JPH03202422A - Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone - Google Patents

Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone

Info

Publication number
JPH03202422A
JPH03202422A JP34340889A JP34340889A JPH03202422A JP H03202422 A JPH03202422 A JP H03202422A JP 34340889 A JP34340889 A JP 34340889A JP 34340889 A JP34340889 A JP 34340889A JP H03202422 A JPH03202422 A JP H03202422A
Authority
JP
Japan
Prior art keywords
steel
toughness
less
amount
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34340889A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
爲広 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP34340889A priority Critical patent/JPH03202422A/en
Publication of JPH03202422A publication Critical patent/JPH03202422A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To produce a thick high tensile steel plate excellent in toughness at low temp. in a weld heat-affected zone by properly regulating respective contents of Ti, Zr, N, and O in a steel and dispersing multiple oxides of Ti and Zr finely and uniformly. CONSTITUTION:Ti is added by 0.010-0.040% to a molten steel containing 0.005-0.020% dissolved oxygen and further Zr is added by 0.005-0.030% within 60min, and this molten steel is solidified within 60min, and a slab of the resulting steel which has a composition containing, by weight, 0.03-0.15% C, <0.6% Si, 0.8-2.0% Mn, <0.025% P, <0.005% S, <0.004% Al, 0.003-0.060% Nb, 0.0020-0.0060% N, 0.005-0.020% Ti, 0.003-0.015% Zr, and 0.001-0.006% O or further containing one or more kinds among specific amounts of B, Ni, Cu, Cr, V, Mo, and Ca and also has a structure dispersedly containing multiple oxides of Ti and Zr, such as ZrO2 and Ti2O3, of 0.05-10mum grain size by 30-300 pieces/mm<2> is reheated up to <=1250 deg.C and rolled, by which the thick steel plate can be produced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は溶接熱影響部(以下HAZと呼ぶ)の低温靭性
が優れた高張力厚鋼板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a high-tensile steel plate having excellent low-temperature toughness in a weld heat-affected zone (hereinafter referred to as HAZ).

この方法で製造した鋼は圧力容器、造船、橋梁、建築、
ラインパイプなど溶接鋼構造物に用いることができる。
Steel produced using this method can be used in pressure vessels, shipbuilding, bridges, architecture, etc.
Can be used for welded steel structures such as line pipes.

(従来の技術) 低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2
)高炭素島状マルテンサイト(M’L上部ベイナイト(
Bu)などの硬化相の分散状態、(3)粒界脆化の有無
、(4)元素のミクロ偏析なと種々の冶金学的要因に支
配される。なかでもHAZの結晶粒のサイズは低温靭性
に大きな影響を与えることが知られており、HAZM織
を微細化する数多くの技術が開発実用化されている。
(Prior art) The HAZ toughness of low alloy steel is determined by (1) grain size, (2)
) High carbon island martensite (M'L upper bainite (
It is controlled by various metallurgical factors such as the dispersion state of hardened phases such as (Bu), (3) presence or absence of grain boundary embrittlement, and (4) micro-segregation of elements. In particular, it is known that the grain size of HAZ has a large effect on low-temperature toughness, and a number of techniques have been developed and put into practical use to refine the HAZM weave.

例えば、TiNを微細分散させ、50kg f / m
j1級高張力鋼の溶接時のHAZ靭性を改善する手段が
開示されている(昭和54年6月発行「鉄と鋼」第65
巻第8号1232頁)。しかしこれらの析出物は溶接時
には溶融線(以下FLと呼ぶ)近傍では大部分が溶解さ
れ、HAZ組織の粗粒化を生じHAZ靭性が劣化すると
いう欠点を有する。
For example, finely disperse TiN, 50kg f/m
A method for improving the HAZ toughness during welding of J1 class high tensile strength steel is disclosed ("Tetsu to Hagane" No. 65, June 1973).
Vol. 8, p. 1232). However, most of these precipitates are dissolved near the fusion line (hereinafter referred to as FL) during welding, resulting in coarse graining of the HAZ structure and deterioration of HAZ toughness.

この問題に対して、本発明者の一部は鋼中にTi酸化物
を微細分散させ、溶接時のHAZにおいて粒内アシキュ
ラーフェライト(以下IFPと呼ぶ)を生成させること
によりHAZ組織が微細化され、HAZ靭性を著しく改
善できることを、特開昭63−210235号、特開平
1−15121号各公報に示した。
In response to this problem, some of the inventors of the present invention finely dispersed Ti oxide in steel and generated intragranular acicular ferrite (hereinafter referred to as IFP) in the HAZ during welding, thereby making the HAZ structure finer. It was shown in JP-A-63-210235 and JP-A-1-15121 that the HAZ toughness can be significantly improved.

しかしながら、その後溶接HAZ組織と靭性の関係を鋭
意検討した結果、鋼中にTi酸化物を微細分散させた鋼
においても、北海域やLPGタンクなどの極低温の環境
で使用される鋼板のHAZ靭性を飛躍的に改善するため
には、新しい技術思想の導入が必要であることが判明し
た。
However, as a result of intensive investigation into the relationship between the welded HAZ structure and toughness, we found that even in steel with finely dispersed Ti oxides, the HAZ toughness of steel sheets used in extremely low-temperature environments such as northern sea areas and LPG tanks It became clear that in order to make dramatic improvements, it was necessary to introduce new technological ideas.

(発明が解決しようとする課題) 本発明は溶接HAZ靭性の優れた高張力厚鋼板の製造法
を提案するものである。本発明の高張力鋼は溶融線樋近
傍を含めたHAZ全域で組織が微細化し、優れた低温靭
性を有する。
(Problems to be Solved by the Invention) The present invention proposes a method for manufacturing a high tensile strength steel plate with excellent weld HAZ toughness. The high-strength steel of the present invention has a fine structure throughout the HAZ including the vicinity of the molten wire trough, and has excellent low-temperature toughness.

