JPH01159356A - High tension steel having superior tougeness at weld heat-affected zone - Google Patents

High tension steel having superior tougeness at weld heat-affected zone

Info

Publication number
JPH01159356A
JPH01159356A JP31614287A JP31614287A JPH01159356A JP H01159356 A JPH01159356 A JP H01159356A JP 31614287 A JP31614287 A JP 31614287A JP 31614287 A JP31614287 A JP 31614287A JP H01159356 A JPH01159356 A JP H01159356A
Authority
JP
Japan
Prior art keywords
steel
less
toughness
affected zone
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31614287A
Other languages
Japanese (ja)
Other versions
JPH0527703B2 (en
Inventor
Yoshio Terada
好男 寺田
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
為広 博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP31614287A priority Critical patent/JPH01159356A/en
Publication of JPH01159356A publication Critical patent/JPH01159356A/en
Publication of JPH0527703B2 publication Critical patent/JPH0527703B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high tension steel having superior toughness at the weld heat-affected zone by specifying a compsn. consisting of C, Si, Mn, P, S, Al, Ti, Zr, N, O and Fe and by incorporating specified grains of Ti-Zr compd. oxide. CONSTITUTION:Grains of Ti-Zr compd. oxide having 0.05-10mum grain size are incorporated into a steel consisting of, by weight, 0.01-0.60% C, <=0.5% Si, 0.5-2.2% Mn, <=0.025% P, <=0.010% S, <=0.005% Al, 0.003-0.020% Ti, 0.002-0.018% Zr (Ti+Zr=0.005-0.022%),<=0.0040% N, 0.0010-0.0080% O and the balance Fe with inevitable impurities or further contg. prescribed amts. of Cu, Ni, Nb, V, B, Ca, Cr, Mo, etc. The number of the grains incorporated is 3mu10<5>-1X10<10> per 1mm<3> steel. A high tension steel having superior toughness at low temp. is obtd. When the steel is welded, the structure of the weld heat- affected zone is made fine and the zone has superior toughness whether the welding is low heat input welding or high heat input welding.

Description

【発明の詳細な説明】 (産業上の利用分![!F ) 本発明は小人熱溶接から大入熱溶接に至るまで熱影響部
(I(A Z )の低温靭性が優れた高張力鋼に関する
。また、この鋼は圧力容器、造船、橋梁、建築、ライン
パイプなど溶接鋼構造物に用いることができる。
[Detailed description of the invention] (Industrial use! [!F) The present invention is a high tensile strength steel with excellent low-temperature toughness in the heat affected zone (I(AZ)), which can be used for everything from dwarf heat welding to large heat input welding. It relates to steel. Also, this steel can be used in welded steel structures such as pressure vessels, shipbuilding, bridges, architecture, and line pipes.

(従来の技術) 低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2
)高炭素島状マルテンサイト(Mo)、上部ベイナイト
(B u)などの硬化相の分散状態、(3)粒界脆化の
有無、(4)元素のミクロ偏析など種々の冶金学的要因
に支配される。
(Prior art) The HAZ toughness of low alloy steel is determined by (1) grain size, (2)
) The dispersion state of hardened phases such as high carbon island martensite (Mo) and upper bainite (Bu), (3) presence or absence of grain boundary embrittlement, and (4) various metallurgical factors such as elemental microsegregation. be controlled.

なかでもHAZの結晶粒のサイズは低温靭性に大きな影
響を与えることが知られており、HA Z組織を微細化
する数多くの技術が開発実用化されている。
In particular, it is known that the grain size of the HAZ has a large effect on low-temperature toughness, and many techniques for refining the HAZ structure have been developed and put into practical use.

たとえば、T i N s Z r Nなど高温でも比
較的安定な窒化物を鋼中に微細分11にさせ、これによ
ってHA Zのオーステナイト(r)粒の粗大化を抑制
する技術が開発されているが、鋼が溶融する溶融線近傍
では、TiN、ZrNは粗大化もしくは溶解しγ粒の粗
大化抑制能力は消失する。
For example, a technology has been developed in which nitrides, such as TiNsZrN, which are relatively stable even at high temperatures, are made to have a fine fraction of 11 in steel, thereby suppressing the coarsening of austenite (r) grains in HAZ. However, near the melting line where the steel melts, TiN and ZrN coarsen or dissolve, and the ability to suppress coarsening of γ grains disappears.

これに対して 特開昭59−190313号公報によれ
ば、溶鋼をTiあるいはTi合金で脱酸し、次いでZr
を添加することにより、Ti酸化物とZrNを分散させ
た鋼は、溶融線近傍でのTi酸化物を主成分とした微細
な放射状アシキュラーフェライト(AF)の生成と、Z
rNによるγ粒の粗大化抑制効果によってHAZm織を
小さくすることができ、T i NあるいはZrN鋼に
比較して優れた低温靭性が得られる。
On the other hand, according to JP-A-59-190313, molten steel is deoxidized with Ti or Ti alloy, and then Zr
By adding ZrN, the steel in which Ti oxide and ZrN are dispersed has the formation of fine radial acicular ferrite (AF) mainly composed of Ti oxide near the melting line and the formation of ZrN.
The HAZm weave can be made smaller due to the effect of rN on suppressing the coarsening of γ grains, resulting in superior low-temperature toughness compared to TiN or ZrN steel.

(発明が解決しようとする問題点) しかしながら本発明者らはその後の研究によれば、Ti
酸化物を微細分散させた鋼は溶融線近傍の1粒が粗大化
した(粗粒域: 1400℃以上に加熱される領域)領
域のHAZ組織を小さくする効果は大きいが、TiN、
ZrNの一部が粗大化したγ粒がやや大きい領域(亜粗
粒域:tzo。
(Problem to be solved by the invention) However, according to the inventors' subsequent research, Ti
Steel with finely dispersed oxides has a great effect of reducing the HAZ structure in the region where one grain near the melting line becomes coarse (coarse grain region: region heated to 1400°C or higher), but TiN,
A region where some of the ZrN particles are coarsened and the γ grains are somewhat large (sub-coarse grain region: tzo).

