JPH05279735A - Manufacture of building fire resistant steel plate excellent in toughness in high heat input weld heat-affected zone - Google Patents

Manufacture of building fire resistant steel plate excellent in toughness in high heat input weld heat-affected zone

Info

Publication number
JPH05279735A
JPH05279735A JP4080794A JP8079492A JPH05279735A JP H05279735 A JPH05279735 A JP H05279735A JP 4080794 A JP4080794 A JP 4080794A JP 8079492 A JP8079492 A JP 8079492A JP H05279735 A JPH05279735 A JP H05279735A
Authority
JP
Japan
Prior art keywords
toughness
less
steel
temperature
heat input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4080794A
Other languages
Japanese (ja)
Other versions
JP3202310B2 (en
Inventor
Yuzuru Yoshida
譲 吉田
Hiroshi Tamehiro
博 為広
Rikio Chijiiwa
力雄 千々岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13728370&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH05279735(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP08079492A priority Critical patent/JP3202310B2/en
Publication of JPH05279735A publication Critical patent/JPH05279735A/en
Application granted granted Critical
Publication of JP3202310B2 publication Critical patent/JP3202310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture a building fire resistant steel plate excellent in toughness in the high heat input weld heat-affected zone. CONSTITUTION:Steel contg., by weight, 0.05 to 0.12% C <=0.6% Si, 0.8 to 1.6% Mn, <=0.03% P, <=0.005% S, 0.35 to 0.80% Mo, 0.005 to 0.025% Ti, <=0.005% Al, 0.001 to 0.004% N and 0.001 to 0.006% O and substantially contg. no Al is reheated to the temp. range of 1000 to 1150 deg.C, is thereafter rolled so as to regulate the cumulative draft at <=900 deg.C to >=30%, is subsequently cooled from >=750 deg.C to the temp. range of 350 to 650 deg.C at 3 to 40 deg.C/sec cooling velocity and is thereafter air-cooled, by which the objective fire resistant 50kgf/mm<2> class steel plate excellent in toughness in the high heat input weld heat-affected zone can be manufactured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は建築、土木および海洋構
造物等の分野において各種構造物に用いる厚み50mm
以上の、特にエレクトロスラグ溶接などの大入熱溶接
(溶接入熱=500〜1500kJ/cm)における熱
影響部(HAZ)の靱性が優れた耐火鋼板の製造法に関
する。
FIELD OF THE INVENTION The present invention has a thickness of 50 mm used for various structures in the fields of construction, civil engineering and marine structures.
The present invention relates to a method for producing a refractory steel sheet having excellent toughness in the heat affected zone (HAZ) particularly in large heat input welding (welding heat input = 500 to 1500 kJ / cm) such as electroslag welding.

【0002】[0002]

【従来の技術】一般に低合金鋼のHAZ靱性は、(1)
結晶粒のサイズ、(2)高炭素島状マルテンサイト、上
部ベイナイト(Bu)などの硬化相の分散状態、(3)
粒界脆化の有無、(4)元素のミクロ偏析など種々の冶
金学的要因に支配される。なかでもHAZの結晶粒のサ
イズは低温靱性に大きな影響を与えることが知られてお
り、HAZ組織を微細化するために数多くの技術が開
発、実用化されている。TiNなど高温でも比較的に安
定な窒化物を鋼中に微細分散させ、これによってHAZ
のオーステナイト(γ)粒の粗大化を抑制する技術は特
に有名である。しかしHAZの1400℃以上に加熱さ
れる領域では、TiNは粗大化もしくは溶解し、γ粒の
粗大化抑制能力は消失する。このため溶融線近傍での靱
性劣化が大きく、HAZの全域で安定して高靱性を得る
ことができない。すなわち溶融線近傍に切欠を入れたシ
ャルピー試験において頻度は少ないが、低い値が出現し
溶接構造物の安全性の観点から好ましくない。これに対
しTi酸化物(主としてTi23)を微細分散させた鋼
(特願昭59−203099号)は溶融線近傍でも粒内
アシキュラーフェライト(以下IGFと呼ぶ)を生成さ
せることによりHAZ組織を小さくすることができ、T
iN鋼に比較して優れた低温靱性が得られる。しかし、
特開平2−77523号の公報等で示されている耐火鋼
板ではMo含有量が高く、特に大入熱溶接(溶接入熱=
500〜1500kJ/cm)の場合ではIGFが生成
しにくく、この方法でも十分なHAZ靱性が得られな
い。
2. Description of the Related Art Generally, HAZ toughness of low alloy steel is (1)
Grain size, (2) dispersed state of high carbon island martensite, hardened phase such as upper bainite (Bu), (3)
It is governed by various metallurgical factors such as grain boundary embrittlement and (4) elemental microsegregation. In particular, it is known that the size of the crystal grains of HAZ has a great influence on the low temperature toughness, and many techniques have been developed and put to practical use for refining the HAZ structure. Finely disperse nitrides such as TiN, which are relatively stable even at high temperatures, in the steel, which results in HAZ
The technology for suppressing the coarsening of austenite (γ) grains is particularly famous. However, in the region where HAZ is heated to 1400 ° C. or higher, TiN coarsens or dissolves, and the ability to suppress coarsening of γ grains disappears. For this reason, the toughness is largely deteriorated in the vicinity of the melting line, and it is not possible to stably obtain high toughness in the entire HAZ. That is, in a Charpy test in which a notch is formed near the fusion line, the frequency is low, but a low value appears, which is not preferable from the viewpoint of safety of the welded structure. On the other hand, in the steel in which Ti oxide (mainly Ti 2 O 3 ) is finely dispersed (Japanese Patent Application No. 59-203099), intragranular acicular ferrite (hereinafter referred to as IGF) is generated even in the vicinity of the melting line to generate HAZ. Tissue can be made smaller and T
Excellent low temperature toughness is obtained as compared with iN steel. But,
The refractory steel sheet disclosed in JP-A-2-77523 has a high Mo content, and particularly large heat input welding (welding heat input =
In the case of 500 to 1500 kJ / cm), IGF is hard to be generated, and sufficient HAZ toughness cannot be obtained even by this method.

【0003】[0003]

【発明が解決しようとする課題】本発明は大入熱溶接に
おいてHAZ靱性の極めて優れた耐火鋼板を安価に製造
する技術を提供するものである。本発明法で製造した鋼
は、大入熱溶接時に溶融線近傍においてもHAZ組織が
微細化し、HAZの全域で優れた低温靱性を示す。
DISCLOSURE OF THE INVENTION The present invention provides a technique for inexpensively producing a refractory steel sheet having extremely excellent HAZ toughness in high heat input welding. The steel produced by the method of the present invention has a fine HAZ structure even in the vicinity of the fusion line during high heat input welding, and exhibits excellent low temperature toughness throughout the HAZ.

【0004】[0004]

【課題を解決するための手段】本発明は前述の課題を克
服し目的を達成するもので、その具体的手段を下記
(1)、(2)に示す。 (1)重量比でC 0.05〜0.12%、Si 0.
6%以下、Mn 0.8〜1.6%、P 0.03%以
下、S 0.005%以下、Mo 0.35〜0.80
%、Ti 0.005〜0.025%、Al 0.00
5%以下、N 0.001〜0.004%、O 0.0
01〜0.006%を含有し、残部が鉄および不可避的
不純物からなる実質的にAlを含有しない鋼を1000
〜1150℃の温度域で再加熱後、900℃以下の累積
圧下率が30%以上となるように圧延を行った後、75
0℃以上の温度から3〜40℃/秒の冷却速度で350
〜650℃の温度範囲まで冷却し、その後空冷すること
を特徴とする厚み50mm以上(好ましくは50〜10
0mm)の大入熱溶接熱影響部靱性の優れた建築用耐火
50kgf/mm2級鋼板の製造法。 (2)重量比でC 0.05〜0.12%、Si 0.
6%以下、Mn 0.8〜1.6%、P 0.03%以
下、S 0.005%以下、Mo 0.35〜0.80
%、Ti 0.005〜0.025%、Al 0.00
5%以下、N 0.001〜0.004%、O 0.0
01〜0.006%、さらにNb 0.003〜0.0
1%、V 0.003〜0.03%、Ni 0.05〜
1.0%、Cu 0.05〜1.0%、Cr 0.05
〜1.0%、Ca 0.001〜0.006%を含有
し、残部が鉄および不可避的不純物からなる実質的にA
lを含有しない鋼を1000〜1150℃の温度域で再
加熱後、900℃以下の累積圧下率が30%以上となる
ように圧延を行った後、750℃以上の温度から3〜4
0℃/秒の冷却速度で350〜650℃の温度範囲まで
冷却し、その後空冷することを特徴とする厚み50mm
以上(好ましくは50〜100mm)の大入熱溶接熱影
響部靱性の優れた建築用耐火50kgf/mm2級鋼板
の製造法。
Means for Solving the Problems The present invention overcomes the above-mentioned problems and achieves the object, and its concrete means are shown in (1) and (2) below. (1) C 0.05 to 0.12% by weight and Si 0.
6% or less, Mn 0.8 to 1.6%, P 0.03% or less, S 0.005% or less, Mo 0.35 to 0.80
%, Ti 0.005 to 0.025%, Al 0.00
5% or less, N 0.001 to 0.004%, O 0.0
A steel containing 0.1 to 0.006% and the balance of iron and unavoidable impurities and containing substantially no Al is 1000
After reheating in the temperature range of ˜1150 ° C., rolling is performed so that the cumulative rolling reduction of 900 ° C. or less is 30% or more, and then 75
350 at a cooling rate of 3 to 40 ° C / sec from a temperature of 0 ° C or higher
To a temperature range of 650 ° C., and then air-cooling, a thickness of 50 mm or more (preferably 50 to 10).
0mm) High heat input welding Heat-affected zone Manufacturing method for building fireproof 50kgf / mm 2 grade steel sheet with excellent toughness. (2) C 0.05 to 0.12% by weight ratio and Si 0.
6% or less, Mn 0.8 to 1.6%, P 0.03% or less, S 0.005% or less, Mo 0.35 to 0.80
%, Ti 0.005 to 0.025%, Al 0.00
5% or less, N 0.001 to 0.004%, O 0.0
01-0.006%, Nb 0.003-0.0
1%, V 0.003 to 0.03%, Ni 0.05 to
1.0%, Cu 0.05 to 1.0%, Cr 0.05
.About.1.0%, Ca 0.001 to 0.006%, and the balance consisting essentially of iron and inevitable impurities.
After reheating the steel not containing 1 in the temperature range of 1000 to 1150 ° C., it is rolled so that the cumulative rolling reduction of 900 ° C. or less is 30% or more, and then 3 to 4 from the temperature of 750 ° C. or more.
50 mm thickness characterized by cooling to a temperature range of 350 to 650 ° C. at a cooling rate of 0 ° C./sec and then air cooling
The above (preferably 50 to 100 mm) high heat input welding heat-affected zone is excellent in toughness for construction, and is a manufacturing method of fireproof 50 kgf / mm 2 grade steel sheet for construction.

【0005】[0005]

【作用】以下、本発明について説明する。溶接構造用圧
延鋼材(JIS G3106)に規定する性能と600
℃の高温での高い耐力を維持し、かつ大入熱溶接熱影響
部の靱性を向上させるには、鋼成分と共に組織の微細化
を行うことが重要である。本発明の特徴は適量のMoを
添加し、さらにTi、N、OによりTi23、TiNを
鋼中に微細分散させた鋼片を1000〜1150℃の温
度域で再加熱後、900℃以下の累積圧下率が50%以
上となるように圧延を行った後、750℃以上の温度か
ら3〜40℃/秒の冷却速度で350〜650℃の温度
範囲まで冷却し微細なフェライト−ベイナイト組織にし
て、耐火性と優れた大入熱溶接HAZ靱性を同時に得る
ことにある。
The present invention will be described below. Performance specified by rolled steel for welded structure (JIS G3106) and 600
In order to maintain a high yield strength at a high temperature of ℃ and to improve the toughness of the high heat input welding heat affected zone, it is important to refine the structure together with the steel components. The feature of the present invention is to add an appropriate amount of Mo, and further reheat a billet in which Ti 2 O 3 and TiN are finely dispersed in Ti, N, and O in a temperature range of 1000 to 1150 ° C., and then 900 ° C. After rolling so that the cumulative rolling reduction below becomes 50% or more, it is cooled to a temperature range of 350 to 650 ° C. at a cooling rate of 3 to 40 ° C./sec from a temperature of 750 ° C. or higher and fine ferrite-bainite. The structure is to simultaneously obtain fire resistance and excellent high heat input welding HAZ toughness.

【0006】Moは微細な炭窒化物を形成し、さらに固
溶体強化によって高温強度を増加させるために、耐火性
を確保するために必須の元素である。しかしながらMo
量が高すぎると溶接性及びHAZ靱性が劣化するので、
その含有量の上限は0.80%とする必要がある。とこ
ろがMo単独添加だけでは、600℃という高温領域に
おいて十分な耐力が得ることは難しい。そこで組織をフ
ェライト−ベイナイト組織にすることが、該高温領域に
おける耐力を増加させるのに有効である。故に高い高温
強度、低温靱性及び優れたHAZ靱性を得るためには、
鋼板の製造条件も適切にする必要がある。Mo添加によ
る高温強度の増加を図るには、Moを再加熱時に溶体化
させる必要がある。このため再加熱温度の下限を100
0℃とする。再加熱温度が高すぎると結晶粒が大きくな
って低温靱性が劣化するので、その上限は1150℃に
しなければならない。
Mo is an essential element for ensuring fire resistance because it forms fine carbonitrides and further increases high temperature strength by solid solution strengthening. However, Mo
If the amount is too high, the weldability and HAZ toughness will deteriorate, so
The upper limit of its content needs to be 0.80%. However, it is difficult to obtain sufficient yield strength in a high temperature region of 600 ° C. only by adding Mo alone. Therefore, making the structure a ferrite-bainite structure is effective in increasing the yield strength in the high temperature region. Therefore, in order to obtain high high temperature strength, low temperature toughness and excellent HAZ toughness,
It is also necessary to make the manufacturing conditions for steel sheets appropriate. In order to increase the high temperature strength by adding Mo, it is necessary to solutionize Mo during reheating. Therefore, the lower limit of the reheating temperature is 100
Set to 0 ° C. If the reheating temperature is too high, the crystal grains become large and the low temperature toughness deteriorates, so the upper limit must be 1150 ° C.

【0007】続いて圧延では900℃以下の累積圧下率
を30%以上とすることが必須である。これはγ粒を微
細化して優れた低温靱性を得るためである。圧延に続く
鋼板の冷却条件は750℃以上の温度から3〜40℃/
秒の冷却速度で350〜650℃の温度範囲まで加速冷
却を行う必要がある。750℃未満の温度から冷却した
場合にはフェライト主体組織となり、十分な高温強度が
得られないためである。冷却速度を3℃/秒以上とする
のは、組織をフェライト−ベイナイト化するために必要
な最小の冷却速度である。また40℃/秒を超える冷却
速度で冷却した場合には、マルテンサイトが多量に生成
し十分な高温強度が確保できないためである。冷却停止
温度の下限を350℃にした理由は、それ以下の温度ま
で加速冷却を行うと島状マルテンサイトなどの低温変態
生成物により靱性の劣化を招くためである。また冷却停
止温度の上限を650℃にしたのはそれ以上の温度では
適量のベイナイト組織を得ることができないためであ
る。なおMo添加量の下限は、600℃で十分な耐力を
確保するため、その下限を0.35%とする必要があ
る。
Subsequently, in rolling, it is essential to set the cumulative rolling reduction at 900 ° C. or less to 30% or more. This is to refine the γ grains and obtain excellent low temperature toughness. The cooling conditions of the steel sheet following rolling are from 750 ° C or higher to 3-40 ° C /
It is necessary to perform accelerated cooling to a temperature range of 350 to 650 ° C. at a cooling rate of 2 seconds. This is because when cooled from a temperature lower than 750 ° C., a ferrite-based structure is formed and sufficient high-temperature strength cannot be obtained. The cooling rate of 3 ° C./sec or more is the minimum cooling rate necessary for making the structure ferrite-bainite. Further, when the cooling rate is higher than 40 ° C./sec, a large amount of martensite is generated and sufficient high temperature strength cannot be secured. The reason for setting the lower limit of the cooling stop temperature to 350 ° C. is that if accelerated cooling is performed to a temperature lower than that, toughness is deteriorated by low temperature transformation products such as island martensite. Further, the upper limit of the cooling stop temperature is set to 650 ° C. because an appropriate amount of bainite structure cannot be obtained at a temperature higher than that. The lower limit of the amount of Mo added must be 0.35% in order to secure sufficient yield strength at 600 ° C.

【0008】つぎに本発明におけるMo以外の成分限定
理由について説明する。Cは本発明鋼のようなフェライ
ト−ベイナイト組織では、高温強度に対して重要な元素
であり、0.05%以上の添加により高温強度は増大す
る。このため下限は0.05%とする。またC量が多す
ぎると大入熱溶接HAZ部でIGFが生成しなくなるた
め0.12%を上限とする。Siは脱酸上鋼に含まれる
元素でSi量が多くなると溶接性、HAZ靱性が劣化す
るため、その上限を0.6%とした。Mnは強度、靱性
を確保するうえで不可欠の元素であり、その下限は0.
8%である。しかしMn量が多すぎると焼入性が増加し
て溶接性、HAZ靱性が劣化するためMnの上限を1.
6%とした。Alは一般に脱酸上鋼に含まれる元素であ
るが、本発明では好ましくない元素であり0.005%
以下と限定した。これはAlが鋼中に含まれていると酸
素と結合してTi酸化物が生成しなくなるためである。
Si及びTiによっても脱酸は行われるので本発明鋼に
ついてはAlは少ないほど良く、0.003%以下が望
ましい。
Next, the reasons for limiting the components other than Mo in the present invention will be explained. C is an important element for high temperature strength in a ferrite-bainite structure such as the steel of the present invention, and the addition of 0.05% or more increases the high temperature strength. Therefore, the lower limit is 0.05%. If the amount of C is too large, IGF will not be generated in the HAZ portion of the high heat input weld, so 0.12% is made the upper limit. Since Si is an element contained in the deoxidized upper steel, the weldability and HAZ toughness deteriorate when the amount of Si increases, so the upper limit was made 0.6%. Mn is an essential element for ensuring strength and toughness, and the lower limit is 0.
8%. However, if the amount of Mn is too large, the hardenability increases and the weldability and HAZ toughness deteriorate, so the upper limit of Mn is 1.
It was 6%. Al is an element generally contained in deoxidized upper steel, but it is an element not preferred in the present invention and is 0.005%.
Limited to: This is because if Al is contained in the steel, it will combine with oxygen and Ti oxide will not be generated.
Since deoxidation is also carried out by Si and Ti, the less Al in the steel of the present invention, the better, and 0.003% or less is desirable.