(課題を解決するための手段) 本発明の要旨は、溶存酸素量が0.003〜0.020
%の溶鋼中にTiを0.010〜0.040%添加し、
さらに60分以内にZrを0.005〜0.030%添
加した後80分以内に凝固を完了させ、重量%でc :
 o、oa〜a、15%、Si:0.8%以下、M n
 : 0 、8〜2 、0%、P;0.025%以下、
S :0.(105%以下、Al :0.004%以下
、Nb:0.003〜o、oeo%、N : 0.00
20〜0.0060%、Ti:0.005〜0.020
%、Z r:0.003〜0.015%、0 : 0.
001〜o、ooe%でかつ粒子径0.05〜1〇−の
Ti、  Zrを主成分とする複合酸化物を30〜30
0個/mm2含有し、残部が鉄および不可避的不純物か
らなる実質的にAlを含有しない鋳片を、1250℃以
下の温度で再加熱後、鋼板を製造すること、および溶存
酸素量が0.003〜0.020%の溶鋼中にTiを0
.010〜0.040%添加し、さらに60分以内にZ
rを0.005〜0.030%添加した後60分以内に
凝固を完了させ、重量%でC: 0.03〜0.15%
、s 1:0.6%以下、Mn:0.8〜2.0%、P
 :0.025%以下、S :0.005%以下、Al
 :0.004%以下、Nb:0.003〜0.080
%、N : 0.0020〜(1,(1060%、Tに
0.005〜0.020%、Z r:0.003〜0.
015%、0:o、ooi〜o、ooe%でさらにB 
: 0.0003〜0.0010%、NI : 0.0
5〜4.00%、Cu: 0.05〜1.50%、C「
:0.05〜1.00%、V :0.005〜0.08
0%、Mo:0.05〜0.40%、Ca:o、000
5〜0.005%の一種または二種を含有させ、かつ粒
子径0,05〜10−のTi、Zrを主成分とする複合
酸化物を30〜300個/1Ilj含有し、残部が鉄お
よび不可避的不純物からなる実質的にAlを含有しない
鋳片を、1250℃以下の温度で再加熱後、鋼板を製造
することである。
(Means for Solving the Problems) The gist of the present invention is that the amount of dissolved oxygen is 0.003 to 0.020.
% of molten steel by adding 0.010 to 0.040% of Ti,
Furthermore, after adding 0.005 to 0.030% Zr within 60 minutes, coagulation was completed within 80 minutes, and c:
o, oa to a, 15%, Si: 0.8% or less, M n
: 0, 8-2, 0%, P; 0.025% or less,
S:0. (105% or less, Al: 0.004% or less, Nb: 0.003~o, oeo%, N: 0.00
20-0.0060%, Ti: 0.005-0.020
%, Zr: 0.003-0.015%, 0:0.
A composite oxide mainly composed of Ti and Zr with a particle size of 0.05 to 10% and a particle size of 0.05 to 10% is
A steel plate is manufactured by reheating a substantially Al-free slab containing 0 pieces/mm2 and the remainder consisting of iron and unavoidable impurities at a temperature of 1250° C. or lower, and having a dissolved oxygen amount of 0. 003~0.020% Ti in molten steel
.. 010 to 0.040% and further Z
Coagulation is completed within 60 minutes after adding 0.005-0.030% of r, C: 0.03-0.15% by weight%
, s 1: 0.6% or less, Mn: 0.8-2.0%, P
: 0.025% or less, S: 0.005% or less, Al
: 0.004% or less, Nb: 0.003 to 0.080
%, N: 0.0020-(1, (1060%, T 0.005-0.020%, Zr: 0.003-0.
015%, 0:o, ooi~o, ooe% further B
: 0.0003-0.0010%, NI: 0.0
5-4.00%, Cu: 0.05-1.50%, C"
:0.05~1.00%, V:0.005~0.08
0%, Mo: 0.05-0.40%, Ca: o, 000
Contains 30 to 300 pieces/1Ilj of a composite oxide containing 5 to 0.005% of one or two of Ti and Zr with a particle size of 0.05 to 10-1, the remainder being iron and The purpose is to produce a steel plate by reheating a cast slab containing essentially no Al, which is made up of inevitable impurities, at a temperature of 1250° C. or lower.

(作  用) 以下に本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

発明者らの研究によれば、HAZ靭性は(1)鋼の化学
成分、(2)組織(結晶粒の大きさと硬化相の分布状!
r!、)に大きく依存し、鋼成分の適正化とこれによる
結晶粒の微細化が高靭性化に不可欠であると考えられる
。発明者の一部が特開昭63210235号、特開平1
−15321号各公報に示したように、Ti酸化物を微
細分散させた鋼は、溶接時のHAZ (とくにFL近傍
)において、IFPを生成させることによりHAZ組織
が微細化され、HAZ靭性を著しく改善できる。
According to the inventors' research, HAZ toughness is determined by (1) the chemical composition of the steel, (2) the structure (grain size and hardened phase distribution!
r! ,), and it is considered that optimization of steel components and the resulting refinement of grain size are essential for achieving high toughness. Some of the inventors have published Japanese Patent Application Laid-Open No. 63210235, Japanese Patent Application Publication No. 1999
-15321, the HAZ structure is refined by generating IFP in the HAZ (especially near FL) during welding, and the HAZ toughness is significantly reduced. It can be improved.

一方、発明者らは特開平1−159356号公報に示し
たように、TiとZ「の複合酸化物は鋳片全厚にわたっ
て微細均一分散が可能なこと、および酸化物を核として
IFPが生成することから板厚中心部を含めた全ての板
厚位置において、HAZの全域で組織が微細化され、極
めて優れた低温靭性が得られることを見いだした。
On the other hand, as shown in Japanese Unexamined Patent Publication No. 1-159356, the inventors have discovered that the composite oxide of Ti and Z can be finely and uniformly dispersed over the entire thickness of the slab, and that IFP is generated with the oxide as a nucleus. Therefore, it was found that the structure was refined throughout the HAZ at all thickness positions including the center of the plate thickness, and extremely excellent low-temperature toughness was obtained.