〜1400℃に加熱される領域)では、Ti酸化物によ
るHへzmmの微細化効果は粗粒域に比較して小さく、
+1 A Z靭性が劣化することがわかってきた。
In the region (heated to ~1400°C), the effect of Ti oxide on refining H zmm is smaller than in the coarse grain region;
+1 AZ It has been found that the toughness deteriorates.

とくに大入熱溶接を行なった場合には、亜粗粒域の幅が
大きくなるためにHA Z全域で安定して高靭性を得る
ことができない。
In particular, when high heat input welding is performed, the width of the sub-coarse grain region becomes large, making it impossible to stably obtain high toughness throughout the HAZ.

本発明は溶接熱影響部靭性の優れた高張力鋼を堤案する
もので、本発明の高張力鋼は溶融線近傍を含めたHAZ
全域でm織が微細化し、優れた低温靭性を有する。
The present invention proposes a high-strength steel with excellent weld heat-affected zone toughness.
The m-weave is fine throughout the entire area and has excellent low-temperature toughness.

(問題点を解決するための手段) 本発明は、重量%で、c:o、oot〜0.20%、S
i:0.5%以下、Mn : 0.5〜2.2%、p:
(Means for Solving the Problems) The present invention provides c:o, oot ~ 0.20%, S
i: 0.5% or less, Mn: 0.5-2.2%, p:
.

、025%以下、s:o、010%以下、AIl:0.
005%以下、Ti:0.003〜0.020%、Z「
:o、oo2〜0.018%、N:0.0040%以下
、o : 0.0010−0.0080%、0.005
%≦Ti+Zr≦0.022%を満足し、残部鉄および
不可避的不純物を含みかつ粒子径が0.05〜lOpm
、粒子数が3X10’−IXIO”ケ/鶴3のTiとZ
rの複合酸化物を含有する溶接熱影響部靭性の優れた高
張力鋼を特定発明とする。
, 025% or less, s:o, 010% or less, AIl:0.
005% or less, Ti: 0.003 to 0.020%, Z"
: o, oo2-0.018%, N: 0.0040% or less, o: 0.0010-0.0080%, 0.005
%≦Ti+Zr≦0.022%, contains the balance iron and unavoidable impurities, and has a particle size of 0.05 to 1Opm
, the number of particles is 3X10'-IXIO"ke/Tsuru 3 Ti and Z
The specified invention is a high-strength steel containing an r composite oxide and having excellent weld heat-affected zone toughness.

以下本発明について説明する。The present invention will be explained below.

本発明者らの研究によれば、HAZ靭性は、l)鋼の化
学成分、2)組織(結晶粒の大きさと硬化相の分布状B
)に大きく依存し、鋼成分の適正化とこれによる結晶粒
の微細化が高靭性化に不可欠であると考えられる。
According to the research conducted by the present inventors, HAZ toughness is determined by 1) chemical composition of steel, 2) microstructure (crystal grain size and hardened phase distribution)
), and it is thought that optimization of steel components and the resulting refinement of grain size are essential for achieving high toughness.

そこで実質的にA1を含有しない溶鋼中にTiとZrを
同時に添加し、微細なTiとZrの複合酸化物(Ti−
Zr−0系)を形成、分散させ、これによってML織を
微細化する新しい方法を発明した。
Therefore, Ti and Zr are simultaneously added to molten steel that does not substantially contain A1, and a fine composite oxide of Ti and Zr (Ti-
We have invented a new method for forming and dispersing Zr-0 (Zr-0 series) and thereby refining the ML weave.

TiとZrの複合酸化物はTi酸化物(Ti −O系)
あるいはZr1ll化物(Zr−0系)に比較して生成
温度が高く、凝固冷却速度の影響を受は難いので鋼中に
微細に分散される。とくに鋳片中心部のTiとZrの複
合酸化物の個数は従来のTiあるいはZrの酸化物に比
較して著しく増加する。
The composite oxide of Ti and Zr is Ti oxide (Ti-O system)
Alternatively, since the formation temperature is higher than that of Zr1llide (Zr-0 series) and it is less affected by the solidification cooling rate, it is finely dispersed in the steel. In particular, the number of composite oxides of Ti and Zr in the center of the slab increases significantly compared to conventional oxides of Ti or Zr.

微細なTiとZrの複合酸化物はγ粒の粗大抑制効果が
極めて大きく、1400℃以下に加熱される領域では1
粒の粗大化がTiN、ZrN、TiM化物およびZr酸
化物に比較して極力抑制されるために、亜粗粒域の幅が
非常に小さくなる。
The fine composite oxide of Ti and Zr has an extremely large effect of suppressing the coarsening of γ grains, and in the region heated to 1400°C or less, the
Since grain coarsening is suppressed to a minimum compared to TiN, ZrN, TiM compound and Zr oxide, the width of the sub-coarse grain region becomes extremely small.

このためHA Z Mi織は微細化し、T i N鋼、
ZrN鋼、Ti酸化物あるいはZr酸化物を含有する鋼
に比較して極めて優れた低温靭性が得られる。
For this reason, the HAZ Mi weave has become finer, and T i N steel,
Extremely superior low-temperature toughness can be obtained compared to ZrN steel and steel containing Ti oxide or Zr oxide.

7’iとZ「の複合酸化物を微細分散した鋼は、溶融線
近傍の1400℃以上に加熱される領域においても、γ
−α変態時にγ粒内に存在するTiとZ「の複合酸化物
を核として、放射状に微細なアシキエラーフェライトを
生成し、HAZ組織を著しく微細化する。その結果、溶
接部は全域にわたって微細化し、極めて優れた低温靭性
が得られる。
Steel in which composite oxides of 7'i and Z' are finely dispersed exhibits γ
-During the α transformation, the complex oxide of Ti and Z present in the γ grains forms a radial fine Ashiqui error ferrite, which significantly refines the HAZ structure.As a result, the welded area is It is made finer and has extremely excellent low-temperature toughness.

このようにTiとZ「の複合酸化物がHAZ組織を微細
化する効果を有するためには、まずTiとZ「の複合酸
化物の粒子径が0.05〜10μmの範囲にあることが
必要である。
In order for the composite oxide of Ti and Z to have the effect of refining the HAZ structure, the particle size of the composite oxide of Ti and Z must first be in the range of 0.05 to 10 μm. It is.

本発明者らの抽出レプリカによる電子顕微鏡観察結果に
よれば、該粒子径が0.05μm未満ではγ粒の粗大化
抑制効果および粒内アシュキラーフェライト核としての
生成効果が極めて弱く、また10μmliになるとそれ
自身が破壊の発生点となりやすいためHAZ靭性は低下
する。
According to the results of electron microscopy observation using extracted replicas by the present inventors, when the particle size is less than 0.05 μm, the effect of suppressing coarsening of γ grains and the effect of forming intragranular Ashkiller ferrite nuclei is extremely weak; In this case, the HAZ toughness decreases because the steel itself tends to become a point of occurrence of fracture.

また酸化物の個数に関して粒子数が少なすぎると、溶接
時に1粒の粗大化抑制効果および粒内アシュキラーフェ
ライト核としての生成効果が得られないので、3XIO
’以上の粒子を存在させることが必要である。lX10
”を超えた過剰な酸化物は母材およびHAZの靭性ある
いは延性の低下を招くのでその1現はlXl0”でなけ
ればならない。
In addition, if the number of particles is too small in terms of the number of oxides, the effect of suppressing the coarsening of a single grain during welding and the effect of forming intragranular Ashkiller ferrite nuclei cannot be obtained, so 3XIO
It is necessary to have more than 100 particles present. lX10
Excessive oxide exceeding "1X10" causes a decrease in the toughness or ductility of the base metal and HAZ.

TiとZrの複合酸化物を微細に分散させるためには、
溶鋼中にTiとZrを同時に添加し脱酸することが特に
重要である。特開昭59−190313号公報に開示さ
れているように、TiあるいはTi合金で脱酸し、次い
でZrを添加した場合、T i i2化物とZrNが生
成し、TIとZrの複合酸化物は生成しない。
In order to finely disperse the composite oxide of Ti and Zr,
It is particularly important to simultaneously add Ti and Zr to molten steel for deoxidation. As disclosed in JP-A No. 59-190313, when deoxidizing with Ti or Ti alloy and then adding Zr, Ti i2 and ZrN are produced, and a composite oxide of Ti and Zr is Not generated.

酸化物によってHAZ靭性を改善する方法には、特開昭
61−79745号公報のようにTi酸化物を利用する
ものがあるが、Tiと2「の複合酸化物は、Ti酸化物
に比較して生成温度が高いために凝固冷却速度の影響を
受は難いので、鋳片全17にわたって微細均一分散が可
能な点、さらにはγ粒の粗大化抑制効果が極めて大きい
点で優れている。
Some methods of improving HAZ toughness with oxides use Ti oxides, as disclosed in Japanese Patent Application Laid-Open No. 61-79745, but composite oxides of Ti and 2" Since the formation temperature is high, it is hardly affected by the solidification cooling rate, so it is excellent in that fine and uniform dispersion can be achieved over all 17 slabs, and furthermore, the effect of suppressing coarsening of γ grains is extremely large.

この結果、板厚中心部を含めた全ての板厚位置において
、HAZの全域で&lI織が微細化され、極めて優れた
低温靭性を存する°。
As a result, the &lI weave is refined throughout the HAZ at all thickness positions, including the center of the plate thickness, resulting in extremely excellent low-temperature toughness.

鋼中にTiとZrの複合酸化物を微細分散させるために
は、とくにTi、Zrおよび0量とT s %Zr量の
バランスの適正化が必須である。このためTi、Zrお
よびO量をそれぞれTi:Q、QQ3〜0.020%、
Z r : 0.002〜0.018%、o:o、oo
to〜0.080%に限定し、かつTi、Zr量のバラ
ンスを0.005%≦Ti+Zr≦0.022%とする
必要がある。
In order to finely disperse the composite oxide of Ti and Zr in steel, it is essential to optimize the balance between the amounts of Ti, Zr, and 0 and the amount of T s % Zr. For this reason, the amounts of Ti, Zr and O are respectively Ti:Q, QQ3~0.020%,
Zr: 0.002-0.018%, o: o, oo
It is necessary to limit the amount of Ti to 0.080% and to balance the amounts of Ti and Zr such that 0.005%≦Ti+Zr≦0.022%.

Ti1iの下限0.003%はHA Z k: オイテ
T iとZrの複合酸化物を生成するための必要最小量
である。またTiCの生成による低温靭性の劣化を防止
するため上限を0.020%とした。
The lower limit of Ti1i is 0.003%, which is the minimum amount required to produce a composite oxide of Ti1i and Zr. Further, in order to prevent deterioration of low temperature toughness due to the formation of TiC, the upper limit was set to 0.020%.

Zr量の下限は0.002%はHAZにおいてTiとZ
rの複合酸化物を生成するための必要最小量である。ま
たHAZ靭性の劣化を防止するため上限を0.018%
とした。
The lower limit of Zr content is 0.002%, which is
This is the minimum amount necessary to generate a complex oxide of r. In addition, the upper limit was set at 0.018% to prevent deterioration of HAZ toughness.
And so.

0量の下限はo、ooio%はHAZにおいてTiとZ
rの複合酸化物を生成するための必要最小量である。ま
た非金属介在物の生成による鋼の清浄度靭性の劣化を防
止するため0の上限を0.0080%とした。
The lower limit of 0 amount is o, ooio% is Ti and Z in HAZ.
This is the minimum amount necessary to generate a complex oxide of r. Further, in order to prevent deterioration of the cleanliness and toughness of the steel due to the formation of non-metallic inclusions, the upper limit of 0 was set to 0.0080%.

T i +、Z r fftの下限0.005%はHA
 ZにおいてTi?!:Zrの複合酸化物を生成するた
めの必要最小■である。また低温靭性およびHAZ靭性
の劣化を防止するため上限を0.022%とした。
The lower limit 0.005% of T i +, Z r fft is HA
Ti in Z? ! : The required minimum value (■) for producing a Zr complex oxide. Further, in order to prevent deterioration of low temperature toughness and HAZ toughness, the upper limit was set to 0.022%.

たとえTiとZrの複合酸化物が鋼中に微細分散してい
ても基本成分が適当でないと優れたHA2靭性は得られ
ない。
Even if composite oxides of Ti and Zr are finely dispersed in steel, excellent HA2 toughness cannot be obtained unless the basic components are appropriate.

