JP3215296B2 - Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone - Google Patents

Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone

Info

Publication number
JP3215296B2
JP3215296B2 JP17968795A JP17968795A JP3215296B2 JP 3215296 B2 JP3215296 B2 JP 3215296B2 JP 17968795 A JP17968795 A JP 17968795A JP 17968795 A JP17968795 A JP 17968795A JP 3215296 B2 JP3215296 B2 JP 3215296B2
Authority
JP
Japan
Prior art keywords
steel
toughness
oxide
composition ratio
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17968795A
Other languages
Japanese (ja)
Other versions
JPH093599A (en
Inventor
昌紀 皆川
昭 伊藤
忠 石川
政明 永原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP17968795A priority Critical patent/JP3215296B2/en
Publication of JPH093599A publication Critical patent/JPH093599A/en
Application granted granted Critical
Publication of JP3215296B2 publication Critical patent/JP3215296B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、船舶、海洋構造物、中
高層ビルなどに使用される溶接熱影響部(以下HAZと
称す)の靱性に優れた溶接構造用鋼材の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel material for a welded structure having excellent toughness of a weld heat affected zone (hereinafter referred to as HAZ) used for ships, marine structures, middle and high rise buildings, and the like. />.

【0002】[0002]

【従来の技術】近年、船舶、海洋構造物、中高層ビルな
どで用いられる大型構造物に使用される溶接用鋼材の材
質特性に対する要望は厳しさを増しており、鋼材自身の
靱性と同様に、HAZの靱性への要求も厳しさを増して
いる。
2. Description of the Related Art In recent years, there has been an increasing demand for material properties of welding steel used for large structures used in ships, marine structures, middle and high-rise buildings, and the like, as well as the toughness of the steel itself. Demands on the toughness of the HAZ are also increasing.

【0003】さらにそのような構造物を建造する際、溶
接の効率化を促進するため、フラックス−鋼バッキング
溶接法、エレクトロガスアーク溶接法などに代表される
ような大入熱溶接法の適用が希望されている。
Further, when constructing such a structure, it is desired to apply a large heat input welding method typified by a flux-steel backing welding method, an electrogas arc welding method, etc. in order to promote the efficiency of welding. Have been.

【0004】従来、靱性の要求は小中入熱溶接を適用し
た部分に限られていたため、靱性を向上させる方法は、
例えば、特公平4−14179号公報や特開平4−11
6135号公報に開示されるように成分を規制すること
によって靱性を支配している島状マルテンサイトの生成
状態を制御するだけで充分であった。ところが、近年で
は大入熱溶接の適用が進められており、その場合島状マ
ルテンサイトを制御するだけでは不十分である。
[0004] Conventionally, the demand for toughness has been limited to the part to which small-to-medium heat input welding is applied.
For example, Japanese Patent Publication No. 4-14179 and Japanese Patent Laid-Open No.
It was sufficient to control the state of formation of island-like martensite, which controls toughness by regulating the components as disclosed in JP-A-6135. However, in recent years, the application of large heat input welding has been promoted, and in that case, controlling only the island-like martensite is not sufficient.

【0005】これを受け、大入熱溶接時の鋼材のHAZ
靱性に注目した提案は従来から数多くある。
[0005] In response to this, HAZ of steel at the time of large heat input welding
There have been many proposals focusing on toughness.

【0006】例えば、特公昭55−26164号公報等
に開示されるように、微細なTi窒化物を鋼中に確保す
ることによって、HAZのオーステナイト粒を小さく
し、靱性を向上させる方法がある。また、特開平3−2
64614号公報ではTi窒化物とMnSとの複合析出
物をフェライトの変態核として活用し、HAZの靱性を
向上させる方法が提案されている。
[0006] For example, as disclosed in Japanese Patent Publication No. 55-26164, there is a method of reducing the austenite grains of HAZ and improving the toughness by securing fine Ti nitride in steel. Also, Japanese Patent Application Laid-Open No.
JP-A-64614 proposes a method of utilizing a composite precipitate of Ti nitride and MnS as a transformation nucleus of ferrite to improve the toughness of HAZ.

【0007】しかしながら、Ti窒化物は、HAZのう
ち最高到達温度が1400℃を超える溶接金属との境界
(溶接ボンド部と称する)近傍ではほとんど固溶してし
まうので靱性劣化抑制効果が低下してしまうという問題
があり、近年の厳しい鋼材特性への要求を達成すること
が困難である。
However, Ti nitride almost completely forms a solid solution in the vicinity of a boundary (referred to as a weld bond portion) with a weld metal having a maximum temperature exceeding 1400 ° C. of the HAZ, so that the effect of suppressing the deterioration of toughness is reduced. And it is difficult to achieve the recent demands for severe steel properties.

【0008】この溶接ボンド部近傍の靱性を改善する方
法として、Ti酸化物を含有した鋼が厚板、形鋼などの
様々な分野で使用されている。例えば厚板分野では特開
昭61−79745号公報や特開昭62−103344
号公報に例示されているように、Ti酸化物を含有した
鋼が大入熱溶接部靱性向上に非常に有効であり、高張力
鋼への適用が有望である。この原理は、Ti酸化物およ
びTi窒化物、MnS等の析出物を核として微細フェラ
イトが生成し、その結果靱性に有害な粗大フェライトの
生成が抑制され、靱性の劣化が防止できるというもので
ある。しかしながら、このようなTi酸化物は鋼中へ分
散される個数をあまり多くすることができない。その原
因はTi酸化物の粗大化や凝集合体であり、Ti窒化物
の個数を増加させようとすれば5μm以上の粗大なTi
酸化物、いわゆる介在物が増加してしまう。この5μm
以上の介在物は構造物の破壊の起点となって有害であ
り、靱性の低下を引き起こす。したがって、さらなるH
AZ靱性の向上を達成するためには、粗大化や凝集合体
が起こりにくく、Ti酸化物よりも微細に分散する酸化
物を活用する必要がある。
As a method for improving the toughness in the vicinity of the weld bond, steel containing a Ti oxide is used in various fields such as thick plates and section steels. For example, in the field of thick plates, Japanese Patent Application Laid-Open Nos. 61-79745 and 62-103344.
As exemplified in the publication, steel containing a Ti oxide is very effective in improving the toughness of a large heat input weld, and its application to high tensile strength steel is promising. The principle is that fine ferrite is generated using precipitates such as Ti oxides, Ti nitrides, and MnS as nuclei. As a result, generation of coarse ferrite harmful to toughness is suppressed, and deterioration of toughness can be prevented. . However, the number of such Ti oxides dispersed in steel cannot be so large. The cause is coarsening and aggregation of Ti oxides. If the number of Ti nitrides is to be increased, coarse Ti
Oxides, so-called inclusions, increase. This 5 μm
The inclusions described above are harmful as starting points for structural destruction, and cause a decrease in toughness. Therefore, additional H
In order to achieve an improvement in AZ toughness, it is necessary to utilize an oxide which is less likely to be coarsened and aggregated and which is more finely dispersed than a Ti oxide.

