regulating the components as disclosed in JP-A-6135. However, in recent years, the application of large heat input welding has been promoted, and in that case, controlling only the island-like martensite is not sufficient.

【0005】これを受け、大入熱溶接時の鋼材のHAZ
靭性に注目した提案は従来から数多くある。
[0005] In response to this, HAZ of steel at the time of large heat input welding
There have been many proposals focusing on toughness.

【0006】例えば、特公昭55−26164号公報等
に開示されるように、微細なTi窒化物を鋼中に確保す
ることによって、HAZのオーステナイト粒を小さく
し、靭性を向上させる方法がある。また、特開平3−2
64614号公報ではTi窒化物とMnSとの複合析出
物をフェライトの変態核として活用し、HAZの靭性を
向上させる方法が提案されている。
[0006] For example, as disclosed in Japanese Patent Publication No. 55-26164, there is a method of reducing austenite grains of HAZ and improving toughness by securing fine Ti nitride in steel. Also, Japanese Patent Application Laid-Open No.
JP-A-64614 proposes a method for improving the toughness of HAZ by utilizing a composite precipitate of Ti nitride and MnS as a transformation nucleus of ferrite.

【0007】しかしながら、Ti窒化物は、HAZのう
ち最高到達温度が1400℃を超える溶接金属との境界
(溶接ボンド部と称する)近傍ではほとんど固溶してし
まうので靭性劣化抑制効果が低下してしまうという問題
があり、近年の厳しい鋼材特性への要求を達成すること
が困難である。
However, Ti nitride almost completely forms a solid solution in the vicinity of a boundary (referred to as a weld bond portion) with a weld metal having a maximum temperature exceeding 1400 ° C. of the HAZ, so that the effect of suppressing the deterioration of toughness is reduced. And it is difficult to achieve the recent demands for severe steel properties.

【0008】この溶接ボンド部近傍の靭性を改善する方
法として、Ti酸化物を含有した鋼が厚板、形鋼などの
様々な分野で使用されている。例えば厚板分野では特開
昭61−79745号公報や特開昭62−103344
号公報に例示されているように、Ti酸化物を含有した
鋼が大入熱溶接部靭性向上に非常に有効であり、高張力
鋼への適用が有望である。この原理は、Ti酸化物およ
びTi窒化物、MnS等の析出物を核として微細フェラ
イトが生成し、その結果靭性に有害な粗大フェライトの
生成が抑制され、靭性の劣化が防止できるというもので
ある。しかしながら、このようなTi酸化物は鋼中へ分
散される個数をあまり多くすることができない。その原
因はTi酸化物の粗大化や凝集合体であり、Ti酸化物
の個数を増加させようとすれば5μm以上の粗大なTi
酸化物、いわゆる介在物が増加してしまう。この5μm
以上の介在物は構造物の破壊の起点となって有害であ
り、靭性の低下を引き起こす。したがって、さらなるH
AZ靭性の向上を達成するためには、粗大化や凝集合体
が起こりにくく、Ti酸化物よりも微細に分散する酸化
物を活用する必要がある。
As a method for improving the toughness in the vicinity of the weld bond, steels containing Ti oxide are used in various fields such as thick plates and section steels. For example, in the field of thick plates, Japanese Patent Application Laid-Open Nos. 61-79745 and 62-103344.
As exemplified in the publication, steel containing Ti oxide is very effective in improving the toughness of a large heat input weld, and its application to high-strength steel is promising. The principle is that fine ferrite is generated using precipitates such as Ti oxides, Ti nitrides, and MnS as nuclei. As a result, generation of coarse ferrite harmful to toughness is suppressed, and deterioration of toughness can be prevented. . However, the number of such Ti oxides dispersed in steel cannot be so large. The cause is coarsening and aggregation of Ti oxides. If the number of Ti oxides is to be increased, coarse Ti
Oxides, so-called inclusions, increase. This 5 μm
The inclusions described above are harmful as starting points for structural destruction and cause a decrease in toughness. Therefore, additional H
In order to achieve an improvement in AZ toughness, it is necessary to utilize an oxide which is less likely to be coarsened and aggregated and which is more finely dispersed than a Ti oxide.

【0009】また、このようなTi酸化物の鋼中への分
散方法としては、Al等の強脱酸元素を実質的に含まな
い溶鋼中へのTi添加によるものが多い。しかしなが
ら、単に溶鋼中にTiを添加するだけでは鋼中のTi酸
化物の個数、分散度を制御することは困難であり、さら
には、TiN、MnS等の析出物の個数、分散度を制御
することも困難である。その結果、Ti脱酸のみによっ
てTi酸化物を分散させた鋼においては、例えば、Ti
酸化物の個数が充分でなかったり、厚板の板厚方向の靭
性変動を生じる等の問題点が認められる。
As a method for dispersing such a Ti oxide in steel, there are many methods of adding Ti to molten steel substantially not containing a strong deoxidizing element such as Al. However, it is difficult to control the number and the degree of dispersion of Ti oxides in steel simply by adding Ti to molten steel. Further, the number and the degree of dispersion of precipitates such as TiN and MnS are controlled. It is also difficult. As a result, in steel in which Ti oxide is dispersed only by Ti deoxidation, for example, Ti
Problems such as insufficient number of oxides and variation in toughness in the thickness direction of the thick plate are observed.

【0010】さらに、上記特開昭61−79745号公
報などの方法では、Ti酸化物を生成しやすくするため
に、Al量の上限を、0.007%という非常に少ない
量で制限している。鋼材中のAl量が少ない場合、Al
N析出物量の不足などの原因により、母材の靭性が低下
する場合がある。また、通常使用されている溶接材料を
用いてAl量の少ない鋼板を溶接した場合、溶接金属の
靭性が低下する場合がある。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 61-79745, the upper limit of the amount of Al is limited to a very small amount of 0.007% in order to easily form a Ti oxide. . If the amount of Al in the steel is small,
There may be a case where the toughness of the base material is reduced due to a cause such as an insufficient amount of N precipitates. Further, when a steel sheet having a small amount of Al is welded using a commonly used welding material, the toughness of the weld metal may be reduced.

【0011】特開平4−9448号公報に例示されてい
るように、Ti添加後タンディッシュや鋳型内にAlを
添加する方法も考案されている。しかしながら、この方
法はAlNを有効に生成させるための方法であり、Ti
酸化物さらにはTiN、MnS等の析出物を鋼中に分散
させるための方法ではない。またAlをタンディッシュ
で添加するなど、TiとAlとの添加間隔が長く、Al
添加後直ちに鋳造することが特徴であり、これはTi酸
化物がAlで還元されることを極力抑えるためである。
したがって、酸化物生成におよぼすAlの効果は得られ
ない。
As exemplified in JP-A-4-9448, a method of adding Al to a tundish or a mold after adding Ti has been devised. However, this method is a method for effectively producing AlN,
This is not a method for dispersing oxides and precipitates such as TiN and MnS in steel. In addition, the addition interval between Ti and Al is long, such as when Al is added in a tundish.
The feature is that casting is performed immediately after the addition, in order to minimize the reduction of Ti oxide with Al.
Therefore, the effect of Al on oxide formation cannot be obtained.