以下この点について説明する。This point will be explained below.

C量の下限0.005%は母材および溶接部の強度の確
保ならびにNb、Vなどの添加時にこれらの効果を発揮
させるための最小量である。しかしC量が多すぎると、
母材、溶接部の低温靭性に悪影響を及ぼすだけでなく溶
接性、HAZ靭性も劣化させる元素であるため、その上
限を0.20%に限定した。
The lower limit of the amount of C, 0.005%, is the minimum amount to ensure the strength of the base metal and the welded part and to exhibit these effects when adding Nb, V, etc. However, if the amount of C is too large,
Since it is an element that not only adversely affects the low-temperature toughness of the base metal and weld zone, but also deteriorates weldability and HAZ toughness, the upper limit was limited to 0.20%.

SiはPIL酸上鋼に含まれる元素であるが、溶接性、
HA Z靭性を劣化させる元素であるため上限を0.5
%とした。
Si is an element contained in PIL acid coated steel, but it improves weldability,
Since it is an element that deteriorates HAZ toughness, the upper limit is set to 0.5.
%.

Mnは強度靭性を確保する上で不可欠な元素であり、そ
の下限は0.6%である。しかしMnが多すぎると鋼の
焼入れ性が増加して溶接性、HAZ靭性を劣化させるの
で上限を2.2%とした。
Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.6%. However, if Mn is too large, the hardenability of the steel will increase and the weldability and HAZ toughness will deteriorate, so the upper limit was set at 2.2%.

本発明鋼において不純物であるP、Sをそれぞれ0.0
2%以下、0.010%以下とした理由は、母材、HA
 Zの低温靭性をより一層向上させるためである。Pl
の低減は、接合部における粒界破壊四向を減少させ、S
lの低減は、粒界フェライトの生成を抑制する傾向があ
る。最も好ましいP。
In the steel of the present invention, the impurities P and S are each 0.0
The reason for setting it below 2% and below 0.010% is that the base material, HA
This is to further improve the low-temperature toughness of Z. Pl
The reduction in S reduces intergranular fracture in all directions at the joint, and
Reducing l tends to suppress the formation of grain boundary ferrite. Most preferred P.

S量は、それぞれ0.01%、0.0050%以下であ
る。
The amount of S is 0.01% and 0.0050% or less, respectively.

Alは一般に脱酸上鋼に含まれる元素であるが、本発明
では好ましくない元素であり、0.005%以下と限定
した。これはAI!、が鋼中に含まれているとOと結合
して、TiとZrの複合酸化物ができないためである。
Although Al is generally an element contained in deoxidized steel, it is an undesirable element in the present invention, and is therefore limited to 0.005% or less. This is AI! This is because if , is contained in the steel, it will combine with O and a composite oxide of Ti and Zr will not be formed.

脱酸はTiおよびZrだけでも可能であり、本発明にお
いてAAIは少ないほど良く、0.003%以下が望ま
しい。
Deoxidation is possible using only Ti and Zr, and in the present invention, the lower the AAI content, the better, and preferably 0.003% or less.

Nは鋼中に不可避的に混入し、鋼の低温靭性を低下させ
る。とくに多量の固溶NはHAZに高炭素の島状マルテ
ンサイトを生成し易く、靭性を大幅に劣化させる。この
ためNの上限を0.0040%に限定した。
N inevitably mixes into steel and reduces the low-temperature toughness of the steel. In particular, a large amount of solid solution N tends to generate high-carbon island martensite in the HAZ, which significantly deteriorates toughness. For this reason, the upper limit of N was limited to 0.0040%.

つぎにCu、Ni%Nbb Cr%Mo、VSB。Next, Cu, Ni%Nbb, Cr%Mo, VSB.

Ca 、を添加する理由について説明する。The reason for adding Ca will be explained.

基本成分にさらに、これらの元素を添加する主たる目的
は本発明鋼の特徴を損なうことなく、強度、靭性など特
性の向上をはかるためである。したがって、その添加量
は自ら制限されるべき性質のものである。
The main purpose of adding these elements to the basic components is to improve properties such as strength and toughness without impairing the characteristics of the steel of the present invention. Therefore, the amount added should be limited.

CuはNiとほぼ同様の効果とともに耐食性、耐水素誘
起割れ性などにも効果があるが、1.0%を超えると熱
間圧延時にCu−クランクが発生し〜製造困難となる。
Cu has almost the same effects as Ni, as well as corrosion resistance, hydrogen-induced cracking resistance, etc., but if it exceeds 1.0%, Cu-crank occurs during hot rolling, making production difficult.

このため上限を1.0%とした。For this reason, the upper limit was set at 1.0%.

Niは溶接性、接合部靭性に悪影響をおよぼすことなく
、母材の強度、靭性を向上させるが、4.0%を超える
と溶接性に好ましくないため上限を4.0%とした。
Ni improves the strength and toughness of the base metal without adversely affecting weldability and joint toughness, but if it exceeds 4.0%, it is unfavorable for weldability, so the upper limit was set at 4.0%.

Nbは1粒界に生成するフェライトを抑制し、TiとZ
rの複合酸化物を核とする微細なAFの生成を促進する
働きがある。この効果を得るためには最低0.003%
のNbiが必要である。しかしながらNb量が多すぎる
と、逆に微細なAFの生成を妨げるのでその上限を0.
06%とした。
Nb suppresses ferrite generated at one grain boundary, and Ti and Z
It has the function of promoting the generation of fine AF with r complex oxide as the core. Minimum 0.003% to obtain this effect
Nbi is required. However, if the amount of Nb is too large, it will hinder the formation of fine AF, so the upper limit should be set at 0.
It was set at 06%.

Crは母材、溶接部の強度を高めるが、多すぎると溶接
性や接合部靭性を劣化させる。その上限は1.0%であ
る。
Cr increases the strength of the base metal and the welded part, but too much Cr deteriorates weldability and joint toughness. Its upper limit is 1.0%.

Moは母材の強度、靭性をともに向上させる元素である
が、多すぎるとC「と同様に母材、接合部の靭性、溶接
性の劣化を招き好ましくない、その上限は0.4%であ
る。
Mo is an element that improves both the strength and toughness of the base metal, but if it is too large, it will cause deterioration of the toughness and weldability of the base metal and joints, similar to C, which is undesirable.The upper limit is 0.4%. be.