【0009】また、このようなTi酸化物の鋼中への分
散方法としては、Al等の強脱酸元素を実質的に含まな
い溶鋼中へのTi添加によるものが多い。しかしなが
ら、単に溶鋼中にTiを添加するだけでは鋼中のTi酸
化物の個数、分散度を制御することは困難であり、さら
には、TiN、MnS等の析出物の個数、分散度を制御
することも困難である。その結果、Ti脱酸のみによっ
てTi酸化物を分散させた鋼においては、例えば、Ti
酸化物の個数が充分でなかったり、厚板の板厚方向の靱
性変動を生じる等の問題点が認められる。
As a method for dispersing such a Ti oxide in steel, there are many methods of adding Ti to molten steel substantially not containing a strong deoxidizing element such as Al. However, it is difficult to control the number and the degree of dispersion of Ti oxides in steel simply by adding Ti to molten steel. Further, the number and the degree of dispersion of precipitates such as TiN and MnS are controlled. It is also difficult. As a result, in steel in which Ti oxide is dispersed only by Ti deoxidation, for example, Ti
Problems such as insufficient number of oxides and variation in toughness in the thickness direction of the thick plate are observed.

【0010】さらに、上記特開昭61−79745号公
報などの方法では、Ti酸化物を生成しやすくするため
に、Al量の上限を、0.007%という非常に少ない
量で制限している。鋼材中のAl量が少ない場合、Al
N析出物量の不足などの原因により、母材の靱性が低下
する場合がある。また、通常使用されている溶接材料を
用いてAl量の少ない鋼板を溶接した場合、溶接金属の
靱性が低下する場合がある。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 61-79745, the upper limit of the amount of Al is limited to a very small amount of 0.007% in order to easily form a Ti oxide. . If the amount of Al in the steel is small,
There may be a case where the toughness of the base material is reduced due to a cause such as an insufficient amount of N precipitates. Further, when a steel sheet having a small amount of Al is welded using a commonly used welding material, the toughness of the weld metal may be reduced.

【0011】特開平4−9448号公報に例示されてい
るように、Ti添加後タンディッシュや鋳型内にAlを
添加する方法も考案されている。しかしながら、この方
法はAlNを有効に生成させるための方法であり、Ti
酸化物さらにはTiN、MnS等の析出物を鋼中に分散
させるための方法ではない。またAlをタンディッシュ
で添加するなど、TiとAlとの添加間隔が長く、Al
添加後直ちに鋳造することが特徴であり、これはTi酸
化物がAlで還元されることを極力抑えるためである。
したがって、酸化物生成におよぼすAlの効果は得られ
ない。
As exemplified in JP-A-4-9448, a method of adding Al to a tundish or a mold after adding Ti has been devised. However, this method is a method for effectively producing AlN,
This is not a method for dispersing oxides and precipitates such as TiN and MnS in steel. In addition, the addition interval between Ti and Al is long, such as when Al is added in a tundish.
The feature is that casting is performed immediately after the addition, in order to minimize the reduction of Ti oxide with Al.
Therefore, the effect of Al on oxide formation cannot be obtained.

【0012】また、特開平3−53044号公報におい
ても、Ti添加後にAlを添加する方法が考案されてい
るが、この方法はTi添加前のSi量を0.05%以下
にすることを規定している。このようにSi量が少ない
と、溶存酸素濃度の調整が不安定で、溶存酸素濃度が高
くなりすぎ、その結果酸化物の粗大化が生じ、先にも述
べたように、破壊の発生起点となる大型介在物が生成し
やすくなるといった問題点がある。
Japanese Patent Application Laid-Open No. 3-53044 also proposes a method of adding Al after adding Ti, but this method specifies that the amount of Si before the addition of Ti is made 0.05% or less. are doing. When the amount of Si is small as described above, the adjustment of the dissolved oxygen concentration is unstable, and the dissolved oxygen concentration becomes too high. As a result, coarsening of the oxide occurs. There is a problem that large inclusions are easily generated.

【0013】[0013]

【発明が解決しようとする課題】特開昭62−1033
44号公報など上記の従来手法より一層のHAZ特性を
向上させられるために、Ti酸化物のごとく粗大化せ
ず、したがって破壊の起点にならず、さらにはTi窒化
物、MnS等の析出物の核サイトとなってオーステナイ
ト粒細粒化や微細フェライト生成によって優れたHAZ
靱性を実現可能な酸化物を安定して分散させた溶接構造
用鋼材の製造方法を提供することを課題とした。
Problems to be Solved by the Invention Japanese Patent Application Laid-Open No. 62-1033
No. 44, No. 44, etc., the HAZ characteristics can be further improved, so that they do not become coarse as in the case of Ti oxides, and thus do not become a starting point of destruction, and furthermore, precipitates such as Ti nitride, MnS, etc. Excellent HAZ by forming austenite grains and forming fine ferrite as core sites
Welded structure with stable dispersion of oxide capable of realizing toughness
It is an object of the present invention to provide a method for manufacturing steel materials for use .

【0014】[0014]