【0012】また、特開平3−53044号公報におい
ても、Ti添加後にAlを添加する方法が考案されてい
るが、この方法はTi添加前のSi量を0.05%以下
にすることを規定している。このようにSi量が少ない
と、溶存酸素濃度の調整が不安定で、溶存酸素濃度が高
くなりすぎ、その結果酸化物の粗大化が生じ、先にも述
べたように、破壊の発生起点となる大型介在物が生成し
やすくなるといった問題点がある。
Japanese Patent Application Laid-Open No. 3-53044 also proposes a method of adding Al after adding Ti, but this method specifies that the amount of Si before the addition of Ti is made 0.05% or less. doing. When the amount of Si is small as described above, the adjustment of the dissolved oxygen concentration is unstable, and the dissolved oxygen concentration becomes too high. As a result, coarsening of the oxide occurs. There is a problem that large inclusions are easily generated.

【0013】このような課題に対して、発明者らの一部
は、特開平6−293937号公報においてTi添加直
後のAlを添加することで、生成するTi−Al複合酸
化物を活用する技術を考案している。この技術により、
大入熱溶接HAZ靭性を大幅に向上させることが可能で
あるが、直近、造船業界、建設業界においては、200
kJ/cm以上のさらなる溶接入熱の増加が進められて
おり、より一層のHAZ靭性を有する鋼材が必要とされ
ている。この際、とくに溶接融合部近傍の靭性向上が必
要となる。
[0013] In order to solve such a problem, a part of the present inventors has disclosed a technique in which a Ti-Al composite oxide generated by adding Al immediately after Ti addition in Japanese Patent Application Laid-Open No. 6-293937 is used. Has been devised. With this technology,
It is possible to greatly improve the HAZ toughness of large heat input welding, but recently, in shipbuilding and construction industries, 200
With further increase in welding heat input of kJ / cm or more, steel materials having even higher HAZ toughness are required. At this time, it is necessary to improve the toughness particularly in the vicinity of the weld fusion part.

【0014】[0014]

【発明が解決しようとする課題】特開昭62−1033
44号公報など上記の従来手法より一層のHAZ特性を
向上させられるために、Ti酸化物のごとく粗大化せ
ず、したがって破壊の起点にならず、さらにはTi窒化
物、MnS等の析出物の核サイトとなってオーステナイ
ト粒細粒化や微細フェライト生成によって優れたHAZ
靭性を実現可能な酸化物を安定して分散させ、特に溶接
融合部の靭性を一層向上させることを課題とした。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 62-1033
No. 44, No. 44, etc., the HAZ characteristics can be further improved, so that they do not become coarse as in the case of Ti oxides, and thus do not become a starting point of destruction, and furthermore, precipitates such as Ti nitride, MnS, etc. Excellent HAZ by forming austenite grains and forming fine ferrite as core sites
An object of the present invention is to stably disperse an oxide capable of realizing toughness, and to further improve the toughness of a weld fusion part in particular.

【0015】[0015]

【課題を解決するための手段】本発明は、前述の課題を
解決するために、重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を含有し、残部はFeおよび不可避不純物からなり、か
つ粒子径が0.01〜1.0μm、粒子数が5×103
〜1×105個/mm2、Caを含み、さらにTiとAl
のいづれか1種以上を含む複合酸化物を含有することを
特徴とする溶接熱影響部靭性の優れた溶接構造用鋼材を
第1の手段とし、重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を基本成分とし、さらに Cu:≦1.0% Ni:≦1.5% Nb:≦0.030% V:≦0.1% Cr:≦0.6% Mo:≦0.6% B:0.0002〜0.0020% の1種または2種以上を含有し、残部はFeおよび不可
避不純物からなり、かつ粒子径が0.01〜1.0μ
m、粒子数が5×103〜1×105個/mm2、Caを
含み、さらにTiとAlのいづれか1種以上を含む複合
酸化物を含有することを特徴とする溶接熱影響部靭性の
優れた溶接構造用鋼材を第2の手段とし、さらには、上
記第1、第2の手段の鋼材を製造するにあたり、Si濃
度が0.05〜0.20%で、溶存酸素濃度が20〜8
0ppmになるように調整した溶鋼中に、最終含有量が
0.005〜0.020%となるTiを添加して脱酸し
た後、最終含有量が0.005〜0.020%となるA
lを添加し、さらに最終含有量が0.0005〜0.0
030%となるCaを添加し、その後最終成分に対して
不足する分のSi、および他合金を添加し、成分組成が
重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を含有し、残部がFeおよび不可避不純物からなる溶鋼
を鋳造後圧延することを特徴とする溶接熱影響部靭性の
優れた溶接構造用鋼材の製造方法を第3の手段とし、S
i濃度が0.05〜0.20%で、溶存酸素濃度が20
〜80ppmになるように調整した溶鋼中に、最終含有
量が0.005〜0.020%となるTiを添加して脱
酸した後、最終含有量が0.005〜0.020%とな
るAlを添加し、さらに最終含有量が0.0005〜
0.0030%となるCaを添加し、その後最終成分に
対して不足する分のSi、および他合金を添加し、成分
組成が重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を基本成分とし、さらに Cu:≦1.0% Ni:≦1.5% Nb:≦0.030% V:≦0.1% Cr:≦0.6% Mo:≦0.6% B:0.0002〜0.0020% の1種または2種以上を含有し、残部がFeおよび不可
避不純物からなる溶鋼を鋳造後圧延することを特徴とす
る溶接熱影響部靭性の優れた溶接構造用鋼材の製造方法
を第4の手段とする。
According to the present invention, in order to solve the above-mentioned problems, C: 0.03 to 0.18% Si: .ltoreq.0.50% Mn: 0.40 to 2% by weight 0.0% P: ≦ 0.02% S: 0.0010 to 0.010% Al: 0.005 to 0.020% Ti: 0.005 to 0.020% Ca: 0.0005 to 0.0030% N: 0.0020 to 0.0060%, the balance being Fe and unavoidable impurities, and having a particle diameter of 0.01 to 1.0 μm and a particle number of 5 × 10 3.
11 × 10 5 / mm 2 , containing Ca, Ti and Al
The first means is a steel material for a welded structure excellent in toughness of a weld heat-affected zone, characterized by containing a composite oxide containing at least one of the following: C: 0.03 to 0.18 % Si: ≦ 0.50% Mn: 0.40 to 2.0% P: ≦ 0.02% S: 0.0010 to 0.010% Al: 0.005 to 0.020% Ti: 0.005 -0.020% Ca: 0.0005-0.0030% N: 0.0020-0.0060% as a basic component, and further, Cu: ≦ 1.0% Ni: ≦ 1.5% Nb: ≦ 0. 030% V: ≦ 0.1% Cr: ≦ 0.6% Mo: ≦ 0.6% B: One or more of 0.0002 to 0.0020%, the balance being Fe and unavoidable impurities Consisting of, and having a particle size of 0.01 to 1.0 μm
m, the number of particles is from 5 × 10 3 to 1 × 10 5 / mm 2 , containing Ca, and further containing a composite oxide containing at least one of Ti and Al. Is used as the second means, and in producing the steel material of the first and second means, the Si concentration is 0.05 to 0.20% and the dissolved oxygen concentration is 20%. ~ 8
After adding Ti having a final content of 0.005 to 0.020% to molten steel adjusted to be 0 ppm and deoxidizing, A having a final content of 0.005 to 0.020% is added.
1 and a final content of 0.0005-0.0
030% Ca is added, and then Si and other alloys are added to the final component, which are insufficient, and the component composition is% by weight. C: 0.03-0.18% Si: ≦ 0. 50% Mn: 0.40 to 2.0% P: 0.02% S: 0.0010 to 0.010% Al: 0.005 to 0.020% Ti: 0.005 to 0.020% Ca : 0.0005 to 0.0030% N: 0.0020 to 0.0060%, and the balance is made of molten steel consisting of Fe and unavoidable impurities and then rolled after casting. The method for producing a steel material for a welded structure is defined as a third means.
i concentration is 0.05 to 0.20% and dissolved oxygen concentration is 20
After adding Ti having a final content of 0.005 to 0.020% into molten steel adjusted to be ~ 80 ppm and deoxidizing, the final content becomes 0.005 to 0.020%. Al is added and the final content is 0.0005 to
0.0030% of Ca is added, and then Si and other alloys, which are insufficient with respect to the final component, are added, and the composition of the components is% by weight. C: 0.03-0.18% Si: ≦ 0.50% Mn: 0.40 to 2.0% P: ≦ 0.02% S: 0.0010 to 0.010% Al: 0.005 to 0.020% Ti: 0.005 to 0.020 % Ca: 0.0005 to 0.0030% N: 0.0020 to 0.0060% as a basic component, and further Cu: ≦ 1.0% Ni: ≦ 1.5% Nb: ≦ 0.030% V: ≦ 0.1% Cr: ≦ 0.6% Mo: ≦ 0.6% B: One or more of 0.0002 to 0.0020%, and the balance is molten steel composed of Fe and unavoidable impurities. Method of producing steel for welded structures with excellent toughness in the heat affected zone, characterized by rolling after casting It is referred to as the fourth means.

【0016】[0016]

【発明の実施の形態】以下、本発明について詳細に説明
する。本発明者らはHAZ靭性を向上させる金属組織要
因として、 (1)1400℃未満に加熱される領域のオーステナイ
ト細粒化、 (2)溶接ボンド部近傍で1400℃以上に加熱される
領域の粒内フェライト生成を同時に、酸化物を利用して
達成することを検討した。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail. The inventors of the present invention have considered that the metallographic factors for improving the HAZ toughness include (1) austenite grain refinement in a region heated to less than 1400 ° C., and (2) grain size in a region heated to 1400 ° C. or more in the vicinity of a weld bond. It was studied that the formation of internal ferrite was achieved simultaneously using oxides.

【0017】上記(1)項について、オーステナイトを
細粒化するためには高温でのオーステナイト粒成長を抑
制することが必要である。その手段として、析出物によ
りオーステナイトの粒界をピンニングし、粒界の移動を
止める方法が考えられる。そのような作用をする析出物
の一つとしては、一般にTi窒化物が有効であると考え
られる。また、析出物個数が多いほどオーステナイト結
晶粒径が小さくなることはよく知られている事実であ
る。したがって、オーステナイトを細粒化するために
は、Ti窒化物を多数析出させることが有効である。そ
のような観点で、本発明者らが鋼中に析出しているTi
窒化物を詳細に観察したところ、酸化物を核生成サイト
として析出しているTi窒化物が頻度高く存在すること
を見いだした。そのような酸化物として、Caを含み、
さらにTiとAlとのいずれか1種以上を含む酸化物
(以後Ti−Al−Ca酸化物)があり、その粒子径は
0.01〜0.1μmであることを見いだした。
Regarding the above item (1), it is necessary to suppress the growth of austenite grains at a high temperature in order to reduce the size of austenite. As a means for this, a method of pinning austenite grain boundaries with precipitates and stopping the movement of the grain boundaries can be considered. As one of the precipitates having such an action, it is generally considered that Ti nitride is effective. It is a well-known fact that the larger the number of precipitates, the smaller the austenite crystal grain size. Therefore, in order to refine austenite, it is effective to precipitate a large number of Ti nitrides. From such a viewpoint, the present inventors have proposed that Ti
When the nitride was observed in detail, it was found that Ti nitride precipitated as oxide nucleation sites was frequently present. Such oxides include Ca,
Furthermore, there is an oxide containing one or more of Ti and Al (hereinafter, Ti-Al-Ca oxide), and it has been found that the particle diameter is 0.01 to 0.1 µm.

【0018】すなわち、粒子径0.01〜0.1μmの
Ti−Al−Ca酸化物が鋼中に存在することで、それ
ら酸化物が存在しない場合に比較してTi窒化物が析出
するサイトが増加し、Ti窒化物の析出個数が増加す
る。その結果として、多数Ti窒化物によってピンニン
グされたオーステナイト粒の細粒化が可能となる。
That is, when Ti-Al-Ca oxide having a particle diameter of 0.01 to 0.1 μm is present in steel, sites where Ti nitride precipitates are compared with the case where these oxides are not present. And the number of precipitated Ti nitrides increases. As a result, austenite grains pinned by a large number of Ti nitrides can be refined.

【0019】上記(2)項について、本発明者らは、オ
ーステナイト粒内で生成する粒内フェライトの組織を観
察し、粒内フェライト中に含まれる粒子を調査した。そ
の結果、粒内フェライトの生成核として、0.1〜1.
0μmの大きさをもつTi−Al−Ca酸化物と、その
上に析出したTi窒化物+MnSとの複合体が有効に作
用することを見いだした。酸化物は高温に加熱したとき
においても安定であり、1400℃以上でも変化するこ
となく安定して鋼中に存在する。また、Ti窒化物+M
nSはその後の冷却過程で、Ti−Al−Ca酸化物を
核生成サイトとして析出するため、溶接ボンド部近傍で
の粒内フェライト生成が可能となる。
Regarding the above item (2), the present inventors observed the structure of intragranular ferrite generated in austenite grains and investigated the particles contained in the intragranular ferrite. As a result, 0.1 to 1.
It has been found that a composite of a Ti—Al—Ca oxide having a size of 0 μm and a Ti nitride + MnS deposited thereon works effectively. The oxide is stable even when heated to a high temperature, and exists stably in steel without change even at 1400 ° C. or higher. Also, Ti nitride + M
Since nS precipitates a Ti—Al—Ca oxide as a nucleation site in a subsequent cooling process, intragranular ferrite can be generated in the vicinity of the weld bond.

【0020】このように粒内フェライト生成を促進する
効果を有する酸化物の一つにはTi−Al複合酸化物が
あるが、Ti−Al−Ca酸化物はTi−Al酸化物よ
りもフェライト生成能力が高く、同数の酸化物が存在し
たとき、粒内フェライト生成数はTi−Al−Ca酸化
物が存在する方が多くなることを見いだした。
One of the oxides having the effect of promoting the formation of intragranular ferrite is a Ti-Al composite oxide, but Ti-Al-Ca oxide is more ferrite-forming than Ti-Al oxide. It has been found that when the ability is high and the same number of oxides are present, the number of intragranular ferrites increases when the Ti-Al-Ca oxide is present.

