JPH02194115A - Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone - Google Patents

Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone

Info

Publication number
JPH02194115A
JPH02194115A JP1011977A JP1197789A JPH02194115A JP H02194115 A JPH02194115 A JP H02194115A JP 1011977 A JP1011977 A JP 1011977A JP 1197789 A JP1197789 A JP 1197789A JP H02194115 A JPH02194115 A JP H02194115A
Authority
JP
Japan
Prior art keywords
steel
toughness
oxide
molten steel
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1011977A
Other languages
Japanese (ja)
Inventor
Koichi Yamamoto
広一 山本
Kentaro Okamoto
健太郎 岡本
Shuji Aihara
周二 粟飯原
Toshinaga Hasegawa
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1011977A priority Critical patent/JPH02194115A/en
Publication of JPH02194115A publication Critical patent/JPH02194115A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a steel appropriately used for a structure to be used in a extremely-low-temp. environment by preliminarily deoxidizing molten iron to adjust its composition into molten steel, finally deoxidizing the obtained molten steel with Ti, tapping the molten steel in a specified time, solidifying the steel, and rolling the obtained ingot having specified contents of Ti oxide having specified grain diameter and multicomponent deposit grains. CONSTITUTION:Molten iron is preliminarily deoxidized and smelted to reduce the dissolved oxygen to 0.0030-0.0100wt.% to adjust its composition, and molten steel contg., by weight, 0.02-0.18% C, 0.03-0.25% Si, 0.4-2.0% Mn, 0.0007-0.0060% S, 0.005-0.030% Ti, 0.0010-0.0043% N, <0.015% P, and <0.003% Al is obtained. The molten steel is finally deoxidized, then tapped, and solidified in 30min. The obtained steel contg. 40-170grains/mm<2> of the Ti oxide and the multicomponent deposit of Ti oxide, TiN, and MnS having 0.1-3.0mum grain size in total is rolled. By this method, the safety of a structure is secured, and the weldability is improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、溶接性の優れた強靭性高張力鋼に係わり、特
に、溶接熱影響部(以下HAZと称する)の低温靭性の
優れた構造用鋼の製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a strong, high-strength steel with excellent weldability, and particularly to a structure with excellent low-temperature toughness in a weld heat affected zone (hereinafter referred to as HAZ). This relates to the manufacturing method of industrial steel.

(従来の技術) 低合金鋼の溶接部のHAZ靭性は、(1)有効結晶粒の
大きさ(オーステナイト粒径、ミクロ組織) 、(2)
硬化相の粒径及び体積分率(炭化物、高炭素マルテンサ
イト、介在物) 、(3)母相の硬さ及び靭性(フェラ
イト中の固溶C,N)等の冶金学要因によって支配され
ている。
(Prior art) The HAZ toughness of a welded joint of low alloy steel is determined by: (1) effective grain size (austenite grain size, microstructure); (2)
It is governed by metallurgical factors such as the grain size and volume fraction of the hardened phase (carbides, high carbon martensite, inclusions), (3) the hardness and toughness of the matrix (solid solution C, N in ferrite). There is.

これらの中でHAZ靭性の向上策として、HAZ組織を
微細化し、有効結晶粒を細粒化する方法が簡便であり、
高温で安定な種々の析出物を活用した各種の方法が提案
されている。
Among these methods, a simple method to improve HAZ toughness is to refine the HAZ structure and refine the effective crystal grains.
Various methods have been proposed that utilize various precipitates that are stable at high temperatures.

例えば、鉄と鋼、第a5巻、第8号、 1232頁(昭
和54年6月発行)においては、TiNを微細分散させ
、50kg−f / d高張力鋼の大人熱溶接時のHA
Z靭性を改善する手段がとられている。しかし、これら
の析出物は、大人熱溶接においては大部分が溶解され、
HAZ組織の粗粒化と固溶Nの増加を生じ、HAZ靭性
を劣化させるという欠点が存在する。
For example, in Tetsu to Hagane, Vol. A5, No. 8, p. 1232 (published June 1978), TiN is finely dispersed to reduce the HA during adult heat welding of 50 kg-f/d high-strength steel.
Measures have been taken to improve Z toughness. However, most of these precipitates are dissolved during adult heat welding,
There is a drawback that the HAZ structure becomes coarser and solute N increases, resulting in deterioration of HAZ toughness.