【課題を解決するための手段】本発明は、前述の課題を
解決するために、Si濃度が0.05%より多く、溶存
酸素濃度が20〜80ppmになるように調整した溶鋼
中に、最終含有量が0.005〜0.020%となるT
iを添加して脱酸した後、最終含有量が0.005〜
0.020%となるAlを添加し、その後最終成分に対
して不足する分のSi、および他合金を添加し、成分組
成が重量%で、 C :0.09超〜0.18% Si :≦0.50% Mn :0.40〜2.0% P :≦0.02% S :0.0010〜0.010% Al :0.005〜0.020% Ti :0.005〜0.020% N :0.0020〜0.0060% を含有し、残部がFeおよび不可避不純物からなる溶鋼
を鋳造して粒子径が0.01〜1.0μm、粒子数が5
×10 3 〜1×10 5 個/mm 2 、Ti組成比が5%以
上、Al組成比が95%以下で、TiとAlとの合計量
が94%以上である複合酸化物を含有する鋼とした後、
圧延することを特徴とする溶接熱影響部靱性の優れた溶
接構造用鋼材の製造方法を第1の手段とし、Si濃度が
0.05%より多く、溶存酸素濃度が20〜80ppm
になるように調整した溶鋼中に、最終含有量が0.00
5〜0.020%となるTiを添加して脱酸した後、最
終含有量が0.005〜0.020%となるAlを添加
し、その後最終成分に対して不足する分のSi、および
他合金を添加し、成分組成が重量%で C :0.09超〜0.18% Si :≦0.50% Mn :0.40〜2.0% P :≦0.02% S :0.0010〜0.010% Al :0.005〜0.020% Ti :0.005〜0.020% N :0.0020〜0.0060% を基本成分とし、さらに Cu :≦1.0% Ni :≦1.5% Nb :≦0.030% V :≦0.1% Cr :≦0.6% Mo :≦0.6% B :0.0002〜0.0020% の1種または2種以上を含有し、残部がFeおよび不可
避不純物からなる溶鋼を鋳造して粒子径が0.01〜
1.0μm、粒子数が5×10 3 〜1×10 5 個/m
2 、Ti組成比が5%以上、Al組成比が95%以下
で、TiとAlとの合計量が94%以上である複合酸化
物を含有する鋼とした後、圧延することを特徴とする溶
接熱影響部靱性の優れた溶接構造用鋼材の製造方法を第
2の手段とする。
SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention provides a semiconductor device having a Si concentration of more than 0.05%,
Molten steel adjusted to have an oxygen concentration of 20 to 80 ppm
In the T, the final content becomes 0.005 to 0.020%
After adding i and deoxidizing, the final content is 0.005 to
0.020% Al was added, and then the final component was
Insufficient Si and other alloys are added to
% By weight, C: more than 0.09 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: 0.0010 to 0.010 % Al: 0.005 to 0.020 % Ti: 0.005 to 0.020% N: 0.0020 to 0.0060% , with the balance being Fe and inevitable impurities
And the particle diameter is 0.01 to 1.0 μm and the number of particles is 5
× 10 3 -1 × 10 5 / mm 2 , Ti composition ratio is 5% or less
Above, the total amount of Ti and Al when the Al composition ratio is 95% or less
Is 94% or more of the composite oxide-containing steel,
Excellent heat-affected zone toughness
The first method is a method of manufacturing a steel material for a contact structure.
More than 0.05%, dissolved oxygen concentration is 20-80ppm
The final content of the molten steel adjusted to become 0.00
After adding 5 to 0.020% of Ti and deoxidizing,
Add Al with final content of 0.005 to 0.020%
And then insufficient Si for the final component, and
Other alloys are added, and the component composition is : by weight%, C: more than 0.09 to 0.18% Si: ≤ 0.50% Mn: 0.40 to 2.0% P: ≤ 0.02% S: 0 0.0010 to 0.010% Al: 0.005 to 0.020% Ti: 0.005 to 0.020% N: 0.0020 to 0.0060% as a basic component, and Cu: ≦ 1.0% Ni: ≤ 1.5% Nb: ≤ 0.030% V: ≤ 0.1% Cr: ≤ 0.6% Mo: ≤ 0.6% B: One or two of 0.0002 to 0.0020% Contains more than seeds and the balance is Fe
Casting molten steel consisting of impurities
1.0 μm, the number of particles is 5 × 10 3 to 1 × 10 5 / m
m 2 , Ti composition ratio is 5% or more, Al composition ratio is 95% or less
And a combined oxidation in which the total amount of Ti and Al is 94% or more.
And then rolling the steel
A method of manufacturing a steel material for welded structures with excellent toughness in the heat-affected zone
This is the second means.

【0015】[0015]

【作用】以下、本発明について詳細に説明する。本発明
者らはHAZ靱性を向上させる金属組織要因として、 (1)1400℃未満に加熱される領域のオーステナイ
ト細粒化、 (2)溶接ボンド部近傍で1400℃以上に加熱される
領域の粒内フェライト生成、を同時に、酸化物を利用し
て達成することを検討した。
Hereinafter, the present invention will be described in detail. The inventors of the present invention have considered that metallographic factors for improving the HAZ toughness include (1) austenite grain refinement in a region heated to less than 1400 ° C., and (2) grain size in a region heated to 1400 ° C. or more in the vicinity of a weld bond. It was investigated to achieve the formation of ferrite inside by using an oxide at the same time.

【0016】上記(1)項について、オーステナイトを
細粒化するためには高温でのオーステナイト粒成長を抑
制することが必要である。その手段として、析出物によ
りオーステナイトの粒界をピンニングし、粒界の移動を
止める方法が考えられる。そのような作用をする析出物
の一つとしては、一般にTi窒化物が有効であると考え
られる。また、析出物個数が多いほどオーステナイト結
晶粒径が小さくなることはよく知られている事実であ
る。したがって、オーステナイトを細粒化するために
は、Ti窒化物を多数析出させることが有効である。そ
のような観点で、本発明者らが鋼中に析出しているTi
窒化物を詳細に観察したところ、酸化物を核生成サイト
として析出しているTi窒化物が頻度高く存在すること
を見いだした。そのような酸化物は、Ti組成比が5%
以上、Al組成比が95%以下で、TiとAlとの合計
量が94%以上である複合酸化物であり、その粒子径は
0.01〜0.1μmであった。TiとAlとの複合酸
化物は、Ti窒化物とN整合性が良好であるため、Ti
窒化物は酸化物をサイトとして優先的に核生成すること
が可能である。すなわち、粒子径0.01〜0.1μm
のTiとAlとの複合酸化物が鋼中に存在することで、
TiとAlとの複合酸化物が存在しない場合に比較して
Ti窒化物が析出するサイトが増加し、Ti窒化物の析
出個数が増加する。その結果として、多数Ti窒化物に
よってピンニングされたオーステナイト粒の細粒化が可
能となる。
Regarding the above item (1), it is necessary to suppress the growth of austenite grains at a high temperature in order to reduce the size of austenite. As a means for this, a method of pinning austenite grain boundaries with precipitates and stopping the movement of the grain boundaries can be considered. As one of the precipitates having such an action, it is generally considered that Ti nitride is effective. It is a well-known fact that the larger the number of precipitates, the smaller the austenite crystal grain size. Therefore, in order to refine austenite, it is effective to precipitate a large number of Ti nitrides. From such a viewpoint, the present inventors have proposed that Ti
When the nitride was observed in detail, it was found that Ti nitride precipitated as oxide nucleation sites was frequently present. Such an oxide has a Ti composition ratio of 5%
As described above, when the Al composition ratio is 95% or less, the total of Ti and Al
The amount of the composite oxide was 94% or more, and the particle size was 0.01 to 0.1 μm. Since the composite oxide of Ti and Al has good N matching with Ti nitride,
Nitride can preferentially nucleate with oxides as sites. That is, a particle diameter of 0.01 to 0.1 μm
By the presence of a composite oxide of Ti and Al in steel,
The number of sites where Ti nitrides precipitate is increased as compared to the case where no composite oxide of Ti and Al is present, and the number of Ti nitrides deposited is increased. As a result, austenite grains pinned by a large number of Ti nitrides can be refined.

【0017】上記(2)項について、本発明者らは、オ
ーステナイト粒内で生成する粒内フェライトの組織を観
察し、粒内フェライト中に含まれる粒子を調査した。そ
の結果、粒内フェライトの生成核として、0.1〜1.
0μmの大きさをもつTiとAlとの複合酸化物と、そ
の上に析出したTi窒化物+MnSとの複合体が有効に
作用することを見いだした。酸化物は高温に加熱したと
きにおいても安定であり、1400℃以上でも変化する
ことなく安定して鋼中に存在する。また、Ti窒化物+
MnSはその後の冷却過程で、TiとAlとの複合酸化
物を核生成サイトとして析出するため、溶接ボンド部近
傍での粒内フェライト生成が可能となる。
Regarding the above item (2), the present inventors observed the structure of intragranular ferrite generated in austenite grains and investigated the particles contained in the intragranular ferrite. As a result, 0.1 to 1.
It has been found that a composite oxide of Ti and Al having a size of 0 μm and a composite of Ti nitride + MnS deposited on the composite oxide work effectively. The oxide is stable even when heated to a high temperature, and exists stably in steel without change even at 1400 ° C. or higher. In addition, Ti nitride +
In the subsequent cooling process, MnS precipitates a composite oxide of Ti and Al as nucleation sites, so that intragranular ferrite can be generated in the vicinity of the weld bond.