【0021】以上の知見から、1400℃未満に加熱さ
れる領域のオーステナイト粒を細粒化し、さらに溶接ボ
ンド部近傍で1400℃以上に加熱される領域の粒内フ
ェライトを生成させるためには、粒子径が0.01〜
1.0μmのTi−Al−Ca複合酸化物が鋼中に存在
することが必要である。本発明者らの知見によれば、該
粒子径が0.01μm未満ではTi窒化物析出核として
の効果は弱く、また1.0μmを超えると、その酸化物
が破壊の起点となる可能性が高くなり、HAZ靭性の低
下を招く可能性が生じる。
From the above findings, it is necessary to reduce the size of austenite grains in a region heated to less than 1400 ° C. and to generate intragranular ferrite in a region heated to 1400 ° C. or more near a weld bond portion. Diameter 0.01 ~
It is necessary that 1.0 μm of the Ti—Al—Ca composite oxide is present in the steel. According to the findings of the present inventors, when the particle size is less than 0.01 μm, the effect as a Ti nitride precipitation nucleus is weak, and when the particle size exceeds 1.0 μm, there is a possibility that the oxide may serve as a starting point of fracture. And the HAZ toughness may decrease.

【0022】つぎにTi−Al−Ca酸化物の個数に関
して記す。酸化物個数が少なすぎると溶接時に充分なT
i窒化物および粒内フェライトの生成核が得られないの
で、5×103個/mm2以上の酸化物を存在させること
が必要である。酸化物個数が多くなるにしたがってTi
窒化物および粒内フェライトの個数は増加しHAZ靭性
は向上するが、1×105個/mm2を超える過剰な酸化
物が存在するとHAZ部および母材の靭性低下を招くこ
とになるので、酸化物個数の上限は1×105個/mm2
でなければならない。
Next, the number of Ti-Al-Ca oxides will be described. If the number of oxides is too small, sufficient T
Since i-nitrides and intragranular ferrite formation nuclei cannot be obtained, it is necessary to have oxides of 5 × 10 3 / mm 2 or more. As the number of oxides increases, Ti
The number of nitrides and intragranular ferrites increases and the HAZ toughness improves, but the presence of an excess oxide exceeding 1 × 10 5 / mm 2 causes a decrease in the toughness of the HAZ portion and the base material. The upper limit of the number of oxides is 1 × 10 5 / mm 2
Must.

【0023】該酸化物の大きさおよび個数の測定は以下
の要領で行なう。母材となる鋼板から抽出レプリカを作
製し、それを電子顕微鏡にて10000倍で20視野以
上、観察面積にして1000μm2以上を観察すること
で該酸化物の大きさおよび個数を測定する。このとき鋼
板の表層部から中心部までどの部位から採取した抽出レ
プリカでもよい。
The size and number of the oxide are measured as follows. An extract replica is prepared from a steel sheet as a base material, and the size and the number of the oxide are measured by observing at least 20 visual fields at a magnification of 10000 and an observation area of 1000 μm 2 or more with an electron microscope. At this time, an extracted replica collected from any part from the surface part to the center part of the steel sheet may be used.

【0024】以下、本発明の製造方法について詳細に説
明する。まず、本発明者らはTi−Al−Ca酸化物お
よびTiN、MnS等の析出物を効果的に多数均一微細
分散するため、種々の脱酸元素を用いて、種々の順序に
よる脱酸実験を試みた。その結果、脱酸処理を行なう前
の、Tiよりも脱酸力の弱い元素であるSiの量を調整
して、Si量と平衡する溶存酸素濃度を20〜80pp
mに調整した溶鋼中に、最終含有量が0.005〜0.
020%となるTiを添加して脱酸した後、直ちに最終
含有量が0.005〜0.020%となるAlを添加
し、さらにその後、最終含有量が0.0005〜0.0
030%となるCaを添加する方法が最も多数Ti−A
l−Ca酸化物およびTiN、MnS等の析出物が均一
微細分散し、得られた鋼材を大入熱溶接したとき、HA
Z部の靭性が非常に優れた溶接溶接構造用鋼となる結果
を得た。Ti脱酸直後にAlを添加した場合に比べて、
さらにCaを添加することで酸化物の個数増加効果が増
す。
Hereinafter, the production method of the present invention will be described in detail. First, the present inventors conducted deoxidation experiments in various orders using various deoxidizing elements to effectively and finely disperse a large number of precipitates such as Ti-Al-Ca oxides and TiN and MnS. Tried. As a result, before performing the deoxidizing treatment, the amount of Si, which is an element having a lower deoxidizing power than Ti, is adjusted, and the dissolved oxygen concentration that balances with the amount of Si is adjusted to 20 to 80 pp.
m in molten steel adjusted to a final content of 0.005 to 0.5.
Immediately after adding 020% Ti and deoxidizing, Al having a final content of 0.005 to 0.020% is added, and thereafter, a final content of 0.0005 to 0.020% is added.
030% Ca is most frequently added to Ti-A
When l-Ca oxide and precipitates such as TiN and MnS are uniformly and finely dispersed, and the obtained steel material is subjected to high heat input welding, HA
A result was obtained in which the toughness of the Z portion was a very excellent welded structural steel. Compared to the case where Al was added immediately after Ti deoxidation,
Further, the effect of increasing the number of oxides is increased by adding Ca.

【0025】すなわち本発明者らは、次の(3)、
(4)、(5)に述べる知見を見いだした。
That is, the present inventors have the following (3):
The findings described in (4) and (5) were found.

【0026】(3)溶存酸素量は酸化物の生成挙動に大
く影響する。酸化物を多数生成させるためには適正な溶
存酸素濃度が存在し、その値は20〜80ppmであ
る。この溶存酸素濃度を調整するためには、Tiよりも
脱酸力の弱いSiの量を調整する。
(3) The amount of dissolved oxygen greatly affects the behavior of oxide formation. In order to produce a large number of oxides, an appropriate dissolved oxygen concentration exists, and the value is 20 to 80 ppm. In order to adjust the dissolved oxygen concentration, the amount of Si having a lower deoxidizing power than Ti is adjusted.

【0027】(4)Ti脱酸後に適量のAlを添加する
とTi酸化物個数が増加し、さらにCaを添加すること
で酸化物中にCaが取り込まれ、Ti−Al−Ca酸化
物となる。
(4) When an appropriate amount of Al is added after deoxidation of Ti, the number of Ti oxides increases, and when Ca is further added, Ca is taken into the oxide to form a Ti-Al-Ca oxide.

【0028】(5)Ti脱酸後、Al添加し、その後さ
らにCaを添加することで、鋼中に存在する酸化物個数
が、Ti脱酸後、Al添加のみの場合より増加する。
(5) By adding Al after Ti deoxidation and then further adding Ca, the number of oxides present in the steel is increased as compared to the case where only Al is added after Ti deoxidation.

【0029】以下に上記3項目について詳細に検討した
結果を述べる。
Hereinafter, the results of the above three items will be described in detail.

【0030】上記(3)項について、Ti投入前の溶存
酸素濃度について調査した結果、溶存酸素濃度が20p
pmよりも少なくなるとHAZ靭性を確保するために必
要な量のTi系酸化物が形成されず、一方、溶存酸素濃
度が80ppmを越えると、生成した酸化物が粗大化
し、HAZ靭性の低下を招く。
As for the above item (3), the dissolved oxygen concentration before the introduction of Ti was investigated.
If it is less than pm, the required amount of Ti-based oxide to secure HAZ toughness is not formed. On the other hand, if the dissolved oxygen concentration exceeds 80 ppm, the generated oxide becomes coarse and the HAZ toughness is reduced. .