VはNbとほぼ同じ効果を持つ元素であるが、0.01
%以下では効果が少なく、上限は0.08%まで許容で
きる。
V is an element that has almost the same effect as Nb, but 0.01
% or less, the effect is small, and an upper limit of 0.08% is permissible.

なおCu、Ni、Cr、Moの添加域の下限は、材質上
での効果が得られるための最小量とすべきで、いずれも
0.05%である。
Note that the lower limit of the addition range of Cu, Ni, Cr, and Mo should be the minimum amount in order to obtain the effect on the material, and each is 0.05%.

Bは鋼の焼入れ性を増大させ強度を増加させる元素であ
る。接合部のγ粒界に偏析した固溶Bはフェライトの生
成を抑制し、TiとZrの複合酸化物からの倣細なAF
の生成を助ける。
B is an element that increases the hardenability and strength of steel. The solid solution B segregated at the γ grain boundaries of the joint suppresses the formation of ferrite, and prevents the formation of fine AF from the composite oxide of Ti and Zr.
helps generate.

またNと結合したBNはフェライト発生核としての作用
をもちHAZm織を微細化する。このようなりの効果を
得るためには、最低0.0005%のB量が必要である
。しかしBlが多すぎるとFezs(CB>hなどの粗
大な析出物がγ粒界に析出して低温靭性を劣化させる。
Furthermore, BN combined with N acts as a ferrite generation nucleus and refines the HAZm weave. In order to obtain such an effect, a B content of at least 0.0005% is required. However, if Bl is too large, coarse precipitates such as Fezs (CB>h) will precipitate at the γ grain boundaries, deteriorating the low-temperature toughness.

このためBmの上限を0.0020%に制限する必要が
ある。
Therefore, it is necessary to limit the upper limit of Bm to 0.0020%.

Caは硫化物(MnS)の形態を制御し、低温靭性を向
上(シャルピー吸収エネルギーを増加)させるほか、耐
水素誘起割れ性の改善にも効果を発揮する。
Ca controls the morphology of sulfide (MnS), improves low-temperature toughness (increases Charpy absorbed energy), and is also effective in improving hydrogen-induced cracking resistance.

しかしCa、10.001%以下では実用上効果がなく
、また0.005%を超えて添加するとCaO1CaS
が多量に生成して大型介在物となり、鋼の靭性のみなら
ず清浄度も害し、また溶接性にも悪影響を与える。この
ため添加量の範囲を0.001〜0.005%に制限し
た。
However, if Ca is added below 10.001%, it has no practical effect, and if it exceeds 0.005%, CaO1CaS
is produced in large quantities, resulting in large inclusions that impair not only the toughness but also the cleanliness of the steel, and also have an adverse effect on weldability. Therefore, the range of addition amount was limited to 0.001 to 0.005%.

さて、この鋼は工業的には連続鋳造法、大型鋼塊による
造塊−分塊法のいずれの方法で製造してもかまわない、
また鋳片の再加熱は必ずしも実施する必要はなく、ホン
トチャーヂ圧延やダイレクト圧延を行なっても全く問題
ない。
Now, industrially, this steel can be manufactured by either the continuous casting method or the ingot-blooming method using large steel ingots.
Further, it is not always necessary to reheat the slab, and there is no problem even if charge rolling or direct rolling is performed.

本発明における鋳片再加熱後の圧延方法としては、とく
に限定しないが、いわゆる加工熱処理や圧延後の焼入れ
焼戻し、焼きならし処理が強度、靭性を確保する上で適
切である。これは、たとえ優れたH A Z靭性が得ら
れても、母材の靭性が劣っていると鋼材としては不十分
なためである。母材の低温靭性を優れたものとするには
、鋼の結晶粒を微細化する必要がある。
The rolling method after reheating the slab in the present invention is not particularly limited, but so-called working heat treatment, quenching and tempering after rolling, and normalizing treatment are suitable for ensuring strength and toughness. This is because even if excellent HAZ toughness is obtained, if the toughness of the base metal is poor, the steel is insufficient. In order to improve the low-temperature toughness of the base metal, it is necessary to refine the crystal grains of steel.

加工熱処理の方法としては、1)制御圧延、2)制御圧
延−加速冷却、3)圧延直接焼入れ一焼戻しなどがある
。最も好ましいのは制御圧延と加速冷却の組合せである
。なお、製造後脱水素などの目的でAC1変態点以下の
温度に再加熱しても本発明の特徴を損なうものではない
Examples of the processing heat treatment methods include 1) controlled rolling, 2) controlled rolling-accelerated cooling, and 3) rolling direct quenching and tempering. Most preferred is a combination of controlled rolling and accelerated cooling. Note that even if the product is reheated to a temperature below the AC1 transformation point for the purpose of dehydrogenation or the like after production, the features of the present invention will not be impaired.

このようにして製造された鋼板は、鋼中にTiとZ「を
含有する複合酸化物が微細分散しており、溶接入熱の広
い範囲にわたり極めて優れた低温靭性を有する。また鋼
板の溶接方法としてはサブマージアーク溶接、電子ビー
ム溶接等が挙げられ、いずれの溶接方法で溶接を行って
も本発明の特徴を損なうものではない。
The steel plate manufactured in this way has a composite oxide containing Ti and Z finely dispersed in the steel, and has extremely excellent low-temperature toughness over a wide range of welding heat input.In addition, the steel plate welding method Examples include submerged arc welding, electron beam welding, etc., and the characteristics of the present invention are not impaired even if welding is performed using any of the welding methods.

(実施例) 転炉一連続鋳造または(造塊−分塊)−厚板工程におい
て種々の成分の鋼板(厚み30u)を製造し、溶接熱サ
イクル再現装置を使用して、HAZ靭性を21鳳■ノツ
チシヤルピー試験によって調査した。
(Example) Steel plates (thickness 30u) of various components were manufactured in a converter-continuous casting or (ingot-blending)-thick plate process, and the HAZ toughness was improved to 21mm using a welding heat cycle reproduction device. ■Investigated by the Notschial Rupee test.

再現熱サイクル試験は、板厚1/4tから採取したシャ
ルピー試験片を用い、ピーク温度(最高到達温度)を1
400℃および1300℃とし、800〜500℃の冷
却時間を192秒の条件で行なった。゛ この条件は溶接入熱200KJ/e11に相当し、それ
ぞれ溶融線近傍の粗粒域および亜粗粒域の熱サイクルを
模したものである。
The simulated thermal cycle test uses a Charpy test piece taken from a plate with a thickness of 1/4 t, and the peak temperature (maximum temperature reached) is set to 1.
The temperature was 400°C and 1300°C, and the cooling time from 800 to 500°C was 192 seconds. ``This condition corresponds to a welding heat input of 200 KJ/e11, and simulates the thermal cycle of the coarse grain region and sub-coarse grain region near the fusion line, respectively.

表1に実施例を示す。Examples are shown in Table 1.

本発明法で製造した鋼板(本発明鋼)は全て良好な母材
特性およびHAZ靭硅を有するのに対して、本発明法に
よらない比較鋼はHAZ靭性が劣り、厳しい環境下で使
用される溶接構造物用鋼として適切であい。
The steel plates manufactured by the method of the present invention (inventive steel) all have good base metal properties and HAZ toughness, whereas comparative steels not manufactured by the method of the present invention have poor HAZ toughness and cannot be used in harsh environments. Suitable as steel for welded structures.

比較鋼において鋼19はA4fiが多すぎるために、T
iとZrの複合酸化物の個数が不足し、HAZの組織が
微細化されず、HAZ靭性が悪い。
Among comparative steels, Steel 19 has too much A4fi, so T
The number of composite oxides of i and Zr is insufficient, the HAZ structure is not refined, and the HAZ toughness is poor.

鋼20はTi酸化物が生成しているためPT1400℃
の粗粒域では良好な靭性が得られるが、271300℃
の亜粗粒域ではHAZの組織の微細化効果が小さく靭性
が悪い。
Steel 20 has a PT of 1400℃ because Ti oxide is generated.
Good toughness can be obtained in the coarse grain region of 271300℃.
In the sub-coarse grain region, the effect of refining the HAZ structure is small and the toughness is poor.

鋼21はZr酸化物が生成するが、HAZの組織の微細
化効果が小さく靭性が悪い。鋼22はTilが多すぎる
ためにTiCが生成して、靭性が悪い。鋼23はZr量
が多すぎるために母材およびHA Zの靭性が悪い。
Although Zr oxide is produced in Steel 21, the effect of refining the HAZ structure is small and the toughness is poor. Since steel 22 contains too much Ti, TiC is generated and the toughness is poor. Steel 23 contains too much Zr, so the toughness of the base metal and HAZ is poor.

鋼24はTi+Zrlが多いためにHAZ靭性が悪い。Steel 24 has a large amount of Ti+Zrl and therefore has poor HAZ toughness.

鋼25はTi+Zr量が少なく T iとZrの複合酸
化物が少ないためにHAZ靭性が悪い。
Steel 25 has poor HAZ toughness because it has a small amount of Ti+Zr and a small amount of composite oxide of Ti and Zr.

鋼26はAA脱酸によるTiN鋼であるが、PT140
0℃の粗粒域で組織が微細化されず、靭性が悪い。
Steel 26 is a TiN steel with AA deoxidation, but PT140
The structure is not refined in the coarse grain region at 0°C, resulting in poor toughness.

鋼27はTiとZrの複合酸化物の個数が少ないためH
AZのMi織が微細化されず、HA Z靭性が悪い。鋼
28はTiとZrの複合酸化物の個数が多すぎるために
、HAZ靭性が悪い。
Steel 27 has a small number of composite oxides of Ti and Zr, so H
The Mi weave of the AZ is not refined and the HAZ toughness is poor. Steel 28 has poor HAZ toughness because it has too many composite oxides of Ti and Zr.

が悪い、鋼29はTiとZrの複合酸化物の粒子径が小
さく、HAZ靭性が悪い。
Steel 29 has a small particle size of composite oxide of Ti and Zr, and has poor HAZ toughness.

[30はTiとZrの複合酸化物の粒子径が大きく、H
A Z靭性が悪い。鋼31は溶鋼をTiで脱酸した後Z
「を添加しているために、Ti酸化物とZrNが生成し
、271300℃の亜粗粒域でHAZの組織の微細化効
果が小さく靭性が悪い。
[30 has a large particle size of composite oxide of Ti and Zr, and H
AZ toughness is poor. Steel 31 is Z after deoxidizing molten steel with Ti.
Due to the addition of ``Ti oxide and ZrN, the effect of refining the HAZ structure is small in the sub-coarse grain region at 271,300°C, and the toughness is poor.

鋼32は?8鋼をZrで脱酸した後Tiを添加している
ために、Zr酸化物とTiNが生成し、271300℃
の亜粗粒域でHAZの組織の微細化効果が小さ(靭性が
悪い。
What about steel 32? Since Ti is added after deoxidizing the No. 8 steel with Zr, Zr oxide and TiN are generated, and the temperature at 271,300°C
The effect of refining the HAZ structure is small in the sub-coarse grain region (poor toughness).

(以下余白、次頁へつづく) (発明の効果) 本発明により溶接熱影響部の低温靭性が優れた鋼は、厳
しい環境下で使用される圧力容器、造船、橋梁、建築、
ラインパイプなど溶接構造物の施工能率を著しく向上さ
せるとともに、その安全性を大きくさせることができた
(The following margins continue on the next page) (Effects of the invention) The steel with excellent low-temperature toughness in the weld heat affected zone by the present invention can be used in pressure vessels, shipbuilding, bridges, architecture, etc. used in harsh environments.
The construction efficiency of welded structures such as line pipes has been significantly improved, and their safety has also been greatly improved.

代理人 弁理士 茶 野 木 立 夫Agent: Patent Attorney Tatsuo Cha Noki

Claims (1)

【特許請求の範囲】 (1)重量%で C:0.01〜0.20%、 Si:0.5%以下、 Mn:0.5%〜2.2%、 P:0.025%以下、 S:0.010%以下、 Al:0.005%以下、 Ti:0.003〜0.020%、 Zr:0.002〜0.018%、 N:0.0040%以下、 O:0.0010〜0.0080%、 0.005%≦Ti+Zr≦0.022%、 を満足し、残部鉄および不可避的不純物を含みかつ粒子
径が0.05〜10μm、粒子数が3×10^5〜1×
10^1^0ケ/mm^3のTiとZrの複合酸化物を
含有する溶接熱影響部靭性の優れた高張力鋼。 (2)重量%で C:0.01〜0.20%、 Si:0.5%以下、 Mn:0.5%〜2.2%、 P:0.025%以下、 S:0.010%以下、 Al:0.005%以下、 Ti:0.003〜0.020%、 Zr:0.002〜0.018%、 N:0.0040%以下、 O:0.0010〜0.0080%、 0.005%≦Ti+Zr≦0.022%、 を満足し、 Cu:0.05〜1.0%、 Ni:0.05〜4.0%、 Nb:0.003〜0.060%、 V:0.005〜0.080%、 B:0.0003〜0.0020%、 Ca:0.001〜0.005%、 のうちいずれか一種を含有し、残部鉄および不可避的不
純物を含み、かつ粒子径が0.05〜10μm、粒子数
が3×10^5〜1×10^1^0ケ/mm^3のTi
とZrの複合酸化物を含有する溶接熱影響部靭性の優れ
た高張力鋼。 (3)重量%で C:0.01〜0.20%、 Si:0.5%以下、 Mn:0.5%〜2.2%、 P:0.025%以下、 S:0.010%以下、 Al:0.005%以下、 Ti:0.003〜0.020%、 Zr:0.002〜0.018%、 N:0.0040%以下、 O:0.0010〜0.0080%、 0.005%≦Ti+Zr≦0.022%、 を満足し、 Cu:0.05〜1.0%、 Ni:0.05〜4.0%、 Nb:0.003〜0.060%、 Cr:0.05〜1.0%、 Mo:0.05〜0.4%、 V:0.005〜0.080%、 B:0.0003〜0.0020%、 のうちいずれか二種を含有し、残部鉄および不可避的不
純物を含み、かつ粒子径が0.05〜10μm、粒子数
が3×10^5〜1×10^1^0ケ/mm^3のTi
とZrの複合酸化物を含有する溶接熱影響部靭性の優れ
た高張力鋼。 (4)重量%で C:0.01〜0.20%、 Si:0.5%以下、 Mn:0.5%〜2.2%、 P:0.025%以下、 S:0.010%以下、 Al:0.005%以下、 Ti:0.003〜0.020%、 Zr:0.002〜0.018%、 N:0.0040%以下、 O:0.0010〜0.0080%、 0.005%≦Ti+Zr≦0.022%、 を満足し、次の(イ)〜(ヘ)の3元素からなる組合せ
のいずれか一種を含有し、残部鉄および不可避的不純物
を含み、かつ粒子径が0.05〜10μm、粒子数が3
×10^5〜1×10^1^0ケ/mm^3のTiとZ
rの複合酸化物を含有する溶接熱影響部靭性の優れた高
張力鋼。 (イ)Cu:0.05〜1.0%、Ni:0.05〜4
.0%、Nb:0.003〜0.060%、 (ロ)Cu:0.05〜1.0%、Ni:0.05〜1
.0%、B:0.0003〜0.0020%、 (ハ)Ni:0.05〜4.0%、Mo:0.05〜0
.4%、Nb:0.003〜0.060%、 (ニ)Ni:0.05〜1.0%、Mo:0.05〜0
.4%、B:0.0003〜0.0020%、 (ホ)Ni:0.05〜4.0%、Cr:0.05〜1
.0%、Nb:0.003〜0.060%、 (ヘ)Ni:0.05〜4.0%、Cr:0.05〜1
.0%、V:0.005〜0.080%、
[Claims] (1) C: 0.01 to 0.20%, Si: 0.5% or less, Mn: 0.5% to 2.2%, P: 0.025% or less in weight%. , S: 0.010% or less, Al: 0.005% or less, Ti: 0.003 to 0.020%, Zr: 0.002 to 0.018%, N: 0.0040% or less, O: 0 .0010 to 0.0080%, 0.005%≦Ti+Zr≦0.022%, contains the balance iron and unavoidable impurities, has a particle size of 0.05 to 10 μm, and has a particle number of 3×10^5 ~1×
High tensile strength steel with excellent weld heat affected zone toughness, containing 10^1^0 ke/mm^3 composite oxide of Ti and Zr. (2) In weight%, C: 0.01 to 0.20%, Si: 0.5% or less, Mn: 0.5% to 2.2%, P: 0.025% or less, S: 0.010 % or less, Al: 0.005% or less, Ti: 0.003 to 0.020%, Zr: 0.002 to 0.018%, N: 0.0040% or less, O: 0.0010 to 0.0080 %, 0.005%≦Ti+Zr≦0.022%, Cu: 0.05-1.0%, Ni: 0.05-4.0%, Nb: 0.003-0.060% , V: 0.005-0.080%, B: 0.0003-0.0020%, Ca: 0.001-0.005%, and the balance contains iron and inevitable impurities. Contains Ti with a particle diameter of 0.05 to 10 μm and a particle number of 3 x 10^5 to 1 x 10^1^0 pieces/mm^3
A high-strength steel with excellent weld heat-affected zone toughness, containing a composite oxide of Zr and Zr. (3) C: 0.01 to 0.20% by weight, Si: 0.5% or less, Mn: 0.5% to 2.2%, P: 0.025% or less, S: 0.010 % or less, Al: 0.005% or less, Ti: 0.003 to 0.020%, Zr: 0.002 to 0.018%, N: 0.0040% or less, O: 0.0010 to 0.0080 %, 0.005%≦Ti+Zr≦0.022%, Cu: 0.05-1.0%, Ni: 0.05-4.0%, Nb: 0.003-0.060% , Cr: 0.05-1.0%, Mo: 0.05-0.4%, V: 0.005-0.080%, B: 0.0003-0.0020%, any two of these. Ti containing seeds, balance iron and unavoidable impurities, particle size 0.05 to 10 μm, and number of particles 3 x 10^5 to 1 x 10^1^0 particles/mm^3
A high-strength steel with excellent weld heat-affected zone toughness, containing a composite oxide of Zr and Zr. (4) C: 0.01 to 0.20% by weight, Si: 0.5% or less, Mn: 0.5% to 2.2%, P: 0.025% or less, S: 0.010 % or less, Al: 0.005% or less, Ti: 0.003 to 0.020%, Zr: 0.002 to 0.018%, N: 0.0040% or less, O: 0.0010 to 0.0080 %, 0.005%≦Ti+Zr≦0.022%, and contains any one of the combinations of the following three elements (a) to (f), with the remainder containing iron and inevitable impurities, and the particle size is 0.05 to 10 μm and the number of particles is 3
Ti and Z of ×10^5 to 1 × 10^1^0 pieces/mm^3
A high-strength steel with excellent weld heat-affected zone toughness that contains a composite oxide of r. (a) Cu: 0.05-1.0%, Ni: 0.05-4
.. 0%, Nb: 0.003-0.060%, (b) Cu: 0.05-1.0%, Ni: 0.05-1
.. 0%, B: 0.0003-0.0020%, (c) Ni: 0.05-4.0%, Mo: 0.05-0
.. 4%, Nb: 0.003-0.060%, (d) Ni: 0.05-1.0%, Mo: 0.05-0
.. 4%, B: 0.0003-0.0020%, (e) Ni: 0.05-4.0%, Cr: 0.05-1
.. 0%, Nb: 0.003-0.060%, (f) Ni: 0.05-4.0%, Cr: 0.05-1
.. 0%, V: 0.005-0.080%,
JP31614287A 1987-12-16 1987-12-16 High tension steel having superior tougeness at weld heat-affected zone Granted JPH01159356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31614287A JPH01159356A (en) 1987-12-16 1987-12-16 High tension steel having superior tougeness at weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31614287A JPH01159356A (en) 1987-12-16 1987-12-16 High tension steel having superior tougeness at weld heat-affected zone