【0018】以上の知見から、1400℃未満に加熱さ
れる領域のオーステナイト粒を細粒化し、さらに溶接ボ
ンド部近傍で1400℃以上に加熱される領域の粒内フ
ェライトを生成させるためには、粒子径が0.1〜1.
0μmのTiとAlとの複合酸化物が鋼中に存在するこ
とが必要である。本発明者らの知見によれば、該粒子径
が0.01μm未満ではTi窒化物析出核としての効果
は弱く、また1.0μmを超えると、その酸化物が破壊
の起点となる可能性が高くなり、HAZ靱性の低下を招
く可能性が生じる。
From the above findings, it is necessary to reduce the size of austenite grains in a region heated to less than 1400 ° C. and to generate intragranular ferrite in a region heated to 1400 ° C. or more near a weld bond portion. Diameter 0.1-1.
It is necessary that a composite oxide of 0 μm Ti and Al is present in the steel. According to the findings of the present inventors, when the particle size is less than 0.01 μm, the effect as a Ti nitride precipitation nucleus is weak, and when the particle size exceeds 1.0 μm, there is a possibility that the oxide may serve as a starting point of fracture. And the HAZ toughness may decrease.

【0019】つぎにTiとAlとの複合酸化物の個数に
関して記す。酸化物個数が少なすぎると溶接時に充分な
Ti窒化物および粒内フェライトの生成核が得られない
ので、5×103個/mm2以上の酸化物を存在させるこ
とが必要である。酸化物個数が多くなるにしたがってT
i窒化物および粒内フェライトの個数は増加しHAZ靱
性は向上するが、1×105個/mm2を超える過剰な酸
化物が存在するとHAZ部および母材の靱性低下を招く
ことになるので、酸化物個数の上限は1×105個/m
2でなければならない。
Next, the number of composite oxides of Ti and Al will be described. If the number of oxides is too small, sufficient nuclei for formation of Ti nitride and intragranular ferrite at the time of welding cannot be obtained, so it is necessary to allow oxides of 5 × 10 3 / mm 2 or more to be present. As the number of oxides increases, T
i The number of nitrides and intragranular ferrites increases and the HAZ toughness improves, but the presence of an excess of oxide exceeding 1 × 10 5 / mm 2 leads to a decrease in the toughness of the HAZ portion and the base material. , The upper limit of the number of oxides is 1 × 10 5 / m
It must be m 2.

【0020】該酸化物の大きさおよび個数の測定は以下
の要領で行なう。母材となる鋼板から抽出レプリカを作
製し、それを電子顕微鏡にて10000倍で20視野以
上、観察面積にして1000μm2以上を観察すること
で該酸化物の大きさおよび個数を測定する。このとき鋼
板の表層部から中心部までどの部位から採取した抽出レ
プリカでもよい。
The size and number of the oxide are measured in the following manner. An extract replica is prepared from a steel sheet as a base material, and the size and the number of the oxide are measured by observing at least 20 visual fields at a magnification of 10000 and an observation area of 1000 μm 2 or more with an electron microscope. At this time, an extracted replica collected from any part from the surface part to the center part of the steel sheet may be used.

【0021】以下、本発明の製造方法について詳細に説
明する。まず、本発明者らはTi−Al複合酸化物およ
びTiN、MnS等の析出物を効果的に多数均一微細分
散するため、種々の脱酸元素を用いて、種々の順序によ
る脱酸実験を試みた。その結果、脱酸処理を行なう前
の、Tiよりも脱酸力の弱い元素であるSiの量を調整
して、Si量と平衡する溶存酸素濃度が20〜80pp
mに調整した溶鋼中に、最終含有量が0.005〜0.
020%となるTiを添加して脱酸した後、直ちに最終
含有量が0.005〜0.020%となるAlを添加す
る方法が最も多数Ti−Al複合酸化物およびTiN、
MnS等の析出物が均一微細分散し、得られた鋼材を大
入熱溶接したとき、HAZ部の靱性が非常に優れた溶接
構造用鋼となる結果を得た。すなわち本発明者らは、次
の(3)、(4)、(5)に述べる知見を見いだした。
Hereinafter, the production method of the present invention will be described in detail. First, the present inventors attempted deoxidation experiments in various orders using various deoxidizing elements to effectively and uniformly disperse a large number of precipitates such as Ti-Al composite oxides and TiN and MnS. Was. As a result, before performing the deoxidizing treatment, the amount of Si, which is an element having a lower deoxidizing power than Ti, is adjusted so that the dissolved oxygen concentration that balances with the Si amount is 20 to 80 pp.
m in molten steel adjusted to a final content of 0.005 to 0.5.
The most common method is to add Al having a final content of 0.005 to 0.020% immediately after adding 020% of Ti and deoxidizing, and then most often to add Ti-Al composite oxide and TiN,
Precipitates such as MnS were uniformly and finely dispersed, and when the obtained steel material was subjected to large heat input welding, a result was obtained in which the toughness of the HAZ portion was extremely excellent in welded structural steel. That is, the present inventors have found the findings described in the following (3), (4), and (5).

【0022】(3)溶存酸素量は酸化物の生成挙動に大
きく影響する。酸化物を多数生成させるためには適正な
溶存酸素濃度が存在し、その値は20〜80ppmであ
る。この溶存酸素濃度を調整するためには、Tiよりも
脱酸力の弱いSiの量を調整する。
(3) The amount of dissolved oxygen greatly affects the behavior of oxide formation. In order to produce a large number of oxides, an appropriate dissolved oxygen concentration exists, and the value is 20 to 80 ppm. In order to adjust the dissolved oxygen concentration, the amount of Si having a lower deoxidizing power than Ti is adjusted.

【0023】(4)Ti脱酸後に適量のAlを添加する
とTi酸化物個数が増加し、さらにTiN、MnSの析
出個数も増加する。
(4) If an appropriate amount of Al is added after Ti deoxidation, the number of Ti oxides increases, and the number of precipitated TiN and MnS also increases.

【0024】(5)Ti脱酸後、Al添加までの時間間
隔が短いほど、酸化物個数が増加する。
(5) The number of oxides increases as the time interval from the deoxidation of Ti to the addition of Al becomes shorter.

【0025】以下に上記3項目について詳細に検討した
結果を述べる。
The results of a detailed study of the above three items will be described below.

【0026】上記(3)項について、Ti投入前の溶存
酸素濃度について調査した結果、溶存酸素濃度が20p
pmよりも少なくなるとHAZ靱性を確保するために必
要な量のTi系酸化物が形成されず、一方、溶存酸素濃
度が80ppmを超えると、生成した酸化物が粗大化
し、HAZ靱性の低下を招く。
As for the above item (3), the dissolved oxygen concentration before the introduction of Ti was investigated.
If it is less than pm, the required amount of Ti-based oxide to secure the HAZ toughness is not formed, while if the dissolved oxygen concentration exceeds 80 ppm, the generated oxide becomes coarse and the HAZ toughness is reduced. .