【0031】また、この時の溶存酸素濃度は、Siとの
平衡反応で調整する必要がある。溶存酸素濃度の調整
は、この他に吹酸等の方法があるが、例えば吹酸によっ
て溶存酸素濃度を調整しても、その直後に溶存酸素濃度
は平衡値に変化してしまい、Ti投入時の溶存酸素濃度
を正確に調整できないことが明らかとなった。したがっ
て、Ti投入時の正確な溶存酸素濃度調整は、溶鋼中で
安定して実現できる平衡反応を利用しなければならな
い。このときSi濃度は0.05%より高くなくてはな
らない。Si濃度が0.05%以下になると、Siと平
衡する溶存酸素濃度は80ppmを越えるため、上記し
た酸化物の粗大化を招くからである。
At this time, the dissolved oxygen concentration needs to be adjusted by an equilibrium reaction with Si. There are other methods of adjusting the dissolved oxygen concentration, such as blowing acid, etc., for example, even if the dissolved oxygen concentration is adjusted with blowing acid, the dissolved oxygen concentration changes to an equilibrium value immediately after that, and when the Ti is added, It was found that the dissolved oxygen concentration of could not be adjusted accurately. Therefore, accurate adjustment of the dissolved oxygen concentration at the time of introducing Ti must use an equilibrium reaction that can be stably realized in molten steel. At this time, the Si concentration must be higher than 0.05%. This is because, when the Si concentration is 0.05% or less, the dissolved oxygen concentration which equilibrates with Si exceeds 80 ppm, so that the above-mentioned oxide is coarsened.

【0032】上記(4)、(5)項について、Ti脱酸
後に投入するAlおよびCaの効果について検討した結
果、Al投入によってTi酸化物が一部還元され、かつ
微細化していることが明らかとなった。また、Ti−A
l酸化物個数が増加したのは、Al添加によって溶存酸
素濃度が低下したためにTi−Al酸化物の成長が抑制
され微細化し、浮上しにくくなったためだと考えられ
る。さらに最適なAlの範囲を明確にするために実験を
行った結果、Alが0.005%よりも少ないとTi酸
化物の還元および溶存酸素量の低下が充分でなく、Ti
酸化物が粗大化、浮上してしまう。また、0.020%
を超えるとTi酸化物を完全に還元してしまい、Ti酸
化物個数が減少してしまうことが明らかとなった。
As for the above items (4) and (5), the effect of Al and Ca added after Ti deoxidation was examined. As a result, it was found that Ti oxide was partially reduced and refined by adding Al. It became. Also, Ti-A
It is considered that the reason why the number of 1-oxides increased was that, because the concentration of dissolved oxygen was reduced by the addition of Al, the growth of Ti-Al oxides was suppressed, the Ti-Al oxides were miniaturized, and it became difficult to float. As a result of conducting experiments to clarify the optimum range of Al, if the Al content is less than 0.005%, reduction of Ti oxide and reduction of dissolved oxygen amount are not sufficient, and Ti
Oxide coarsens and floats. In addition, 0.020%
It is clear that when the ratio exceeds 1, the Ti oxide is completely reduced, and the number of Ti oxides is reduced.

【0033】つぎに、Ti、Alより強い脱酸力を有す
るCaをさらに添加することにより、すでに生成してい
た酸化物は一部還元され、Ti−Al−Ca酸化物とな
る。また、溶存酸素濃度はさらに低下し、Ti−Al−
Ca酸化物の成長はより一層抑制され、酸化物は微細な
まま分散することが可能となる。このとき、Caの過剰
な添加はCaSの生成を促進し、後のMnS析出を阻害
するため適切ではない。
Next, by further adding Ca, which has a stronger deoxidizing power than Ti and Al, the oxides already generated are partially reduced to Ti-Al-Ca oxides. Further, the dissolved oxygen concentration further decreases, and Ti-Al-
The growth of Ca oxide is further suppressed, and the oxide can be dispersed while keeping the fineness. At this time, excessive addition of Ca is not appropriate because it promotes the formation of CaS and hinders the subsequent precipitation of MnS.

【0034】さらには、Ti脱酸後の溶鋼サンプルを適
宜採取し、酸化物の生成挙動を調査した結果、図1に示
す如く、Ti脱酸後時間の経過とともに生成したTi酸
化物は成長・凝集して粗大化し、浮上してしまうことが
明らかとなった。したがって、Ti投入後、Tiが溶鋼
中に均一に混合してすぐにAlを投入することが酸化物
を多く得るためには有効である。したがって、Alは、
Ti添加を実施するRHなどの二次精錬設備における脱
酸工程で投入添加しなければならない。ただし、Ti脱
酸を二次精錬設備で行なわない場合、例えば転炉出鋼時
などにTi脱酸を行なう場合には、Al添加もその直後
に実施する。また、Ti脱酸後すぐにAlを投入しなく
ても5分以内であればTi酸化物の減少量はさほど多く
ないため、5分以内であることが望ましい。なお、請求
の範囲および発明の詳細な説明の中のTiを添加して脱
酸した後あるいはTi脱酸後とは、投入したTiが溶鋼
中に均一に混合した後のことを意味する。Ca添加につ
いてもAl添加と同様であり、Al添加後短い時間の間
に投入することが望ましい。
Further, a sample of molten steel after Ti deoxidation was appropriately collected, and the formation behavior of the oxide was investigated. As shown in FIG. It has been clarified that the particles are aggregated, coarsened, and float. Therefore, it is effective to introduce Al immediately after mixing Ti into the molten steel uniformly after the introduction of Ti in order to obtain a large amount of oxides. Therefore, Al
It must be added and added in a deoxidation step in a secondary refining facility such as RH where Ti is added. However, when Ti deoxidation is not performed in the secondary refining facility, for example, when Ti deoxidation is performed during converter tapping, Al addition is also performed immediately thereafter. Even if Al is not introduced immediately after Ti deoxidation, the amount of reduction of Ti oxide is not so large as long as it is within 5 minutes, so that it is preferable to be within 5 minutes. In the claims and the detailed description of the invention, "after adding Ti and deoxidizing or after deoxidizing Ti" means after the charged Ti is uniformly mixed in the molten steel. The addition of Ca is the same as the addition of Al, and it is desirable to add Ca within a short time after the addition of Al.

【0035】Ti−Al−Ca酸化物は、溶鋼を脱酸す
る際に生成する。これを一次酸化物と称する。さらには
鋳造、凝固中に溶鋼温度の低下とともにTi−Al−C
a酸化物は生成する。これを二次酸化物と称する。本発
明では、一次酸化物と二次酸化物とのどちらを用いても
構わない。
The Ti-Al-Ca oxide is generated when deoxidizing molten steel. This is called a primary oxide. Furthermore, during casting and solidification, the temperature of molten steel decreases and Ti-Al-C
a oxide is formed. This is called a secondary oxide. In the present invention, either a primary oxide or a secondary oxide may be used.

【0036】以上より、酸化物の組成、個数および大き
さを所定の条件に制御するためには製鋼工程における脱
酸方法が重要となる。適当な脱酸方法としては、転炉出
鋼後、脱酸処理を行なう前のSi量を0.05%より多
くした上で、溶存酸素濃度が20〜80ppmになるよ
うに調整した溶鋼中に、RHなどの二次精錬工程で、最
終含有量が所定の成分値になるようTiを添加して脱酸
した後、同じくRHなどの二次工程で最終含有量が所定
の成分値%となるAlを添加し、さらにCaを添加した
後、最終成分に対して不足する分のSiその他の元素を
添加し、最終成分調整をする。
From the above, in order to control the composition, number and size of oxides to predetermined conditions, a deoxidizing method in the steel making process is important. As a suitable deoxidation method, after the steel output from the converter, the amount of Si before the deoxidization treatment is increased to more than 0.05%, and the molten steel is adjusted to have a dissolved oxygen concentration of 20 to 80 ppm. , RH, etc., in the secondary refining process, Ti is added so that the final content becomes a predetermined component value, and deoxidation is performed. Similarly, in the secondary process such as RH, the final content becomes a predetermined component value%. After adding Al and further adding Ca, an insufficient amount of Si and other elements with respect to the final component is added to adjust the final component.