一方、本発明者の一部は、溶鉄のAl脱酸に替わるTI
脱酸により、鋼中にT1酸化物を微細分散させ、溶接時
のHAZ部において、粒内フェライト変態組tm(以下
IFPと称する)を発達させることにより、HAZ靭性
を著しく改善できることを、特開昭00−245768
号、特開昭(io −79745号、特開昭61−11
7245号、特開昭82−1842号公報において示し
た。
On the other hand, some of the inventors of the present invention have proposed that TI can be used instead of Al deoxidation of molten iron.
Unexamined Japanese Patent Application Publication No. 2003-110007 has disclosed that HAZ toughness can be significantly improved by finely dispersing T1 oxide in steel through deoxidation and developing intragranular ferrite transformation group tm (hereinafter referred to as IFP) in the HAZ area during welding. Showa 00-245768
No., JP-A-Sho (io-79745, JP-A-61-11)
No. 7245 and Japanese Unexamined Patent Publication No. 82-1842.

さらに本発明者らはTI酸化物含有鋼においては、鋼中
のTJl12化物個数の増加にともないHAZ靭性が向
上することを特願昭63−131313号で明らかにし
た。しかし、大型鋼塊に溶製すると、鋼塊中央部におい
てT1酸化物個数が減少し、大入熱HAZ靭性を確保す
るために必要な個数を得られない場合が生じた。
Furthermore, the present inventors revealed in Japanese Patent Application No. 131313/1983 that in steel containing TI oxides, the HAZ toughness improves as the number of TJl2 oxides in the steel increases. However, when a large steel ingot is melted, the number of T1 oxides decreases in the center of the steel ingot, and there are cases where the number necessary to ensure high heat input HAZ toughness cannot be obtained.

(発明が解決しようとする課題) 大型鋼塊における鋼塊中央部のTI酸化物個数の減少の
原因は、主にT1酸化物が凝固時に二次脱酸生成物とし
て析出するため、除冷される鋼塊中央部は凝集粗大化に
よることが判明した。
(Problem to be Solved by the Invention) The decrease in the number of TI oxides in the center of a large steel ingot is mainly due to the fact that T1 oxides precipitate as secondary deoxidation products during solidification. It was found that the central part of the steel ingot was caused by agglomeration and coarsening.

鋼塊中央部においても必要なTI酸化物個数を確保し、
HAZ靭性を改善するために、二次脱酸生成物に加え、
溶鋼段階で析出する一次脱酸TI酸化物を活用する脱酸
方法が有効であるとの結論に達した。
Ensure the required number of TI oxides even in the center of the steel ingot,
In addition to secondary deoxidation products to improve HAZ toughness,
It was concluded that a deoxidizing method that utilizes the primary deoxidizing TI oxide that precipitates during the molten steel stage is effective.

しかし、通常の製鋼プロセスのし一ドルでのT1脱酸で
は、出鋼までの滞在時間が長時間(30分以上)になり
、−次脱酸TI酸化物が浮上し減少する課題が生じた。
However, with T1 deoxidation, which takes place in the normal steelmaking process, the residence time until tapping is long (more than 30 minutes), resulting in the problem that secondary deoxidation TI oxides float to the surface and decrease. .

本発明はこれを解決した溶接部靭性の優れた低温用高張
力鋼の製造法を提供するものである。
The present invention solves this problem and provides a method for manufacturing high-strength steel for low temperature use with excellent weld zone toughness.

(課題を解決するための手段) 本発明は、以上の知見に基づいてなされたものであり、
その要旨は、溶鉄を予備脱酸により溶存酸素を重量%で
0.0030〜0.0100%に溶製し、合金添加によ
る成分調整により、C: 0.02〜0,18゛%、S
 j:0.03〜0.25%、Mn:0.4〜2.0%
、S:0.0007〜0.0060%、T1:0.00
5〜o、oao%、N:o、ooto〜0.0040%
を含有させ、P < 0.015%、Al <0.00
3%に制限し、Cr<1.0%、Nl <360%、M
o <0.5 %、y<o、t%、Nb <0.05%
、B < 0.002%、Cu<1.5%の1種または
2種以上を含有し、残部はFeおよび不可避不純物から
なる溶鋼を溶製、さらに、最終脱酸としてTIを添加し
、30分以内に出鋼、凝固させ、主に粒子径が0.1〜
3.OtmにあるT1酸化物及びT1酸化物とTiN、
MnSの複合析出物粒子の合計で40−170個/個含
−有する鋼塊を圧延して製造することを特徴とする溶接
部靭性の優れた低温用高張力鋼の製造方法である。
(Means for solving the problem) The present invention has been made based on the above findings,
The gist is that molten iron is pre-deoxidized to reduce dissolved oxygen to 0.0030-0.0100% by weight, and by adjusting the composition by adding alloys, C: 0.02-0.18%, S
j: 0.03-0.25%, Mn: 0.4-2.0%
, S: 0.0007-0.0060%, T1: 0.00
5~o, oao%, N: o, ooto~0.0040%
P < 0.015%, Al < 0.00
3%, Cr < 1.0%, Nl < 360%, M
o <0.5%, y<o, t%, Nb <0.05%
, B < 0.002%, Cu < 1.5%, and the remainder is Fe and unavoidable impurities. The steel is tapped and solidified within minutes, and the particle size is mainly 0.1~
3. T1 oxide and T1 oxide and TiN in Otm,
This is a method for producing a low-temperature high-strength steel with excellent weld toughness, which is characterized by producing a steel ingot containing 40 to 170 MnS composite precipitate particles in total.

(作  用) 最初に本発明鋼の基本成分範囲の限定理由について述べ
る。
(Function) First, the reason for limiting the basic component range of the steel of the present invention will be described.

まず、Cは鋼の強度を向上させる有効な成分として添加
するもので、0602%未満では構造用鋼として必要な
強度が得られず、また0、18%を超える過剰の添加は
、溶接割れ性、HAZ靭性などを著しく低下させるので
、上限を0.18%とした。
First, C is added as an effective component to improve the strength of steel; if it is less than 0.602%, the strength necessary for structural steel cannot be obtained, and if it is added in excess of 0.18%, it may cause weld cracking. , HAZ toughness etc. are significantly reduced, so the upper limit was set at 0.18%.

次に、Siは母材の強度確保、溶鋼の予備脱酸などに必
要であるが、0.25%を超えると熱処理組織内に硬化
組織の高炭素マルテンサイト(以下M本と称す)を生成
し、靭性を著しく低下させる。
Next, Si is necessary to ensure the strength of the base metal and to preliminarily deoxidize molten steel, but if it exceeds 0.25%, a hardened structure of high carbon martensite (hereinafter referred to as M martensite) will be formed in the heat-treated structure. and significantly reduce toughness.

また、0,03%以下ではTI酸化物の分散に必要な溶
鋼の予備脱酸ができないため、Si含有量をこの範囲に
制限した。
Furthermore, if it is less than 0.03%, preliminary deoxidation of molten steel necessary for dispersing TI oxides cannot be performed, so the Si content is limited to this range.

Mnは母材の強度、靭性の確保には0.4%以上の添加
が必要であるが、溶接部の靭性、割れ性などの許容でき
る範囲で上限を2.0%とした。
Although it is necessary to add Mn in an amount of 0.4% or more to ensure the strength and toughness of the base metal, the upper limit was set to 2.0% within an allowable range such as the toughness and crackability of the welded part.

Sについては、複合体のMnSを析出させるために0.
0007%以上必要であるが、0.0060%超の過剰
の添加は、粗大な硫化物系介在物を形成し、母材の延性
低下と異方性の増加を招くため0.0007〜0.00
60%とした。
Regarding S, in order to precipitate MnS of the complex, 0.
0.0007% or more is required, but excessive addition of more than 0.0060% will form coarse sulfide-based inclusions, leading to a decrease in the ductility and an increase in the anisotropy of the base material. 00
It was set at 60%.

TiはTI酸化物とTI窒化物の形成に必須の元素であ
り、0.005%未満では必要とするTI酸化物とTI
窒化物量が得られず、IFP生成量が低減するため0.
005%以上の添加が必要であるが、0.03%超の添
加は、過剰なT1炭化物の析出をともない、析出硬化に
より硬さを上昇させ、靭性低下をもたらすため、O,O
a%以下とした。
Ti is an essential element for the formation of TI oxide and TI nitride, and if it is less than 0.005%, it will not form the necessary TI oxide and TI nitride.
0.0 because the amount of nitrides cannot be obtained and the amount of IFP generated is reduced.
However, addition of more than 0.03% causes precipitation of excessive T1 carbides, increases hardness due to precipitation hardening, and reduces toughness.
A% or less.

Nは含有量が0.0040%を超えるとM本が存在しな
い条件でも母相を脆化させ、靭性を低下させる。
When the N content exceeds 0.0040%, the matrix becomes brittle even in the absence of M atoms, and the toughness decreases.

また、Nが0.0010%未満では鋼中にほとんど窒化
物を生成せず、IFP、ill織の生成量が減少し靭性
が低下する。
Furthermore, if N is less than 0.0010%, hardly any nitrides are formed in the steel, the amount of IFP and ill weave formed is reduced, and the toughness is lowered.

Pは、凝固偏析による溶接割れ性、靭性などの低下を防
止する上から、極力低減すべきであり、上限を0.01
5%に制限した。
P should be reduced as much as possible in order to prevent deterioration of weld cracking properties, toughness, etc. due to solidification segregation, and the upper limit should be set at 0.01.
It was limited to 5%.

Alは強力な脱酸元素であり、o、ooa%以上の添加
はTI脱酸により形成されるTI酸化物が形成されなく
なり、IFPが形成されず、靭性の低下がもたらされる
ので、0.003%以下に制限した。
Al is a strong deoxidizing element, and if it is added in an amount of 0.003% or more, TI oxide formed by TI deoxidation will not be formed, IFP will not be formed, and the toughness will be reduced. % or less.

以上が本発明鋼の基本成分であるが、母材強度の上昇、
および母材の靭性向上の目的でCr。
The above are the basic components of the steel of the present invention.
and Cr for the purpose of improving the toughness of the base material.

NI 、Mo、V、Nb、B、Cuの1種または2種以
上を含有することができる。
It can contain one or more of NI, Mo, V, Nb, B, and Cu.

まず、N1は、母材の強靭性を高める極めて有効な元素
であるが3.0%を超す添加は、焼き入れ性の増加によ
り、IFP組織の形成が抑制されること、M本が生成さ
れることにより靭性の低下をもたらすため、上限を3.
0%とした。
First, N1 is an extremely effective element that increases the toughness of the base metal, but adding more than 3.0% increases hardenability, suppressing the formation of IFP structure, and causing the formation of M fibers. This causes a decrease in toughness, so the upper limit is set to 3.
It was set to 0%.

Cr、Moは焼き入れ性の向上と析出硬化により、母材
の強化に有効である。また、TMCPのような適切なプ
ロセスを付加することにより、母材の低温靭性の向上に
有効である。しかし、各成分の上限を超える過剰の添加
は、靭性および硬化性の観点から有害となるため、Cr
、Moの各々について、上限を1,0%、0.5%とし
た。
Cr and Mo are effective in strengthening the base material by improving hardenability and precipitation hardening. Furthermore, adding an appropriate process such as TMCP is effective in improving the low-temperature toughness of the base material. However, excessive addition exceeding the upper limit of each component is harmful from the viewpoint of toughness and hardenability, so Cr
, Mo, the upper limits were set to 1.0% and 0.5%, respectively.

V、Nbは母材の強靭化、粒界フェライトの生成抑制な
どによる靭性の改善などに有効であるが、各成分の上限
を超える過剰の添加は、靭性及び硬化性の観点から有害
となるため、V、Nbのそれぞれについて、上限を00
1%、 0.05%とした。
V and Nb are effective in strengthening the base material and improving toughness by suppressing the formation of grain boundary ferrite, etc., but excessive addition exceeding the upper limit of each component is harmful from the viewpoint of toughness and hardenability. , V, and Nb, the upper limit is set to 00.
1% and 0.05%.

Bは焼き入れ性の向上による母材強度の上昇と、粒界フ
ェライトの成長の抑制による高温熱処理鋼材の靭性向上
が期待されるが、0.002%を超える添加は、Fe 
23 (CB)6の析出による靭性低下と急冷処理での
硬化を招くため、上限を0.002%とした。
B is expected to increase the strength of the base metal by improving hardenability and improve the toughness of high-temperature heat-treated steel materials by suppressing the growth of grain boundary ferrite.
23 (CB)6 precipitation causes a decrease in toughness and hardening during rapid cooling treatment, so the upper limit was set at 0.002%.

Cuは母材の強化のわりには、HAzの硬化が少なく、
6効な元素であるが、応力除去焼鈍による焼き戻し脆性
、溶接割れ性などを考慮して、上限を1.5%とした。
Although Cu strengthens the base material, it hardens HAz less,
Although it is an effective element, the upper limit was set at 1.5% in consideration of temper brittleness due to stress relief annealing, weld cracking property, etc.

次に、HAZl:IFPを生成し組織を微細化しHAZ
靭性を向上させる基となるIFP核析出物について以下
に説明する。
Next, HAZl:IFP is generated and the structure is refined to form HAZl:IFP.
The IFP nuclear precipitates that serve as a base for improving toughness will be explained below.

IFPは主に粒子径が0.1〜3.0 mにある数%の
Mnを固溶したT12o3.T1305のチタン酸化物
およびこれらの酸化物とTiN、MnSの複合体、T 
i N+Mn Sの複合体から生成する。該粒子径が0
.1−未満ではIFP生成効果は極めて弱く、また、3
.〇−超になるとIFP生成能は有するものの、それ0
身が破壊の発生箇所となり易くなり、HAZ靭性の低下
をもたらす。
IFP is mainly made of T12o3. T1305 titanium oxide and composites of these oxides with TiN and MnS, T
It is produced from a complex of i N+Mn S. The particle size is 0
.. Below 1, the IFP generation effect is extremely weak;
.. If it exceeds 〇-, it has the ability to generate IFP, but it is 0.
The body is likely to become a site of fracture, resulting in a decrease in HAZ toughness.