【0027】また、この時の溶存酸素濃度は、Siとの
平衡反応で調整する必要がある。溶存酸素濃度の調整
は、この他に吹酸等の方法があるが、例えば吹酸によっ
て溶存酸素濃度を調整しても、その直後に溶存酸素濃度
は平衡値に変化してしまい、Ti投入時の溶存酸素濃度
を正確に調整できないことが明らかとなった。したがっ
て、Ti投入時の正確な溶存酸素濃度調整は、溶鋼中で
安定して実現できる平衡反応を利用しなければならな
い。このときSi濃度は0.05%より高くなくてはな
らない。Si濃度が0.05%以下になると、Siと平
衡する溶存酸素濃度は80ppmを超える為、上記した
酸化物の粗大化を招くからである。
At this time, the dissolved oxygen concentration needs to be adjusted by an equilibrium reaction with Si. There are other methods of adjusting the dissolved oxygen concentration, such as blowing acid, etc., for example, even if the dissolved oxygen concentration is adjusted with blowing acid, the dissolved oxygen concentration changes to an equilibrium value immediately after that, and when the Ti is added, It was found that the dissolved oxygen concentration of could not be adjusted accurately. Therefore, accurate adjustment of the dissolved oxygen concentration at the time of introducing Ti must use an equilibrium reaction that can be stably realized in molten steel. At this time, the Si concentration must be higher than 0.05%. This is because if the Si concentration is 0.05% or less, the dissolved oxygen concentration in equilibrium with Si exceeds 80 ppm, which causes the above-described oxide to be coarse.

【0028】上記(4)項について、Ti脱酸後に投入
するAlの効果について検討した結果、Al投入によっ
てTi酸化物が一部還元され、かつ微細化していること
が明らかとなった。また、Ti酸化物個数が増加したの
は、Al添加によって溶存酸素濃度が低下したためにT
i酸化物の成長が抑制され微細化し、浮上しにくくなっ
たためだと考えられる。さらに最適なAlの範囲を明確
にするために実験を行った結果、Alが0.005%よ
りも少ないとTi酸化物の還元および溶存酸素量の低下
が充分でなく、Ti酸化物が粗大化、浮上してしまう。
また、0.020%を超えるとTi酸化物を完全に還元
してしまい、Ti酸化物個数が減少してしまうことが明
らかとなった。また、TiNが増加した原因は、微細な
Ti酸化物を核としてTiNが生成し、Ti酸化物が存
在しない場合よりも析出個数が増加したためである。
As to the above item (4), the effect of Al added after deoxidation of Ti was examined. As a result, it was clarified that Ti oxide was partially reduced and refined by adding Al. The increase in the number of Ti oxides was caused by the decrease in dissolved oxygen concentration due to the addition of Al.
This is probably because the growth of the i-oxide was suppressed, and the oxide was miniaturized and became difficult to float. As a result of conducting an experiment to clarify the optimum range of Al, if the Al content is less than 0.005%, the reduction of the Ti oxide and the reduction of the dissolved oxygen amount are not sufficient, and the Ti oxide becomes coarse. Will emerge.
In addition, when the content exceeds 0.020%, it is clear that the Ti oxide is completely reduced and the number of Ti oxides is reduced. The reason for the increase in TiN is that TiN is generated using fine Ti oxide as a nucleus, and the number of precipitates increases as compared with the case where no Ti oxide exists.

【0029】上記(5)項について、Ti脱酸後の溶鋼
サンプルを適宜採取し、酸化物の生成挙動を調査した結
果、図1に示す如く、Ti脱酸後時間の経過とともに生
成したTi酸化物は成長・凝集して粗大化し、浮上して
しまうことが明らかとなった。したがって、Ti投入
後、Tiが溶鋼中に均一に混合してすぐにAlを投入す
ることが酸化物を多く得るためには有効である。したが
つて、Alは、Ti添加を実施するRHなどの二次精錬
設備における脱酸工程で投入添加しなければならない。
ただし、Ti脱酸を二次精錬設備で行わない場合、例え
ば転炉出鋼時などにTi脱酸を行う場合には、Al添加
もその直後に実施する。また、Ti脱酸後すぐにAlを
投入しなくても5分以内であればTi酸化物の減少量は
さほど多くないため、5分以内であることが望ましい。
なお、請求の範囲および発明の詳細な説明の中のTiを
添加して脱酸した後あるいはTi脱酸後とは、投入した
Tiが溶鋼中に均一に混合した後のことを意味する。
With respect to the above item (5), a molten steel sample after Ti deoxidation was appropriately collected, and the behavior of oxide formation was examined. As shown in FIG. 1, as shown in FIG. It was found that the material grew, aggregated, coarsened, and floated. Therefore, it is effective to introduce Al immediately after mixing Ti into the molten steel uniformly after the introduction of Ti in order to obtain a large amount of oxides. Therefore, Al must be added and added in a deoxidation step in a secondary refining facility such as RH in which Ti is added.
However, when Ti deoxidation is not performed in the secondary refining equipment, for example, when Ti deoxidation is performed at the time of tapping from a converter, Al addition is also performed immediately thereafter. Even if Al is not introduced immediately after Ti deoxidation, the amount of reduction of Ti oxide is not so large as long as it is within 5 minutes, so that it is preferable to be within 5 minutes.
In the claims and the detailed description of the invention, "after adding Ti and deoxidizing or after deoxidizing Ti" means after the charged Ti is uniformly mixed in the molten steel.

【0030】TiとAlとの複合酸化物は、溶鋼を脱酸
する際に、Si、MnなどTiよりも脱酸力の弱い元素
で脱酸した後、TiとAlとを添加することによって生
成する。これを一次酸化物と称する。さらには鋳造、凝
固中に溶鋼温度の低下とともにTiとAlとの複合酸化
物が生成する。これを二次酸化物と称する。本発明で
は、一次酸化物と二次酸化物とのどちらを用いても構わ
ない。
When deoxidizing molten steel, a composite oxide of Ti and Al is formed by adding Ti and Al after deoxidizing with an element having a lower deoxidizing power than Ti, such as Si and Mn. I do. This is called a primary oxide. Further, during casting and solidification, a composite oxide of Ti and Al is generated as the temperature of the molten steel decreases. This is called a secondary oxide. In the present invention, either a primary oxide or a secondary oxide may be used.

【0031】以上より、酸化物の組成、個数および大き
さを所定の条件に制御するためには製鋼工程における脱
酸方法が重要となる。適当な脱酸方法としては、転炉出
鋼後、脱酸処理を行う前のSi量を0.05%より多く
した上で、溶存酸素濃度が20〜80ppmになるよう
に調整した溶鋼中に、RHなどの二次精錬工程で、最終
含有量が所定の成分値になるようTiを添加して脱酸し
た後、同じくRHなどの二次工程で最終含有量が所定の
成分値%となるAlを添加し、その後最終成分に対して
不足する分のSiその他の元素を添加し、最終成分調整
をする。
From the above, in order to control the composition, number and size of oxides to predetermined conditions, a deoxidizing method in the steel making process is important. As a suitable deoxidizing method, after the steel is turned out of the converter, the amount of Si before the deoxidizing treatment is increased to more than 0.05%, and then the molten steel is adjusted to have a dissolved oxygen concentration of 20 to 80 ppm. , RH, etc., in the secondary refining process, Ti is added so that the final content becomes a predetermined component value, and deoxidation is performed. Similarly, in the secondary process such as RH, the final content becomes a predetermined component value%. Al is added, and then Si and other elements that are insufficient for the final component are added to adjust the final component.

【0032】また、鋼材を製造するプロセスとして、通
常圧延のまま、制御圧延、さらにこれと制御冷却と焼も
どしの組合せ、および焼入れ・焼もどしの組合せなどで
あっても酸化物の効果は影響を受けない。
In addition, the effect of the oxide has no effect on the process of producing steel materials, such as controlled rolling, a combination of controlled rolling and tempering, and a combination of quenching and tempering as it is in normal rolling. I do not receive.

【0033】つぎに本発明の基本成分範囲の限定理由に
ついて述べる。
Next, the reasons for limiting the range of the basic components of the present invention will be described.

【0034】Cは鋼の強度を向上させる有効な成分とし
て下限を0.09%超とし、また0.18%を越える過
剰の添加は、鋼材の溶接性やHAZ靱性などを著しく低
下させるので、上限を0.18%とした。
C is an effective component for improving the strength of steel, with the lower limit being more than 0.09%, and the excessive addition exceeding 0.18% significantly reduces the weldability and HAZ toughness of the steel material. The upper limit was set to 0.18%.

【0035】Siは母材の強度確保、予備脱酸などに必
要な成分であるが、HAZの硬化により靱性が低下する
のを防止するため上限を0.5%とした。
Although Si is a component necessary for securing the strength of the base material and performing preliminary deoxidation, the upper limit is set to 0.5% in order to prevent the toughness from being reduced by the hardening of the HAZ.

【0036】Mnは母材の強度、靱性の確保、および粒
内フェライトの変態核を生成させる成分として0.4%
以上の添加が必要であるが、溶接部の靱性、割れ性など
の許容できる範囲で上限を2.0%とした。
Mn is 0.4% as a component for ensuring the strength and toughness of the base material and for forming transformation nuclei of intragranular ferrite.
Although the above addition is necessary, the upper limit is set to 2.0% within an allowable range such as the toughness and cracking property of the welded portion.

【0037】Pは含有量が少ないほど望ましいが、これ
を工業的に低減させるためには多大なコストががかるこ
とから、0.020%を上限とした。
The lower the content of P is, the more desirable it is. However, in order to reduce this industrially, a large cost is required. Therefore, the upper limit is set to 0.020%.

【0038】SはMnSを生成する元素として0.00
1%が必要であるが、溶接部の靱性、割れ性などの許容
できる範囲で上限を0.005%とした。
S is 0.00 as an element for forming MnS.
Although 1% is necessary, the upper limit is set to 0.005% within an allowable range of toughness, cracking property and the like of the welded portion.

【0039】Alは酸化物個数を増加させること、およ
び溶接金属の靱性低下を制御するため、下限値を0.0
05%とした。また、Alが多量に存在すると、酸化物
がすべてアルミナとなり、Al−Ti−Mgを主体とし
た複合酸化物が生成しなくなるため、上限を0.020
%とした。
Al limits the lower limit to 0.03 in order to increase the number of oxides and control the decrease in toughness of the weld metal.
05%. Further, when Al is present in a large amount, all oxides become alumina, and a composite oxide mainly composed of Al-Ti-Mg is not generated.
%.

【0040】TiはAl−Ti−Mg複合酸化物、Ti
窒化物を形成させるために0.005%以上添加する。
しかし、固溶Ti量が増加するとHAZ靱性が低下する
ため、0.020%を上限とした。
Ti is an Al—Ti—Mg composite oxide, Ti
0.005% or more is added to form a nitride.
However, when the amount of solute Ti increases, the HAZ toughness decreases. Therefore, the upper limit is set to 0.020%.

【0041】NはTi窒化物の析出には極めて重要な元
素であり、0.002%未満ではTi窒化物の析出量が
不足し、フェライト組織の充分な生成量が得られない。
また、固溶Nの増大はHAZ靱性の低下を招くことから
0.006を上限とした。
N is a very important element for the precipitation of Ti nitride. If the content is less than 0.002%, the amount of Ti nitride deposited is insufficient, and a sufficient amount of ferrite structure cannot be obtained.
Since the increase in the solute N causes a decrease in the HAZ toughness, the upper limit is made 0.006.

【0042】Cuは鋼材の強度を向上させるために有効
であるが、1.0%を越えるとHAZ靱性を低下させる
ことから、1.0%を上限とした。
Although Cu is effective for improving the strength of the steel material, if it exceeds 1.0%, the HAZ toughness is reduced. Therefore, the upper limit is set to 1.0%.

【0043】Niは鋼材の強度および靱性を向上させる
ために有効であるが、Ni量の増加は製造コストを上昇
させるので、1.5%を上限とした。
Although Ni is effective for improving the strength and toughness of the steel material, the upper limit is 1.5% because an increase in the amount of Ni increases the production cost.

【0044】Nbは焼き入れ性を向上させることにより
母材の強度および靱性を向上させるために有効な元素で
あるが、HAZ部においては過剰な添加は靱性を著しく
低下させるため0.03%を上限とした。
Nb is an element effective for improving the strength and toughness of the base material by improving the hardenability, but in the HAZ portion, excessive addition significantly reduces the toughness, so that 0.03% is added. The upper limit was set.

【0045】V、Cr、MoについてもNbと同様な効
果を有することから、それぞれ0.1%、0.6%、
0.6%を上限とした。
Since V, Cr, and Mo have the same effect as Nb, they are 0.1%, 0.6%,
The upper limit was 0.6%.

【0046】BはHAZ靱性に有害な粒界フェライト、
フェライトサイドプレートの成長抑制と、BNの析出に
よるHAZの固溶Nの固定から0.0002%以上0.
002%以下とした。
B is a grain boundary ferrite harmful to HAZ toughness,
0.0002% or more from the suppression of the growth of the ferrite side plate and the fixation of the solute N in the HAZ by the precipitation of BN.
002% or less.

【0047】[0047]

【実施例】表1に示した化学成分で40キロ鋼および5
0キロ鋼を試作した。1〜13が本発明鋼、14〜18
が比較鋼である。試作鋼は転炉溶製し、RHにて真空脱
ガス処理時に脱酸を行っている。Ti投入前に溶鋼の溶
存酸素をSiで調整し、その後Ti、Ai、を順に添加
し脱酸を行い、連続鋳造により280mm厚鋳片に鋳造
した後、加熱圧延を経て、板厚32mmの鋼板として製
造した。得られた鋼板をlパスのフラックスー銅バッキ
ング溶接(FCB溶接)した。入熱は105kj/cm
2である。
EXAMPLES 40 kg steel and 5 with the chemical composition shown in Table 1
A prototype of 0 kg steel was produced. 1 to 13 are steels of the present invention, 14 to 18
Is a comparative steel. The prototype steel is melted from a converter and deoxidized at RH during vacuum degassing. Before introducing Ti, the dissolved oxygen of molten steel is adjusted with Si, and then Ti and Ai are added in order to perform deoxidation, cast into a 280 mm thick slab by continuous casting, and then subjected to heat rolling to obtain a 32 mm thick steel plate. Manufactured as The obtained steel plate was subjected to l-pass flux copper backing welding (FCB welding). Heat input is 105kj / cm
2

【0048】表2には、脱酸方法、酸化物の粒子径、粒
子数を示す。表3には、鋼板の熱処理、母材特性、およ
びHAZの靱性を示す。HAZ靱性評価のためのシャル
ピー値は、フュージョンラインからHAZ5mmの部位
で9本の試験を行い、その平均値である。
Table 2 shows the deoxidation method, the particle size of the oxide, and the number of particles. Table 3 shows the heat treatment of the steel sheet, the properties of the base material, and the toughness of the HAZ. The Charpy value for evaluating the HAZ toughness is an average value obtained by performing nine tests on a portion 5 mm from the fusion line at a HAZ of 5 mm.

【0049】表3から明らかなように、1〜10の本発
明鋼は比較鋼と比べて優れたHAZ靱性を有することが
判る。すなわち、粒子径が0.01〜1.0μmで、T
i組成比5%以上、Al組成比が95%以下のTiとA
lとの複合酸化合物の粒子数が5×103〜1×105
/mm2の範囲にあり、−20℃の靱性が極めて優れて
いる。
As is clear from Table 3, it is understood that the steels of the present invention of 1 to 10 have excellent HAZ toughness as compared with the comparative steels. That is, when the particle diameter is 0.01 to 1.0 μm and T
Ti and A having an i composition ratio of 5% or more and an Al composition ratio of 95% or less
1 and the number of particles of the complex acid compound is in the range of 5 × 10 3 to 1 × 10 5 particles / mm 2 , and the toughness at −20 ° C. is extremely excellent.

【0050】一方、比較例の11〜20は、いずれもシ
ャルピー試験−20℃で50j未満の低い靱性しか示さ
なかった。これらの原因は、11、12、13はSiに
より調整した溶存酸素量が本発明の所定の量に達してい
なかったため、14はSiにより調整した溶存酸素量が
所定の量を超えたため、15はAl量が所定量を下回っ
たため、16はAl量が所定量を上回ったためである。
また、17、18はTiとAlとの添加順序が本発明と
は逆であったため、19、20はTiとAlとの添加間
隔が本発明で規定した所定時間より長かったためであ
る。
On the other hand, all of Comparative Examples 11 to 20 exhibited low toughness of less than 50 j at -20 ° C in the Charpy test. These causes are as follows: 11, 12, and 13 because the dissolved oxygen amount adjusted by Si did not reach the predetermined amount of the present invention, and 14 was because the dissolved oxygen amount adjusted by Si exceeded the predetermined amount. 16 is because the Al amount was below the predetermined amount, and 16 was because the Al amount exceeded the predetermined amount.
17 and 18 are because the order of addition of Ti and Al was opposite to that of the present invention, and 19 and 20 were that the addition interval between Ti and Al was longer than the predetermined time specified in the present invention.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【発明の効果】本発明は、低温で使用する、船舶、海洋
構造物、中高層ビルなどの破壊に対する厳しい靱性要求
を満足する鋼板を供給するものであり、この種の産業分
野にもたらす効果は極めて大きく、さらに構造物の安全
性の意味から社会に対する貢献も非常に大きい。
According to the present invention, a steel plate which is used at a low temperature and satisfies the strict toughness requirement for destruction of ships, marine structures, middle and high rise buildings, etc. is provided. The contribution to society is very large in terms of structural safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Ti脱酸後の経過時間とTi酸化物の固数推移
と調査したものであり、Ti脱酸後5分以降、酸化物の
個数が減少していくことを示す図である。
FIG. 1 is a graph obtained by investigating the elapsed time after Ti deoxidation and the transition of the solid number of Ti oxide, and shows that the number of oxides decreases 5 minutes after Ti deoxidation.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22C 38/58 C22C 38/58 (72)発明者 永原 政明 大分市大字西ノ洲1番地 新日本製鐵株 式会社 大分製鐵所内 (56)参考文献 特開 平7−268540(JP,A) 特開 平8−53734(JP,A) 特開 平6−293937(JP,A) 特開 平4−103742(JP,A) 特開 昭61−117245(JP,A) 特公 平6−21321(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C21C 7/06 B22D 11/00 - 11/12 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continuing on the front page (51) Int.Cl. 7 Identification code FI C22C 38/58 C22C 38/58 (72) Inventor Masaaki Nagahara 1 Nishinosu, Oita, Oita City Nippon Steel Corporation Oita Works (56) References JP-A-7-268540 (JP, A) JP-A-8-53734 (JP, A) JP-A-6-293937 (JP, A) JP-A-4-103742 (JP, A) 61-117245 (JP, A) JP 6-21321 (JP, B2) (58) Fields investigated (Int. Cl. 7 , DB name) C21C 7/06 B22D 11/00-11/12 C22C 38/00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si濃度が0.05%より多く、溶存酸1. The method according to claim 1, wherein the Si concentration is more than 0.05% and the dissolved acid
素濃度が20〜80ppmになるように調整した溶鋼中In molten steel adjusted to an elemental concentration of 20 to 80 ppm
に、最終含有量が0.005〜0.020%となるTiIn addition, Ti with a final content of 0.005 to 0.020%
を添加して脱酸した後、最終含有量が0.005〜0., And after deoxidation, the final content is 0.005 to 0.5.
020%となるAlを添加し、その後最終成分に対して020% Al, and then add
不足する分のSi、および他合金を添加し、成分組成がInsufficient Si and other alloys are added,
重量%で、In weight percent, C :0.09超〜0.18%C: more than 0.09 to 0.18% Si :≦0.50%Si: ≦ 0.50% Mn :0.40〜2.0%Mn: 0.40 to 2.0% P :≦0.02%P: ≦ 0.02% S :0.0010〜0.010%S: 0.0010 to 0.010% Al :0.005〜0.020%Al: 0.005 to 0.020% Ti :0.005〜0.020%Ti: 0.005 to 0.020% N :0.0020〜0.0060%N: 0.0020 to 0.0060% を含有し、残部がFeおよび不可避不純物からなる溶鋼Steel with the balance being Fe and unavoidable impurities
を鋳造して粒子径が0.01〜1.0μm、粒子数が5And the particle diameter is 0.01 to 1.0 μm and the number of particles is 5
×10× 10 3Three 〜1×10~ 1 × 10 5Five 個/mmPieces / mm 2Two 、Ti組成比が5%以, Ti composition ratio is 5% or less
上、Al組成比が95%以下で、TiとAlとの合計量Above, the total amount of Ti and Al when the Al composition ratio is 95% or less
が94%以上である複合酸化物を含有する鋼とした後、Is 94% or more of the composite oxide-containing steel,
圧延することを特徴とする溶接熱影響部靱性の優れた溶Excellent heat-affected zone toughness
接構造用鋼材の製造方法。Manufacturing method of steel for contact structure.
【請求項2】 Si濃度が0.05%より多く、溶存酸2. The method according to claim 1, wherein the Si concentration is more than 0.05% and the dissolved acid is
素濃度が20〜80ppmになるように調整した溶鋼中In molten steel adjusted to an elemental concentration of 20 to 80 ppm
に、最終含有量が0.005〜0.020%となるTiIn addition, Ti with a final content of 0.005 to 0.020%
を添加して脱酸した後、最終含有量が0.005〜0., And after deoxidation, the final content is 0.005 to 0.5.
020%となるAlを添加し、その後最終成分に対して020% Al, and then add
不足する分のSi、および他合金を添加し、成分組成がInsufficient Si and other alloys are added,
重量%で、In weight percent, C :0.09超〜0.18%C: more than 0.09 to 0.18% Si :≦0.50%Si: ≦ 0.50% Mn :0.40〜2.0%Mn: 0.40 to 2.0% P :≦0.02%P: ≦ 0.02% S :0.0010〜0.010%S: 0.0010 to 0.010% Al :0.005〜0.020%Al: 0.005 to 0.020% Ti :0.005〜0.020%Ti: 0.005 to 0.020% N :0.0020〜0.0060%N: 0.0020 to 0.0060% を基本成分とし、さらにAs a basic component, and Cu :≦1.0%Cu: ≦ 1.0% Ni :≦1.5%Ni: ≦ 1.5% Nb :≦0.030%Nb: ≦ 0.030% V :≦0.1%V: ≦ 0.1% Cr :≦0.6%Cr: ≦ 0.6% Mo :≦0.6%Mo: ≦ 0.6% B :0.0002〜0.0020%B: 0.0002 to 0.0020% の1種または2種以上を含有し、残部がFeおよび不可One or more of the following, with the balance being Fe and
避不純物からなる溶鋼を鋳造して粒子径が0.01〜Casting molten steel containing impurities
1.0μm、粒子数が5×101.0 μm, number of particles is 5 × 10 3Three 〜1×10~ 1 × 10 5Five 個/mPieces / m
m 2Two 、Ti組成比が5%以上、Al組成比が95%以下, Ti composition ratio is 5% or more, Al composition ratio is 95% or less
で、TiとAlとの合計量が94%以上である複合酸化And a combined oxidation in which the total amount of Ti and Al is 94% or more.
物を含有する鋼とした後、圧延することを特徴とする溶And then rolling the steel
接熱影響部靱性の優れた溶接構造用鋼材の製造方法。A method for producing a steel material for a welded structure having excellent toughness of a heat-affected zone.
JP17968795A 1995-06-23 1995-06-23 Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone Expired - Fee Related JP3215296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17968795A JP3215296B2 (en) 1995-06-23 1995-06-23 Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17968795A JP3215296B2 (en) 1995-06-23 1995-06-23 Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH093599A JPH093599A (en) 1997-01-07
JP3215296B2 true JP3215296B2 (en) 2001-10-02

Family

ID=16070121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17968795A Expired - Fee Related JP3215296B2 (en) 1995-06-23 1995-06-23 Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP3215296B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7895864B2 (en) 2007-10-23 2011-03-01 Electrolux Home Products, Inc. Laundry additive dispenser
US7934402B2 (en) 2003-12-09 2011-05-03 Samsung Electronics Co., Ltd. Clothes washing machine
US7942024B2 (en) 2003-12-09 2011-05-17 Samung Electronics Co., Ltd. Washing machine provided with silver solution supply device
US9085844B2 (en) 2007-11-13 2015-07-21 Electrolux Home Products, Inc. Sequenced water delivery in an additive dispenser

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040144518A1 (en) * 2003-01-24 2004-07-29 Blejde Walter N. Casting steel strip with low surface roughness and low porosity
JP4041447B2 (en) * 2003-09-29 2008-01-30 株式会社神戸製鋼所 Thick steel plate with high heat input welded joint toughness

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7934402B2 (en) 2003-12-09 2011-05-03 Samsung Electronics Co., Ltd. Clothes washing machine
US7942024B2 (en) 2003-12-09 2011-05-17 Samung Electronics Co., Ltd. Washing machine provided with silver solution supply device
US7895864B2 (en) 2007-10-23 2011-03-01 Electrolux Home Products, Inc. Laundry additive dispenser
US9085844B2 (en) 2007-11-13 2015-07-21 Electrolux Home Products, Inc. Sequenced water delivery in an additive dispenser
US9404211B2 (en) 2007-11-13 2016-08-02 Electrolux Home Products, Inc. Sequenced water delivery in an additive dispenser

Also Published As

Publication number Publication date
JPH093599A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
EP1444373A1 (en) STEEL PLATE HAVING SUPERIOR TOUGHNESS IN WELD HEAT−AFFECTED ZONE AND METHOD FOR MANUFACTURING THE SAME, WELDING FABRIC USING THE SAME
WO2002040731A1 (en) STEEL PLATE TO BE PRECIPITATING TiN+CuS FOR WELDED STRUCTURES, METHOD FOR MANUFACTURING THE SAME, WELDING FABRIC USING THE SAME
WO2002044436A1 (en) Steel plate to be precipitating tin+mns for welded structures, method for manufacturing the same and welding fabric using the same
JPH09157787A (en) High tensile strength steel for welding excellent in toughness in very large heat input welded heat affected zone
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH08158006A (en) High strength steel excellent in toughness in weld heat-affected zone
JPH0642979B2 (en) Manufacturing method of high strength steel for welding and low temperature containing titanium oxide
JP3502822B2 (en) Steel material excellent in toughness of welded heat-affected zone and method for producing the same
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JPH093597A (en) Steel for low temperature use excellent in toughness of weld heat affected zone and its production
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JPH0853734A (en) Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JPS61238940A (en) Low-temperature tough hardening steel excelling in toughness in weld zone
JP3403293B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JPH07278736A (en) Steel products having excellent toughness of weld heat affected zone
JP2944842B2 (en) Method for producing low-temperature welding steel having excellent toughness in welds in which Ti-Al composite oxide is dispersed
JP3513001B2 (en) Ultra-high heat input welding High-strength steel for welding with excellent heat-affected zone toughness
JP3222007B2 (en) Method for producing steel material for welded structure with good heat-affected zone toughness of large heat input welding
JP3464566B2 (en) Low temperature steel with excellent toughness in the heat affected zone
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
JP3238271B2 (en) Method for producing low temperature steel with excellent heat-affected zone toughness in large heat input welding
JP3502809B2 (en) Method of manufacturing steel with excellent toughness
JP4261968B2 (en) Steel material excellent in weld heat-affected zone toughness and manufacturing method thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010717

LAPS Cancellation because of no payment of annual fees