【0037】また鋼材を製造するプロセスとして、通常
圧延まま、制御圧延、さらにこれと制御冷却と焼もどし
の組合せ、および焼入れ・焼もどしの組合せなどであっ
ても酸化物の効果は影響を受けない。
The effect of the oxide is not affected by the process of producing steel material, which is usually performed as-rolled, controlled-rolling, a combination of controlled rolling and tempering, and a combination of quenching and tempering. .

【0038】つぎに本発明の基本成分範囲の限定理由に
ついて述べる。
Next, the reasons for limiting the range of the basic components of the present invention will be described.

【0039】Cは鋼の強度を向上させる有効な成分とし
て下限を0.03%とし、また0.18%を越える過剰
の添加は、鋼材の溶接性やHAZ靭性などを著しく低下
させるので、上限を0.18%とした。
C is an effective component for improving the strength of steel, with the lower limit being 0.03%, and an excessive addition exceeding 0.18% significantly reduces the weldability and HAZ toughness of the steel material. Was set to 0.18%.

【0040】Siは母材の強度確保、予備脱酸などに必
要な成分であるが、HAZの硬化により靭性が低下する
のを防止するため上限を0.5%とした。
Si is a component necessary for securing the strength of the base material, preliminary deoxidation, and the like, but the upper limit is set to 0.5% in order to prevent a decrease in toughness due to hardening of the HAZ.

【0041】Mnは母材の強度、靭性の確保、および粒
内フェライトの変態核を生成させる成分として0.4%
以上の添加が必要であるが、溶接部の靭性、割れ性など
の許容できる範囲で上限を2.0%とした。
Mn is 0.4% as a component for ensuring the strength and toughness of the base material and for generating transformation nuclei of intragranular ferrite.
Although the above addition is necessary, the upper limit is set to 2.0% within an allowable range such as the toughness and cracking property of the welded portion.

【0042】Pは含有量が少ないほど望ましいが、これ
を工業的に低減させるためには多大なコストがかかるこ
とから、0.020%を上限とした。
The smaller the content of P is, the more desirable it is. However, in order to reduce this industrially, a great deal of cost is required. Therefore, the upper limit is set to 0.020%.

【0043】SはMnSを生成する元素として0.00
1%が必要であるが、溶接部の靭性、割れ性などの許容
できる範囲で上限を0.005%とした。
S is an element that forms MnS at 0.00
Although 1% is necessary, the upper limit is set to 0.005% within an allowable range such as toughness and cracking of the welded portion.

【0044】Alは酸化物個数を増加させること、およ
び溶接金属の靭性低下を抑制するため、下限値を0.0
05%とした。また、Alが多量に存在すると、酸化物
がすべてアルミナとなり、Ti−Al−Ca酸化物が生
成しなくなるため、上限を0.020%とした。
Al has a lower limit of 0.0 to increase the number of oxides and to suppress a decrease in the toughness of the weld metal.
05%. In addition, when Al is present in a large amount, all oxides become alumina and Ti-Al-Ca oxide is not generated, so the upper limit was made 0.020%.

【0045】TiはTi−Al−Ca酸化物、Ti窒化
物を形成させるために0.005%以上添加する。しか
し、固溶Ti量が増加するとHAZ靭性が低下するた
め、0.020%を上限とした。
Ti is added in an amount of 0.005% or more to form a Ti—Al—Ca oxide and a Ti nitride. However, when the amount of solute Ti increases, the HAZ toughness decreases. Therefore, the upper limit is set to 0.020%.

【0046】CaはTi−Al−Ca酸化物を生成させ
るために0.0005%以上の添加が必要である。しか
しながら、過剰の添加はMnSの析出を阻害し、その結
果粒内フェライト組織を減少させるため、0.0030
%を上限とした。
Ca must be added in an amount of 0.0005% or more in order to form a Ti—Al—Ca oxide. However, excessive addition hinders the precipitation of MnS and consequently reduces the intragranular ferrite structure, so that 0.0030
% As the upper limit.

【0047】NはTi窒化物の析出には極めて重要な元
素であり、0.002%未満ではTi窒化物の析出量が
不足し、フェライト組織の充分な生成量が得られない。
また、固溶Nの増大はHAZ靭性の低下を招くことから
0.006を上限とした。
N is a very important element for the precipitation of Ti nitride, and if less than 0.002%, the amount of Ti nitride deposited is insufficient, and a sufficient amount of ferrite structure cannot be obtained.
The upper limit of 0.006 is set because an increase in solid solution N causes a decrease in HAZ toughness.

【0048】Cuは鋼材の強度を向上させるために有効
であるが、1.0%を越えるとHAZ靭性を低下させる
ことから、1.0%を上限とした。
Although Cu is effective for improving the strength of the steel material, if it exceeds 1.0%, the HAZ toughness is reduced. Therefore, the upper limit is set to 1.0%.

【0049】Niは鋼材の強度および靭性を向上させる
ために有効であるが、Ni量の増加は製造コストを上昇
させるので、1.5%を上限とした。
Although Ni is effective for improving the strength and toughness of the steel material, the upper limit is 1.5% because an increase in the amount of Ni increases the production cost.

【0050】Nbは焼き入れ性を向上させることにより
母材の強度および靭性を向上させるために有効な元素で
あるが、HAZ部においては過剰な添加は靭性を著しく
低下させるため0.03%を上限とした。
Nb is an effective element for improving the strength and toughness of the base material by improving the hardenability. However, in the HAZ portion, excessive addition significantly reduces the toughness, so that 0.03% is required. The upper limit was set.

【0051】V、Cr、MoについてもNbと同様な効
果を有することから、それぞれ0.1%、0.6%、
0.6%を上限とした。
V, Cr, and Mo also have the same effect as Nb, so that 0.1%, 0.6%,
The upper limit was 0.6%.

【0052】BはHAZ靭性に有害な粒界フェライト、
フェライトサイドプレートの成長抑制と、BNの析出に
よるHAZの固溶Nの固定から0.0002%以上0.
002%以下とした。
B is a grain boundary ferrite harmful to HAZ toughness,
0.0002% or more from the suppression of the growth of the ferrite side plate and the fixation of the solute N in the HAZ by the precipitation of BN.
002% or less.

【0053】[0053]

【実施例】表1に示した化学成分で、50キロ鋼を試作
した。1〜10が本発明鋼、11〜22が比較鋼であ
る。試作鋼は転炉溶製し、RHにて真空脱ガス処理時に
脱酸を行っている。Ti投入前に溶鋼の溶存酸素をSi
で調整し、その後Ti、Alを順に添加し脱酸を行な
い、連続鋳造により280mm厚鋳片に鋳造した後、加
熱圧延を経て、板厚45mmの鋼板として製造した。得
られた鋼板を1パスのSEGARC溶接した。入熱は約
200kJ/cm2である。
EXAMPLE A 50 kg steel was prototyped with the chemical composition shown in Table 1. 1 to 10 are steels of the present invention and 11 to 22 are comparative steels. The prototype steel is melted from a converter and deoxidized at RH during vacuum degassing. Before introducing Ti, the dissolved oxygen of molten steel is
After that, Ti and Al were added in order, and deoxidation was performed. After casting into a 280 mm thick slab by continuous casting, it was heated and rolled to produce a 45 mm thick steel sheet. The obtained steel plate was subjected to one-pass SEGARC welding. The heat input is about 200 kJ / cm 2 .