大型鋼塊の鋼塊中央部における該粒子数については、T
I酸化物及びTI酸化物とTiN+MnSの複合体の粒
子数が少ないと、大入熱HAZ部において十分にIFP
を生成させることができないので、それらの合計で40
個/−以上存在させることが必要である。
Regarding the number of particles in the center of a large steel ingot, T
If the number of particles of the composite of I oxide and TI oxide and TiN+MnS is small, the IFP will be sufficient in the high heat input HAZ part.
cannot be generated, so the total is 40
It is necessary that there be at least 1/- or more.

該粒子数の増加にともないIFPの個数も増加するが、
該粒子数の合計で170個/111を超える過剰な存在
は、母材及び溶接部の延性低下を招く傾向があるので、
該粒子数の上限は170個/ mJでなければならない
As the number of particles increases, the number of IFPs also increases,
Excessive presence of more than 170/111 particles in total tends to reduce the ductility of the base metal and welded part.
The upper limit of the number of particles must be 170 particles/mJ.

上記における本発明の基本となる鋼塊中央部でTI酸化
物数を増加させるための最終脱酸としてTIを添加し、
30分以内に出鋼、凝固させる製鋼法について説明する
Adding TI as final deoxidation to increase the number of TI oxides in the central part of the steel ingot, which is the basis of the present invention in the above,
A steel manufacturing method for tapping and solidifying steel within 30 minutes will be explained.

最終脱酸としてT1添加後、30分以内に出鋼、凝固さ
せると制限を設けたのは、これ以上、溶鋼で保持すると
、溶鋼段階で析出する一次脱酸T1酸化物が浮上して減
少し、必要なTI酸化物が確保できなくなるため30分
以内に制限した。このためにはタンデイツシュにおいて
T1を添加する等の手段をとる必要がある。
The reason for setting the restriction that the steel should be tapped and solidified within 30 minutes after adding T1 as final deoxidation is that if the molten steel is kept for any longer, the primary deoxidized T1 oxide that precipitates in the molten steel stage will float to the surface and decrease. However, since the necessary TI oxide could not be secured, the time was limited to 30 minutes. For this purpose, it is necessary to take measures such as adding T1 to the tundish.

またTI脱酸前の[0]濃度がo、oioo%を超える
場合は、他の条件を満たしていても、T1酸化物が粗粒
化し脆性破壊の起点となり、靭性は向上しない。
Furthermore, if the [0] concentration before TI deoxidation exceeds o, oioo%, even if other conditions are met, the T1 oxide becomes coarse grained and becomes the starting point of brittle fracture, and the toughness is not improved.

(実 施 例) 第1表は、試作鋼の化学成分及び鋳片厚、製鋼における
TI添加後の溶鋼での保持時間、TI酸化物個数、溶接
再現HAZ靭性を表し、発明鋼はTI添加後の溶鋼での
保持時間が30分以内に250〜300■l厚鋳片に鋳
造したもので、一方、比較鋼は溶鋼で60分保持したも
のである。
(Example) Table 1 shows the chemical composition and slab thickness of the prototype steel, the holding time in molten steel after adding TI in steel manufacturing, the number of TI oxides, and the welding reproduction HAZ toughness. The comparative steel was cast into a 250 to 300 μl thick slab within 30 minutes of holding time in molten steel, while the comparative steel was held in molten steel for 60 minutes.

なお、TI酸化物数はTI、0元素の特性X線をコンピ
ューターにより画像解析処理(CMA装置)し求めた。
Note that the number of TI oxides was determined by image analysis processing (CMA device) of characteristic X-rays of TI and 0 elements using a computer.

これらの試作鋼は圧延により50■mffJ板とし、板
厚1/2tから12X 12X 60mmの試験片を採
取し、溶接再現熱サイクル試験によりHA2靭性を評価
した。
These trial steels were rolled into 50 mffJ plates, test pieces of 12 x 12 x 60 mm were taken from the plate thickness of 1/2 t, and the HA2 toughness was evaluated by a welding reproduction thermal cycle test.

溶接再現熱サイクル試験は試験片の中央部を高周波誘導
加熱により1400℃に急速加熱し、800℃から50
0℃の冷却時間161秒の条件で冷却した。
In the welding reproduction thermal cycle test, the central part of the specimen was rapidly heated to 1400°C by high-frequency induction heating, and the temperature was increased from 800°C to 50°C.
Cooling was performed at 0° C. for a cooling time of 161 seconds.

この条件は溶接入熱量130kJ/cmに相当し、加熱
温度1400℃は実際のHAZの溶融線近傍の加熱領域
に相当する。
This condition corresponds to a welding heat input of 130 kJ/cm, and a heating temperature of 1400° C. corresponds to a heating region near the fusion line of the actual HAZ.