Publications (2)

Publication Number Publication Date
JPH01159356A true JPH01159356A (en) 1989-06-22
JPH0527703B2 JPH0527703B2 (en) 1993-04-22

Family

ID=18073728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31614287A Granted JPH01159356A (en) 1987-12-16 1987-12-16 High tension steel having superior tougeness at weld heat-affected zone

Country Status (1)

Country Link
JP (1) JPH01159356A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162522A (en) * 1989-11-22 1991-07-12 Nippon Steel Corp Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH03291356A (en) * 1990-04-06 1991-12-20 Nippon Steel Corp Steel having excellent toughness in weld heat affected zone
JPH06207243A (en) * 1993-01-08 1994-07-26 Sumitomo Metal Ind Ltd Steel for welding structure
US5367226A (en) * 1991-08-14 1994-11-22 Matsushita Electric Works, Ltd. Electrodeless discharge lamp having a concave recess and foil electrode formed therein
US5519285A (en) * 1992-12-15 1996-05-21 Matsushita Electric Works, Ltd. Electrodeless discharge lamp
JP2007090363A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Thermal processing method for steel sheet
WO2009072663A1 (en) * 2007-12-07 2009-06-11 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
JP2017133081A (en) * 2016-01-29 2017-08-03 新日鐵住金株式会社 Thick sheet steel material excellent in toughness in heat affected zone
KR20180002875A (en) 2016-04-19 2018-01-08 신닛테츠스미킨 카부시키카이샤 Steel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03162522A (en) * 1989-11-22 1991-07-12 Nippon Steel Corp Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH03291356A (en) * 1990-04-06 1991-12-20 Nippon Steel Corp Steel having excellent toughness in weld heat affected zone
US5367226A (en) * 1991-08-14 1994-11-22 Matsushita Electric Works, Ltd. Electrodeless discharge lamp having a concave recess and foil electrode formed therein
US5519285A (en) * 1992-12-15 1996-05-21 Matsushita Electric Works, Ltd. Electrodeless discharge lamp
JPH06207243A (en) * 1993-01-08 1994-07-26 Sumitomo Metal Ind Ltd Steel for welding structure
JP2007090363A (en) * 2005-09-27 2007-04-12 Nippon Steel Corp Thermal processing method for steel sheet
WO2009072663A1 (en) * 2007-12-07 2009-06-11 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
JP4547037B2 (en) * 2007-12-07 2010-09-22 新日本製鐵株式会社 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
JPWO2009072663A1 (en) * 2007-12-07 2011-04-28 新日本製鐵株式会社 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
US8361248B2 (en) 2007-12-07 2013-01-29 Nippon Steel Corporation Steel superior in CTOD properties of weld heat-affected zone and method of production of same
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
JP2017133081A (en) * 2016-01-29 2017-08-03 新日鐵住金株式会社 Thick sheet steel material excellent in toughness in heat affected zone
KR20180002875A (en) 2016-04-19 2018-01-08 신닛테츠스미킨 카부시키카이샤 Steel

Also Published As

Publication number Publication date
JPH0527703B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
TWI478785B (en) High heat input welding steel
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
JPWO2006009299A1 (en) Welded structural steel excellent in low temperature toughness of heat affected zone and its manufacturing method
JPH11140580A (en) Continuously cast slab for high strength steel excellent in toughness at low temperature, its production, and high strength steel excellent in toughness at low temperature
JPS601929B2 (en) Manufacturing method of strong steel
WO2004022807A1 (en) Steel product for high heat input welding and method for production thereof
JPWO2015151519A1 (en) High-tensile steel plate and manufacturing method thereof
JPH03202422A (en) Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPH02194115A (en) Production of high-strength steel for low temperature service containing titanium oxide and excellent in toughness at weld zone
JPH01159356A (en) High tension steel having superior tougeness at weld heat-affected zone
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JP2002256379A (en) Steel for high heat input welding
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH0541683B2 (en)
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH03162522A (en) Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH0694569B2 (en) Manufacturing method of steel with excellent low temperature toughness in the heat affected zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH093600A (en) Steel for welding structure excellent in toughness weld heat affected zone
JP3481417B2 (en) Thick steel plate with excellent toughness of weld heat affected zone
JPH01150453A (en) Production of large diameter steel pipe having excellent ductility at low temperature
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 15