【0054】表2には、脱酸方法、酸化物の粒子径、粒
子数を示す。表3には、鋼板の圧延条件、母材特性、お
よびHAZの靭性を示す。HAZ靭性評価のためのシャ
ルピー値は、フュージョンラインからHAZ1mmの部
位で9本の試験を行ない、その平均値である。
Table 2 shows the deoxidation method, the particle diameter of the oxide, and the number of particles. Table 3 shows rolling conditions, base metal properties, and HAZ toughness of the steel sheet. The Charpy value for evaluating the HAZ toughness is an average value obtained by performing nine tests at a position 1 mm from the fusion line at a HAZ of 1 mm.

【0055】表3から明らかなように、1〜10の本発
明鋼は比較鋼と比べて優れたHAZ靭性を有することが
判る。すなわち、粒子径が0.01〜1.0μmで、T
i−、Al−Ca酸化物の粒子数が5×103〜1×1
5個/mm2の範囲にあり、−20℃のHAZ靭性が極
めて優れている。
As is evident from Table 3, the steels of the present invention of 1 to 10 have excellent HAZ toughness as compared with the comparative steels. That is, when the particle diameter is 0.01 to 1.0 μm and T
The number of particles of i- and Al-Ca oxide is 5 × 10 3 to 1 × 1
0 is in the 5 / mm 2 range, HAZ toughness -20 ° C. is extremely excellent.

【0056】一方、比較例の11〜22は、いずれもシ
ャルピー試験−20℃で40J未満の低い靭性しか示さ
なかった。これらの原因は11、12、13はSiによ
り調整した溶存酸素量が本発明の所定の量に達していな
かったため、14はSiにより調整した溶存酸素量が所
定の量を超えたため、15はAl量が所定量を下回った
ため、16はAl量が所定量を上回ったためである。ま
た、17、18はTiとAlとの添加順序が本発明とは
逆であったため、19、20はTiとAlとの添加間隔
が本発明で規定した所定時間より長かったためである。
21はCa量が所定量を上回ったため、22はCa量が
所定量を下回ったためである。
On the other hand, all of Comparative Examples 11 to 22 exhibited low toughness of less than 40 J at -20 ° C. in the Charpy test. The causes are 11, 12, and 13 because the dissolved oxygen amount adjusted by Si did not reach the predetermined amount of the present invention, and 14 was because the dissolved oxygen amount adjusted by Si exceeded the predetermined amount. Since the amount was less than the predetermined amount, 16 is because the Al amount exceeded the predetermined amount. 17 and 18 are because the order of addition of Ti and Al was opposite to that of the present invention, and 19 and 20 were that the addition interval between Ti and Al was longer than the predetermined time specified in the present invention.
21 is because the Ca amount exceeded the predetermined amount, and 22 was because the Ca amount was below the predetermined amount.

【0057】[0057]

【表1】 [Table 1]

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【表3】 [Table 3]

【0060】[0060]

【発明の効果】本発明は、船舶、海洋構造物、中高層ビ
ルなどの破壊に対する厳しい靭性要求を満足する鋼板を
供給するものであり、この種の産業分野にもたらす効果
は極めて大きく、さらに構造物の安全性の意味から社会
に対する貢献も非常に大きい。
According to the present invention, a steel sheet which satisfies the strict toughness requirements for destruction of ships, marine structures, middle and high-rise buildings, etc. is provided, and the effect brought to this kind of industrial field is extremely large. The contribution to society is very large in terms of safety.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を含有し、残部はFeおよび不可避不純物からなり、か
つ粒子径が0.01〜1.0μm、粒子数が5×103
〜1×105個/mm2、Caを含み、さらにTiとAl
のいづれか1種以上を含む複合酸化物を含有することを
特徴とする溶接熱影響部靭性の優れた溶接構造用鋼材。
C: 0.03 to 0.18% Si: ≦ 0.50% Mn: 0.40 to 2.0% P: ≦ 0.02% S: 0.0010 to 0% by weight% 0.010% Al: 0.005 to 0.020% Ti: 0.005 to 0.020% Ca: 0.0005 to 0.0030% N: 0.0020 to 0.0060%, the balance being Fe And an unavoidable impurity having a particle diameter of 0.01 to 1.0 μm and a particle number of 5 × 10 3.
11 × 10 5 / mm 2 , containing Ca, Ti and Al
A welded structural steel having excellent toughness in a heat affected zone of a weld, comprising a composite oxide containing at least one of the following:
【請求項2】 重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を基本成分とし、さらに Cu:≦1.0% Ni:≦1.5% Nb:≦0.030% V:≦0.1% Cr:≦0.6% Mo:≦0.6% B:0.0002〜0.0020% の1種または2種以上を含有し、残部はFeおよび不可
避不純物からなり、かつ粒子径が0.01〜1.0μ
m、粒子数が5×103〜1×105個/mm2、Caを
含み、さらにTiとAlのいづれか1種以上を含む複合
酸化物を含有することを特徴とする溶接熱影響部靭性の
優れた溶接構造用鋼材。
2. In weight%, C: 0.03-0.18% Si: ≦ 0.50% Mn: 0.40-2.0% P: ≦ 0.02% S: 0.0010-0 0.010% Al: 0.005 to 0.020% Ti: 0.005 to 0.020% Ca: 0.0005 to 0.0030% N: 0.0020 to 0.0060% : ≦ 1.0% Ni: ≦ 1.5% Nb: ≦ 0.030% V: ≦ 0.1% Cr: ≦ 0.6% Mo: ≦ 0.6% B: 0.0002 to 0.0020 % Or more, the balance being Fe and unavoidable impurities, and having a particle size of 0.01 to 1.0 μm.
m, the number of particles is from 5 × 10 3 to 1 × 10 5 / mm 2 , containing Ca, and further containing a composite oxide containing at least one of Ti and Al. Excellent steel material for welded structures.
【請求項3】 Si濃度が0.05〜0.20%、溶存
酸素濃度が20〜80ppmになるように調整した溶鋼
中に、最終含有量が0.005〜0.020%となるT
iを添加して脱酸した後、最終含有量が0.005〜
0.020%となるAlを添加し、さらに最終含有量が
0.0005〜0.0030%となるCaを添加し、そ
の後最終成分に対して不足する分のSi、および他合金
を添加し、成分組成が重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を含有し、残部がFeおよび不可避不純物からなる溶鋼
を鋳造後圧延することを特徴とする溶接熱影響部靭性の
優れた溶接構造用鋼材の製造方法。
3. A T steel having a final content of 0.005 to 0.020% in molten steel adjusted to have a Si concentration of 0.05 to 0.20% and a dissolved oxygen concentration of 20 to 80 ppm.
After adding i and deoxidizing, the final content is 0.005 to
0.020% of Al is added, Ca is added to a final content of 0.0005 to 0.0030%, and then Si and other alloys are added, which are insufficient for the final components. Ingredient composition is% by weight, C: 0.03 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: 0.0010 to 0.010 % Al: 0.005 to 0.020% Ti: 0.005 to 0.020% Ca: 0.0005 to 0.0030% N: 0.0020 to 0.0060%, the balance being Fe and inevitable A method for producing a steel material for a welded structure having excellent toughness in a heat affected zone of a weld, characterized in that molten steel containing impurities is cast and then rolled.
【請求項4】 Si濃度が0.05〜0.20%、溶存
酸素濃度が20〜80ppmになるように調整した溶鋼
中に、最終含有量が0.005〜0.020%となるT
iを添加して脱酸した後、最終含有量が0.005〜
0.020%となるAlを添加し、さらに最終含有量が
0.0005〜0.0030%となるCaを添加し、そ
の後最終成分に対して不足する分のSi、および他合金
を添加し、成分組成が重量%で、 C:0.03〜0.18% Si:≦0.50% Mn:0.40〜2.0% P:≦0.02% S:0.0010〜0.010% Al:0.005〜0.020% Ti:0.005〜0.020% Ca:0.0005〜0.0030% N:0.0020〜0.0060% を基本成分とし、さらに Cu:≦1.0% Ni:≦1.5% Nb:≦0.030% V:≦0.1% Cr:≦0.6% Mo:≦0.6% B:0.0002〜0.0020% の1種または2種以上を含有し、残部がFeおよび不可
避不純物からなる溶鋼を鋳造後圧延することを特徴とす
る溶接熱影響部靭性の優れた溶接構造用鋼材の製造方
法。
4. A T steel having a final content of 0.005 to 0.020% in molten steel adjusted to have a Si concentration of 0.05 to 0.20% and a dissolved oxygen concentration of 20 to 80 ppm.
After adding i and deoxidizing, the final content is 0.005 to
0.020% of Al is added, Ca is added to a final content of 0.0005 to 0.0030%, and then Si and other alloys are added, which are insufficient for the final components. Ingredient composition is% by weight, C: 0.03 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: 0.0010 to 0.010 % Al: 0.005 to 0.020% Ti: 0.005 to 0.020% Ca: 0.0005 to 0.0030% N: 0.0020 to 0.0060% as a basic component, and further Cu: ≦ 1.0% Ni: ≦ 1.5% Nb: ≦ 0.030% V: ≦ 0.1% Cr: ≦ 0.6% Mo: ≦ 0.6% B: 0.0002 to 0.0020% Roll molten steel containing one or more types, the balance being Fe and inevitable impurities Method for producing a weld heat-affected zone toughness having excellent welding structural steel, characterized in that.
JP35393996A 1996-12-19 1996-12-19 Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same Expired - Fee Related JP3323414B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35393996A JP3323414B2 (en) 1996-12-19 1996-12-19 Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35393996A JP3323414B2 (en) 1996-12-19 1996-12-19 Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10183295A true JPH10183295A (en) 1998-07-14
JP3323414B2 JP3323414B2 (en) 2002-09-09

Family

ID=18434240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35393996A Expired - Fee Related JP3323414B2 (en) 1996-12-19 1996-12-19 Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same

Country Status (1)

Country Link
JP (1) JP3323414B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059167A1 (en) * 2000-02-10 2001-08-16 Nippon Steel Corporation Steel product having weld heat-affected zone excellent in rigidity
JP2004250749A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp High strength thin steel sheet having burring property, and production method therefor
WO2007105752A1 (en) * 2006-03-16 2007-09-20 Sumitomo Metal Industries, Ltd. Steel sheet for submerged arc welding
WO2009145328A1 (en) * 2008-05-26 2009-12-03 新日本製鐵株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
JP2010168644A (en) * 2008-12-22 2010-08-05 Kobe Steel Ltd Thick steel plate excellent in toughness of welding heat-affected zone
CN102191442A (en) * 2011-05-13 2011-09-21 宝鸡石油机械有限责任公司 Steel for marine riser flange of marine deepwater drilling and manufacturing method of marine riser flange
JP2017179424A (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Abrasion proof steel sheet and manufacturing method therefor
JP2017179426A (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Abrasion proof steel sheet and manufacturing method therefor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001059167A1 (en) * 2000-02-10 2001-08-16 Nippon Steel Corporation Steel product having weld heat-affected zone excellent in rigidity
EP1520912A2 (en) * 2000-02-10 2005-04-06 Nippon Steel Corporation Steel excellent in toughness of weld heat-affected zone
EP1520912A3 (en) * 2000-02-10 2005-04-27 Nippon Steel Corporation Steel excellent in toughness of weld heat-affected zone
JP2004250749A (en) * 2003-02-20 2004-09-09 Nippon Steel Corp High strength thin steel sheet having burring property, and production method therefor
WO2007105752A1 (en) * 2006-03-16 2007-09-20 Sumitomo Metal Industries, Ltd. Steel sheet for submerged arc welding
WO2009145328A1 (en) * 2008-05-26 2009-12-03 新日本製鐵株式会社 High-strength hot-rolled steel sheet for line pipe excellent in low-temperature toughness and ductile-fracture-stopping performance and process for producing the same
US9657364B2 (en) 2008-05-26 2017-05-23 Nippon Steel & Sumitomo Metal Corporation High strength hot rolled steel sheet for line pipe use excellent in low temperature toughness and ductile fracture arrest performance and method of production of same
JP2010168644A (en) * 2008-12-22 2010-08-05 Kobe Steel Ltd Thick steel plate excellent in toughness of welding heat-affected zone
CN102191442A (en) * 2011-05-13 2011-09-21 宝鸡石油机械有限责任公司 Steel for marine riser flange of marine deepwater drilling and manufacturing method of marine riser flange
JP2017179424A (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Abrasion proof steel sheet and manufacturing method therefor
JP2017179426A (en) * 2016-03-29 2017-10-05 新日鐵住金株式会社 Abrasion proof steel sheet and manufacturing method therefor

Also Published As

Publication number Publication date
JP3323414B2 (en) 2002-09-09

Similar Documents

Publication Publication Date Title
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JPH09157787A (en) High tensile strength steel for welding excellent in toughness in very large heat input welded heat affected zone
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
JPH093597A (en) Steel for low temperature use excellent in toughness of weld heat affected zone and its production
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JPS61238940A (en) Low-temperature tough hardening steel excelling in toughness in weld zone
JPH0853734A (en) Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JP2003313628A (en) Steel product superior in toughness of weld heat- affected zone
JP3852118B2 (en) Steel material with excellent toughness of weld heat affected zone
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP4039223B2 (en) Thick steel plate with excellent super tough heat input weld heat affected zone toughness and method for producing the same
JP2002371338A (en) Steel superior in toughness at laser weld
JP3222007B2 (en) Method for producing steel material for welded structure with good heat-affected zone toughness of large heat input welding
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JP3464566B2 (en) Low temperature steel with excellent toughness in the heat affected zone
JP3238271B2 (en) Method for producing low temperature steel with excellent heat-affected zone toughness in large heat input welding
JP3616609B2 (en) Steel with excellent weld heat-affected zone toughness
JPH07252586A (en) Steel for welding structure excellent in ctod in multilayer build-up weld heat-affected zone and toughness in high heat input weld heat-affected zone
JPS621842A (en) Tough, high tension steel having superior toughness in weld zone
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP3224677B2 (en) Low temperature steel for welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080628

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090628

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100628

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110628

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120628

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130628

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees