JPH1112640A - Manufacture of oxide dispersed steel - Google Patents

Manufacture of oxide dispersed steel

Info

Publication number
JPH1112640A
JPH1112640A JP9166895A JP16689597A JPH1112640A JP H1112640 A JPH1112640 A JP H1112640A JP 9166895 A JP9166895 A JP 9166895A JP 16689597 A JP16689597 A JP 16689597A JP H1112640 A JPH1112640 A JP H1112640A
Authority
JP
Japan
Prior art keywords
oxide
molten steel
steel
concentration
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9166895A
Other languages
Japanese (ja)
Other versions
JP3297699B2 (en
Inventor
Takayuki Nishi
隆之 西
Hiroaki Yamazoe
広明 山副
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16689597A priority Critical patent/JP3297699B2/en
Publication of JPH1112640A publication Critical patent/JPH1112640A/en
Application granted granted Critical
Publication of JP3297699B2 publication Critical patent/JP3297699B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of manufacture of an oxide-dispersed steel, where the dispersion density of oxides including Al-Mn type oxides is controlled with high precision. SOLUTION: Si concentration and Mn concentration are regulated in a ladle, and a prescribed amount of oxygen is blown while adding a slagging agent and Si and heating is performed to form a CaO-SiO2 -Al2 O3 -MgO type slag having a composition in the range where the value of CaO/SiO2 is regulated to 0.8-4 and the amounts of Al2 O3 and MgO are regulated to 3-40 wt.% and 5-20 wt.% (where the weight percentage of each oxide means its concentration in the slag), respectively. Simultaneously, after control into a molten steel where the amounts of Al and total oxygen in the molten slag are regulated to 0.0001-0.003 wt.% and 0.002-0.01 wt.%, respectively, Si concentration is regulated again to 0.05-0.2 wt.% and gas bubbling and vacuum degassing treatments are performed. In this manufacturing method, Ti or/and Zr are added independently or in combination in the course of the vacuum degassing treatment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶接熱影響部において
高靭性を確保しうる、Al−Mn系酸化物を含む酸化物
を高精度で所定の密度で分散させることができる酸化物
分散鋼の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an oxide-dispersed steel capable of dispersing an oxide containing an Al-Mn-based oxide at a predetermined density with high precision, which can ensure high toughness in a heat affected zone of welding. And a method for producing the same.

【0002】[0002]

【従来の技術】氷海域に設置される海洋構造物、寒冷地
向ラインパイプ、船舶、LNGタンク等の大型構造物に
供される鋼材に対する高強度化の要求は、強度レベルを
高めながら現在も継続してなされている。しかし、同時
に氷海域等での使用環境が厳しいことを反映して、溶接
部、とくに溶接熱影響部(以下、「HAZ」と呼ぶ)に
おける靱性改善要求も高度なものになっている。これ
は、より大きな溶接入熱を用いて高能率溶接した場合に
も、高いHAZ靭性が得られる鋼材への要求が高いこと
をも意味している。この要求に応える方法として、鋼材
中に各種の酸化物粒子を分散させてHAZ靱性を改善す
る方法が知られている。
2. Description of the Related Art The demand for high-strength steel materials used for large structures such as marine structures installed in ice waters, line pipes for cold regions, ships, LNG tanks and the like has been increasing at present while increasing the strength level. It has been made continuously. However, at the same time, the demand for improving the toughness in a welded part, particularly in a weld heat affected zone (hereinafter, referred to as “HAZ”) has become high, reflecting the severe use environment in an ice sea area and the like. This also means that there is a high demand for steel materials capable of obtaining high HAZ toughness even when performing high-efficiency welding using a larger welding heat input. As a method for meeting this demand, there is known a method of dispersing various oxide particles in a steel material to improve HAZ toughness.

【0003】このような改善方法の1つとして、鋼中の
SiおよびAlの含有率を限定したうえで、Tiを添加
して凝固過程でTiOやTi23といったTi系酸化物
を鋼中に分散させることにより、高いHAZ靱性を確保
する鋼の製造法が提案されている(特公平5−1730
0号公報)。このようなTi系酸化物を凝固過程で鋼材
中に微細に分散させる方法としては、第1段階での脱酸
にSi、Mnを用い、第2段階での脱酸にTiまたはZ
rを用いて酸素濃度を重量割合にて50ppm以下にす
ることによって、Ti系またはZr系酸化物を個別にま
たは複合的に析出させる方法が提案されている(特開平
3−267311号公報、特開平4−2713号公
報)。
As one of such improvement methods, after limiting the contents of Si and Al in steel, Ti is added and Ti-based oxides such as TiO and Ti 2 O 3 are solidified in the steel during solidification. A method for producing steel that secures high HAZ toughness by dispersing the steel into HAZ has been proposed (Japanese Patent Publication No. 5-1730).
No. 0). As a method of finely dispersing such a Ti-based oxide in a steel material in a solidification process, Si and Mn are used for deoxidation in a first step, and Ti or Z is used for deoxidation in a second step.
There has been proposed a method in which Ti-based or Zr-based oxides are precipitated individually or in a composite manner by adjusting the oxygen concentration to 50 ppm or less by weight using r (Japanese Patent Laid-Open No. 3-267311, JP-A-4-2713).

【0004】これらの方法は、いずれもTi系酸化物を
凝固過程で微細に分散させる方法であり、主要な酸化物
がTi系酸化物またはZr系酸化物からなるものについ
て示されているのみであった。しかしながら、Ti系酸
化物が主体の酸化物が分散した鋼材では、HAZの領域
のうち1200〜1350゜Cに加熱されたオーステナ
イト粒径がやや大きい程度の亜粗粒域部分では靭性改善
代は小さく、効果は限定されていた。
[0004] These methods are all methods for finely dispersing a Ti-based oxide in a solidification process, and only show that the main oxide is composed of a Ti-based oxide or a Zr-based oxide. there were. However, in a steel material in which an oxide mainly composed of a Ti-based oxide is dispersed, the toughness improvement margin is small in a subcoarse grain region where the austenite grain size heated to 1200 to 1350 ° C. is slightly larger in the HAZ region. , The effect was limited.

【0005】これに対して、Al−Mn系酸化物を含む
酸化物を鋼中に分散させることにより、上記の亜粗粒域
を含めたHAZ全体の靱性を改善する方法が開示されて
いる(特開平7−278736号公報)。このAl−M
n系酸化物を均一に分散した鋼を製造する方法として、
溶製中にスラグ組成を制御することにより所望の組成の
酸化物を分散させる鋼の製造方法が開示されている(特
開平8−92629号公報)。さらに、取鍋においてS
i添加と酸素吹き付けを行うことにより、溶鋼の昇熱と
スラグ制御を同時に行うAl−Mn系酸化物分散鋼の製
造方法の提案もなされている(特願平8−260965
号公報)。
On the other hand, there is disclosed a method of improving the toughness of the entire HAZ including the above-described subcoarse grain region by dispersing an oxide containing an Al—Mn-based oxide in steel (see, for example, Japanese Patent Application Laid-Open No. H11-157556). JP-A-7-278736). This Al-M
As a method for producing steel in which an n-based oxide is uniformly dispersed,
A method for producing steel in which an oxide having a desired composition is dispersed by controlling the slag composition during smelting has been disclosed (JP-A-8-92629). In addition, S in the ladle
A method for producing an Al-Mn-based oxide-dispersed steel in which the heating of molten steel and the control of slag are simultaneously performed by performing i addition and oxygen spraying has been proposed (Japanese Patent Application No. 8-260965).
No.).

【0006】しかしながら、これらの方法は鋼中に分散
するAl−Mn系酸化物の分散密度を高い精度で制御す
ることができるものではなかった。とくに、脱水素や大
型介在物の除去のために真空脱ガス処理が長時間に及ぶ
等の変動が生じた場合には、Al−Mn系酸化物の分散
密度がばらつくことが多かった。このため、Al−Mn
系酸化物が十分な密度で分散した酸化物分散鋼を精度良
く製造する方法の確立が望まれていた。
[0006] However, these methods cannot control the dispersion density of the Al-Mn-based oxide dispersed in the steel with high accuracy. In particular, when fluctuations such as a prolonged vacuum degassing for dehydrogenation or removal of large inclusions occur, the dispersion density of the Al—Mn-based oxide often varies. For this reason, Al-Mn
It has been desired to establish a method for accurately producing oxide-dispersed steel in which a system oxide is dispersed at a sufficient density.

【0007】[0007]

【発明が解決しようとする課題】本発明の目的は、Al
−Mn系酸化物を含む酸化物の分散密度を高精度で把握
し、かつ制御することができる酸化物分散鋼の製造方法
を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is
An object of the present invention is to provide a method of manufacturing an oxide-dispersed steel capable of grasping and controlling the dispersion density of an oxide containing a Mn-based oxide with high accuracy.

【0008】[0008]

【課題を解決するための手段】本発明者等は、Al−M
n系酸化物分散鋼を溶製するに際して、取鍋での溶鋼中
へのSi添加、スラグ組成の制御、ガスバブリングおよ
び真空脱ガス処理を行いAl−Mn系酸化物の分散密度
を調査した結果、下記の事項を確認することができた。
Means for Solving the Problems The present inventors have proposed Al-M
The results of investigating the dispersion density of Al-Mn-based oxide by adding Si to molten steel in a ladle, controlling slag composition, gas bubbling and vacuum degassing when smelting n-based oxide-dispersed steel The following items could be confirmed.

【0009】(a)取鍋内でのSiとMnによる脱酸
後、造滓剤およびSiを添加しながら酸素吹き付けを行
い、スラグの塩基度、スラグ中のAl23等の組成を調
整することにより溶鋼中のAl濃度および全O濃度を制
御することができる。
(A) After deoxidation with Si and Mn in a ladle, oxygen is sprayed while adding a slag-making agent and Si to adjust the basicity of the slag and the composition of Al 2 O 3 and the like in the slag. By doing so, the Al concentration and the total O concentration in the molten steel can be controlled.

【0010】(b)取鍋において上記の調整をした溶鋼
中にガスバブリングを行うと単位時間、単位溶鋼量あた
りのガス流量に応じて決まった割合で“Al−Mn系酸
化物を含む酸化物”(以後、“含(Al−Mn系)酸化
物”という)の分散密度が減少する。このとき、ガスバ
ブリングを行う前の酸化物分散密度の初期値は“溶鋼中
のSi濃度”(以後、“[%Si]”と記す)によって
決まる。また、ガスバブリングの経過に伴う酸化物密度
の減少度合いは、上記ガス流量以外に、[%Si]にも
強く依存する。上記(a)の調整を行っておけば、酸化
物密度は、(イ)[%Si]および(ロ)ガスバブリングの
ガス流量を制御することにより定量的に予測することが
できる。
(B) When gas bubbling is performed in the molten steel adjusted as described above in a ladle, an oxide containing an Al—Mn-based oxide is determined at a rate determined in accordance with a gas flow rate per unit time and per unit amount of molten steel. (Hereinafter, referred to as “containing (Al—Mn-based) oxide”) ”. At this time, the initial value of the oxide dispersion density before gas bubbling is determined by “Si concentration in molten steel” (hereinafter, referred to as “[% Si]”). In addition, the degree of decrease in oxide density with the passage of gas bubbling strongly depends on [% Si] in addition to the gas flow rate. By adjusting the above (a), the oxide density can be quantitatively predicted by controlling the gas flow rates of (a) [% Si] and (b) gas bubbling.

【0011】(c)含(Al−Mn系)酸化物密度は、溶
鋼を真空脱ガス処理する間にも酸化物の浮上等により減
少する。このときの含(Al−Mn系)酸化物密度の減少
の程度も、その時点の[%Si]に依存する。
(C) The density of the oxides containing (Al-Mn) oxides also decreases due to the floating of the oxides during the vacuum degassing of the molten steel. At this time, the degree of decrease in the density of the oxide containing (Al—Mn) oxide also depends on [% Si] at that time.

【0012】(d)TiまたはZrを添加すると含(A
l−Mn系)酸化物密度の減少の程度はTiまたはZr
を添加した時点から大きく変化する。しかし、この場合
もTiまたはZr添加後の酸化物の減少程度を定量的に
把握できることに変わりはない。
(D) When Ti or Zr is added,
l-Mn) The degree of reduction in oxide density is Ti or Zr
Greatly changes from the time of addition. However, also in this case, the degree of reduction of the oxide after the addition of Ti or Zr can be quantitatively grasped.

【0013】本発明は上記の事項をもとに、実験室規模
での実験および生産現場での試験生産を経て完成された
もので、その要旨は下記の含(Al−Mn系)酸化物含有
鋼の製造方法にある。
The present invention has been completed based on the above-mentioned matters through experiments on a laboratory scale and test production at a production site. The gist of the present invention is as follows: In the method of manufacturing steel.

【0014】(1)取鍋内で、Si濃度およびMn濃度
を調整するとともに、造滓剤およびSiを添加しつつ酸
素を吹き付けることにより加熱して下記の範囲のCa
O−SiO2−Al23−MgO 系の組成のスラグを形
成し、かつ溶鋼の組成を下記の範囲に制御した後、溶
鋼中のSi濃度を0.05〜0.2重量%に再調整し、
予め定められた条件でガスバブリング処理および真空脱
ガス処理を施すAl−Mn系酸化物を含む酸化物分散鋼
の製造法(〔発明1〕とする)。
(1) In a ladle, while adjusting the Si concentration and the Mn concentration, heating is performed by blowing oxygen while adding a slag-making agent and Si, and heating in the following range.
O-SiO 2 -Al 2 O 3 to form a slag composition of -MgO system, and after controlling the composition of the molten steel in the following ranges, the Si concentration in the molten steel to 0.05 to 0.2 wt% Re Adjust,
A method for producing an oxide-dispersed steel containing an Al-Mn-based oxide, which is subjected to a gas bubbling treatment and a vacuum degassing treatment under predetermined conditions (referred to as [Invention 1]).

【0015】:CaO(重量%)/SiO2(重量
%)=0.8〜4 Al23:3〜40重量% MgO:5〜20重量% ただし、上記酸化物の重量%はスラグ中での濃度であ
る。
CaO (% by weight) / SiO 2 (% by weight) = 0.8 to 4 Al 2 O 3 : 3 to 40% by weight MgO: 5 to 20% by weight Is the concentration at

【0016】 :溶鋼中のAl:0.0001〜0.003重量% 溶鋼中の全酸素:0.002〜0.01重量% (2)上記〔発明1〕の製造方法において真空脱ガス処
理中にTiもしくはZrまたはこれらを複合して添加す
る酸化物分散鋼の製造方法(〔発明2〕とする)。
: Al in molten steel: 0.0001 to 0.003% by weight Total oxygen in molten steel: 0.002 to 0.01% by weight (2) During the degassing process in the production method of the above [Invention 1] For producing oxide-dispersed steel in which Ti or Zr or a combination thereof is added to steel (referred to as [Invention 2]).

【0017】上記〔発明1〕および〔発明2〕におい
て、酸化物含有鋼は含(Al−Mn系)酸化物を含む酸化
物を含有する鋼をさす。上記したように“含(Al−M
n系)酸化物”は、“Al−Mn系酸化物を含む酸化
物”である。この酸化物においては、複数の酸化物のう
ちいくつかの個々の酸化物がAl−Mn系酸化物である
場合および1個の酸化物が複合的に各種の酸化物で形成
され、そのうちの1種類がAl−Mn系酸化物である場
合の両方をさす。“Al−Mn系酸化物”は構成元素が
Al、MnおよびOからなる酸化物をさす。また、“含
(Al−Mn系)酸化物”は2相以上含まれる酸化物のう
ち少なくとも1つがAl−Mn系酸化物であり、酸化物
中の金属元素の原子割合で(Al+Mn)が40%以
上、原子割合で(Al/Mn)が1以上5未満の範囲に
あるものをさす。
In the above [Invention 1] and [Invention 2], the oxide-containing steel refers to a steel containing an oxide containing an (Al-Mn-based) oxide. As described above, “containing (Al-M
“n-based) oxide” is an “oxide containing an Al—Mn-based oxide.” In this oxide, some of the plurality of oxides are Al—Mn-based oxides. "Al-Mn-based oxide" refers to both the case where one oxide is complexly formed of various oxides and one of them is an Al-Mn-based oxide. Represents an oxide composed of Al, Mn and O.
(Al-Mn-based) oxide "means that at least one of the oxides contained in two or more phases is an Al-Mn-based oxide, and (Al + Mn) has an atomic ratio of metal elements in the oxide of 40% or more, and (Al / Mn) in a range of 1 or more and less than 5.

【0018】「酸化物の分散密度」は、本説明において
は、溶鋼での分散密度をさす。溶鋼での酸化物の分散密
度は鋼材になったときの酸化物の分散密度に反映され
る。後記するように溶鋼での酸化物分散密度の測定はボ
ンブサンプルを検鏡して行う。したがって、ここでいう
酸化物密度は、溶鋼を金型ボンブにて採取した急冷試料
または鋳造された試料を研磨し、その研磨面を走査型電
子顕微鏡を用いて、倍率1000〜2000倍で、50
視野から100視野観察したときの酸化物の単位面積あ
たりの平均個数を示したものである。
In the present description, "dispersion density of oxide" refers to the dispersion density of molten steel. The dispersion density of the oxide in the molten steel is reflected in the dispersion density of the oxide when it becomes a steel material. As will be described later, the measurement of the oxide dispersion density in molten steel is performed by microscopic examination of a bomb sample. Therefore, the oxide density as referred to herein is a value obtained by polishing a quenched sample or a cast sample obtained by collecting molten steel with a mold bomb, and polishing the polished surface with a scanning electron microscope at a magnification of 1000 to 2000 times at 50 times.
It shows the average number of oxides per unit area when 100 visual fields are observed from the visual field.

【0019】[0019]

【発明の実施の形態】つぎに本発明を上記のように限定
した理由について説明する。以後の説明で合金元素およ
び酸化物についての「%」は、いずれも「重量%」を表
す。
Next, the reason why the present invention is limited as described above will be described. In the following description, “%” for alloy elements and oxides indicates “% by weight”.

【0020】1.脱酸処理 鋼中に含(Al−Mn系)酸化物を分散させるためには、
製錬炉出鋼時にSiおよびMnによる脱酸を行って一次
脱酸生成物をMnO-SiO2系の組成を有するものに制
御する。脱酸後の溶鋼中のSiおよびMnは、それぞれ
[%Si]:0.05〜0.2%、かつ[%Mn]:
0.8〜2%の範囲とすることが望ましい。[%Si]
が0.05%未満および0.2%を超える場合には、造
滓剤の添加等の処理を行った場合、溶鋼中の全酸素量お
よびAl濃度を後記する所定の範囲にすることができな
い場合がある。[%Mn]が0.8%未満のときには、
含(Al−Mn系) 酸化物のうちのAl−Mn系酸化物
がHAZ靭性を改善できるほど生成しない場合がある。
一方、[%Mn]が2%を超えると後記する造滓剤等の
添加によって所望の組成のスラグを形成しにくい傾向が
ある。
1. In order to disperse the oxide containing (Al-Mn) in the steel,
Deoxidation by Si and Mn is performed at the time of tapping the smelting furnace to control the primary deoxidation product to have a MnO—SiO 2 composition. Si and Mn in the molten steel after deoxidation are respectively [% Si]: 0.05 to 0.2%, and [% Mn]:
It is desirable to be in the range of 0.8 to 2%. [% Si]
Is less than 0.05% and more than 0.2%, the total oxygen content and the Al concentration in the molten steel cannot be set to the predetermined ranges described below when a treatment such as addition of a slag-making agent is performed. There are cases. When [% Mn] is less than 0.8%,
Of the oxides containing (Al-Mn), the Al-Mn-based oxide may not be generated to the extent that the HAZ toughness can be improved.
On the other hand, when [% Mn] exceeds 2%, there is a tendency that it is difficult to form a slag having a desired composition by adding a slag-making agent or the like described later.

【0021】2.スラグ組成制御等によるAl−Mn系
酸化物含有鋼の製造 つぎに取鍋精錬におけるスラグの組成調整および溶鋼の
加熱を両立させるために予め決定した量のSiおよび造
滓剤を取鍋内の溶鋼に添加しつつ、予め決定した量の酸
素を溶鋼に吹き込んでSiを酸化させる。投入するSi
は、フェロシリコン等の通常使用される合金鉄でよい。
また上吹きする酸素、造滓剤として添加するCaO源、
Al23源、SiO2源 およびMgO源はそれぞれ生石
灰、ドロマイト等の一般的なものでよく、特に限定され
ない。また、酸素上吹き方法は、取鍋精錬に一般的に用
いらる方法でよく、例えば耐火物製ランスより送酸速度
20〜100Nm3/min程度で吹き付ければよい。
2. Production of Al-Mn-based oxide-containing steel by controlling slag composition, etc. Next, in order to achieve both slag composition adjustment and ladle heating in ladle refining, a predetermined amount of Si and slag-making agent are placed in the ladle. While oxidizing Si, a predetermined amount of oxygen is blown into the molten steel. Si to be charged
May be a commonly used ferro-alloy such as ferrosilicon.
In addition, oxygen blown upward, a CaO source added as a slag-making agent,
The Al 2 O 3 source, SiO 2 source, and MgO source may be general ones such as quicklime and dolomite, and are not particularly limited. The oxygen blowing method may be a method generally used for ladle refining. For example, it may be sprayed from a refractory lance at an acid feed rate of about 20 to 100 Nm 3 / min.

【0022】この処理によって酸素上吹き後に、CaO
-SiO2−Al23−MgO系からなるスラグを形成す
る。このときスラグ中の重量濃度で、(%CaO)/
(%SiO2 )が0.8〜4、Al23濃度が3〜40
%、MgO濃度が5〜20%になる必要がある。以後、
スラグ中のCaO等の酸化物の濃度の重量%を(%Ca
O)と表示する。 (%CaO)/(%SiO2)が0.
8未満の場合、全酸素濃度が0.01%を超え、一方、
4を超えると全酸素濃度が0.002%未満となる。ま
た、Al23濃度が3%未満の場合は、溶鋼中Al濃度
が0.0001%未満となり、40%を超えると溶鋼中
Al濃度が0.003%を超えてしまう。また、MgO
濃度が5%未満では、上記組成のスラグでは滓化性が低
下し制御性が悪化する。
By this treatment, after blowing over oxygen, CaO
Forming a slag consisting of -SiO 2 -Al 2 O 3 -MgO system. At this time, the weight concentration in the slag is (% CaO) /
(% SiO 2 ) is 0.8-4, and Al 2 O 3 concentration is 3-40.
% And the MgO concentration must be 5 to 20%. Since then
The weight% of the concentration of oxides such as CaO in slag
O) is displayed. (% CaO) / (% SiO 2 ) is 0.1%.
If less than 8, the total oxygen concentration exceeds 0.01%, while
If it exceeds 4, the total oxygen concentration will be less than 0.002%. When the Al 2 O 3 concentration is less than 3%, the Al concentration in the molten steel is less than 0.0001%, and when it exceeds 40%, the Al concentration in the molten steel exceeds 0.003%. In addition, MgO
If the concentration is less than 5%, the slag having the above composition has poor slagging properties and poor controllability.

【0023】造滓剤添加前の[%Si]および[%M
n]ならびにスラグ組成が上記範囲内にあるとき、溶鋼
中のAl濃度は0.0001〜0.003%の範囲に、
また、溶鋼中の全酸素濃度は0.002〜0.01%と
なる。
[% Si] and [% M] before adding the slag-forming agent
n] and the slag composition are in the above range, the Al concentration in the molten steel is in the range of 0.0001 to 0.003%,
Further, the total oxygen concentration in the molten steel is 0.002 to 0.01%.

【0024】溶鋼中のAl濃度が0.0001%未満の
ときは、HAZ靭性を改善するのに十分なAl−Mn系
酸化物の密度を得ることができない。一方、0.003
%を超えると生成した酸化物が凝集してやはりHAZ靭
性改善に十分なAl−Mn系酸化物分散密度を得ること
ができない。また、溶鋼中の全酸素濃度が0.002%
未満の場合には、鋼中の分散酸化物量が不十分であり、
一方、0.01%を超えると分散酸化物が大型化して鋼
の清浄度が著しく悪化する。
When the Al concentration in the molten steel is less than 0.0001%, it is not possible to obtain a sufficient Al-Mn-based oxide density for improving the HAZ toughness. On the other hand, 0.003
%, The generated oxides agglomerate, and it is impossible to obtain an Al-Mn-based oxide dispersion density sufficient for improving the HAZ toughness. In addition, the total oxygen concentration in the molten steel is 0.002%
If less than, the amount of dispersed oxides in the steel is insufficient,
On the other hand, if the content exceeds 0.01%, the size of the dispersed oxide increases and the cleanliness of the steel deteriorates significantly.

【0025】このとき投入するSi量および酸素吹き付
け量は、昇熱前温度および後工程での溶鋼の温度確保を
考慮した昇熱後温度から決定される。また、造滓剤添加
量は、Si添加および酸素上吹き量によって生じるSi
2 を目標濃度に制御するように決定される。それぞれ
の関係はつぎに説明する(1)〜(6)式で記述され、それぞ
れの添加量を決定することができる。
The amount of Si and the amount of oxygen sprayed at this time are determined from the temperature before heating and the temperature after heating in consideration of securing the temperature of the molten steel in the subsequent process. Further, the amount of the slag-making agent added is the amount of
It is determined to control O 2 to the target concentration. Each relationship is described by the following equations (1) to (6), and the amount of each addition can be determined.

【0026】まず、Siの酸化によって生じる溶鋼の温
度上昇(以後、「Si昇熱」という)は、(1)式によっ
て決定される。
First, the temperature rise of the molten steel caused by the oxidation of Si (hereinafter referred to as "Si heat-up") is determined by equation (1).

【0027】 Te−Ts={WSi+Wsteel・([%Si]s-[%Si]e)・10} ×ΔTSi−Σ(Wi・ΔTi)−ΔTH・t・・・・(1) ここで、(1)式中の記号はつぎのとおりである。Ts:昇
熱前の溶鋼温度(℃)、Te:昇熱後の目標溶鋼温度
(℃)、Wsteel:溶鋼重量( steel-t)、WSi:Si
添加量(kg/ steel-t)、[%Si]s:昇熱前の溶鋼
中Si濃度(%)、[%Si]e:昇熱後の溶鋼中Si目標
重量濃度(%)、ΔTSi:Si1kg/ steel-tあたり
の溶鋼温度上昇(℃/(kg/ steel-t))、Wi:造滓剤
iの投入重量(kg/ steel-t)、iはCaO等の造滓
剤、ΔTi:造滓剤i単位重量あたりの溶鋼温度降下
(℃/(kg/T))、ΔTH:系外放散熱による溶鋼温度降
下率(℃/min)、t:昇熱時間(min) つぎに、スラグ中のCaOの質量バランスは下記(2)式
によって決められる。
Te−Ts = {WSi + Wsteel · ([% Si] s − [% Si] e) · 10} × ΔTSi−Σ (Wi · ΔTi) −ΔTH · t (1) where The symbols in the equation (1) are as follows. Ts: molten steel temperature before heating (° C), Te: target molten steel temperature after heating (° C), Wsteel: weight of molten steel (steel-t), WSi: Si
Addition amount (kg / steel-t), [% Si] s: Si concentration in molten steel before heating (%), [% Si] e: Target weight concentration of Si in molten steel after heating (%), ΔTSi: Temperature rise of molten steel per kg / steel-t of Si (° C / (kg / steel-t)), Wi: input weight of slagging agent i (kg / steel-t), i is slagging agent such as CaO, ΔTi: Temperature drop of molten steel per unit weight of slag-making agent (° C / (kg / T)), ΔTH: Temperature drop rate of molten steel due to heat dissipated outside the system (° C / min), t: Heating time (min) The mass balance of CaO inside is determined by the following equation (2).

【0028】 [Wslag+{WSi+Wsteel・([%Si]s−[%Si]e) ×10}・2.14+ΣWi]・(%CaO)/100 =WCaO+W'CaO+W''CaO・・・・・・・・・・・・・・・・・・・・(2) ここで、W'i:昇熱前スラグ中のi成分重量(kg/st
eel-t)、W''i:昇熱中に生成するi成分重量(kg/
steel-t)、Wslag:昇熱前スラグ量(kg/ steel-
t)、(% i):昇熱後スラグ中i成分の目標重量濃
度(%) 同様に、スラグ中のSiO2の質量バランスの基本式と
して下記(3)式がある。
[Wslag + {WSi + Wsteel · ([% Si] s − [% Si] e) × 10} · 2.14 + ΣWi] · (% CaO) / 100 = WCaO + W′CaO + W ″ CaO (2) where, W'i: weight of i component in slag before heating (kg / st)
eel-t), W''i: weight of the i component generated during heating (kg /
steel-t), Wslag: Slag amount before heating (kg / steel-
t), (% i): Target weight concentration of i component in slag after heating (%) Similarly, the following formula (3) is a basic formula for mass balance of SiO 2 in slag.

【0029】 [Wslag+{WSi+Wsteel・([%Si]s−[%Si]e) ×10}・2.14+ΣWi]・(%SiO2)/100 =WSiO2+W'SiO2+W''SiO2・・・・・・・・・・・・・・・・・(3) スラグの塩基度は下記(4)式によって決定される。[Wslag + {WSi + Wsteel · ([% Si] s − [% Si] e) × 10} · 2.14 + ΣWi] · (% SiO 2 ) / 100 = WSiO 2 + W′SiO 2 + W ″ SiO 2 (3) The basicity of slag is determined by the following equation (4).

【0030】 C/S=(WCaO+W'CaO+W''CaO) /(WSiO2+W'SiO2+W''SiO2)・・・・・・・・(4) ここで、C/Sは昇熱後取鍋内スラグ目標塩基度(=(%
CaO)/(%SiO2))である。
C / S = (WCaO + W′CaO + W ″ CaO) / (WSiO 2 + W′SiO 2 + W ″ SiO 2 ) (4) where C / S is after heating. Slag target basicity in ladle (= (%
CaO) / (% SiO 2 )).

【0031】スラグ中のAl23の質量バランスは下記
(5)式によって記述される。
The mass balance of Al 2 O 3 in the slag is as follows:
It is described by equation (5).

【0032】 [Wslag+{WSi+Wsteel・([%Si]s−[%Si]e) ×10}・2.14+ΣWi]・(%Al23)/100 =WAl2O3+W'Al2O3+W''Al2O3・・・・・・・・・・・・・・(5) つぎの(6)式は上記の反応に必要な酸素量を決定する基
本式である。 Q={WSi+Wsteel・([%Si]s−[%Si]e) ×10}/28・22.4/β・・・・・・・・・・・・・・・・・・・・・・・・・・(6) ここで、Qは送酸量(m3/ steel-t)、βは着酸効率
である。
[Wslag + {WSi + Wsteel · ([% Si] s − [% Si] e) × 10} · 2.14 + ΣWi] · (% Al 2 O 3 ) / 100 = W Al 2 O 3 + W'Al 2 O 3 + W ″ Al 2 O 3 (5) The following equation (6) is a basic equation for determining the amount of oxygen necessary for the above reaction. Q = {WSi + Wsteel · ([% Si] s − [% Si] e) × 10} /28·22.4/β (6) Here, Q is the acid supply amount (m 3 / steel-t), and β is the acid deposition efficiency.

【0033】前記したように、SiおよびMnによる脱
酸後に、Siを添加して酸素を上吹きしながら溶鋼を昇
熱するとともに造滓剤を添加すれば、含(Al−Mn系)
酸化物が分散した鋼を溶製することができる。しかし、
上記の方法によりできる鋼材は含(Al−Mn系)酸化物
分散密度のばらつき等は問題としない酸化物含有鋼であ
る。
As described above, after the deoxidation with Si and Mn, if the molten steel is heated while adding oxygen and blowing oxygen upward, and the slag-making agent is added, it is possible to obtain an Al-Mn-containing material.
The oxide-dispersed steel can be melted. But,
The steel material obtained by the above method is an oxide-containing steel in which the dispersion of the (Al-Mn-based) oxide-containing density is not a problem.

【0034】3.含(Al−Mn系)酸化物密度の制御 つぎに含(Al−Mn系)酸化物分散密度を制御する方法
について説明する。上記したように、含(Al−Mn系)
酸化物の分散密度とは、Al−Mn系酸化物相を含む酸
化物系介在物の分散密度をさすが、以後の説明では、と
くにことわらないかぎり“酸化物”は含(Al−Mn系)
酸化物をさすこととする。
3. Control of Density of Containing (Al-Mn) Oxide Next, a method of controlling the dispersion density of the containing (Al-Mn) oxide will be described. As described above, containing (Al-Mn-based)
The oxide dispersion density refers to the dispersion density of oxide-based inclusions containing an Al-Mn-based oxide phase, but in the following description, "oxide" includes (Al-Mn-based) unless otherwise specified.
Oxide shall be referred to.

【0035】3.1.取鍋内での制御 上述した脱酸方法、Si昇熱、スラグ組成制御方法を採
用したとき、Si昇熱直後の直径0.4〜20μmの酸
化物の分散密度は、Si昇熱後の溶鋼中のSi濃度、す
なわち[%Si]で決まることがわかった。すなわちS
i昇熱のための酸素上吹きによって生じる溶鋼中の含
(Al−Mn系)酸化物の分散密度は、[%Si]値と関
係づけることができる。これは、酸化物の生成機構は、
脱酸における一次脱酸生成物の生成機構と類似している
ためである。
3.1. Control in Ladle When the above-described deoxidation method, Si heat-up, and slag composition control method are adopted, the dispersion density of the oxide having a diameter of 0.4 to 20 μm immediately after the Si heat-up is changed by the molten steel after the Si heat-up. It was found that the concentration was determined by the Si concentration in the inside, that is, [% Si]. That is, S
i Inclusion in molten steel caused by oxygen overblowing for heating
The dispersion density of the (Al-Mn) oxide can be related to the [% Si] value. This is because the oxide formation mechanism is
This is because the mechanism of formation of the primary deoxidation product in deoxidation is similar.

【0036】Si昇熱直後の初期酸化物密度Noと溶鋼
中[%Si]値とは、下記(7)式によって定量的に関連
づけられる。
The initial oxide density No immediately after the Si heating and the [% Si] value in the molten steel are quantitatively related by the following equation (7).

【0037】 No=α/[%Si]・・・・・・・・・・・・・・・・・・・・・・・(7) ここで、[%Si]が0.05%〜0.2%、[%M
n]が0.8%〜2%、スラグ中(%CaO)/(%Si
2)が0.8〜4の範囲では、経験的に決まる初期値係
数αとして、200を採用することができる。
No = α / [% Si] (7) where [% Si] is 0.05% or more. 0.2%, [% M
n] is 0.8% to 2%, and (% CaO) / (% Si
When O 2 ) is in the range of 0.8 to 4, 200 can be adopted as the initial value coefficient α determined empirically.

【0038】生成した酸化物は、取鍋でのガスバブリン
グ等の溶鋼攪拌によって一次脱酸生成物と同様に凝集し
浮上して個数が減少する。そこで、初期酸化物密度No
(1/mm2)と時間t秒後の酸化物密度N(1/m
2)とは下記(8)式によって関係づけられる。
The generated oxides are agglomerated and float in the same manner as the primary deoxidized product by stirring the molten steel such as gas bubbling in a ladle, and the number thereof is reduced. Therefore, the initial oxide density No
(1 / mm 2 ) and the oxide density N (1 / m 2 ) after time t seconds.
m 2 ) is related by the following equation (8).

【0039】 N/No=exp(k・t)・・・・・・・・・・・・・・・・・(8) ここで、酸化物減少率k(1/s)は、当然、バブリン
グの攪拌程度によって変動する。バブリングは取鍋内の
溶鋼へポーラスプラグやノズルを介して導入されるAr
等の攪拌ガスによって行うことができる。攪拌の程度を
攪拌エネルギー密度ε(W/m3 )で表し、かつ1回の
溶製時(220〜300t程度)の溶鋼に対するガス流
量をQ(Nm3/s)で表せば、次の(9)および(10)式の
関係が成り立つ。
N / No = exp (kt) (8) Here, the oxide reduction rate k (1 / s) is, of course, It fluctuates according to the degree of stirring of bubbling. Bubbling is introduced into the molten steel in the ladle through a porous plug or nozzle.
And the like. The degree of agitation is represented by agitation energy density ε (W / m 3 ), and the gas flow rate for molten steel in one smelting (about 220 to 300 t) is represented by Q (Nm 3 / s). The relations of equations (9) and (10) hold.

【0040】 k ∞ ε・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(9) ε ∞ Q・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(10) したがってkとQの間の関係は(11)式によって表すこと
ができる。
K ∞ ε (9) ε Q Q (10) Therefore, the relationship between k and Q can be expressed by equation (11).

【0041】 k = γ・Q・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・(11) ここで、減少率係数γは酸化物密度の初期値および酸化
物の凝集と浮上に係わるので[%Si]には依存するが、
1回に処理する溶鋼量が220〜300トン、1回のバ
ブリングにおけるガス流量が0.01〜0.1(Nm3/
s)の範囲にあるとき、[%Si]値が一定範囲内にあれ
ばほぼ一定である。
K = γ · Q (11) where the reduction rate coefficient γ is an oxidation It depends on [% Si] because it is related to the initial value of the material density and the aggregation and floating of the oxide,
The amount of molten steel to be processed at one time is 220 to 300 tons, and the gas flow rate in one bubbling is 0.01 to 0.1 (Nm 3 /
In the range of s), if the [% Si] value is within a certain range, it is almost constant.

【0042】表1は、上記の1回の溶鋼処理量および攪
拌ガス流量の条件下での[%Si]値に応じた減少率係数
γの値を示す。
Table 1 shows the value of the reduction rate coefficient γ according to the [% Si] value under the conditions of the single molten steel processing amount and the stirring gas flow rate.

【0043】[0043]

【表1】 [Table 1]

【0044】すなわち(7)式、(8)式および(11)式、初期
値係数α、減少率係数γおよび減少率k、溶鋼中[%S
i]値を用いれば、それにしたがってガス流量および処
理時間を調整することにより、酸化物分散密度を制御す
ることが可能となる。
That is, equations (7), (8) and (11), initial value coefficient α, reduction rate coefficient γ and reduction rate k,
Using the value of [i] makes it possible to control the oxide dispersion density by adjusting the gas flow rate and the processing time accordingly.

【0045】図1は、Si昇熱後の取鍋中溶鋼220〜
300tに対してArガス流量Q=0.1Nm3/sで
攪拌したときの、処理時間と酸化物分散密度比N/No
の関係を示す図である。ここで、Nは酸化物分散密度、
No は酸化物分散密度の初期値である。図1において、
[%Si]値が0.05、0.10、0.15および
0.20%の4水準に対して酸化物分散密度比の推移を
示す曲線が示されている。これは表1の減少率係数γの
値に基づいて上記の式により計算した値である。
FIG. 1 shows molten steel in ladle 220-
Treatment time and oxide dispersion density ratio N / No when stirring at 300 t for Ar gas flow rate Q = 0.1 Nm 3 / s
FIG. Where N is the oxide dispersion density,
No is the initial value of the oxide dispersion density. In FIG.
Curves showing changes in the oxide dispersion density ratio for four levels of [% Si] values of 0.05, 0.10, 0.15, and 0.20% are shown. This is a value calculated by the above equation based on the value of the reduction rate coefficient γ in Table 1.

【0046】図2は同じ条件での処理時間tと酸化物分
散密度(mm-2)の関係を示す図である。これらの図1
または図2より、Si昇熱後の[%Si]値に応じて処
理時間tを決めれば、目標とする酸化物分散密度となる
溶鋼が得られることがわかる。
FIG. 2 shows the relationship between the processing time t and the oxide dispersion density (mm −2 ) under the same conditions. These figures 1
Alternatively, it can be seen from FIG. 2 that if the processing time t is determined according to the [% Si] value after heating the Si, a molten steel having a target oxide dispersion density can be obtained.

【0047】3.2.真空脱ガス処理における制御 次に真空脱ガス処理時間と酸化物分散密度との関係につ
いて述べる。真空脱ガス処理は、RHプロセスやVOD
プロセスなどに代表される一般的な溶鋼処理方法であれ
ばよい。真空脱ガス処理は、本発明方法が適用される対
象鋼の1つである厚鋼板用溶鋼の場合には主に脱水素の
ために行われるが、上記の真空脱ガス処理方法はいずれ
も、溶鋼の激しい攪拌を伴うので、脱ガスとともに酸化
物を減少させる方法としても知られている。本発明方法
では、溶鋼中の酸化物はむしろ所定量残留させることが
必要となるので、真空脱ガス処理時間と酸化物分散密度
との関係を定量的に把握することは、本発明方法にとっ
て基本的に重要な事項である。
3.2. Next, the relationship between the vacuum degassing time and the oxide dispersion density will be described. Vacuum degassing is performed by RH process or VOD
A general molten steel processing method represented by a process or the like may be used. Vacuum degassing is performed mainly for dehydrogenation in the case of molten steel for thick steel plates, which is one of the target steels to which the method of the present invention is applied. It is also known as a method of reducing oxides together with degassing because of the vigorous stirring of molten steel. In the method of the present invention, it is necessary to leave a predetermined amount of oxide in the molten steel. Therefore, it is essential for the method of the present invention to quantitatively grasp the relationship between the vacuum degassing time and the oxide dispersion density. Is an important matter.

【0048】本発明では、真空脱ガス処理前の事前の処
理により溶鋼組成、とくに[%Si]、スラグ組成等が
前述のごとく決められ、かつ取鍋でのバブリングによ
り、所定の酸化物分散密度に制御されている。このよう
な事前の処理がなされた溶鋼に対しての真空度10to
rr以下の処理では、酸化物分散密度比と真空脱ガス処
理時間との間には(8)式と同じ形式である(12)式の関係
が成立する。
In the present invention, the composition of molten steel, particularly [% Si], the composition of slag, and the like are determined as described above by prior processing before vacuum degassing, and the predetermined oxide dispersion density is determined by bubbling with a ladle. Is controlled. The degree of vacuum for the molten steel that has been subjected to such a preliminary treatment is 10 to.
In the processing at rr or less, the relationship of the equation (12) having the same form as the equation (8) is established between the oxide dispersion density ratio and the vacuum degassing time.

【0049】 N/No =exp(m・t)・・・・・・・・・・・・・・・・(12) ここで真空脱ガス処理中の減少率mは、真空度10to
rr以下では溶鋼中の[%Si]値に応じて決めることが
できる。
N / No = exp (mt) (12) Here, the reduction rate m during the vacuum degassing process is 10 to
Below rr, it can be determined according to the [% Si] value in the molten steel.

【0050】表2は真空脱ガス処理中の酸化物の減少率
を各[%Si]値に応じて示す。
Table 2 shows the reduction rate of the oxide during the vacuum degassing process according to each [% Si] value.

【0051】[0051]

【表2】 [Table 2]

【0052】上記より溶鋼中[%Si]と所望の酸化物分
散密度を決めれば、表2、(12)式等にしたがって真空脱
ガス処理時間を設定することができる。
When [% Si] in the molten steel and the desired oxide dispersion density are determined from the above, the vacuum degassing time can be set in accordance with Table 2, equation (12) and the like.

【0053】図3は[%Si]が0.05%の場合の真空
脱ガス処理時間と酸化物分散密度比N/Noの関係を示す
図である。ここで減少率mは、ガスバブリングのための
Arガス流量に依存するので、Q(Nm3/s)=0.0
1、0.02、0.05および0.10%の4水準につ
いてN/Noを図示した。これらのN/No曲線から、目
標酸化物分散密度に見合うArガス流量Qと処理時間t
を決めることができる。
FIG. 3 shows the relationship between the vacuum degassing time and the oxide dispersion density ratio N / No when [% Si] is 0.05%. Here, since the reduction rate m depends on the Ar gas flow rate for gas bubbling, Q (Nm 3 /s)=0.0
N / No was shown for four levels of 1, 0.02, 0.05 and 0.10%. From these N / No curves, the Ar gas flow rate Q and the processing time t corresponding to the target oxide dispersion density are obtained.
Can be determined.

【0054】図4は、真空脱ガス処理の処理時間と酸化
物分散密度比N/Noの関係を示す図である。真空脱ガス
処理中においても取鍋中と同様に酸化物の初期分散密度
および酸化物の浮上は[%Si]の影響を強く受けるの
で、[%Si]=0.05、0.10、0.15および
0.20%の4水準についてN/No曲線を図示した。こ
れらのN/No曲線に基づいて、目標酸化物密度に見合う
真空脱ガス処理時間tを決めることができる。
FIG. 4 is a diagram showing the relationship between the processing time of the vacuum degassing process and the oxide dispersion density ratio N / No. Even during the vacuum degassing treatment, the initial dispersion density of oxides and the floating of oxides are strongly affected by [% Si] as in the ladle, so that [% Si] = 0.05, 0.10, 0 N / No curves are shown for four levels of .15 and 0.20%. Based on these N / No curves, it is possible to determine the vacuum degassing time t that matches the target oxide density.

【0055】3.3.TiまたはZr添加の影響(〔発
明2〕の場合) 次に真空脱ガス処理におけるTiもしくはZr添加、ま
たはTiとZrの複合添加の効果について述べる。Si
とMnによる脱酸およびSi昇熱のための酸素上吹きに
よって生成した酸化物の分散密度を制御するために、T
i添加もしくはZr添加またはTiとZrの複合添加を
する。この真空脱ガス処理時に所定量のTiまたはZr
を添加して、溶鋼中[%Ti]値で0.005〜0.0
2%、溶鋼中[%Zr]値で0.002〜0.01%に
なるように調整を行うことが望ましい。[%Ti]また
は[%Zr]が上記の範囲未満では効果が十分現れず酸
化物密度にばらつきが生じやすく、一方、上記の範囲を
超えるとTi、Zrともに機械的性質、とくに靭性の劣
化が著しくなる。TiまたはZrは、Al−Mn系酸化
物中に少量のTi系酸化物またはZr系酸化物として含
まれ、Al−Mn系酸化物相を安定化させる効果を発揮
する。以後の説明においてTi系酸化物またはZr系酸
化物が含まれたAl−Mn系酸化物も“含(Al−Mn
系)酸化物”といい、他の酸化物も含めた酸化物をいう
ときと同様に取り扱うこととする。
3.3. Effect of Addition of Ti or Zr (in the case of [Invention 2]) Next, the effect of addition of Ti or Zr or combined addition of Ti and Zr in the vacuum degassing process will be described. Si
In order to control the dispersion density of oxides generated by oxygen deoxidation by oxygen and Mn and oxygen overblowing for heating of Si, T
Addition of i or addition of Zr or composite addition of Ti and Zr. At the time of this vacuum degassing process, a predetermined amount of Ti or Zr
And [% Ti] value in molten steel is 0.005 to 0.0
It is desirable to make adjustments so as to be 2% and 0.002 to 0.01% in [% Zr] value in molten steel. If [% Ti] or [% Zr] is less than the above range, the effect is not sufficiently exhibited and the oxide density tends to vary, while if it exceeds the above range, the mechanical properties of both Ti and Zr, particularly toughness, deteriorate. It becomes remarkable. Ti or Zr is contained as a small amount of Ti-based oxide or Zr-based oxide in the Al-Mn-based oxide, and has an effect of stabilizing the Al-Mn-based oxide phase. In the following description, an Al—Mn-based oxide containing a Ti-based oxide or a Zr-based oxide is also referred to as “containing (Al-Mn).
The term "system) oxide" is used, and is handled in the same manner as when referring to an oxide including other oxides.

【0056】TiまたはZr添加の酸化物減少速度に及
ぼす影響について調査したところ、TiまたはZrは、
酸化物の減少速度を顕著に低下させることが分かった。
その低下の割合は、上記濃度の範囲でTiの場合は減少
率mを0.5mに、また、Zrの場合は0.2mにする
程である。
The effect of the addition of Ti or Zr on the rate of oxide reduction was investigated.
It has been found that the rate of oxide reduction is significantly reduced.
The rate of reduction is such that the reduction rate m is 0.5 m for Ti and 0.2 m for Zr in the above concentration range.

【0057】図5は、真空脱ガス処理開始120秒後、
300秒後および600秒後に[%Ti]が0.01%
になるようTi添加したときの酸化物分散密度比N/No
の変化を、無添加の時と比較して示す図である。図示し
たように、Ti添加により酸化物減少速度が変化し、そ
れが定量的に把握されているので、所望の酸化物分散密
度になるようTi添加時期および真空脱ガス処理時間を
決めることができる。図6は、真空脱ガス処理開始12
0秒後、300秒後および600秒後に[%Zr]が
0.005%になるようZr添加したときの酸化物分散
密度比N/Noの変化を、無添加の時と比較して示す図で
ある。図示したように、Zr添加により酸化物分散密度
の減少速度が変化するので、所望の酸化物分散密度にな
るようZr添加時期および真空脱ガス処理時間を決める
ことができる。
FIG. 5 shows that 120 seconds after the start of the vacuum degassing process,
[% Ti] 0.01% after 300 seconds and 600 seconds
Oxide dispersion density ratio N / No when Ti is added so that
FIG. 4 is a diagram showing the change of the comparison with the case where no additive is added. As shown in the figure, the oxide reduction rate changes due to the addition of Ti, which is quantitatively grasped, so that the Ti addition time and the vacuum degassing time can be determined so as to obtain a desired oxide dispersion density. . FIG. 6 shows the start of vacuum degassing process 12
After 0 seconds, the change of the oxide dispersion density ratio N / N o when after 300 seconds and 600 seconds [% Zr] was added Zr to be 0.005%, in comparison with the case of no addition FIG. As shown in the figure, the rate of reduction of the oxide dispersion density changes with the addition of Zr, so that the Zr addition timing and the vacuum degassing time can be determined so as to obtain a desired oxide dispersion density.

【0058】4.厚鋼板への適用 つぎに本発明方法を溶接性厚鋼板の製造方法に適用する
例について具体的に説明する。溶鋼の製造においては、
たとえば、転炉や電気炉といった製錬炉で、炭素濃度を
0.01〜0.25%に調整することが望ましい。これ
は、炭素濃度が0.01%未満では、溶鋼が過酸化状態
であることから後工程のSi、Mnによる予備脱酸およ
びスラグ組成制御が困難になるからである。一方、炭素
濃度が0.25%を超えると溶接割れを発生しやすくな
る。また酸素濃度は全酸素濃度で0.04〜0.07%
であることが望ましい。その理由は全酸素濃度が0.0
4%未満ではSiとMnによる予備脱酸によってMnO
-SiO2系酸化物が十分に生成しにくいからであり、一
方、0.07%を超えると溶鋼、スラグがともに過酸化
状態になるからである。
4. Next, an example in which the method of the present invention is applied to a method for producing a weldable thick steel plate will be specifically described. In the production of molten steel,
For example, it is desirable to adjust the carbon concentration to 0.01 to 0.25% in a smelting furnace such as a converter or an electric furnace. This is because if the carbon concentration is less than 0.01%, since the molten steel is in a peroxidized state, it is difficult to perform preliminary deoxidation and control of the slag composition by using Si and Mn in the subsequent steps. On the other hand, if the carbon concentration exceeds 0.25%, welding cracks are likely to occur. The oxygen concentration is 0.04 to 0.07% in total oxygen concentration.
It is desirable that The reason is that the total oxygen concentration is 0.0
If it is less than 4%, MnO is preliminarily deoxidized by Si and Mn.
This is because -SiO 2 -based oxides are not easily generated sufficiently, while if it exceeds 0.07%, both molten steel and slag are in a peroxide state.

【0059】製錬炉から取鍋に出鋼中に、または取鍋に
出鋼した後に、取鍋内にSi、Mnを添加して脱酸を行
う。このSiとMnによる脱酸と同時にまたはその後引
き続いて、スラグの組成を制御するための造滓剤および
Siを添加して、酸素を吹き付けてSi昇熱を行いなが
らスラグ組成を制御する。この後、底吹きまたはランス
によりバブリングを上記した方法で実施すれば、酸化物
分散密度を制御できる。このとき使用するガスは特に制
限されないが、通常製鋼で用いられるArガスが好適で
ある。
During or after tapping from a smelting furnace to a ladle, deoxidation is performed by adding Si and Mn to the inside of the ladle. Simultaneously with or subsequent to the deoxidation by Si and Mn, a slag forming agent and Si for controlling the composition of the slag are added, and the slag composition is controlled while blowing oxygen to heat the Si. Thereafter, if the bubbling is performed by the above-described method using bottom blowing or a lance, the oxide dispersion density can be controlled. The gas used at this time is not particularly limited, but Ar gas usually used in steelmaking is preferable.

【0060】次に真空脱ガス処理については、スラグ攪
拌の少ないRH真空脱ガス法が真空処理法として好適で
あり、目標の酸化物分散密度に制御しやい。またTiや
Zrを添加する際にも、上記の真空処理法を利用するこ
とができる。
Next, as for the vacuum degassing process, the RH vacuum degassing method with less slag agitation is suitable as the vacuum processing method, and it is easy to control the target oxide dispersion density. Also, when adding Ti or Zr, the above-mentioned vacuum processing method can be used.

【0061】本発明方法の対象鋼の1つである厚鋼板の
場合、酸化物に関連しない他の合金元素として、Cu:
0.2〜0.5%、Ni:0.2〜0.8%、Nb:
0.02〜0.8%、V:0.03〜0.09%、S:
0.0004〜0.0040%、P:0.006〜0.
018%およびB:0.0001〜0.0016%の1
種または2種以上を含む鋼が例示される。
In the case of a steel plate which is one of the steels to be subjected to the method of the present invention, Cu:
0.2-0.5%, Ni: 0.2-0.8%, Nb:
0.02-0.8%, V: 0.03-0.09%, S:
0.0004-0.0040%, P: 0.006-0.
018% and B: 0.0001 to 0.0016% of 1
Examples include steels containing one or more species.

【0062】[0062]

【実施例】つぎに250t転炉、取鍋精錬設備、および
RH真空脱ガス処理装置を用いて本発明方法の効果を確
認した試験結果について説明する。
EXAMPLES Next, the results of tests conducted to confirm the effects of the method of the present invention using a 250-ton converter, a ladle refining facility, and an RH vacuum degassing apparatus will be described.

【0063】まず、転炉にて炭素濃度0.05〜0.1
0%、初期酸素濃度0.04〜0.07%の溶鋼250
tを溶製した。次に、温度1650〜1700℃の溶鋼
を取鍋に出鋼し、その際にSiとMnによる脱酸のため
にフェロシリコン(Fe−Si)およびフェロマンガン
(Fe−Mn)を添加した。さらに同時に造滓剤とし
て、所定量の生石灰、炭酸カルシウム、Al23含有造
滓剤、けい砂、ホタル石等を添加した。さらに所定量の
Si添加しながら、酸素上吹きを実施して昇温とスラグ
組成の調整を行った。その後、[%Si]をほぼ0.1
%に調整し、Arガスによる取鍋内溶鋼攪拌を行った。
その後さらにRH真空脱ガス処理装置によって、溶鋼処
理を行った。また一部の試験では、RH真空脱ガス中に
所定のタイミングでTi添加またはZr添加を行った。
TiまたはZrの添加量は、それぞれ[%Ti]=0.
005〜0.02%、または[%Zr]=0.002〜
0.01%になるよう添加量を調整した。比較のため
に、取鍋内でのArバブリング時間およびRH真空脱ガ
ス処理時間を特に限定しない試験を行った。各試験にお
いては各試験毎に繰り返し数nの試験を繰り返した。上
記の比較試験においては、Arバブリング時間、RH真
空脱ガス処理時間、Ti等の添加時期はとくに限定しな
いために、同一試験番号内の繰り返しの相互間で同じ条
件ではない。これは酸化物分散密度を制御することがで
きなかった従来の方法をそのまま反映するものである。
各試験番号についてRH脱ガス処理の終了直後に鋼製ボ
ンブサンプルを溶鋼から採取し、試料の断面を鏡面研磨
した後、分散した酸化物個数を測定するために、走査型
電子顕微鏡で倍率2000倍の100視野中で直径0.
2〜20μmの酸化物の個数を測定した。
First, a carbon concentration of 0.05 to 0.1 was set in a converter.
0%, molten steel 250 with initial oxygen concentration of 0.04 to 0.07%
t was melted. Next, molten steel at a temperature of 1650 to 1700 ° C. was tapped into a ladle, and ferrosilicon (Fe—Si) and ferromanganese (Fe—Mn) were added for deoxidation with Si and Mn. Yet at the same time Zokasu agent, a predetermined amount of quicklime, calcium carbonate, Al 2 O 3 containing Zokasu agent, silica sand, was added fluorite or the like. Further, while adding a predetermined amount of Si, oxygen was blown upward to raise the temperature and adjust the slag composition. Then, [% Si] is reduced to approximately 0.1%.
%, And the molten steel in the ladle was stirred with Ar gas.
Thereafter, molten steel processing was further performed by an RH vacuum degassing apparatus. In some tests, Ti addition or Zr addition was performed at a predetermined timing during RH vacuum degassing.
The amount of Ti or Zr added is [% Ti] = 0.
005 to 0.02%, or [% Zr] = 0.002
The addition amount was adjusted to be 0.01%. For comparison, a test was performed in which the Ar bubbling time and the RH vacuum degassing time in the ladle were not particularly limited. In each test, the test of the repetition number n was repeated for each test. In the above comparative test, the conditions for the addition of Ar bubbling time, RH vacuum degassing treatment time, Ti, etc. are not particularly limited, and therefore, the conditions are not the same between the repetitions within the same test number. This directly reflects the conventional method in which the oxide dispersion density could not be controlled.
Immediately after the end of the RH degassing treatment for each test number, a steel bomb sample was taken from the molten steel, and the cross section of the sample was mirror-polished. Diameter in 100 fields of view.
The number of oxides of 2 to 20 μm was measured.

【0064】表3は取鍋攪拌、真空脱ガス処理、Ti、
Zr添加等の条件およびその条件下での試験結果、すな
わち酸化物分散密度を示す。
Table 3 shows ladle stirring, vacuum degassing, Ti,
It shows the conditions such as Zr addition and the test results under those conditions, that is, the oxide dispersion density.

【0065】[0065]

【表3】 [Table 3]

【0066】本発明の実施例である試験番号1は、取鍋
攪拌のためのArガス流量Q=0.10Nm3/s、取鍋
攪拌時間を600秒、さらにRH脱ガス処理時間を90
0秒実施したときのRH脱ガス処理後のn数が8の結果
である。比較例である試験番号2は、とくに取鍋攪拌時
間、攪拌ガス量およびRH脱ガス処理時間を限定しなか
ったときのn数が11の結果である。試験番号1では、
酸化物分散密度が計算で得られた目標に近く、ばらつき
が少ない結果が得られた。一方、試験番号2では、[%
Si]は調整したものの酸化物分散密度はばらつきが大
きく、かつ過剰の攪拌処理および脱ガス処理により酸化
物分散密度そのものが小さい結果となった。これは上記
したように繰り返し数nの相互間でArバブリング時間
およびRH真空処理時間が相違したためであって、従来
の方法を反映した結果となった。
In Test No. 1, which is an embodiment of the present invention, the flow rate of Ar gas for stirring the ladle Q = 0.10 Nm 3 / s, the stirring time of the ladle was 600 seconds, and the RH degassing time was 90.
This is a result of n = 8 after the RH degassing treatment when the operation was performed for 0 seconds. Test No. 2, which is a comparative example, is a result of n = 11 when the ladle stirring time, the stirring gas amount and the RH degassing time are not limited. In test number 1,
The oxide dispersion density was close to the target obtained by calculation, and a result with little variation was obtained. On the other hand, in test number 2, [%
Although Si] was adjusted, the oxide dispersion density varied greatly, and the oxide dispersion density itself was small due to excessive stirring and degassing. This is because, as described above, the Ar bubbling time and the RH vacuum processing time were different between the repetition number n, and the result reflected the conventional method.

【0067】本発明の実施例である試験番号3は、取鍋
攪拌のためのArガス流量Q=0.10Nm3/s、取鍋
攪拌時間を600秒、さらにRH脱ガス処理時間を全6
00秒実施し、RH脱ガス処理開始して300秒後にT
iを[%Ti]=0.01%になるように添加したとき
のn数が5の結果である。比較例である試験番号4は、
とくに取鍋攪拌時間、攪拌ガス量、RH脱ガス処理時間
およびTi添加タイミングはとくに決めなかったときの
n数が6の結果である。試験番号3では、酸化物分散密
度が計算で得られた目標値に近く、ばらつきが少ない結
果が得られた。一方、比較例である試験番号4では、酸
化物分散密度はばらつきが大きく、かつ過剰の攪拌処理
および脱ガス処理により小さい結果となった。この結果
も各処理時間、添加時期を把握せずに繰り返し相互間で
これら条件が相違したためである。
In Test No. 3 which is an embodiment of the present invention, the flow rate of the Ar gas for stirring the ladle Q = 0.10 Nm 3 / s, the stirring time of the ladle was 600 seconds, and the RH degassing time was 6 times.
00 seconds, and 300 seconds after the start of the RH degassing process, T
The result of n is 5 when i was added so that [% Ti] = 0.01%. Test number 4, which is a comparative example,
In particular, the ladle stirring time, the stirring gas amount, the RH degassing treatment time, and the Ti addition timing are results of n = 6 when not determined. In Test No. 3, a result was obtained in which the oxide dispersion density was close to the target value obtained by calculation and the dispersion was small. On the other hand, in Test No. 4, which is a comparative example, the oxide dispersion density had a large variation, and the results were smaller due to excessive stirring and degassing. This result is also due to the fact that these conditions differed between the repetitions without grasping each processing time and addition time.

【0068】試験番号5は、本発明方法にしたがって、
取鍋攪拌のためのArガス流量Q=0.10Nm3/s、
取鍋攪拌時間を600秒、さらにRH脱ガス処理時間を
全600秒実施し、RH脱ガス処理開始300秒後にZ
rを[%Zr]=0.005%になるよう添加したとき
のn数が3の結果である。試験番号6は、とくに取鍋攪
拌時間、攪拌ガス量、RH脱ガス処理時間およびZr添
加タイミングは限定しなかったときのn数が4の結果で
ある。本発明例である試験番号5では、酸化物分散密度
が計算で得られた目標に近い結果が得られた。一方、比
較例である試験番号6では、酸化物分散密度はばらつき
が大きく、かつ過剰の攪拌処理および脱ガス処理により
小さな結果となった。
Test No. 5 was prepared according to the method of the present invention.
Ar gas flow rate for stirring the ladle Q = 0.10Nm 3 / s,
The ladle stirring time was 600 seconds, and the RH degassing time was 600 seconds in total.
This is the result of n = 3 when r is added so that [% Zr] = 0.005%. Test No. 6 is the result of n = 4 when the ladle stirring time, stirring gas amount, RH degassing time and Zr addition timing are not limited. In Test No. 5 which is an example of the present invention, a result close to the target obtained by calculation of the oxide dispersion density was obtained. On the other hand, in Test No. 6, which is a comparative example, the oxide dispersion density had a large variation, and a small result was obtained due to excessive stirring and degassing.

【0069】[0069]

【発明の効果】本発明方法により、これまで酸化物分散
密度を高精度で制御することができなかったAl−Mn
系酸化物含有鋼を再現性良く安定に製造することが可能
となった。この結果、高能率溶接を行っても高いHAZ
靱性を確保できる鋼材を安価大量に供給できることとな
り、鉄鋼メーカーのみならず鋼材利用関連業界に有益な
効果を及ぼす。
According to the method of the present invention, it has been impossible to control the oxide dispersion density with high accuracy.
It has become possible to stably produce a system oxide-containing steel with good reproducibility. As a result, even if high efficiency welding is performed, a high HAZ is obtained.
It will be possible to supply inexpensive and large quantities of steel materials that can secure toughness, which will have a beneficial effect not only on steel manufacturers but also on steel material-related industries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】取鍋内での酸化物分散密度比N/Noに及ぼす溶
鋼中[%Si]およびArガス攪拌処理時間の影響を示
す図である。
FIG. 1 is a view showing the influence of [% Si] in molten steel and Ar gas stirring time on oxide dispersion density ratio N / No in a ladle.

【図2】取鍋内での酸化物分散密度Nに及ぼす[%S
i]およびArガス攪拌処理時間の影響を示す図であ
る。
FIG. 2 shows the effect of [% S on oxide dispersion density N in a ladle.
FIG. 7 is a diagram showing the influence of i] and Ar gas stirring time.

【図3】取鍋内での酸化物分散密度比N/Noに及ぼすA
rガス流量およびArガス攪拌処理時間の影響を示す図
である。
FIG. 3. Effect of A on oxide dispersion density ratio N / No in ladle
It is a figure which shows the influence of r gas flow rate and Ar gas stirring processing time.

【図4】RH真空脱ガス処理装置内での酸化物分散密度
比N/Noに及ぼす[%Si]およびRH真空脱ガス処理
時間の影響を示す図である。
FIG. 4 is a diagram showing the influence of [% Si] and the RH vacuum degassing time on the oxide dispersion density ratio N / No in the RH vacuum degassing apparatus.

【図5】RH真空脱ガス処理装置内での酸化物分散密度
比N/Noに及ぼすTi添加の影響を示す図である。
FIG. 5 is a diagram showing the effect of Ti addition on the oxide dispersion density ratio N / No in the RH vacuum degassing apparatus.

【図6】RH真空脱ガス処理装置内での酸化物分散密度
比N/Noに及ぼすZr添加の影響を示す図である。
FIG. 6 is a diagram showing the effect of Zr addition on the oxide dispersion density ratio N / No in the RH vacuum degassing apparatus.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】取鍋内で、Si濃度およびMn濃度を調整
するとともに、造滓剤およびSiを添加しつつ酸素を吹
き付けることにより加熱して下記の範囲のCaO−S
iO2−Al23−MgO 系の組成のスラグを形成し、
かつ溶鋼の組成を下記の範囲に制御した後、溶鋼中の
Si濃度を0.05〜0.2重量%に再調整し、予め定
められた条件でガスバブリング処理および真空脱ガス処
理を施すことを特徴とするAl−Mn系酸化物を含む酸
化物分散鋼の製造法。 :CaO(重量%)/SiO2(重量%)=0.8〜
4 Al23:3〜40重量% MgO:5〜20重量% ただし、上記酸化物の重量%はスラグ中での濃度であ
る。 :溶鋼中のAl:0.0001〜0.003重量% 溶鋼中の全酸素:0.002〜0.01重量%
In a ladle, the Si concentration and the Mn concentration are adjusted, and heating is performed by blowing oxygen while adding a slag-making agent and Si, thereby heating CaO-S in the following range.
forming a slag having a composition of iO 2 —Al 2 O 3 —MgO system,
And, after controlling the composition of the molten steel to the following range, the Si concentration in the molten steel is readjusted to 0.05 to 0.2% by weight, and gas bubbling and vacuum degassing are performed under predetermined conditions. A method for producing an oxide-dispersed steel containing an Al-Mn-based oxide, characterized in that: : CaO (% by weight) / SiO 2 (% by weight) = 0.8 to
4 Al 2 O 3 : 3 to 40% by weight MgO: 5 to 20% by weight However, the weight% of the oxide is the concentration in the slag. : Al in molten steel: 0.0001 to 0.003% by weight Total oxygen in molten steel: 0.002 to 0.01% by weight
【請求項2】上記請求項1の製造方法において真空脱ガ
ス処理中にTiもしくはZrまたはこれらを複合して添
加することを特徴とする酸化物分散鋼の製造方法。
2. A method for producing an oxide-dispersed steel according to claim 1, wherein Ti or Zr or a combination thereof is added during the vacuum degassing process.
JP16689597A 1997-06-24 1997-06-24 Method for producing oxide-dispersed steel Expired - Fee Related JP3297699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16689597A JP3297699B2 (en) 1997-06-24 1997-06-24 Method for producing oxide-dispersed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16689597A JP3297699B2 (en) 1997-06-24 1997-06-24 Method for producing oxide-dispersed steel

Publications (2)

Publication Number Publication Date
JPH1112640A true JPH1112640A (en) 1999-01-19
JP3297699B2 JP3297699B2 (en) 2002-07-02

Family

ID=15839625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16689597A Expired - Fee Related JP3297699B2 (en) 1997-06-24 1997-06-24 Method for producing oxide-dispersed steel

Country Status (1)

Country Link
JP (1) JP3297699B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189691A (en) * 2009-02-17 2010-09-02 Kobe Steel Ltd Method for producing high cleanliness aluminum-killed steel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194115A (en) * 1989-01-23 1990-07-31 Nippon Steel Corp Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH06330146A (en) * 1993-05-25 1994-11-29 Nippon Steel Corp Method fro reforming slag
JPH0813024A (en) * 1994-06-23 1996-01-16 Sumitomo Metal Ind Ltd Production of oxide dispersed steel
JPH0892629A (en) * 1994-09-22 1996-04-09 Sumitomo Metal Ind Ltd Production of oxide dispersed steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02194115A (en) * 1989-01-23 1990-07-31 Nippon Steel Corp Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH06330146A (en) * 1993-05-25 1994-11-29 Nippon Steel Corp Method fro reforming slag
JPH0813024A (en) * 1994-06-23 1996-01-16 Sumitomo Metal Ind Ltd Production of oxide dispersed steel
JPH0892629A (en) * 1994-09-22 1996-04-09 Sumitomo Metal Ind Ltd Production of oxide dispersed steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189691A (en) * 2009-02-17 2010-09-02 Kobe Steel Ltd Method for producing high cleanliness aluminum-killed steel

Also Published As

Publication number Publication date
JP3297699B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
CN112853209B (en) Zr-containing welding wire steel hot-rolled wire rod and production process thereof
CN108193136A (en) A kind of 40Cr hot rolled circular steels and its production method
JPH10183229A (en) Production of high carbon steel wire rod
JP2012052224A (en) Steel material excelling in toughness of weld heat-affected zone
JPH10226843A (en) Thin steel sheet small in defect and excellent in press formability and its production
CN111321322A (en) Ni-Cr-Nb-Fe alloy having excellent internal quality and hot workability, and method for producing same
JP3297699B2 (en) Method for producing oxide-dispersed steel
JP3036362B2 (en) Manufacturing method of oxide dispersion steel
JP3036373B2 (en) Manufacturing method of oxide dispersion steel
JP2991796B2 (en) Melting method of thin steel sheet by magnesium deoxidation
JPS6234801B2 (en)
JP2004043838A (en) Method for melting ferritic stainless steel with excellent ridging resistance/workability, and steel sheet
JP5131827B2 (en) Method for heating molten steel and method for producing rolled steel
JPH04218644A (en) Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its manufacture
JP3036361B2 (en) Manufacturing method of Al-Mn oxide dispersed steel
JP3994641B2 (en) Manufacturing method of high clean ultra low carbon steel
JPH10152755A (en) Steel for steel sheet for can few in defect and its production
JPH1068011A (en) Production of oxide-dispersed steel
JP2002294327A (en) High cleanliness steel and production method therefor
JPH04354853A (en) Fe-ni alloy cold rolled sheet excellent in cleanliness and etching pierceability and its production
JP3217952B2 (en) Steel material for steel plate for can with few defects and manufacturing method
JP3577383B2 (en) Steel sheet for cans with few defects and excellent bake hardenability and method for producing the same
JP3277763B2 (en) Refining method of ultra clean low carbon steel
JPH06128620A (en) Method for adding ca
JP5218501B2 (en) Control method of Al concentration in molten steel

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080419

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090419

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100419

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110419

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120419

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130419

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140419

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees