JPH03162522A - Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone - Google Patents

Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone

Info

Publication number
JPH03162522A
JPH03162522A JP30219889A JP30219889A JPH03162522A JP H03162522 A JPH03162522 A JP H03162522A JP 30219889 A JP30219889 A JP 30219889A JP 30219889 A JP30219889 A JP 30219889A JP H03162522 A JPH03162522 A JP H03162522A
Authority
JP
Japan
Prior art keywords
steel
toughness
haz
tin
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30219889A
Other languages
Japanese (ja)
Inventor
Yoshio Terada
好男 寺田
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
為広 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP30219889A priority Critical patent/JPH03162522A/en
Publication of JPH03162522A publication Critical patent/JPH03162522A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the title steel plate by specifying the amts. of Ti, N, O and B in a steel having a specified compsn. and ensuring Ti oxide, fine TiN, sol. B and a TiN-MnS-BN combined precipitate. CONSTITUTION:A substantially Al-free steel consisting of, by weight, 0.03-0.15% C, <=0.6% Si, 0.8-2.0% Mn, <=0.025% P, <=0.010% S, <=0.004% Al, 0.003-0.060% Nb, 0.005-0.030% Ti, 0.0003-0.0010% B, 0.0040-0.0065% N, 0.001-0.006% O and the balance Fe and contg. 5X10<3>-1X10<8> grains of Ti-based oxide having 0.05-10mum grain size and 5X10<3>-1X10<8> grains of a TiN-MnS-BN combined precipitate is continuously cast into a billet. This billet is reheated at <=1,250 deg.C and a steel plate is manufactured. By this method, steel plates each having superior toughness at low temp. over the entire high heat input weld heat-affected zone as well as in the base metal are obtd. in large quantities at a low cost.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は特に、サブマージドアーク溶接(SAW)、エ
レクトロガス溶接(EGW)、エレクトロスラグ溶接(
S E S)などの大入熱溶接時の熱影響部低温靭性が
優れた高張力厚鋼板の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is particularly applicable to submerged arc welding (SAW), electrogas welding (EGW), electroslag welding (
This invention relates to a method for producing high-tensile steel plates with excellent heat-affected zone low-temperature toughness during large heat input welding such as S E S).

この方法で製造した鋼は圧力容器、造船、橋梁、建築、
ラインパイプなど溶接#4構造物に用いることができる
Steel produced using this method can be used in pressure vessels, shipbuilding, bridges, architecture, etc.
Can be used for welded #4 structures such as line pipes.

(従来の技術) 低合金鋼のHAZ靭性は、(1)I.!i品粒のサイズ
、(2)高炭素島状マルテンサイト(M町、上部ペイナ
イト(Bu)などの硬化相の分散状態、(3)粒界脆化
の有無、(4)元素のミクロ偏析など種々の冶金学的要
因に支配される。
(Prior art) The HAZ toughness of low alloy steel is determined by (1) I. ! Size of i-product grains, (2) dispersion state of hardened phases such as high carbon island martensite (M town, upper payinite (Bu)), (3) presence or absence of grain boundary embrittlement, (4) micro-segregation of elements, etc. Subject to various metallurgical factors.

なかでもHAZの結晶粒のサイズは低温靭性に大きな影
響を与えることが知られており、HAZ組織を微細化す
る数多くの技術が開発実用化されている。
In particular, it is known that the grain size of the HAZ has a large effect on low-temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.

例えば、TiNを微細分散させ、50kg f /一級
高張力鋼の大人熱溶接時のHAZ靭性を改善する手段が
開示されている(昭和54年6月発行「鉄と鋼」第65
巻第8号I232頁)。しかしこれらの析出物は大入熱
溶接時には大部分が溶解され、HAZ組織の粗粒化と固
溶Nの増加を生じ、HAZ靭性が劣化するという欠点を
有する。
For example, a method has been disclosed for finely dispersing TiN to improve the HAZ toughness during adult heat welding of 50 kg f/1st class high tensile strength steel ("Tetsu to Hagane" No. 65, published June 1970).
Vol. 8, No. I, p. 232). However, most of these precipitates are dissolved during high heat input welding, resulting in coarse graining of the HAZ structure and increase in solid solution N, which has the drawback of deteriorating HAZ toughness.

この問題に対して、本発明者の一部は鋼中にTi酸化物
を微細分散させ、溶接時のHAZにおいて粒内アシキュ
ラーフエライト(以下IFPと呼ぶ)を生成させること
によりHAZ組織が微細化され、HAZ靭性を著しく改
善できることを特開昭63 − 210235号、特開
平1−15321号各公報に示した。
In response to this problem, some of the inventors of the present invention finely dispersed Ti oxide in steel and generated intragranular acicular ferrite (hereinafter referred to as IFP) in the HAZ during welding, thereby making the HAZ structure finer. It was shown in JP-A-63-210235 and JP-A-1-15321 that HAZ toughness can be significantly improved.

しかしながら、その後大入熱溶接HAZ組織と靭性の関
係を鋭意検討した結果、鋼中にTi酸化物を微細分散さ
せた鋼においても、大人熱溶接HAZにおいては溶接後
の冷却速度が遅くなるため、完全にIFP組織を生成さ
せることはできず、北極海域やLPGタンクなどに低温
の環境で使用される鋼板のHAZ靭性を飛耀的に改善す
るためには、新しい技術思想の導入が必要であることが
判明した。
However, as a result of intensive investigation into the relationship between high heat input welding HAZ structure and toughness, we found that even in steel with finely dispersed Ti oxides, the cooling rate after welding is slow in adult heat welding HAZ. It is not possible to completely generate an IFP structure, and in order to drastically improve the HAZ toughness of steel plates used in low-temperature environments such as Arctic waters and LPG tanks, it is necessary to introduce new technological ideas. It has been found.

(発明が解決しようとする課題) 本発明は大人熱溶接HAZ靭性の優れた高張力厚鋼板の
製造法を提案するものである。特に大入熱溶接HAZに
おいては!000℃以上の高温にさらされる時間が長く
、かつ溶接後の冷却速度が遅いために、たとえTi酸化
物を鋼中に分散させた鋼においてもHAZの組織制御が
不完全となる。本発明の高張力厚鋼は溶融線極近傍を含
めたHAZ全域で組織が微細化し、優れた低温靭性を有
する。
(Problems to be Solved by the Invention) The present invention proposes a method for producing a high-tensile steel plate having excellent heat-welded HAZ toughness. Especially in high heat input welding HAZ! Because the time of exposure to high temperatures of 000° C. or higher is long and the cooling rate after welding is slow, the control of the HAZ structure is incomplete even in steel in which Ti oxides are dispersed. The high tensile strength steel of the present invention has a fine structure throughout the HAZ including the vicinity of the fusion line, and has excellent low-temperature toughness.

(課題を解決するための手段) 本発明の要旨は、重量%で、c : o.oa〜0.1
5%、S I:0.6%以下、Mn:0.8 〜2.0
%、P :0.025%以下、s :O.OlO%以下
、Al :0.004%以下、Nb:0.003〜0.
060%、T I+0.005〜0.030%、B:0
.[)003〜0.0010%、N : 0.0040
〜0.0065%、0:o.oot〜o.ooa%に粒
子径0.05〜10伽のTiを主成分とする酸化物とT
iN+MnS+BNの複合析出物を各々5×l03〜1
×lO8個/一含hし、残部が鉄および不可避的不純物
からなる実質的にAj7を含有しない鋼を連続鋳造法に
よって鋳片とし、これを1250℃以下の温度で再加熱
後、鋼板を製造すること、およびC : 0.03〜0
.15%、S I:0.6%以下、Mn:0.ll〜2
.0%、P :0.025%以下、s :0.010%
以下、Al :0.004%以下、Nb:0.003〜
0.060%、Tl:0.005〜0.030%、B:
0.0003〜0.0010%、N : 0.0040
〜0.0065%、Oo.oot〜o.ooe%にさら
にNi:0.05〜4、00%、Cu: 0.05〜1
.50%、C r : 0.05〜1.00%、■=0
.005 〜0.080%、Mo : 0.0!+〜0
.40%、Zr:0.003 〜0.015%、Ca 
: (1.(1005〜0.00596ノ一種または二
種以上を含有させ、粒子径0.05〜10血のTlを主
或分とする酸化物とTiN+MnS+BNの複合析出物
を各々5 X 103〜娶諷I X 108個/一含有
し、残部が鉄および不可避的不純物からなる実質的にA
,17を含有しない鋼を連続鋳造状によって鋳片とし、
これを1250℃以下の温度でilG加熱後、鋼板を製
造することである。
(Means for Solving the Problems) The gist of the present invention is that, in weight %, c: o. oa~0.1
5%, SI: 0.6% or less, Mn: 0.8 to 2.0
%, P: 0.025% or less, s: O. OlO% or less, Al: 0.004% or less, Nb: 0.003-0.
060%, T I+0.005-0.030%, B:0
.. [)003-0.0010%, N: 0.0040
~0.0065%, 0:o. oot~o. Ti-based oxide with a particle size of 0.05 to 10 to ooa% and T
iN+MnS+BN composite precipitates each at 5×103~1
A steel containing substantially no Aj7 containing 8 ×lO/h and the balance consisting of iron and unavoidable impurities is made into a slab by continuous casting, and after reheating at a temperature of 1250°C or less, a steel plate is manufactured. and C: 0.03-0
.. 15%, SI: 0.6% or less, Mn: 0. ll~2
.. 0%, P: 0.025% or less, s: 0.010%
Below, Al: 0.004% or less, Nb: 0.003~
0.060%, Tl: 0.005-0.030%, B:
0.0003-0.0010%, N: 0.0040
~0.0065%, Oo. oot~o. In addition to ooe%, Ni: 0.05-4.00%, Cu: 0.05-1
.. 50%, Cr: 0.05-1.00%, ■=0
.. 005 to 0.080%, Mo: 0.0! +~0
.. 40%, Zr: 0.003 to 0.015%, Ca
: (1. Composite precipitates of TiN+MnS+BN and oxide mainly containing Tl with a particle size of 0.05-10 and containing one or more of (1005-0.00596) are each Substantially A containing 108 pieces of I
, 17 is continuously cast into slabs,
After heating this with ilG at a temperature of 1250° C. or lower, a steel plate is manufactured.

(作  用) 以下に本発明について詳細に説明する。(for production) The present invention will be explained in detail below.

発明者らの研究によれば、HAZ靭性は(+)鋼の化学
成分、(2)組織(結晶粒の大きさと硬化相の分布状態
)に大きく依存し、鋼成分の適正化とこれによる結晶粒
の微細化が高靭性化に不可欠であると考えられた。発明
者の一部が前記各公報に示したように、Ti酸化物を微
細分散させた鋼は、溶接時のHAZ (とくに溶融線近
傍)においてIFPを生成させることにより、HAZ組
織が微細化され、HAZ靭性を著しく改善できる。
According to the inventors' research, HAZ toughness greatly depends on (+) the chemical composition of the steel and (2) the structure (crystal grain size and hardened phase distribution state), and that the optimization of the steel composition and the resulting crystallization It was thought that grain refinement was essential for achieving high toughness. As some of the inventors have shown in the above-mentioned publications, in steel in which Ti oxide is finely dispersed, the HAZ structure is refined by generating IFP in the HAZ (especially near the fusion line) during welding. , HAZ toughness can be significantly improved.

一方、HAZにおいて后融線近傍から順に■200血以
上の粗大なγ粒の領域(以下粗粒域と呼ぶ)、■80〜
200uA程度のやや粗大なγ粒の領域(以下亜粗粒域
と呼ぶ)、■80如以下の細かなγ粒の領域(細粒域)
と分けた場合、大人熱溶接を行なうといわゆるγ域であ
るl000℃以上の高温にさらされる時間が長くなると
ともに、溶接後の冷却速度が遅いために、粗粒域と亜粗
粒域の幅が大きくなるので、この領域での組織を微細化
することがHAZ靭性を改善するために重要である。
On the other hand, in the HAZ, in order from the vicinity of the fusion line, there are: ■ region of coarse γ grains of 200 or more blood (hereinafter referred to as coarse grain region), ■ region of 80~
A region of slightly coarse γ grains of about 200uA (hereinafter referred to as sub-coarse grain region); ■A region of fine γ grains of about 80 μA or less (fine grain region)
If you perform adult heat welding, you will be exposed to high temperatures of 1000℃ or higher, which is the so-called γ region, for a longer time, and the cooling rate after welding will be slow, so the width of the coarse grain region and sub-coarse grain region will increase. becomes large, so it is important to refine the structure in this region in order to improve HAZ toughness.

粗粒域においては前記各公報に示したように、Ti酸化
物を微細分散させてIFPを生成させることによりHA
Z組織が微細化され、HAZ靭性を苦しく改善できる。
In the coarse grain region, as shown in the above publications, HA is produced by finely dispersing Ti oxide to generate IFP.
The Z structure is refined, and the HAZ toughness can be improved.

ただし大入熱溶接は溶接後の冷却速度が遅いために、粗
粒域における粒界からのフエライトの生成が顕著となり
、IFPは生成しにくくなる。
However, since the cooling rate after welding is slow in high heat input welding, the formation of ferrite from the grain boundaries in the coarse grain region becomes noticeable, making it difficult to form IFP.

このためBを添加することにより粒界からのフエライト
生成を抑制する方注について}A .i1L f:。
Therefore, regarding the method of suppressing ferrite formation from grain boundaries by adding B}A. i1L f:.

その結果、溶接後の溶融線近傍において、Bはγ粒昇に
固溶Bとして偏析し、粒界フエライトを抑制することが
わかった。ただしこのn”fS過剰のB添加はγ粒界に
おいてF e  (C B) 6の生成を23 招き、逆にγ粒界からのフエライト生成を促進しHAZ
靭性が劣化する。
As a result, it was found that in the vicinity of the fusion line after welding, B segregates as solid solution B in the ascending γ grains, suppressing grain boundary ferrite. However, this excessive addition of B in n''fS causes the formation of Fe (C B) 6 at the γ grain boundaries, and conversely promotes the formation of ferrite from the γ grain boundaries, resulting in HAZ
Toughness deteriorates.

亜粗粒域においては必然的にIFPは生成しにくくなる
。これはIFPの生或温度よりもγ粒界からのフエライ
ト生戊温度が高いために、γ粒径が200zza以下に
なるとγ粒内は粒界フエライトに覆われてしまい、IF
Pの生戊する場所がほとんどなくなるためである。この
ため亜粗粒域においてはIFPによる組織の微細化が十
分行なわれず、HAZ靭性が劣化する。とくに大人熱溶
接の場合、この亜粗粒域の幅が大きくなり靭性の劣化が
問題となる。
In the sub-coarse grain region, it is inevitably difficult to generate IFP. This is because the temperature at which ferrite is formed from the γ grain boundary is higher than the temperature at which IFP is formed, so when the γ grain size is less than 200zza, the inside of the γ grain is covered with grain boundary ferrite, and the IF
This is because there is almost no space for P to grow. Therefore, in the sub-coarse grain region, the structure is not sufficiently refined by IFP, and the HAZ toughness deteriorates. Particularly in the case of adult heat welding, the width of this sub-coarse grain region increases, causing a problem of deterioration of toughness.

これに対して微細TiNの白゛効{り用による亜粗粒域
幅の低減という観点から検討を行ない、NQを40〜[
i5ppmとすることにより、亜粗粒域の幅が減少しH
AZ靭性が向上することがわかった。
On the other hand, we conducted a study from the viewpoint of reducing the width of the sub-coarse grain region by using the whitening effect of fine TiN, and set the NQ to 40 to [
By setting i5ppm, the width of the sub-coarse grain region is reduced and H
It was found that AZ toughness was improved.

Nr:Lが40ppm以下であると亜粗粒域幅の抑制効
果が弱< 、65ppmを超えて添加すると溶融線近傍
のHAZで過剰のNが固溶BとBNとして折出するため
に、γ粒界からのフエライト抑制に効果のある固溶Bの
確保ができなくなり、HAZ靭性は劣化する。
If Nr:L is less than 40 ppm, the effect of suppressing the sub-coarse grain region width is weak. If it is added in excess of 65 ppm, excess N will precipitate as solid solution B and BN in the HAZ near the melting line, resulting in γ Solid solution B, which is effective in suppressing ferrite from grain boundaries, cannot be secured, and HAZ toughness deteriorates.

ただしいくら微細TiNの有効11用により亜粗粒域の
幅を低減しても、HAZにおいてγ粒の大きさは連続的
に変化するために、完全に亜粗粒域を消滅させることは
できない。そこで発明者らはTi酸化物を核とするIF
Pの生成による組織の微細化効果の他に、TiN+!v
lns+BN複合析出物による組織の微細化効果を重ね
合わせることにより、亜粗粒域において優れたHAZ靭
性が得られることを見いだした。
However, no matter how much the width of the sub-coarse grain region is reduced by effective use of fine TiN, the sub-coarse grain region cannot be completely eliminated because the size of the γ grains continuously changes in the HAZ. Therefore, the inventors developed an IF with Ti oxide as the core.
In addition to the microstructure effect due to the formation of P, TiN+! v
It has been found that excellent HAZ toughness can be obtained in the sub-coarse grain region by combining the microstructure refinement effects of the lns+BN composite precipitates.

TiN+MnS+BN複合析出物が析出する領域と亜粗
粒域とを一致させることにより、亜粗粒域の組織は微細
化され靭性は向上する。この時TiN+MnS+BNl
j2合析出物を5×103〜1×108個/一含qさせ
ることが必要である。
By matching the region where the TiN+MnS+BN composite precipitate precipitates with the sub-coarse grain region, the structure of the sub-coarse grain region is refined and the toughness is improved. At this time, TiN+MnS+BNl
It is necessary to have 5 x 103 to 1 x 108 pieces/q of j2 synthetic precipitates.

T i N+Mn S+BNl合析出物が5 X 10
”個/一未満であると亜粗拉域における組織の微細化に
効果がない。また1×io8個/一超になると粗粒域に
おいても鋼中のBがTiN+MnS+BNm合析出物と
して存在するために、γ粒界からのフエライト抑制に効
果のある固溶Bの確保ができなくなり、HAZ靭性は劣
化する。
T i N+Mn S+BNl synthesis precipitate is 5 x 10
If it is less than 1×io8 particles/1, there is no effect on refining the structure in the sub-coarse grain region.In addition, if it exceeds 1 × io8 particles/1, B in the steel will exist as TiN + MnS + BNm precipitates even in the coarse grain region. In addition, solid solution B, which is effective in suppressing ferrite from γ grain boundaries, cannot be secured, and HAZ toughness deteriorates.

Tl酸化物によるHAZ組織の微細化効果(とくに粗粒
域における)を得るためには、鋼中に適当な大きさの酸
化物を均一に分散させなければならない。Ti酸化物の
粒子径として0.05〜lO如、個数として5×lO 
〜IXIO”個/一が必要であ3 る。
In order to obtain the effect of refining the HAZ structure (especially in the coarse grain region) by Tl oxide, the oxide of an appropriate size must be uniformly dispersed in the steel. The particle size of Ti oxide is 0.05 to 1O, the number is 5 x 1O
~IXIO" pieces/one are required.

Ti酸化物の粒子径が0.5如未満、あるいは個数が5
×103個/lIjl未満になるとIFPの生成能力が
弱くなる。またTi酸化物の粒子径が10Ilff+超
、あるいは個数が1×108個/一超になると、Ti酸
化物自身が脆性き裂の発生点となったり、鋼の清浄度が
低下してHAZだけでなく母材の低温靭性も劣化する。
The particle size of Ti oxide is less than 0.5, or the number of particles is 5.
When it is less than ×103 pieces/lIjl, the IFP generation ability becomes weak. In addition, if the particle size of Ti oxide exceeds 10Ilff+ or the number exceeds 1 x 108 particles/1, the Ti oxide itself may become a point of initiation of brittle cracks, or the cleanliness of the steel will decrease and only HAZ In addition, the low-temperature toughness of the base material also deteriorates.

なおT1酸化物はT1を主成分とする酸化物を示し、T
i203を50%以上含む酸化物である。また酸化物や
TiN+MnS+BNの個数はE P MA (Ele
ctron Probe Mlcroanalyser
)により測定するものとする。
Note that T1 oxide refers to an oxide whose main component is T1.
It is an oxide containing 50% or more of i203. Also, the number of oxides and TiN+MnS+BN is E P MA (Ele
ctron Probe Mlcroanalyser
) shall be measured.

すなわち本発明のポイントは、Ti , N, O,B
ffiを限定することにより、■IFPを生成させるた
めに必要なTi酸化物、■粗粒域および亜粗粒域幅を抑
制するために必要な微細なTiN,■粗粒域において粒
界フエライトを抑制するために必要な固溶B、■亜粗粒
域において組織を微細化するために必要なTiN+Mn
S+BNiQ析出物を確保し、HAZ全域にわたり良好
な低温靭性を・得ることにある。
That is, the point of the present invention is that Ti, N, O, B
By limiting ffi, ■ Ti oxide necessary to generate IFP, ■ fine TiN necessary to suppress the width of the coarse grain region and sub-coarse grain region, and ■ grain boundary ferrite in the coarse grain region. Solid solution B necessary for suppression, ■TiN+Mn necessary for refining the structure in the sub-coarse grain region
The objective is to secure S+BNiQ precipitates and obtain good low-temperature toughness throughout the HAZ.

通常の製鋼法において鋼中にT1酸化物、TiN,Ti
N+MnS+BN複合析出物を確保させるには、とくに
Ti ,N,O,Bfflの適正化が必須である。この
ためTi , N, O, BmをそれぞれTi:0.
005〜0.030%、N :0.0040〜0.00
85%、 O : 0,ロ01〜o.ooe%、 B 
:0.0003〜0.0010%に限定する必要がある
In normal steel manufacturing methods, T1 oxide, TiN, and Ti are present in steel.
In order to ensure the N+MnS+BN composite precipitate, it is essential to optimize Ti, N, O, and Bffl. For this reason, Ti, N, O, and Bm are each set to Ti:0.
005-0.030%, N: 0.0040-0.00
85%, O: 0, ro 01-o. ooe%, B
: It is necessary to limit it to 0.0003 to 0.0010%.

Tj ,N,O,B量の下限はTi酸化物、TiNST
iN+MnS+BN複合析出物を生成させるための必要
最小瓜である。Tiの上限はTiCの生成によるHAZ
靭性の劣化を防止するためであり、Nmの上限は固溶N
そのものおよび粗粒域でγ粒界からのフエライト抑制に
効果のある固溶Bの未確保によるHAZ靭性の劣化を防
止するためである。またOnの上限は非金属介在物の生
成による鋼の清浄度、靭性の劣化を防止するためである
。Bffiの上限はF e  (C B) aなど23 の粗大な析出物がγ粒界に析出して低温靭性を劣化させ
るのを防止するためである。
The lower limit of Tj, N, O, B amount is Ti oxide, TiNST
This is the minimum amount of melon required to generate an iN+MnS+BN composite precipitate. The upper limit of Ti is HAZ due to the formation of TiC.
This is to prevent deterioration of toughness, and the upper limit of Nm is
This is to prevent deterioration of HAZ toughness due to lack of solid solution B, which is effective in suppressing ferrite from γ grain boundaries in the ferrite itself and in coarse grain regions. The upper limit of On is also set to prevent deterioration of the cleanliness and toughness of the steel due to the formation of nonmetallic inclusions. The upper limit of Bffi is set to prevent coarse precipitates such as Fe (CB) a from precipitating at the γ grain boundaries and deteriorating the low-temperature toughness.

しかし、たとえ鋼中にTi酸化物、T i N,TiN
+MnS+BN複合析出物を生成させても、基本成分が
適当でないと優れたHAZ靭性は得られない。以下にそ
のほかの基本成分の限定理由について説明する。
However, even if steel contains Ti oxide, TiN, TiN
Even if a +MnS+BN composite precipitate is formed, excellent HAZ toughness cannot be obtained unless the basic components are appropriate. The reasons for limiting the other basic components will be explained below.

C量の下限0.03%は、母材および溶接部の強度の確
保ならびにNb,Vなどの添加時に、これらの効果を発
揮させるための最小量である。しかしCIiが多すぎる
と、HAZ靭性に悪影響を及ぼすだけでなく母材靭性、
溶接性を劣化させるので、上限を0. 15%とした。
The lower limit of the amount of C, 0.03%, is the minimum amount to ensure the strength of the base metal and welded part and to exhibit these effects when adding Nb, V, etc. However, too much CIi not only adversely affects the HAZ toughness but also the base metal toughness.
Since it deteriorates weldability, the upper limit should be set to 0. It was set at 15%.

S1は脱酸上鋼に含まれる元素で、S+が多くなると溶
接性、HAZ靭性が劣化するため、その上限を0.6%
とした。本発明鋼では.J脱酸で十分であり、さらにT
1脱酸でも良い。S1についてHAZ靭性の点からは含
有量を0.15%程度とすることが望ましい。
S1 is an element contained in deoxidized steel, and as S+ increases, weldability and HAZ toughness deteriorate, so the upper limit is set at 0.6%.
And so. In the steel of the present invention. J deoxidation is sufficient, and T
1 deoxidation may be sufficient. From the viewpoint of HAZ toughness, the content of S1 is preferably about 0.15%.

Mnは強度、靭性を確保する上で不可欠の元素であり、
その下限は0.8%である。しかしMnmが多すぎると
焼入性が堆加して溶接性、HAZ靭性が劣化するだけで
なく、目標とする規格に適合する母材強度を得ることが
できない。このためMn!iの上限を2,0%とした。
Mn is an essential element for ensuring strength and toughness.
Its lower limit is 0.8%. However, if there is too much Mnm, not only will the hardenability increase and weldability and HAZ toughness deteriorate, but also it will not be possible to obtain a base material strength that meets the target standards. For this reason, Mn! The upper limit of i was set to 2.0%.

・本発明鋼において、不可避的不純物であるPおよびS
をそれぞれ0.025%以下、0.010%以下とした
理由は、母材、HAZの低温靭性をより一層向上させる
ためである。PRの低威は接合部における粒界破壊傾向
を減少させ、SRの低減は粒界フエライトの生或を抑制
する傾向がある。最も好ましいps量はそれぞれ0,O
l%、0.005096以下である。
・In the steel of the present invention, P and S are unavoidable impurities.
The reason why they are set to 0.025% or less and 0.010% or less, respectively, is to further improve the low-temperature toughness of the base material and HAZ. A low PR tends to reduce the tendency for grain boundary fracture at the joint, and a reduction in SR tends to suppress the formation of grain boundary ferrite. The most preferable ps amounts are 0 and O, respectively.
l%, 0.005096 or less.

AJ7は一般に脱酸上鋼に含まれる元素であるが、本発
明では好ましくない元素であり、0.004%以下と限
定した。これはANが鋼中に含まれていると酸素と結合
してTiの酸化物が生成しなくなるためである。脱酸は
T1およびSiだけでも可能であり、本発明においてA
Nfitは少ないほど良く、o.ooa%以下が望まし
い。
Although AJ7 is an element generally contained in deoxidized steel, it is an undesirable element in the present invention, and is therefore limited to 0.004% or less. This is because when AN is contained in steel, it combines with oxygen and no Ti oxide is produced. Deoxidation is possible with only T1 and Si, and in the present invention A
The smaller the Nfit, the better; o. ooa% or less is desirable.

Nbはγ粒昇に生或するフエライトを抑制し、T1酸化
物を核とする微細なIFPの生成を促進する働きがある
。この効果を得るためには最低0.003%のNbff
iが必要である。しかしながらNbffiが多すぎると
、逆に微細なIFPの生或を妨げるのでその上限を0.
060%とした。
Nb has the function of suppressing the formation of ferrite in the rise of γ grains and promoting the formation of fine IFPs with T1 oxide as the nucleus. To obtain this effect, the minimum Nbff is 0.003%.
i is required. However, if Nbffi is too large, it will hinder the formation of fine IFP, so the upper limit should be set to 0.
060%.

つぎにN1 ,Cu,Cr,V,Mo,Zr,Caを添
加する理由について説明する。
Next, the reason for adding N1, Cu, Cr, V, Mo, Zr, and Ca will be explained.

基本成分にさらに、これらの元素を添加する主たる目的
は本発明鋼の特徴を損なうことなく、強度・靭性などの
特性の向上をはかるためである。
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the characteristics of the steel of the present invention.

したがって、その添加量は自ら制限されるべき性質のも
のである。
Therefore, the amount added should be limited.

Nlは溶接性、HAZ靭性に悪影響を及ぼすことなく、
母材の強度、靭性を向上させるが、0.05%未満では
効果が薄く、4.0%超の添加は溶接性に好ましくない
ために上限を4.0%とした。
Nl has no adverse effect on weldability or HAZ toughness,
Although it improves the strength and toughness of the base metal, if it is less than 0.05%, the effect is weak, and if it is more than 4.0%, it is unfavorable for weldability, so the upper limit was set at 4.0%.

CuはNlとほぼ同様の効果とともに耐食性、耐水素誘
起割れ性などにも効果があるが、1.5%を超えると熱
間圧延時にCu−クラックが発生し、製造困難となる。
Cu has almost the same effect as Nl, as well as corrosion resistance, hydrogen-induced cracking resistance, etc., but if it exceeds 1.5%, Cu-cracks will occur during hot rolling, making manufacturing difficult.

このため上限を1.5%とした。Therefore, the upper limit was set at 1.5%.

Crは母材および溶接部の強度を高める元素であるが、
1.0%を超えると濱接性やHAZ靭性を劣化させ、ま
た0、05%未満では効果が薄い。
Cr is an element that increases the strength of the base metal and welded part,
If it exceeds 1.0%, the welding properties and HAZ toughness will deteriorate, and if it is less than 0.05%, the effect will be weak.

したがってCrmは0.05〜1.0%とする。Therefore, Cr is set to 0.05 to 1.0%.

VはNbとほぼ同じ効果を持つ元素であるが、0.00
5%未満では効果が少なく、上限は0.08%まで許容
できる。
V is an element that has almost the same effect as Nb, but 0.00
If it is less than 5%, the effect is small, and an upper limit of 0.08% is permissible.

Moは母材および溶接部の強度を高める元素であるが、
0.4%を超えるとCrと同様に母材、接合部の靭性、
溶接性の劣化を招き好ましくない。
Mo is an element that increases the strength of the base metal and welded part,
If it exceeds 0.4%, like Cr, the toughness of the base material and joints will deteriorate.
This is undesirable as it leads to deterioration of weldability.

また0.05%以下では効果が薄い。したがってMo量
は0.05〜0.4%とする。
Further, if it is less than 0.05%, the effect is weak. Therefore, the amount of Mo is set to 0.05 to 0.4%.

ZrはTiと同様に脱酸元素である。鋼中にZrを添加
した場合、TiとZrを主或分とする複合酸化物が形成
されIFPの生成核としてa効に作用する。この効果を
得るためには0.003%以上必要である。またHAZ
靭性の劣化を防止するためにその上限を0.0154?
6とした。なおTiとZrの複合酸化物を生成させるた
めにはZrはTiを添加した後に添加しなければならな
い。
Zr is a deoxidizing element like Ti. When Zr is added to steel, a composite oxide mainly consisting of Ti and Zr is formed and acts as a nucleus for IFP production. To obtain this effect, 0.003% or more is required. Also HAZ
Is the upper limit set to 0.0154 to prevent deterioration of toughness?
It was set at 6. Note that in order to generate a composite oxide of Ti and Zr, Zr must be added after Ti is added.

Caは硫化物の形態を制御し、シャルピー吸収エネルギ
ーを増加させ低温靭性を向上させるほか、耐水素誘起割
れ性の改善にも効果を発揮する。しかしCaffiは0
.0005%未満では実用上効果がなく、また、0.0
05%を超えるとCab,CaSが多量に生成して大型
介在物となり、鋼の靭性のみならず清浄度も害し、さら
に溶接性にも悪影響を与えるので、Ca添加量の範囲を
0.0005〜0.00506とする。
Ca controls the morphology of sulfides, increases Charpy absorbed energy, improves low-temperature toughness, and is also effective in improving hydrogen-induced cracking resistance. But Caffi is 0
.. If it is less than 0.005%, there is no practical effect;
If it exceeds 0.05%, a large amount of Cab and CaS will be generated and become large inclusions, which will impair not only the toughness but also the cleanliness of the steel, and will also have a negative effect on weldability. It is set to 0.00506.

鋼の戊分を上記のように眼定しても、製造怯が適切でな
ければ溶接前の鋼中に微細なTi酸化物やTiNを微細
分散させることはできない。このため製造条件について
も限定する必要がある。
Even if the content of the steel is determined as described above, unless the manufacturing process is appropriate, fine Ti oxides and TiN cannot be finely dispersed in the steel before welding. For this reason, it is also necessary to limit the manufacturing conditions.

まず、鋼は工業的には連続鋳造で製造することが必須で
ある。この理由は、連続鋳造法では溶鋼の凝固伶却速度
が速くスラブ中に微細なTi酸化物やTiNが多量に得
られるためである。大型鋳塊による造塊一分塊法ではT
]酸化物やTiNを鋳片中に微細分散させることは難し
い。
First, industrially, it is essential to manufacture steel by continuous casting. The reason for this is that in the continuous casting method, the solidification rate of molten steel is fast and a large amount of fine Ti oxides and TiN are obtained in the slab. In the ingot making method using large ingots, T
] It is difficult to finely disperse oxides and TiN in slabs.

連続鋳造広の場合、鋳片の厚みによって冷却連度が九な
るが、HAZ靭性の観点からその厚みは3 5 0 m
m以下が望ましい。
In the case of wide continuous casting, the cooling rate depends on the thickness of the slab, but from the perspective of HAZ toughness, the thickness is 350 m.
m or less is desirable.

さらに鋳片の再加熱温度を1250℃以下とする必要が
ある。これ以上の温度で再加熱するとTiNが粗大化し
て、溶接前の鋼中に微細なTiNがなくなり、HAZに
おける組織の微細化が不可能になるためである。なお、
本発明においては、鋳片の再加熱は必ずしも実施する必
要はなく、ホノ1・チャージ圧延やダイレクト圧延を行
なっても全く問題はない。
Furthermore, the reheating temperature of the slab needs to be 1250°C or lower. This is because if the steel is reheated at a temperature higher than this, TiN will become coarse and there will be no fine TiN in the steel before welding, making it impossible to refine the structure in the HAZ. In addition,
In the present invention, it is not necessary to reheat the slab, and there is no problem at all even if the slab is subjected to single-charge rolling or direct rolling.

本発明では鋳片再加熱後の圧延法などについては、とく
に限定しないが、いわゆる加工熱処理や圧延後の焼入焼
戻、焼きならし処理が強度、靭性を確保する上で適切で
ある。これは、たとえ優れたHAZ靭性が得られてもI
リ材の靭性が劣っていると鋼材としては不十分なためで
ある。
In the present invention, the rolling method after reheating the slab is not particularly limited, but so-called working heat treatment, quenching and tempering after rolling, and normalizing treatment are appropriate for ensuring strength and toughness. This means that even if excellent HAZ toughness is obtained, I
This is because if the toughness of the recycled material is poor, it is insufficient as a steel material.

母材の低温靭性を優れたものとするには鋼の粘晶粒を微
細化する必要がある。加工熱処理の方法としては、(1
)制御圧延、(2)制御圧延一加速冷却、(3)圧延直
接焼入焼戻などが挙げられるが、最も好ましいのは制御
圧延と加速冷却の組合せてある。なお、この鋼を製造後
、脱水素などの目的でAc,変態点以下の温度に再加熱
しても本発明の特徴を損なうものではない。
In order to improve the low-temperature toughness of the base material, it is necessary to refine the viscous grains of steel. As a method of processing heat treatment, (1
) controlled rolling, (2) controlled rolling followed by accelerated cooling, and (3) direct rolling quenching and tempering, but the most preferred method is a combination of controlled rolling and accelerated cooling. Note that even if this steel is reheated to a temperature below the Ac transformation point for the purpose of dehydrogenation or the like after manufacturing, the features of the present invention will not be impaired.

(実 施 例) 表1に実施例を示す。(Example) Examples are shown in Table 1.

周知の転炉、連続鋳造、厚板工程で鋼板(厚み12〜5
0m)を製造し、サブマージドアーク溶接(SAW)、
エレクトロガス溶接(EGW)の大人熱溶接を実施し、
HAZ靭性を−60℃での2mmVノッチシャルピー試
験によって調査した。
Steel plates (thickness 12 to 5
0m), submerged arc welding (SAW),
We carry out adult heat welding of electro gas welding (EGW),
HAZ toughness was investigated by 2 mm V notch Charpy test at -60°C.

試験片はl/4 t位置から採取し、ノッチ位置はフユ
ージョンライン(F L) 、HAZ 1.3mmとし
た。FLノッチは粗粒域、HAZ IJmI1は亜祖粒
域のI{AZ靭性を評価することができる。
The test piece was taken from the 1/4 t position, the notch position was at the fusion line (F L), and the HAZ was 1.3 mm. The FL notch can evaluate I{AZ toughness in the coarse grain region, and HAZ IJmI1 can evaluate the I{AZ toughness in the subgrain region.

表1で明らかなように本発明にかかる鋼が、すべて良好
な大人熱溶接HAZ靭性を有する。これに対し比較鋼は
ことごと(HAZが劣化する。
As is clear from Table 1, all the steels according to the present invention have good adult heat welding HAZ toughness. On the other hand, the comparative steel deteriorates in HAZ.

比較鋼において鋼l9はAllf;tが多<Ti酸化物
が生成しないためにIFPの生成量が少なくHAZ靭性
は劣化する。鋼20はBを添加していないために粗粒域
におけるγ粒界からのフエライトの抑制効果がないこと
と、亜粗拉域における組織微細化効果がないためにHA
Z靭性は劣化する。鋼21はBmが多いために粗粒域に
おいてF e  ( C B ) eが生成しHAZ靭
性が劣化する。
Among the comparative steels, steel 19 has a large amount of Allf;t<Ti oxide is not produced, so the amount of IFP produced is small and the HAZ toughness is deteriorated. Steel 20 does not have the effect of suppressing ferrite from the γ grain boundaries in the coarse grain region because no B is added, and it has no effect of refining the structure in the sub-coarse grain region, so it has no effect on HA.
Z toughness deteriorates. Since steel 21 contains a large amount of Bm, Fe (CB) e is generated in the coarse grain region, resulting in deterioration of HAZ toughness.

23 鋼22はTlffiが少な<Ti酸化物によるIFPの
生成効果がないことと、TiNによるγ粒抑制効果がな
いためにHAZ靭性は劣化する。鋼23はTiffiが
多(Ticの析出によりHAZ靭性は劣化する。鋼24
はNffiが少な(TiNによるγ粒抑制効果とTiN
+MnS+BNによる亜粗粒域での組織微細化効果が少
な<HAZ靭性は劣化する。
23 Steel 22 has low Tlffi<There is no IFP generation effect due to Ti oxide and no γ grain suppressing effect due to TiN, so the HAZ toughness deteriorates. Steel 23 has a high Tiffi content (HAZ toughness deteriorates due to Tic precipitation. Steel 24
has less Nffi (γ grain suppression effect of TiN and TiN
+MnS+BN has little effect on refining the structure in the sub-coarse grain region <HAZ toughness deteriorates.

m25はNuが多すぎるために固溶Nおよび粗拉域でγ
粒界からのフエライト抑制に効果のある因溶Bの未確保
によりHAZ靭性が劣化する。上鋼26はT1酸化物の
個数が少な< IFPの生成量が少ないためにHAZ靭
性は劣化する。鋼27はTi酸化物の個数が多すぎるた
めに鋼の清浄度が落ち、母材およびHAZ靭性が劣化す
る。鋼28はTiN+MnS+BN複合析出物の個数が
少ないために亜粗粒域において組織が微細化されずHA
Z靭性は劣化する。鋼29はTiN+MnS+BN復合
析出物が多すぎるために粗粒域においてγ粒界からのフ
エライト抑制に効果のある固溶Bの確保ができなくなり
HAZ靭性は劣化する。
m25 has too much Nu, so γ in the solid solution N and rough ablation region
HAZ toughness deteriorates due to lack of soluble B, which is effective in suppressing ferrite from grain boundaries. In the case of the upper steel 26, the number of T1 oxides is small, and the amount of IFP produced is small, so the HAZ toughness deteriorates. Steel 27 has too many Ti oxides, so the cleanliness of the steel deteriorates and the base metal and HAZ toughness deteriorate. Steel 28 has a small number of TiN + MnS + BN composite precipitates, so the structure is not refined in the sub-coarse grain region, resulting in HA.
Z toughness deteriorates. Steel 29 has too many TiN+MnS+BN coagulated precipitates, so it becomes impossible to secure solid solution B, which is effective in suppressing ferrite from the γ grain boundaries, in the coarse grain region, and the HAZ toughness deteriorates.

(発明の効果) 本発明により、母材はもとより大人熱溶接HAZ全域に
おいて優れた低温靭性を有する鋼を大量、且つ安価に製
造することが可能になった。
(Effects of the Invention) According to the present invention, it has become possible to manufacture steel having excellent low-temperature toughness not only in the base material but also in the entire area of the hot welding HAZ in large quantities and at low cost.

その結果、溶接構造物の施工能率が著しく向上するとと
もにその安全性を大きく向上させることができた。
As a result, we were able to significantly improve the construction efficiency of welded structures and their safety.

代 理 人teenager Reason Man

Claims (1)

【特許請求の範囲】 1、重量%で、 C:0.03〜0.15%、 Si:0.6%以下、 Mn:0.8〜2.0%、 P:0.025%以下、 S:0.010%以下、 Al:0.004%以下、 Nb:0.003〜0.060%、 Ti:0.005〜0.030%、 B:0.0003〜0.0010%、 N:0.0040〜0.0065%、 O:0.001〜0.006% 粒子径0.05〜10μmのTiを主成分とする酸化物
とTiN+MnS+BNの複合析出物とを各々5×10
^3〜1×10^8個/mm^3含有し、残部が鉄およ
び不可避的不純物からなる実質的にAlを含有しない鋼
を連続鋳造法によって鋳片とし、これを1250℃以下
の温度で再加熱後、鋼板を製造することを特徴とする大
入熱溶接熱影響部靭性の優れた高張力厚鋼板の製造法。 2、重量%で、 Ni:0.05〜4.00%、 Cu:0.05〜1.50%、 Cr:0.05〜1.00%、 V:0.005〜0.080%、 Mo:0.05〜0.40%、 Zr:0.003〜0.015%、 Ca:0.0005〜0.005% の一種または二種以上を含有する鋼であることを特徴と
する請求項1記載の大入熱溶接熱影響部靭性の優れた高
張力厚鋼板の製造法。
[Claims] 1. In weight%, C: 0.03 to 0.15%, Si: 0.6% or less, Mn: 0.8 to 2.0%, P: 0.025% or less, S: 0.010% or less, Al: 0.004% or less, Nb: 0.003 to 0.060%, Ti: 0.005 to 0.030%, B: 0.0003 to 0.0010%, N : 0.0040 to 0.0065%, O: 0.001 to 0.006% A Ti-based oxide with a particle size of 0.05 to 10 μm and a composite precipitate of TiN+MnS+BN were each mixed into 5×10
^3 to 1 x 10^8 pieces/mm^3, with the remainder being iron and unavoidable impurities. Steel that does not contain substantially Al is made into a slab by continuous casting, and this is cast at a temperature of 1250°C or less. A method for producing a high tensile strength steel plate with excellent heat-affected zone toughness by large heat input welding, which is characterized by producing the steel plate after reheating. 2. In weight%, Ni: 0.05-4.00%, Cu: 0.05-1.50%, Cr: 0.05-1.00%, V: 0.005-0.080%, A claim characterized in that the steel contains one or more of Mo: 0.05 to 0.40%, Zr: 0.003 to 0.015%, and Ca: 0.0005 to 0.005%. Item 1. The method for producing a high-tensile steel plate having high heat-input welding and excellent heat-affected zone toughness according to item 1.
JP30219889A 1989-11-22 1989-11-22 Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone Pending JPH03162522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30219889A JPH03162522A (en) 1989-11-22 1989-11-22 Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30219889A JPH03162522A (en) 1989-11-22 1989-11-22 Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone

Publications (1)

Publication Number Publication Date
JPH03162522A true JPH03162522A (en) 1991-07-12

Family

ID=17906118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30219889A Pending JPH03162522A (en) 1989-11-22 1989-11-22 Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone

Country Status (1)

Country Link
JP (1) JPH03162522A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207243A (en) * 1993-01-08 1994-07-26 Sumitomo Metal Ind Ltd Steel for welding structure
US5507886A (en) * 1992-09-08 1996-04-16 Bethlehem Steel Corporation Method for preparing titanium-bearing low-cost structural steel
US5514227A (en) * 1992-09-08 1996-05-07 Bethlehem Steel Corporation Method of preparing titanium-bearing low-cost structural steel
KR100481363B1 (en) * 2000-12-15 2005-04-07 주식회사 포스코 Method of manufacturing high strength steel plate to be precipitating TiN and TiO for welded structures
JP2012162793A (en) * 2011-02-09 2012-08-30 Jfe Steel Corp Steel material for high-heat input welding
WO2013128650A1 (en) * 2012-03-01 2013-09-06 Jfeスチール株式会社 Steel material for high-heat-input welding
JP2014177672A (en) * 2013-03-14 2014-09-25 Nippon Steel & Sumitomo Metal Steel plate excellent in toughness at plate thickness center part and its manufacturing method
KR20180002875A (en) 2016-04-19 2018-01-08 신닛테츠스미킨 카부시키카이샤 Steel
JP2019183221A (en) * 2018-04-10 2019-10-24 日本製鉄株式会社 Thick steel sheet and manufacturing method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210235A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPS6415320A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of high tensile steel for low temperature use having excellent toughness of weld zone
JPH01159356A (en) * 1987-12-16 1989-06-22 Nippon Steel Corp High tension steel having superior tougeness at weld heat-affected zone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210235A (en) * 1987-02-27 1988-08-31 Nippon Steel Corp Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPS6415320A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of high tensile steel for low temperature use having excellent toughness of weld zone
JPH01159356A (en) * 1987-12-16 1989-06-22 Nippon Steel Corp High tension steel having superior tougeness at weld heat-affected zone

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5507886A (en) * 1992-09-08 1996-04-16 Bethlehem Steel Corporation Method for preparing titanium-bearing low-cost structural steel
US5514227A (en) * 1992-09-08 1996-05-07 Bethlehem Steel Corporation Method of preparing titanium-bearing low-cost structural steel
JPH06207243A (en) * 1993-01-08 1994-07-26 Sumitomo Metal Ind Ltd Steel for welding structure
KR100481363B1 (en) * 2000-12-15 2005-04-07 주식회사 포스코 Method of manufacturing high strength steel plate to be precipitating TiN and TiO for welded structures
JP2012162793A (en) * 2011-02-09 2012-08-30 Jfe Steel Corp Steel material for high-heat input welding
WO2013128650A1 (en) * 2012-03-01 2013-09-06 Jfeスチール株式会社 Steel material for high-heat-input welding
CN104145038A (en) * 2012-03-01 2014-11-12 杰富意钢铁株式会社 Steel material for high-heat-input welding
CN104145038B (en) * 2012-03-01 2016-12-21 杰富意钢铁株式会社 High input energy welding steel material
JP2014177672A (en) * 2013-03-14 2014-09-25 Nippon Steel & Sumitomo Metal Steel plate excellent in toughness at plate thickness center part and its manufacturing method
KR20180002875A (en) 2016-04-19 2018-01-08 신닛테츠스미킨 카부시키카이샤 Steel
JP2019183221A (en) * 2018-04-10 2019-10-24 日本製鉄株式会社 Thick steel sheet and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US4629504A (en) Steel materials for welded structures
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH02220735A (en) Production of high tensile strength steel for welding and low temperature including titanium oxide
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
WO2016009595A1 (en) Method of manufacturing steel plate for high-heat input welding
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JP2002256379A (en) Steel for high heat input welding
JP6665658B2 (en) High strength steel plate
JPH0527703B2 (en)
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP3323414B2 (en) Steel with excellent heat-affected zone toughness in large heat input welding and method for producing the same
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JPH0853734A (en) Production of steel for welding excellent in big heat input weld heat-affected zone toughness
JP2002371338A (en) Steel superior in toughness at laser weld
JPH093600A (en) Steel for welding structure excellent in toughness weld heat affected zone
JPH093599A (en) Steel for welding structure excellent in toughness of weld heat affected zone and its production
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature
JPH02175815A (en) Manufacture of high tensile steel stock for welded construction excellent in toughness
JPH05279735A (en) Manufacture of building fire resistant steel plate excellent in toughness in high heat input weld heat-affected zone
JP3464566B2 (en) Low temperature steel with excellent toughness in the heat affected zone
JP7272471B2 (en) steel plate