さらに靭性はこの試験片から2腸層Vノツチ・シャルピ
ーに加工し、衝撃破面遷移温度(以下vTrsと称す)
を求め評価した。
Furthermore, the toughness was measured by processing this test piece into two-layered V-notch Charpy, and measuring the impact fracture transition temperature (hereinafter referred to as vTrs).
was determined and evaluated.

第1表に示すように、本発明による鋼は鋳片の厚さ中央
部でTI酸化物を40個/−舅上含み、比較法による鋼
は20〜30個/−に低減し、目的とする40個/d以
上の粒子を分散させられない。
As shown in Table 1, the steel according to the present invention contains 40 TI oxides at the center of the thickness of the slab, while the steel according to the comparative method has TI oxides reduced to 20 to 30 oxides, which meets the purpose. 40 particles/d or more cannot be dispersed.

従って、本発明法による鋼の溶接再現HAZ靭性(v 
T rs)は比較法による鋼に比べ向上し、vTrsで
20〜40℃低温側にシフトする。
Therefore, the welding reproduction HAZ toughness (v
Trs) is improved compared to steel made by the comparative method, and vTrs is shifted to a lower temperature side of 20 to 40°C.

第1図、第2表に鋼1,2についてT1添加後の溶鋼で
の保持時間の影響を示した。
FIG. 1 and Table 2 show the influence of holding time in molten steel after addition of T1 for Steels 1 and 2.

第1図は特性xliI元素像をコンピューター処理した
画像解析により求めた(CMA装置)。
FIG. 1 shows a characteristic xliI elemental image obtained by computer-processed image analysis (CMA device).

これらから明らかなように、溶鋼での保持時間が30分
以内ではその該粒子数が40個/−以上になり、250
〜300 +n厚の厚鋳片の中央部においても十分な大
入熱HAZ靭性を示す。
As is clear from these, the number of particles becomes 40/- or more when the holding time in molten steel is less than 30 minutes, and 250/- or more.
Sufficient high heat input HAZ toughness is exhibited even in the center of a thick slab with a thickness of ~300+n.

即ち、本発明の製造法の要件が総て満たされた時に、第
1表に示される鋼7に示すような厚鋼板の板厚1/2部
においても、vTrs−−75℃もの優れた大入熱HA
Z靭性を持つ低温用鋼材の製造が可能になる。
That is, when all the requirements of the manufacturing method of the present invention are satisfied, even in the 1/2 thickness part of a thick steel plate as shown in Steel 7 shown in Table 1, an excellent temperature of vTrs of -75°C can be obtained. Heat input HA
It becomes possible to manufacture low-temperature steel materials with Z toughness.

(発明の効果) 本発明により厚鋼板の板厚1/2部においても優れた大
入熱HAZ靭性を持つ低温用鋼材の製造が可能になり、
北海のような極低温環境で使用される海洋構造物、ライ
ンパイプ、低温容器等の鋼材に適用ができる。その結果
、構造物の安全性の確保、溶接性能の向上による経済効
果等の産業上の効果は極めて顕著なものがある。
(Effects of the Invention) The present invention makes it possible to manufacture a low-temperature steel material with excellent high heat input HAZ toughness even at 1/2 part of the thickness of a thick steel plate.
It can be applied to steel materials such as marine structures, line pipes, and cryogenic vessels used in cryogenic environments such as the North Sea. As a result, industrial effects such as ensuring the safety of structures and economic effects due to improved welding performance are extremely significant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はT1添加後、出鋼までの溶鋼での保持時間と該
粒子数との図表である。
FIG. 1 is a chart showing the number of particles versus the retention time in molten steel after T1 addition until tapping.

Claims (1)

【特許請求の範囲】 1、溶鉄を予備脱酸により溶存酸素を重量%で0.00
30〜0.0100%に溶製し、合金添加による成分調
整により、 C:0.02〜0.18%、 Si:0.03〜0.25%、 Mn:0.4〜2.0%、 S:0.0007〜0.0060%、 Ti:0.005〜0.030%、 N:0.0010〜0.0040%、 を含有させ、 P<0.015%、 Al<0.003%、 に制限し、残部はFeおよび不可避不純物からなる溶鋼
を溶製、さらに、最終脱酸としてTiを添加し、30分
以内に出鋼、凝固させ、主に粒子径が0.1〜3.0μ
mにあるTi酸化物及びTi酸化物とTiN、MnSの
複合析出物粒子の合計で、40〜170個/mm^2を
含有する鋼塊を圧延して製造することを特徴とする溶接
部靭性の優れた低温用高張力鋼の製造方法。 2、溶鉄を予備脱酸により溶存酸素を重量%で0.00
30〜0.0100%に溶製し、合金添加による成分調
整により、 C:0.02〜0.18%、 Si:0.03〜0.25%、 Mn:0.4〜2.0%、 S:0.0007〜0.0060%、 Ti:0.005〜0.030%、 N:0.0010〜0.0040%、 を含有させ、 P<0.015%、 Al<0.003%、 に制限し、かつCr<1.0%、Ni<3.0%、Mo
<0.5%、V<0.1%、Nb<0.05%、B<0
.002%、Cu<1.5%の1種または2種以上を含
有し、残部はFeおよび不可避不純物からなる溶鋼を溶
製、さらに、最終脱酸としてTiを添加し、30分以内
に出鋼、凝固させ、主に粒子径が0.1〜3.0μmに
あるTi酸化物及びTi酸化物とTiN、MnSの複合
析出物粒子の合計で、40〜170個/mm^2を含有
する鋼塊を圧延して製造することを特徴とする溶接部靭
性の優れた低温用高張力鋼の製造法。
[Claims] 1. Preliminary deoxidation of molten iron to reduce dissolved oxygen to 0.00% by weight
C: 0.02-0.18%, Si: 0.03-0.25%, Mn: 0.4-2.0%. , S: 0.0007-0.0060%, Ti: 0.005-0.030%, N: 0.0010-0.0040%, P<0.015%, Al<0.003 %, and the remainder consists of Fe and unavoidable impurities.Furthermore, Ti is added for final deoxidation, and the steel is tapped and solidified within 30 minutes, mainly with a particle size of 0.1 to 3. .0μ
Weld joint toughness characterized by manufacturing by rolling a steel ingot containing a total of 40 to 170 particles/mm^2 of Ti oxide and composite precipitate particles of Ti oxide, TiN, and MnS in m. An excellent method for producing high-strength steel for low temperatures. 2. Preliminary deoxidation of molten iron reduces dissolved oxygen to 0.00% by weight
C: 0.02-0.18%, Si: 0.03-0.25%, Mn: 0.4-2.0%. , S: 0.0007-0.0060%, Ti: 0.005-0.030%, N: 0.0010-0.0040%, P<0.015%, Al<0.003 %, and Cr<1.0%, Ni<3.0%, Mo
<0.5%, V<0.1%, Nb<0.05%, B<0
.. 002%, Cu<1.5%, and the remainder consists of Fe and unavoidable impurities.Furthermore, Ti is added as final deoxidation, and the steel is tapped within 30 minutes. , steel containing a total of 40 to 170 particles/mm^2 of Ti oxide and composite precipitate particles of Ti oxide, TiN, and MnS, which are solidified and mainly have a particle size of 0.1 to 3.0 μm. A method for producing high-strength steel for low temperature use with excellent weld toughness, which is produced by rolling a lump.
JP1011977A 1989-01-23 1989-01-23 Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone Pending JPH02194115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1011977A JPH02194115A (en) 1989-01-23 1989-01-23 Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1011977A JPH02194115A (en) 1989-01-23 1989-01-23 Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone

Publications (1)

Publication Number Publication Date
JPH02194115A true JPH02194115A (en) 1990-07-31

Family

ID=11792666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1011977A Pending JPH02194115A (en) 1989-01-23 1989-01-23 Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone

Country Status (1)

Country Link
JP (1) JPH02194115A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0448048A (en) * 1990-06-15 1992-02-18 Sumitomo Metal Ind Ltd Steel excellent in toughness in weld heat-affected zone and its manufacture
JPH04191314A (en) * 1990-11-27 1992-07-09 Nippon Steel Corp Production of low carbon steel
JPH05202412A (en) * 1992-01-28 1993-08-10 Nippon Yakin Kogyo Co Ltd Manufacture of clean low-oxygen alloy steel in holding furnace for horizontal continuous casting
US5236521A (en) * 1990-06-06 1993-08-17 Nkk Corporation Abrasion resistant steel
US5292384A (en) * 1992-07-17 1994-03-08 Martin Marietta Energy Systems, Inc. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
EP0589424A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
US5403410A (en) * 1990-06-06 1995-04-04 Nkk Corporation Abrasion-resistant steel
EP0849372A1 (en) * 1996-12-19 1998-06-24 A.G. der Dillinger Hüttenwerke Low alloy construction steel having active particles
JPH1112640A (en) * 1997-06-24 1999-01-19 Sumitomo Metal Ind Ltd Manufacture of oxide dispersed steel
JP2005105322A (en) * 2003-09-29 2005-04-21 Kobe Steel Ltd Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP2008169429A (en) * 2007-01-11 2008-07-24 Nippon Steel Corp Steel having excellent ctod in weld heat-affected zone and method for producing the same
JP2014177672A (en) * 2013-03-14 2014-09-25 Nippon Steel & Sumitomo Metal Steel plate excellent in toughness at plate thickness center part and its manufacturing method
JP2018083963A (en) * 2016-11-22 2018-05-31 新日鐵住金株式会社 Steel sheet pile
JP2018127677A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Steel material for tank and manufacturing method therefor
JP2018131638A (en) * 2017-02-13 2018-08-23 新日鐵住金株式会社 High strength steel material
JP2019056145A (en) * 2017-09-21 2019-04-11 新日鐵住金株式会社 High tensile strength thick steel plate and method of producing the same
JP2019056148A (en) * 2017-09-21 2019-04-11 新日鐵住金株式会社 High tensile strength thick steel plate and method of producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPS621811A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Manufacture of rail having superior damage resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness
JPS621811A (en) * 1985-06-26 1987-01-07 Nippon Steel Corp Manufacture of rail having superior damage resistance

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236521A (en) * 1990-06-06 1993-08-17 Nkk Corporation Abrasion resistant steel
US5403410A (en) * 1990-06-06 1995-04-04 Nkk Corporation Abrasion-resistant steel
JPH0448048A (en) * 1990-06-15 1992-02-18 Sumitomo Metal Ind Ltd Steel excellent in toughness in weld heat-affected zone and its manufacture
JPH04191314A (en) * 1990-11-27 1992-07-09 Nippon Steel Corp Production of low carbon steel
JPH05202412A (en) * 1992-01-28 1993-08-10 Nippon Yakin Kogyo Co Ltd Manufacture of clean low-oxygen alloy steel in holding furnace for horizontal continuous casting
US5292384A (en) * 1992-07-17 1994-03-08 Martin Marietta Energy Systems, Inc. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
EP0589424A2 (en) * 1992-09-24 1994-03-30 Nippon Steel Corporation Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0589424A3 (en) * 1992-09-24 1994-09-14 Nippon Steel Corp Shape steel material having high strength, high toughness and excellent fire resistance and process for producing rolled shape steel of said material
EP0849372A1 (en) * 1996-12-19 1998-06-24 A.G. der Dillinger Hüttenwerke Low alloy construction steel having active particles
FR2757542A1 (en) * 1996-12-19 1998-06-26 Der Dillinger Huttenwerke Ag CONSTRUCTION STEEL LOW ALLY ACTIVE PARTICLES
JPH1112640A (en) * 1997-06-24 1999-01-19 Sumitomo Metal Ind Ltd Manufacture of oxide dispersed steel
JP2005105322A (en) * 2003-09-29 2005-04-21 Kobe Steel Ltd Thick steel plate excellent in toughness of welded joint subjected to large heat input welding, and its production method
JP2008169429A (en) * 2007-01-11 2008-07-24 Nippon Steel Corp Steel having excellent ctod in weld heat-affected zone and method for producing the same
JP2014177672A (en) * 2013-03-14 2014-09-25 Nippon Steel & Sumitomo Metal Steel plate excellent in toughness at plate thickness center part and its manufacturing method
JP2018083963A (en) * 2016-11-22 2018-05-31 新日鐵住金株式会社 Steel sheet pile
JP2018127677A (en) * 2017-02-08 2018-08-16 新日鐵住金株式会社 Steel material for tank and manufacturing method therefor
JP2018131638A (en) * 2017-02-13 2018-08-23 新日鐵住金株式会社 High strength steel material
JP2019056145A (en) * 2017-09-21 2019-04-11 新日鐵住金株式会社 High tensile strength thick steel plate and method of producing the same
JP2019056148A (en) * 2017-09-21 2019-04-11 新日鐵住金株式会社 High tensile strength thick steel plate and method of producing the same

Similar Documents

Publication Publication Date Title
CN109097680B (en) Method for manufacturing high-manganese high-aluminum nonmagnetic steel plate smelted by 50t intermediate frequency induction furnace
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
WO2019029533A1 (en) Cast steel, preparation method for cast steel and use of cast steel
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH0527703B2 (en)
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JPH021208B2 (en)
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JP3464567B2 (en) Welded structural steel with excellent toughness in the heat affected zone
JPS593537B2 (en) welded structural steel
JPH0853734A (en) Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2579842B2 (en) Method for producing intragranular ferritic section steel with excellent toughness as rolled and excellent weld toughness
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JPH04157117A (en) Production of rolled shape steel having excellent toughness of base metal and weld zone
JP3464566B2 (en) Low temperature steel with excellent toughness in the heat affected zone
JP3502805B2 (en) Method for producing steel with excellent toughness in weld joint
JP3541021B2 (en) Steel material with excellent toughness
JPH0578740A (en) Manufacture of steel excellent in low temperature toughness in weld heat affected zone