しかしその後、さらに極低温でも優れたHAZ靭性を有
する鋼板を開発すべく鋭意検討した結果、TiおよびZ
「の添加方法を規定することにより、鋼中にTiとZr
の複合酸化物(主としてzrO2,Ti2O3からなる
酸化物)をさらに多量に微細均一分散させることができ
、HAZ靭性が飛躍的に改善されることを見いだし本発
明に至った。
However, as a result of intensive study to develop a steel plate with excellent HAZ toughness even at extremely low temperatures, Ti and Z
By specifying the method of adding Ti and Zr to steel,
The present inventors have discovered that it is possible to finely and uniformly disperse a larger amount of the composite oxide (an oxide mainly composed of zrO2 and Ti2O3), and that the HAZ toughness can be dramatically improved, leading to the present invention.

すなわちTiと2「の複合酸化物を多量に微細分散させ
た鋼は、FL近傍の1400℃以上に加熱される領域に
おいても、γ−α変態時にγ粒内に存在するTiとZr
の複合酸化物を核として、IFPを生威し、HAZ組織
を著しく微細化する。
In other words, in steel in which a large amount of composite oxides of Ti and 2' are finely dispersed, even in the region heated to 1400°C or higher near the FL, the Ti and Zr present in the γ grains are removed during the γ-α transformation.
Using the composite oxide as a core, IFP is generated and the HAZ structure is significantly refined.

また、FLから離れた領域(FLから5mm程度までの
領域)においては、微細TiNを含有させることにより
HAZ靭性を改善できる。これは微細TiNによりγ粒
の粗大化が抑制され、組織が微細化されるためである。
Furthermore, in the region away from the FL (region up to about 5 mm from the FL), the HAZ toughness can be improved by containing fine TiN. This is because fine TiN suppresses coarsening of γ grains and refines the structure.

このような効果を有するTiとZrの複合酸化物を鋼中
に多量に微細分散させるためには、まずTiとZrを添
加する溶鋼中の溶存酸素量を0.003〜0.020%
にする必要がある。溶存酸素量がo、ooa%未満であ
るとTiやZrによる脱酸後の酸素量が少なくなり、最
終的な微細酸化物の個数が少なるなるためである。しか
し溶存酸素量が0.020%を超えるとTiやZrを添
加しても脱酸が十分に行なわれず、清浄度が落ちて母材
の靭性が劣化する。
In order to finely disperse a large amount of composite oxide of Ti and Zr having such an effect in steel, first, the amount of dissolved oxygen in the molten steel to which Ti and Zr are added is reduced to 0.003 to 0.020%.
It is necessary to This is because if the amount of dissolved oxygen is less than o, ooa%, the amount of oxygen after deoxidation by Ti or Zr will be small, and the number of final fine oxides will be small. However, if the amount of dissolved oxygen exceeds 0.020%, deoxidation will not be performed sufficiently even if Ti or Zr is added, and the cleanliness will drop and the toughness of the base material will deteriorate.

TiやZrの添加量は脱酸により添加量の約50%がス
ラグとして出るために、最終的に必要とするTi.Zr
量の2倍添加する必要がある。
The amount of Ti and Zr added is determined by the amount of Ti and Zr that is ultimately required because approximately 50% of the amount added is released as slag by deoxidation. Zr
It is necessary to add twice the amount.

TiとZ「を添加する順序としてはTiを添加した後Z
rを添加する必要がある。これはZrはTiよりも酸素
との親和力が強いために、ZrをTiよりさきに添加す
ると、鋼中に生成する酸化物はZ「主体の酸化物となる
ためである。
The order in which Ti and Z are added is to add Ti and then Z.
It is necessary to add r. This is because Zr has a stronger affinity with oxygen than Ti, so if Zr is added before Ti, the oxide produced in the steel will be a Z-based oxide.

Z「の酸化物からはIFPは全く生成せず、HAZ組織
の微細化効果は期待できない。Tiを添加しさらにZr
を添加する場合に、Tiを添加後、60分以内にZrを
添加する必要がある。Tiを添加後、60分以上経過す
るとTi酸化物の凝集・合体および浮上が進むために、
最終的に微細な酸化物を鋼中に均一分散させることがで
きないためである。
IFP is not generated at all from the oxide of Zr, and no effect on refining the HAZ structure can be expected.
When adding Zr, it is necessary to add Zr within 60 minutes after adding Ti. If 60 minutes or more elapse after adding Ti, agglomeration, coalescence, and floating of Ti oxide will proceed.
This is because the fine oxides cannot be uniformly dispersed in the steel.

Tiを添加後にZrを添加することにより、溶鋼中に存
在している微細なTi酸化物は酸素との親和力が強いZ
rにより衝突かつ還元されるために、酸化物は微細化さ
れ、さらに凝集・合体および浮上が抑えられるので、最
終的に微細な複合酸化物を鋼中に多量に均一分散させる
ことができる。
By adding Zr after adding Ti, the fine Ti oxides present in the molten steel are converted to Zr, which has a strong affinity for oxygen.
Since the oxides are collided and reduced by r, they are made finer and furthermore, agglomeration, coalescence, and flotation are suppressed, so that finally a large amount of fine composite oxides can be uniformly dispersed in the steel.

しかしこの場合でもZrを添加してから60分以内に凝
固を完了させる必要がある。これはZrを添加してから
60分以上経過すると、凝集・合体および浮上が起こり
、Zrの衝突・還元作用による微細酸化物の分散効果が
得られないためである。
However, even in this case, it is necessary to complete coagulation within 60 minutes after adding Zr. This is because if 60 minutes or more elapse after Zr is added, agglomeration, coalescence, and flotation occur, and the dispersion effect of fine oxides due to the collision and reduction action of Zr cannot be obtained.

連続鋳造による製鋼法において、Zrを添加してから6
0分以内に凝固を完了させるために、Zrは連続鋳造に
おけるタンデイツシュあるいはモールド内に添加するこ
とが望ましい。
In the continuous casting steel manufacturing method, after adding Zr, 6
In order to complete solidification within 0 minutes, it is desirable to add Zr to the tundish or mold in continuous casting.

TiとZrの複合酸化物によるHAZ組織の微細化効果
を得るためには、鋼中に適当な大きさの酸化物を均一に
分散させなければならない。TiとZrの複合酸化物の
粒子径として0.05〜10m5個数として30〜30
0個/mm2が必要である。
In order to obtain the effect of refining the HAZ structure by the composite oxide of Ti and Zr, the oxide of an appropriate size must be uniformly dispersed in the steel. The particle size of the composite oxide of Ti and Zr is 0.05 to 10 m5, and the number is 30 to 30.
0 pieces/mm2 is required.