【0009】Tiはその酸化物を生成させるために0.
005%以上が必要であり、0.025%を超えるとT
iCの生成によるHAZ靱性の劣化を招くため、0.0
05〜0.025%に限定する。NはTiNを確保する
ために必要な元素で、最低量を確保するため0.001
%以上が必要であり、N量が多くなると固溶NによるH
AZ靱性の劣化を招くため、その範囲を0.001〜
0.004%とした。OはTi23を生成させるために
必要な元素で、その最低必要量は0.001%であり、
0.006%を超えると鋼の清浄度、靱性の劣化を招く
ので、0.001〜0.006%に限定する。なお、本
発明鋼は不可避的不純物としてP及びSを含有する。
P、Sは高温強度に与える影響は小さいのでその量につ
いて特に限定しないが、一般に靱性、板厚方向強度等に
関する鋼の特性は、これらP、Sの量が少ないほど向上
する。望ましいP、S量はそれぞれ0.03%、0.0
05%以下である。本発明鋼の基本成分は以上のとおり
であり、十分に目的を達成できるが、さらに目的に対し
特性を高めるため、以下に述べる元素即ちNb、V、N
i、Cu、Cr、Caを選択的に添加すると強度、靱性
の向上について、さらに好ましい結果が得られる。
[0009] Ti has a content of 0.
005% or more is required, and if it exceeds 0.025%, T
Since the HAZ toughness is deteriorated due to the formation of iC, 0.0
It is limited to 05 to 0.025%. N is an element necessary to secure TiN, and 0.001 to secure the minimum amount.
% Is required, and when the amount of N increases, H due to solid solution N
Since the AZ toughness is deteriorated, the range is 0.001 to
It was 0.004%. O is an element necessary for producing Ti 2 O 3 , and the minimum necessary amount is 0.001%,
If it exceeds 0.006%, the cleanliness and toughness of steel will be deteriorated, so the content is limited to 0.001 to 0.006%. The steel of the present invention contains P and S as unavoidable impurities.
Since the effects of P and S on high temperature strength are small, the amounts thereof are not particularly limited, but generally, the properties of steel such as toughness and strength in the plate thickness direction are improved as the amounts of P and S are decreased. Desirable P and S contents are 0.03% and 0.0, respectively.
It is 05% or less. The basic components of the steel of the present invention are as described above, and the object can be sufficiently achieved. However, in order to further improve the characteristics for the object, the elements described below, namely Nb, V, N
By selectively adding i, Cu, Cr, and Ca, more preferable results can be obtained with respect to improvement in strength and toughness.

【0010】つぎに、前記添加元素とその添加量につい
て説明する。Nbは微細な炭窒化物を形成し、高温強度
を増加させる。しかし、0.003%以下では効果がな
く0.01%を超えると大入熱溶接HAZ靱性に好まし
くない影響がある。VはNbとほぼ同じ効果をもつ元素
であり、高温耐力に対する効果はNbに比較して小さい
が0.03%以下では効果がなく0.03%を超えると
HAZ靱性に好ましくない影響がある。つぎに、Niは
溶接性、HAZ靱性に悪影響を及ぼすことなく、母材の
強度、靱性を向上させるが、0.005%以下では効果
が薄く、1.0%以上では極めて高価になるため経済性
を失うので、上限は1.0%とした。
Next, the above-mentioned additional element and its addition amount will be explained. Nb forms fine carbonitrides and increases high temperature strength. However, if it is less than 0.003%, it has no effect, and if it exceeds 0.01%, it has an unfavorable effect on the high heat input welding HAZ toughness. V is an element having almost the same effect as Nb, and its effect on high temperature proof stress is smaller than that of Nb, but it is not effective at 0.03% or less, and has an unfavorable effect on HAZ toughness if it exceeds 0.03%. Next, Ni improves the strength and toughness of the base metal without adversely affecting weldability and HAZ toughness, but the effect is weak at 0.005% or less and extremely expensive at 1.0% or more, which is economical. Therefore, the upper limit was made 1.0%.

【0011】CuはNiとほぼ同様な効果を持つほか、
Cu析出物による高温強度の増加や耐食性や耐候性の向
上にも効果を有する。この場合Cu量が0.5%以上
で、その効果が著しい。しかし、Cu量が1.0%を超
えると熱間圧延時にCu割れが発生し製造が困難にな
り、また0.05%以下では効果がないのでCu量は
0.05〜1.0%に限定する。Crは母材および溶接
部の強度を高める元素であり、Cr量が0.5%以上で
耐候性も向上するが、1.0%を超えると溶接性やHA
Z靱性を劣化させ、また0.05%以下では効果が薄
い。従ってCr量は0.05%〜1.0%とする。Ca
は硫化物(MnS)の形態を制御し、シャルピー吸収エ
ネルギーを増加させ低温靱性を向上させる効果がある。
しかしCa量は0.001%未満では実用上効果がな
く、0.006%を超えるとCaO、CaSが多量に生
成して大型介在物となり、鋼の靱性のみならず清浄度も
害し溶接性、耐ラメラテア性にも悪影響を与えるので、
Ca添加量の範囲を0.001〜0.006%とする。
Cu has almost the same effect as Ni,
It is also effective in increasing the high temperature strength and improving the corrosion resistance and weather resistance due to the Cu precipitates. In this case, when the amount of Cu is 0.5% or more, the effect is remarkable. However, if the Cu content exceeds 1.0%, Cu cracking occurs during hot rolling, which makes production difficult, and if it is 0.05% or less, there is no effect, so the Cu content is 0.05 to 1.0%. limit. Cr is an element that enhances the strength of the base material and the welded portion. When the amount of Cr is 0.5% or more, the weather resistance is also improved, but when it exceeds 1.0%, the weldability and HA are improved.
The Z toughness is deteriorated, and if it is less than 0.05%, the effect is small. Therefore, the Cr content is 0.05% to 1.0%. Ca
Has the effect of controlling the morphology of sulfide (MnS), increasing Charpy absorbed energy, and improving low temperature toughness.
However, if the amount of Ca is less than 0.001%, there is no practical effect, and if it exceeds 0.006%, a large amount of CaO and CaS are formed and become large inclusions, which not only deteriorates the toughness of the steel but also the cleanliness, resulting in weldability, As it also has a negative effect on lamella tear resistance,
The range of the amount of Ca added is 0.001 to 0.006%.

【0012】[0012]

【実施例】周知の転炉、連続鋳造、厚板工程により鋼板
を製造し、常温と600℃の強度及び母材の低温靱性を
調査した。表1の1〜10に本発明鋼、11〜25に比
較鋼の化学成分を示す。表2に本発明鋼と比較鋼の鋼板
製造条件とその機械的性質を示す。表2の本発明鋼1〜
10は、600℃の降伏強度が常温の規格降伏強度の7
0%以上を有しているとともに、優れた母材の低温靱性
が得られ、優れた大入熱溶接HAZ靱性が得られてい
る。
EXAMPLE A steel plate was manufactured by a well-known converter, continuous casting, and thick plate process, and the strength at room temperature and 600 ° C. and the low temperature toughness of the base material were investigated. Tables 1 to 10 show the chemical compositions of the present invention steels and 11 to 25 are comparative steels. Table 2 shows the steel plate manufacturing conditions and the mechanical properties of the present invention steel and the comparative steel. Inventive Steels 1 to 1 in Table 2
No. 10 has a yield strength at 600 ° C of 7 which is the standard yield strength at room temperature.
In addition to having 0% or more, excellent low temperature toughness of the base material is obtained and excellent large heat input welding HAZ toughness is obtained.

【0013】これに対し比較鋼11ではC量が少ないた
めに、600℃の降伏強度が低く、常温の規格降伏強度
に対する600℃の降伏強度の割合が70%に達しな
い。比較鋼12ではC量が多いために、HAZ靱性が低
い。比較鋼13ではMoの量が少ないために、600℃
の降伏強度が低く、常温の規格降伏強度の70%に達し
ない。比較鋼14ではMoの量が多いためにHAZ靱性
が低い。比較鋼15ではTiの量が少なく、また比較鋼
16ではTiの量が多すぎ、共にHAZ靱性が低い。比
較鋼17ではAlの量が多いためTi酸化物が生成せ
ず、HAZ靱性が低くなっている。比較鋼18では再加
熱温度が低く十分にMoの固溶が図られなかったため、
600℃の降伏強度が常温の規格降伏強度の70%に達
しない。比較鋼19では再加熱温度が高すぎ組織の粗大
化を招き、母材の低温靱性の劣化並びにHAZ靱性が低
下している。比較鋼20では900℃以下の累積圧下率
が低く、圧延による組織の細粒化が十分行われず、母材
の低温靱性の劣化並びにHAZ靱性が低下している。
On the other hand, in Comparative Steel 11, since the C content is small, the yield strength at 600 ° C. is low, and the ratio of the yield strength at 600 ° C. to the standard yield strength at room temperature does not reach 70%. Comparative Steel 12 has a large amount of C, and thus has a low HAZ toughness. Comparative Steel 13 has a small amount of Mo, so 600 ° C.
The yield strength is low and does not reach 70% of the standard yield strength at room temperature. In Comparative Steel 14, the HAZ toughness is low due to the large amount of Mo. Comparative steel 15 has a small amount of Ti, and comparative steel 16 has a large amount of Ti, and both have low HAZ toughness. In Comparative Steel 17, since the amount of Al was large, Ti oxide was not formed, and the HAZ toughness was low. In Comparative Steel 18, since the reheating temperature was low and Mo was not sufficiently solid-dissolved,
The yield strength at 600 ° C does not reach 70% of the standard yield strength at room temperature. In Comparative Steel 19, the reheating temperature was too high, causing the structure to become coarse, and the low temperature toughness of the base material deteriorated and the HAZ toughness decreased. In Comparative Steel 20, the cumulative rolling reduction at 900 ° C. or lower is low, the grain refinement of the structure is not sufficiently performed by rolling, and the low temperature toughness of the base material and the HAZ toughness are reduced.

【0014】比較鋼21では水冷開始温度が低くフェラ
イト量が多くなりすぎ、600℃の降伏強度が常温の規
格降伏強度の70%に達しない。比較鋼22では水冷停
止温度が低く島状マルテンサイトが生成し、母材の低温
靱性が劣化している。比較鋼23では水冷停止温度が高
いためベイナイト量が少なく、600℃の降伏強度が常
温の規格降伏強度の70%に達しない。比較鋼24では
冷却速度が低くベイナイト組織が生成せず、600℃の
降伏強度が常温の規格降伏強度の70%に達しない。比
較鋼25では冷却速度が高く多量のマルテンサイトが生
成し、母材の低温靱性が劣化している。
In Comparative Steel 21, the water cooling start temperature is low and the amount of ferrite becomes too large, so that the yield strength at 600 ° C. does not reach 70% of the standard yield strength at room temperature. Comparative steel 22 has a low water-cooling stop temperature and island martensite is formed, and the low temperature toughness of the base material is deteriorated. In Comparative Steel 23, since the water cooling stop temperature is high, the amount of bainite is small, and the yield strength at 600 ° C. does not reach 70% of the standard yield strength at room temperature. In Comparative Steel 24, the cooling rate is low, a bainite structure is not formed, and the yield strength at 600 ° C. does not reach 70% of the standard yield strength at room temperature. In Comparative Steel 25, the cooling rate is high and a large amount of martensite is formed, and the low temperature toughness of the base material is deteriorated.

【0015】[0015]

【表1】 [Table 1]

【0016】[0016]

【表2】 [Table 2]

【0017】[0017]

【発明の効果】本発明の化学成分及び製造法で製造した
厚鋼板、形鋼、棒鋼などの鋼材は高い600℃の降伏強
度、優れた低温靱性と優れた大入熱溶接HAZ靱性を有
する鋼であり、建築、土木、海洋構造物の安全性を大き
く高めることができる。
Industrial Applicability The steel materials such as thick steel plate, shaped steel, and steel bar manufactured by the chemical composition and manufacturing method of the present invention are steels having high yield strength of 600 ° C., excellent low temperature toughness, and excellent high heat input welding HAZ toughness. Therefore, the safety of architecture, civil engineering, and marine structures can be greatly improved.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量比で C :0.05〜0.12%、 Si:0.6%以下、 Mn:0.8〜1.6%、 P :0.03%以下、 S :0.005%以下、 Mo:0.35〜0.80%、 Ti:0.005〜0.025%、 Al:0.005%以下、 N :0.001〜0.004%、 O :0.001〜0.006% を含有し、残部が鉄および不可避的不純物からなる実質
的にAlを含有しない鋼を1000〜1150℃の温度
域で再加熱後、900℃以下の累積圧下率が30%以上
となるように圧延を行った後、750℃以上の温度から
3〜40℃/秒の冷却速度で350〜650℃の温度範
囲まで冷却し、その後空冷することを特徴とする大入熱
溶接熱影響部靱性の優れた建築用耐火鋼板の製造法。
1. A weight ratio of C: 0.05 to 0.12%, Si: 0.6% or less, Mn: 0.8 to 1.6%, P: 0.03% or less, S: 0.0. 005% or less, Mo: 0.35 to 0.80%, Ti: 0.005 to 0.025%, Al: 0.005% or less, N: 0.001 to 0.004%, O: 0.001 ~ 0.006% and the balance of iron and unavoidable impurities and substantially Al-free steel is reheated in the temperature range of 1000 to 1150 ° C, and the cumulative rolling reduction at 900 ° C or less is 30% or more. High heat input welding heat, characterized by cooling from 750 ° C. or higher to a temperature range of 350 to 650 ° C. at a cooling rate of 3 to 40 ° C./sec, and then air cooling. Affected zone A manufacturing method of fire-resistant steel plates for construction with excellent toughness.
【請求項2】 重量比で C :0.05〜0.12%、 Si:0.6%以下、 Mn:0.8〜1.6%、 P :0.03%以下、 S :0.005%以下、 Mo:0.35〜0.80%、 Ti:0.005〜0.025%、 Al:0.005%以下、 N :0.001〜0.004%、 O :0.001〜0.006% さらに Nb:0.003〜0.01%、 V :0.003〜0.03%、 Ni:0.05〜1.0%、 Cu:0.05〜1.0%、 Cr:0.05〜1.0%、 Ca:0.001〜0.006% の1種または2種以上を含有し、残部が鉄および不可避
的不純物からなる実質的にAlを含有しない鋼を100
0〜1150℃の温度域で再加熱後、900℃以下の累
積圧下率が30%以上となるように圧延を行った後、7
50℃以上の温度から3〜40℃/秒の冷却速度で35
0〜650℃の温度範囲まで冷却し、その後空冷するこ
とを特徴とする大入熱溶接熱影響部靱性の優れた建築用
耐火鋼板の製造法。
2. By weight ratio, C: 0.05 to 0.12%, Si: 0.6% or less, Mn: 0.8 to 1.6%, P: 0.03% or less, S: 0.0. 005% or less, Mo: 0.35 to 0.80%, Ti: 0.005 to 0.025%, Al: 0.005% or less, N: 0.001 to 0.004%, O: 0.001 -0.006% Further Nb: 0.003-0.01%, V: 0.003-0.03%, Ni: 0.05-1.0%, Cu: 0.05-1.0%, Cr: 0.05 to 1.0%, Ca: 0.001 to 0.006%, one or more kinds of steel, with the balance being iron and unavoidable impurities and containing substantially no Al. 100
After reheating in the temperature range of 0 to 1150 ° C, rolling is performed so that the cumulative rolling reduction of 900 ° C or less is 30% or more, and then 7
35 at a cooling rate of 3 to 40 ° C / sec from a temperature of 50 ° C or higher
A method for producing a refractory steel sheet for construction having excellent toughness in a heat-affected zone with a high heat input welding, which comprises cooling to a temperature range of 0 to 650 ° C. and then air cooling.
JP08079492A 1992-04-02 1992-04-02 High heat input welding Expired - Lifetime JP3202310B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08079492A JP3202310B2 (en) 1992-04-02 1992-04-02 High heat input welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08079492A JP3202310B2 (en) 1992-04-02 1992-04-02 High heat input welding

Publications (2)

Publication Number Publication Date
JPH05279735A true JPH05279735A (en) 1993-10-26
JP3202310B2 JP3202310B2 (en) 2001-08-27

Family

ID=13728370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08079492A Expired - Lifetime JP3202310B2 (en) 1992-04-02 1992-04-02 High heat input welding

Country Status (1)

Country Link
JP (1) JP3202310B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079793B2 (en) * 2007-04-06 2012-11-21 新日本製鐵株式会社 Steel material excellent in high temperature characteristics and toughness and method for producing the same
JP5079794B2 (en) * 2007-04-11 2012-11-21 新日本製鐵株式会社 Steel material excellent in high-temperature strength and toughness and manufacturing method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4718866B2 (en) * 2005-03-04 2011-07-06 新日本製鐵株式会社 High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
KR102436177B1 (en) 2020-09-11 2022-08-24 주용진 Companion animal for scratcher
KR102542591B1 (en) 2020-12-24 2023-06-12 정형준 Assembling maze structure for companion animal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207812A (en) * 1990-01-05 1991-09-11 Nippon Steel Corp Manufacture of steel excellent in toughness of base metal and toughness of joint
JPH03236420A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH05112823A (en) * 1991-10-18 1993-05-07 Kobe Steel Ltd Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03207812A (en) * 1990-01-05 1991-09-11 Nippon Steel Corp Manufacture of steel excellent in toughness of base metal and toughness of joint
JPH03236420A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Production of steel plate excellent in hydrogen induced cracking resistance, sulfide stress corrosion cracking resistance, and toughness at low temperature
JPH05112823A (en) * 1991-10-18 1993-05-07 Kobe Steel Ltd Manufacture of 490n/mm2 class fire resistant steel excellent in toughness of high heat input welded joint

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5079793B2 (en) * 2007-04-06 2012-11-21 新日本製鐵株式会社 Steel material excellent in high temperature characteristics and toughness and method for producing the same
JP5079794B2 (en) * 2007-04-11 2012-11-21 新日本製鐵株式会社 Steel material excellent in high-temperature strength and toughness and manufacturing method thereof

Also Published As

Publication number Publication date
JP3202310B2 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JP2760713B2 (en) Method for producing controlled rolled steel with excellent fire resistance and toughness
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JP5098210B2 (en) Refractory steel and method for producing the same
WO2008075443A1 (en) Steel excelling in toughness at region affected by welding heat
TWI526545B (en) Steel material for welding
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP3378433B2 (en) Manufacturing method of steel sheet with excellent toughness of weld heat affected zone
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP2002256379A (en) Steel for high heat input welding
JP2000256777A (en) High tensile strength steel plate excellent in strength and low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JPH0541683B2 (en)
JP4133175B2 (en) Non-water cooled thin low yield ratio high strength steel with excellent toughness and method for producing the same
JP2776174B2 (en) Manufacturing method of high tensile strength and high toughness fine bainite steel
JP3202310B2 (en) High heat input welding
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JP3397271B2 (en) Rolled section steel for refractory and method for producing the same
JP2596853B2 (en) Method for producing intragranular ferrite shaped steel with excellent base metal toughness as welded and excellent weld toughness
JPH10204572A (en) 700×c fire resistant rolled shape steel and its production
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JP3622246B2 (en) Method for producing extremely thick H-section steel with excellent strength, toughness and weldability
JP3212363B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JP3126181B2 (en) Manufacturing method of steel for offshore structures with excellent fire resistance
JP3212380B2 (en) Manufacturing method of low yield ratio 600N / mm2 class steel sheet for building with excellent heat input zone toughness of large heat input welding
JPS6256518A (en) Production of high strength steel sheet for high heat input welding

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010612