TiとZrの複合酸化物の粒子径が0.5−以下、ある
いは個数が30個/mm2以下になるとIFPの生成能
力が弱くなる。またTiとZrの複合酸化物の粒子径が
10−以上、あるいは個数が300個/mm2以上にな
ると、TiとZrの複合酸化物自身が脆性き裂の発生点
となったり、鋼の清浄度が低下してHAZだけでなく母
材の低温靭性も劣化する。
When the particle size of the composite oxide of Ti and Zr is less than 0.5, or when the number of particles is less than 30 particles/mm2, the ability to generate IFP becomes weak. Furthermore, if the particle size of the composite oxide of Ti and Zr exceeds 10 or the number of particles exceeds 300 particles/mm2, the composite oxide of Ti and Zr itself may become a point of initiation of brittle cracks, or the cleanliness of the steel may deteriorate. decreases, and not only the HAZ but also the low-temperature toughness of the base metal deteriorates.

なおTiと2「の複合酸化物個数および大きさは鋳片断
面部を研磨した後、光学顕微鏡により測定したものであ
る。
The number and size of Ti and 2'' composite oxides were measured using an optical microscope after polishing the cross section of the slab.

通常の製鋼法において鋼中にTiとZrの複合酸化物、
TiNを確保させるには、とくにTi。
In normal steelmaking methods, composite oxides of Ti and Zr are added to steel,
In order to secure TiN, especially Ti.

Zr、N、O量の適正化が必須である。このためTi、
Zr、N、O量をそれぞれTf:0.005〜0.02
0%、Z r:0.003〜0.015%、N:0.0
020〜0.0035%、0 :0.001〜o、oo
e%に限定する必要がある。
It is essential to optimize the amounts of Zr, N, and O. For this reason, Ti,
The amounts of Zr, N, and O are each Tf: 0.005 to 0.02.
0%, Zr: 0.003-0.015%, N: 0.0
020-0.0035%, 0:0.001-o, oo
It is necessary to limit it to e%.

Ti 、Zr、N、0量の下限はTiとZ「の複合酸化
物、TiNを生成させるための必要最小量である。Ti
、Zrの上限はTiCやZrCの生成によるHAZ靭性
の劣化を防止するためであり、N量の上限は固溶Nによ
るHAZ靭性の劣化を防止するためである。またO量の
上限は非金属介在物の生成による鋼の清浄度、靭性の劣
化を防止するためである。
The lower limit of the amounts of Ti, Zr, N, and 0 is the minimum amount necessary to generate TiN, a composite oxide of Ti and Z.
, Zr is set to prevent deterioration of HAZ toughness due to formation of TiC and ZrC, and the upper limit of N amount is set to prevent deterioration of HAZ toughness due to solid solution N. Further, the upper limit of the amount of O is set to prevent deterioration of the cleanliness and toughness of the steel due to the formation of nonmetallic inclusions.

しかし、たとえ鋼中にTiとZrの複合酸化物、TiN
を生成させても基本成分が適当でないと、優れたHAZ
靭性は得られない。以下にそのほかの基本成分の限定理
由について説明する。
However, even if steel contains composite oxides of Ti and Zr, TiN
If the basic components are not suitable even if HAZ is produced
Toughness cannot be obtained. The reasons for limiting the other basic components will be explained below.

C量の下限0.03%は、母材および溶接部の強度の確
保ならびにNb、Vなどの添加時に、これらの効果を発
揮させるための最小量である。しかしC量が多すぎると
、HAZ靭性に悪影響を及ぼすだけでなく母材靭性、溶
接性を劣化させるので、上限を0.15%とした。
The lower limit of 0.03% for the amount of C is the minimum amount to ensure the strength of the base metal and welded part and to exhibit these effects when adding Nb, V, etc. However, if the amount of C is too large, it not only adversely affects the HAZ toughness but also deteriorates the base metal toughness and weldability, so the upper limit was set at 0.15%.

Stは脱酸上鋼に含まれる元素で、Slが多くなると溶
接性、HAZ靭性が劣化するため、その上限を0,6%
とした。本発明鋼ではAg脱酸で十分であり、さらにT
i脱酸でも良い。Stについて1(AZ靭性の点からは
含有量を0,15%程度とすることが望ましい。
St is an element contained in deoxidized steel, and as the amount of Sl increases, weldability and HAZ toughness deteriorate, so the upper limit is set at 0.6%.
And so. In the steel of the present invention, Ag deoxidation is sufficient, and T
i Deoxidation may also be used. 1 for St (from the point of view of AZ toughness, it is desirable that the content be about 0.15%).

Mnは強度、靭性を確保する上で不可欠の元素であり、
その下限は0.8%である。しかしMn量が多すぎると
焼入性が増加して溶接性、HAZ靭性が劣化するだけで
なく、目標とする規格に適合する母材強度を得ることが
できない。このためMn量の上限を2.0%とした。
Mn is an essential element for ensuring strength and toughness.
Its lower limit is 0.8%. However, if the amount of Mn is too large, not only will hardenability increase and weldability and HAZ toughness deteriorate, but also it will not be possible to obtain base metal strength that meets the target standards. Therefore, the upper limit of the Mn content was set to 2.0%.

本発明鋼において、不可避的不純物であるPおよびSを
それぞれ0.025%以下、0.010%以下とした理
由は、母材、HAZの低温靭性をより一層向上させるた
めである。P量の低減は接合部における粒界破壊傾向を
減少させ、B量の低減は粒界フェライトの生成を抑制す
る傾向がある。最も好ましいp、  s量はそれぞれ0
.01%、 0.0050%以下である。
In the steel of the present invention, the reason why the unavoidable impurities P and S are set to 0.025% or less and 0.010% or less, respectively, is to further improve the low-temperature toughness of the base metal and HAZ. A reduction in the amount of P tends to reduce the tendency for grain boundary fracture at the joint, and a reduction in the amount of B tends to suppress the formation of grain boundary ferrite. The most preferable amounts of p and s are each 0.
.. 01%, 0.0050% or less.

Alは一般に脱酸上鋼に含まれる元素であるが、本発明
では好ましくない元素であり、0.004%以下と限定
した。これはAgが鋼中に含まれていると酸素と結合し
てTiの酸化物が生成しなくなるためである。脱酸はT
iおよびSlだけでも可能であり、本発明においてAf
I量は少ないほど良く、0.003%以下が望ましい。
Al is an element generally contained in deoxidized steel, but in the present invention, it is an undesirable element and is limited to 0.004% or less. This is because when Ag is contained in steel, it combines with oxygen and no Ti oxide is produced. Deoxidation is T
It is possible to use only i and Sl, and in the present invention, Af
The smaller the amount of I, the better, and desirably 0.003% or less.

Nbはγ粒界に生成するフェライトを抑制し、Ti酸化
物を核とする微細なIFFの生成を促進する働きがある
。この効果を得るためには最低o、ooa%のNb量が
必要である。しかしながらNb量が多すぎると、逆に微
細なIFPの生成を妨げるのでその上限をo、oeo%
とした。
Nb has the function of suppressing ferrite generated at the γ grain boundaries and promoting the generation of fine IFFs with Ti oxides as nuclei. In order to obtain this effect, a minimum amount of Nb of o, ooa% is required. However, if the amount of Nb is too large, it will hinder the formation of fine IFPs, so the upper limit should be set at o, oeo%.
And so.

つぎにB、Ni 、Cu、Cr、V、Mo、Caを添加
する理由について説明する。
Next, the reason for adding B, Ni, Cu, Cr, V, Mo, and Ca will be explained.

基本成分はさらに、これらの元素を添加する主たる目的
は、本発明鋼の特徴を損なうことなく、強度・靭性など
の特性の向上をはかるためである。
Furthermore, the main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the characteristics of the steel of the present invention.

したがって、その添加量は自ら制限されるべき性質のも
のである。
Therefore, the amount added should be limited.

Bは溶接後の溶融線近傍においてγ粒界に固溶Bとして
偏析し、粒界フェライトを抑制する。この効果を得るた
めには最低0.0003%のB量が必要である。しかし
、過剰のB添加はF e  (CB ) eなどの粗大
な析出物がγ粒界に3 析出して低温靭性を劣化させるので、B量の上限を0.
0015%とする必要がある。
B segregates as solid solution B at the γ grain boundaries near the fusion line after welding, and suppresses grain boundary ferrite. In order to obtain this effect, a B content of at least 0.0003% is required. However, excessive addition of B causes coarse precipitates such as Fe (CB) e to precipitate at the γ grain boundaries and deteriorate low-temperature toughness, so the upper limit of the amount of B should be set to 0.
It is necessary to set it to 0015%.

Niは溶接性、HAZ靭性に悪影響を及ぼすことなく、
母材の強度、靭性を向上させるが、0.05%以下では
効果が薄<、4.0%以上の添加は溶接性に好ましくな
いために上限を4.0%とした。
Ni has no adverse effect on weldability or HAZ toughness,
Although it improves the strength and toughness of the base metal, additions of 0.05% or less have little effect, and additions of 4.0% or more are unfavorable for weldability, so the upper limit was set at 4.0%.

CuはNIとほぼ同様の効果とともに耐食性、耐水素誘
起割れ性などにも効果があるが、1.5%を超えると熱
間圧延時にCu−クラックが発生し、製造困難となる。
Cu has almost the same effects as NI, as well as corrosion resistance, hydrogen-induced cracking resistance, etc., but if it exceeds 1.5%, Cu-cracks will occur during hot rolling, making manufacturing difficult.

このため上限を1.5%とした。Therefore, the upper limit was set at 1.5%.

Crは母材および溶接部の強度を高める元素であるが、
1.0%を超えると溶接性やHAZ靭性を劣化させ、ま
た0、05%以下では効果が薄い。したがってCr量は
0.05〜1.0%とする。
Cr is an element that increases the strength of the base metal and welded part,
If it exceeds 1.0%, weldability and HAZ toughness will deteriorate, and if it is less than 0.05%, the effect will be weak. Therefore, the amount of Cr is set to 0.05 to 1.0%.

VはNbとほぼ同じ効果を持つ元素であるが、0.01
%以下では効果が少なく、上限は0.08%まで許容で
きる。
V is an element that has almost the same effect as Nb, but 0.01
% or less, the effect is small, and an upper limit of 0.08% is permissible.

Moは母材および溶接部の強度を高める元素であるが、
0.4%を超えるとCrと同様に母材、接合部の靭性、
溶接部の劣化を招き好ましくない。
Mo is an element that increases the strength of the base metal and welded part,
If it exceeds 0.4%, like Cr, the toughness of the base material and joints will deteriorate.
This is undesirable as it causes deterioration of the welded part.

また0、05%以下では効果が薄い。したがってM。Further, if it is less than 0.05%, the effect is weak. Therefore M.

量は0゜05〜0,4%とする。The amount should be 0.05 to 0.4%.

Caは硫化物の形態を制御し、シャルピー吸収エネルギ
ーを増加させ低温靭性を向上させるほか、耐水素誘起割
れ性の改善にも効果を発揮する。しかしCa量は0.0
005%以下では実用上効果がなく、また、0.005
%を超えるとCab、CaSが多量に生成して大型介在
物となり、鋼の靭性のみならず清浄度も害し、さらに溶
接性にも悪影響を与えるので、Ca添加量の範囲を0.
0005〜0.005%とする。
Ca controls the morphology of sulfides, increases Charpy absorbed energy, improves low-temperature toughness, and is also effective in improving hydrogen-induced cracking resistance. However, the amount of Ca is 0.0
If it is less than 0.005%, it has no practical effect;
If the amount exceeds 0.0%, a large amount of Cab and CaS will be generated and become large inclusions, which will impair not only the toughness but also the cleanliness of the steel, and will also have an adverse effect on weldability.
0005 to 0.005%.

鋼の成分を上記のように限定し・でも、製造法が適切で
なければ溶接前の鋼中に微細なTiとZrの複合酸化物
やTiNを微細分散させることはできない。このため製
造条件についても限定する必要がある。
Even if the components of the steel are limited as described above, if the manufacturing method is not appropriate, fine composite oxides of Ti and Zr or TiN cannot be finely dispersed in the steel before welding. For this reason, it is also necessary to limit the manufacturing conditions.

まず、鋼は工業的には連続鋳造で製造することが必須で
ある。この理由は、連続鋳造法では大型鋼塊による造塊
−分塊法に比較して、凝固時の冷却速度が速くスラブ中
に微細なTiとZrの複合酸化物やTiNが多量に得ら
れるためである。大型鋼塊による造塊−分塊法では、T
iとZrの複合酸化物やTiNを鋳片中に微細分散させ
ることは難しい。
First, industrially, it is essential to manufacture steel by continuous casting. The reason for this is that the continuous casting method has a faster cooling rate during solidification than the ingot-blooming method using large steel ingots, and a large amount of fine composite oxides of Ti and Zr and TiN can be obtained in the slab. It is. In the ingot-blowing method using large steel ingots, T
It is difficult to finely disperse a composite oxide of i and Zr or TiN in a slab.

鋳片の再加熱温度を1250℃以下とする必要がある。It is necessary to keep the reheating temperature of the slab to 1250°C or lower.

これ以上の温度で再加熱するとTiNが粗大化して、溶
接前の鋼中に微細なTiNがなくなり、HAZにおける
組織の微細化が不可能になるためである。
This is because if the steel is reheated at a temperature higher than this, TiN will become coarse and there will be no fine TiN in the steel before welding, making it impossible to refine the structure in the HAZ.

なお、本発明においては、鋳片の再加熱は必ずしも実施
する必要はなく、ホットチャージ圧延やダイレクト圧延
を行なっても全く問題はない。
In addition, in the present invention, it is not necessary to reheat the slab, and there is no problem at all even if hot charge rolling or direct rolling is performed.

本発明では鋳片再加熱後の圧延法などについては、とく
に限定しないが、いわゆる加工熱処理や圧延後の焼入焼
戻、焼きならし処理が強度、靭性を確保する上で適切で
ある。これは、たとえ優れたHAZ靭性が得られても母
材の靭性が劣っていると鋼材としては不十分なためであ
る。
In the present invention, the rolling method after reheating the slab is not particularly limited, but so-called working heat treatment, quenching and tempering after rolling, and normalizing treatment are appropriate for ensuring strength and toughness. This is because even if excellent HAZ toughness is obtained, if the toughness of the base material is poor, the steel is insufficient.

母材の低温靭性を優れたものとするには、鋼の結晶粒を
微細化する必要がある。加工熱処理の方法としては、(
1)制御圧延、(2)制御圧延−加速冷却、(3)圧延
直接焼入焼戻などが挙げられるが、最も好ましいのは制
御圧延と加速冷却の組合せである。なお、この鋼を製造
後、脱水素などの目的でA c を変態点以下の温度に
再加熱しても本発明の特徴を損なうものではない。
In order to improve the low-temperature toughness of the base metal, it is necessary to refine the crystal grains of steel. The method of processing heat treatment is (
Examples include 1) controlled rolling, (2) controlled rolling-accelerated cooling, and (3) rolling direct quenching and tempering, but the most preferred is a combination of controlled rolling and accelerated cooling. Note that, after manufacturing this steel, the characteristics of the present invention are not impaired even if A c is reheated to a temperature below the transformation point for the purpose of dehydrogenation or the like.

(実 施 例) 表1に実施例を示す。(Example) Examples are shown in Table 1.

周知の転炉、連続鋳造、厚板工程で種々の鋼成分の鋼板
を製造し、サブマージドアーク溶接(SAW)を実施し
、HAZ靭性を一60℃テノ2mmVノツチシャルピー
試験によっ・て調査した。試験片は1/4 を位置から
採取し、ノツチ位置はFL、HAZlmmとした。
Steel plates of various steel compositions were manufactured using the well-known converter, continuous casting, and thick plate processes, and submerged arc welding (SAW) was performed, and HAZ toughness was investigated by the -60°C teno 2 mm V notch Charpy test. . 1/4 of the test piece was taken from the position, and the notch position was set at FL and HAZlmm.

表1で明らかなように本発明にかかる鋼が、すべて良好
な大入熱溶接HAZ靭性を有する。これに対し比較鋼は
ことごと<HAZが劣化する。
As is clear from Table 1, all the steels according to the present invention have good high heat input welding HAZ toughness. On the other hand, the comparison steel deteriorates in <HAZ.

比較鋼において鋼19はTi量が少なくTiとZrの複
合酸化物によるIFPの生成効果がないコトと、TiN
によるγ粒抑制効果がないためにHAZ靭性は劣化する
。鋼20はTi量が多くTiCの析出によりHAZ靭性
は劣化する。鋼21はAp量が多くTlとZrの複合酸
化物が生成しないためにIFPの生成量が少なくHAZ
靭性は劣化する。鋼22はZr量が少なくTiとZrの
複合酸化物が生成しないためにIFPの生成量が少なく
HAZ靭性は劣化する。鋼23はZr量が多すぎるため
にZrCの析出によりHAZ靭性は劣化する。鋼24は
l添加前の溶存酸素量が少なく最終の酸素量も少ないた
めに酸化物個数が減少しHAZ靭性は劣化する。鋼25
はTi添加前の溶存酸素量が多すぎるために脱酸が十分
に行なわれず鋼の清浄度が落ち、母材およびHAZ靭性
が劣化する。鋼26はZrを添加してからTiを添加し
たためにZr主体の酸化物が生成し、IFPが生成しな
いためにHAZ靭性は劣化する。鋼27はTiを添加し
てからZrを添加するまでの時間が長いのでTiとZr
の複合酸化物の個数が少なく、IFPの生成量が少ない
ためにHAZ靭性は劣化する。鋼28はZrを添加して
から凝固させるまでの時間が長いのでTiとZrの複合
酸化物の個数が少なく、IFPの生成量が少ないために
HAZ靭性は劣化する。鋼29はTiとZrの複合酸化
物の個数が少なく、IFFの生成量が少ないためにHA
Z靭性は劣化する。鋼30はTiとZrの複合酸化物の
個数が多すぎるために鋼の清浄度が落ち、母材およびH
AZ靭性が劣化する。
Among the comparative steels, Steel 19 has a small amount of Ti and no IFP generation effect due to the composite oxide of Ti and Zr.
HAZ toughness deteriorates because there is no γ-grain suppressing effect. Steel 20 has a large amount of Ti, and the HAZ toughness deteriorates due to the precipitation of TiC. Steel 21 has a large amount of Ap and does not produce a composite oxide of Tl and Zr, so the amount of IFP produced is small and HAZ
Toughness deteriorates. Steel 22 has a small amount of Zr and does not produce a composite oxide of Ti and Zr, so the amount of IFP produced is small and the HAZ toughness deteriorates. Steel 23 contains too much Zr, so the HAZ toughness deteriorates due to the precipitation of ZrC. Steel 24 has a small amount of dissolved oxygen before addition of 1 and a small final amount of oxygen, so the number of oxides decreases and the HAZ toughness deteriorates. steel 25
Since the amount of dissolved oxygen before addition of Ti is too large, deoxidation is not performed sufficiently, the cleanliness of the steel is reduced, and the toughness of the base metal and HAZ is deteriorated. In Steel 26, since Zr was added and then Ti was added, Zr-based oxides were generated, and since IFP was not generated, the HAZ toughness deteriorated. Steel 27 takes a long time from adding Ti to adding Zr, so Ti and Zr
Since the number of composite oxides is small and the amount of IFP produced is small, HAZ toughness deteriorates. Steel 28 takes a long time to solidify after adding Zr, so the number of composite oxides of Ti and Zr is small, and the amount of IFP produced is small, so the HAZ toughness deteriorates. Steel 29 has a small number of composite oxides of Ti and Zr, and the amount of IFF produced is small, so HA
Z toughness deteriorates. Steel 30 has too many composite oxides of Ti and Zr, so the cleanliness of the steel deteriorates and the base metal and H
AZ toughness deteriorates.

(発明の効果) 本発明により、母材はもとより溶接HAZ全域において
極めて優れた低温靭性を有する鋼を大量、且つ安価に製
造することが可能になった。その結果、溶接構造物の安
全性を大きく向上させることができた。
(Effects of the Invention) According to the present invention, it has become possible to manufacture steel having extremely excellent low-temperature toughness not only in the base material but also in the entire welding HAZ in large quantities and at low cost. As a result, the safety of welded structures could be greatly improved.

Claims (1)

【特許請求の範囲】 1、溶存酸素量が0.003〜0.020%の溶鋼中に
Tiを0.010〜0.040%添加し、さらに60分
以内にZrを0.005〜0.030%添加した後60
分以内に凝固を完了させ、重量%でC:0.03〜0.
15%、Si:0.6%以下、Mn:0.8〜2.0%
、P:0.025%以下、S:0.005%以下、Al
:0.004%以下、Nb:0.003〜0.060%
、N:0.0020〜0.0060%、Ti:0.00
5〜0.020%、Zr:0.003〜0.015%、
O:0.001〜0.006%でかつ粒子径0.05〜
10μmのTi、Zrを主成分とする複合酸化物を30
〜300個/mm^2含有し、残部が鉄および不可避的
不純物からなる実質的にAlを含有しない鋳片を、12
50℃以下の温度で再加熱後、鋼板を製造することを特
徴とする溶接熱影響部靭性の優れた高張力厚鋼板の製造
法。 2、溶存酸素量が0.003〜0.020%の溶鋼中に
Tiを0.010〜0.040%添加し、さらに60分
以内にZrを0.005〜0.030%添加した後60
分以内に凝固を完了させ、重量%でC:0.03〜0.
15%、Si:0.6%以下、Mn:0.8〜2.0%
、P:0.025%以下、S:0.005%以下、Al
:0.004%以下、Nb:0.003〜0.060%
、N:0.0020〜0.0060%、Ti:0.00
5〜0.020%、Zr:0.003〜0.015%、
O:0.001〜0.006%でさらにB:0.000
3〜0.0010%、Ni:0.05〜4.00%、C
u:0.05〜1.50%、Cr:0.05〜1.00
%、V:0.005〜0.080%、Mo:0.05〜
0.40%、Ca:0.0005〜0.005%の一種
または二種を含有させ、かつ粒子径0.05〜10μm
のTi、Zrを主成分とする複合酸化物を30〜300
個/mm^2含有し、残部が鉄および不可避的不純物か
らなる実質的にAlを含有しない鋳片を、1250℃以
下の温度で再加熱後、鋼板を製造することを特徴とする
溶接熱影響部靭性の優れた高張力厚鋼板の製造法。
[Claims] 1. Ti is added in an amount of 0.010 to 0.040% to molten steel having a dissolved oxygen content of 0.003 to 0.020%, and Zr is added in an amount of 0.005 to 0.04% within 60 minutes. 60 after adding 030%
Coagulation was completed within minutes, C: 0.03-0.
15%, Si: 0.6% or less, Mn: 0.8-2.0%
, P: 0.025% or less, S: 0.005% or less, Al
: 0.004% or less, Nb: 0.003 to 0.060%
, N: 0.0020-0.0060%, Ti: 0.00
5-0.020%, Zr: 0.003-0.015%,
O: 0.001~0.006% and particle size 0.05~
30 μm of composite oxide mainly composed of Ti and Zr
~300 pieces/mm^2, the balance being iron and unavoidable impurities, and substantially containing no Al, 12
A method for producing a high tensile strength steel plate with excellent weld heat-affected zone toughness, which comprises producing the steel plate after reheating at a temperature of 50° C. or lower. 2. After adding 0.010 to 0.040% Ti to molten steel with a dissolved oxygen content of 0.003 to 0.020%, and further adding 0.005 to 0.030% Zr within 60 minutes,
Coagulation was completed within minutes, C: 0.03-0.
15%, Si: 0.6% or less, Mn: 0.8-2.0%
, P: 0.025% or less, S: 0.005% or less, Al
: 0.004% or less, Nb: 0.003 to 0.060%
, N: 0.0020-0.0060%, Ti: 0.00
5-0.020%, Zr: 0.003-0.015%,
O: 0.001-0.006% and further B: 0.000
3-0.0010%, Ni: 0.05-4.00%, C
u: 0.05-1.50%, Cr: 0.05-1.00
%, V: 0.005~0.080%, Mo: 0.05~
0.40%, Ca: 0.0005 to 0.005%, and particle size 0.05 to 10 μm
30 to 300 of a composite oxide whose main components are Ti and Zr.
Welding heat effect characterized by producing a steel plate by reheating a substantially Al-free slab containing aluminum/mm^2 and the remainder consisting of iron and unavoidable impurities at a temperature of 1250°C or less. A method for producing high-tensile steel plates with excellent partial toughness.
JP34340889A 1989-12-29 1989-12-29 Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone Pending JPH03202422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34340889A JPH03202422A (en) 1989-12-29 1989-12-29 Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34340889A JPH03202422A (en) 1989-12-29 1989-12-29 Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone

Publications (1)

Publication Number Publication Date
JPH03202422A true JPH03202422A (en) 1991-09-04

Family

ID=18361285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34340889A Pending JPH03202422A (en) 1989-12-29 1989-12-29 Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone

Country Status (1)

Country Link
JP (1) JPH03202422A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236521A (en) * 1990-06-06 1993-08-17 Nkk Corporation Abrasion resistant steel
US5292384A (en) * 1992-07-17 1994-03-08 Martin Marietta Energy Systems, Inc. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
US5403410A (en) * 1990-06-06 1995-04-04 Nkk Corporation Abrasion-resistant steel
US5421920A (en) * 1992-09-24 1995-06-06 Nippon Steel Corporation Process for producing rolled shape steel material having high strength, high toughness, and excellent fire resistance
JP2007247004A (en) * 2006-03-16 2007-09-27 Kobe Steel Ltd Low yield ratio high tensile steel having excellent toughness of weld heat-affected zone and manufacturing method therefor
JP2008088487A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and brittle-crack-stopping property, and manufacturing method therefor
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP2008088485A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and fatigue crack progress resistance of welding heat-affected zone, and producing method therefor
JP2008088486A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and brittle fracture incident characteristic of welding heat-affected zone, and producing method therefor
JP2008127599A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Cast steel slab with fine solidification structure
JP2008223062A (en) * 2007-03-09 2008-09-25 Kobe Steel Ltd Thick steel plate excellent in toughness of basic material and weld heat-affected zone
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
KR101149132B1 (en) * 2009-04-27 2012-05-25 현대제철 주식회사 Steel with superior impact characteristic at law temperature and the method of producing the same
JP2017133081A (en) * 2016-01-29 2017-08-03 新日鐵住金株式会社 Thick sheet steel material excellent in toughness in heat affected zone
JP2019023324A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
JP2019023323A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236521A (en) * 1990-06-06 1993-08-17 Nkk Corporation Abrasion resistant steel
US5403410A (en) * 1990-06-06 1995-04-04 Nkk Corporation Abrasion-resistant steel
US5292384A (en) * 1992-07-17 1994-03-08 Martin Marietta Energy Systems, Inc. Cr-W-V bainitic/ferritic steel with improved strength and toughness and method of making
US5421920A (en) * 1992-09-24 1995-06-06 Nippon Steel Corporation Process for producing rolled shape steel material having high strength, high toughness, and excellent fire resistance
JP2007247004A (en) * 2006-03-16 2007-09-27 Kobe Steel Ltd Low yield ratio high tensile steel having excellent toughness of weld heat-affected zone and manufacturing method therefor
JP2008088486A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and brittle fracture incident characteristic of welding heat-affected zone, and producing method therefor
JP2008088488A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel with excellent toughness in weld heat-affected zone and toughness in base material, and its manufacturing method
JP2008088485A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material excellent in toughness and fatigue crack progress resistance of welding heat-affected zone, and producing method therefor
JP2008088487A (en) * 2006-09-29 2008-04-17 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone and brittle-crack-stopping property, and manufacturing method therefor
JP4515430B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP4515429B2 (en) * 2006-09-29 2010-07-28 株式会社神戸製鋼所 Steel with excellent toughness and brittle crack stopping characteristics in weld heat affected zone and its manufacturing method
JP2008127599A (en) * 2006-11-17 2008-06-05 Nippon Steel Corp Cast steel slab with fine solidification structure
JP2008223062A (en) * 2007-03-09 2008-09-25 Kobe Steel Ltd Thick steel plate excellent in toughness of basic material and weld heat-affected zone
JP2010222652A (en) * 2009-03-24 2010-10-07 Kobe Steel Ltd Thick steel plate having excellent toughness in weld heat affected zone and excellent low temperature base metal toughness
KR101149132B1 (en) * 2009-04-27 2012-05-25 현대제철 주식회사 Steel with superior impact characteristic at law temperature and the method of producing the same
JP2017133081A (en) * 2016-01-29 2017-08-03 新日鐵住金株式会社 Thick sheet steel material excellent in toughness in heat affected zone
JP2019023324A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate
JP2019023323A (en) * 2017-07-21 2019-02-14 新日鐵住金株式会社 Steel plate and method for manufacturing steel plate

Similar Documents

Publication Publication Date Title
US4629504A (en) Steel materials for welded structures
TWI478785B (en) High heat input welding steel
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JPH0577740B2 (en)
JPH0527703B2 (en)
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JPH0541683B2 (en)
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP3215296B2 (en) Method of manufacturing steel material for welded structures with excellent toughness of weld heat affected zone
JPS63210235A (en) Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPH0853734A (en) Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JPS61238940A (en) Low-temperature tough hardening steel excelling in toughness in weld zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JP2011074445A (en) Method for manufacturing non-heat-treated high-tensile-strength thick steel superior in toughness at heat-affected zone in high-heat-input weld
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature
JPH0578740A (en) Manufacture of steel excellent in low temperature toughness in weld heat affected zone
JPH02175815A (en) Manufacture of high tensile steel stock for welded construction excellent in toughness