JP2007247004A - Low yield ratio high tensile steel having excellent toughness of weld heat-affected zone and manufacturing method therefor - Google Patents

Low yield ratio high tensile steel having excellent toughness of weld heat-affected zone and manufacturing method therefor Download PDF

Info

Publication number
JP2007247004A
JP2007247004A JP2006073303A JP2006073303A JP2007247004A JP 2007247004 A JP2007247004 A JP 2007247004A JP 2006073303 A JP2006073303 A JP 2006073303A JP 2006073303 A JP2006073303 A JP 2006073303A JP 2007247004 A JP2007247004 A JP 2007247004A
Authority
JP
Japan
Prior art keywords
less
steel material
rem
steel
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073303A
Other languages
Japanese (ja)
Other versions
JP4950528B2 (en
Inventor
Hiroki Imamura
弘樹 今村
Tetsushi Deura
哲史 出浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2006073303A priority Critical patent/JP4950528B2/en
Priority to CN200710084708XA priority patent/CN101037757B/en
Priority to KR1020070025616A priority patent/KR100899053B1/en
Publication of JP2007247004A publication Critical patent/JP2007247004A/en
Application granted granted Critical
Publication of JP4950528B2 publication Critical patent/JP4950528B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low yield ratio high tensile steel having excellent toughness of a weld heat-affected zone. <P>SOLUTION: The low yield ratio high tensile steel having the excellent toughness of the weld heat-affected zone contains 0.03 to 0.2% C, ≤0.5% (not inclusive of 0%) Si, 1.0 to 2.0% Mn, and ≤0.01% (not inclusive of 0%) N, satisfies ≤0.02% (not inclusive of 0%) P, ≤0.015% (not inclusive of 0%) S, and ≤0.01% (not inclusive of 0%) Al, and contains 0.001 to 0.1% REM and/or 0.0003 to 0.005% Ca, and 0.001 to 0.05% Zr, and the balance iron and inevitable impurities, wherein when the composition of the entire oxide included in the steel is measured, the steel contains the oxide of the REM and/or CaO and ZrO<SB>2</SB>and the ferrite fraction occupying in the entire structure is 4 to 24% and the balance bainite structure and/or martensite structure. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、主に建築構造物などに使用される、低降伏比を示す590MPa以上の高張力鋼材であって、特に入熱量が30kJ/mm以上の溶接で熱影響を受ける部位(以下、「溶接熱影響部」または「HAZ」ということがある)の靭性を改善した鋼材、およびその製法に関するものである。   The present invention is a high-tensile steel material having a low yield ratio of 590 MPa or higher, which is mainly used for building structures and the like, and is particularly a part that is affected by heat (hereinafter referred to as “the heat input amount of 30 kJ / mm or more”). The present invention relates to a steel material with improved toughness of a “welding heat-affected zone” or “HAZ”) and a method for producing the same.

主に建築構造物などに使用される鋼材に要求される特性は、近年益々厳しくなっており、とりわけ良好な靭性が求められている。これらの鋼材は、一般的に溶接にて接合されることが多いが、特にHAZは溶接時に熱影響を受けて靭性が劣化しやすいという問題がある。この靭性劣化は溶接時の入熱量が大きくなるほど顕著に現れ、その原因は溶接時の入熱量が大きくなるとHAZの冷却速度が遅くなり、焼入性が低下して粗大な島状マルテンサイトが生成することにあると考えられている。従ってHAZの靭性を改善するには、溶接時の入熱量を極力抑えればよいと考えられるが、溶接作業効率を高める上では、例えばエレクトロガスアーク溶接法、エレクトロスラグ溶接法およびサブマージアーク溶接法等といった溶接入熱量が30kJ/mm以上の大入熱溶接法の採用が望まれる。   In recent years, the characteristics required for steel materials mainly used for building structures have become increasingly severe, and particularly good toughness is required. In general, these steel materials are often joined by welding. In particular, HAZ has a problem that the toughness is easily deteriorated due to thermal influence during welding. This deterioration in toughness becomes more noticeable as the heat input during welding increases, and the cause is that the larger the heat input during welding, the slower the cooling rate of the HAZ, the lower the hardenability and the formation of coarse island martensite. It is thought that there is to do. Therefore, in order to improve the toughness of the HAZ, it is considered that the heat input during welding should be suppressed as much as possible. However, in order to increase the welding work efficiency, for example, the electrogas arc welding method, the electroslag welding method, the submerged arc welding method, etc. Such a high heat input welding method with a heat input of 30 kJ / mm or more is desired.

大入熱溶接法を採用した場合のHAZ靭性劣化を抑制する鋼材は、既にいくつか提案されている。例えば特許文献1には、鋼材中に微細なTiNを分散再析出させることで、大入熱溶接を行なったときのHAZで生じるオーステナイト粒の粗大化を抑制し、HAZ靭性の劣化を抑えた鋼材が提案されている。しかし本発明者らが検討したところ、溶接金属が1400℃以上の高温になると、HAZのうち特に溶接金属に近接した部位(以下、「ボンド部」ということがある)において、溶接時に受ける熱により上記TiNが固溶消失してしまい、HAZ靭性の劣化を十分に抑えることができないことが分かった。   Several steel materials that suppress the HAZ toughness deterioration when the high heat input welding method is adopted have already been proposed. For example, Patent Document 1 discloses a steel material in which fine TiN is dispersed and reprecipitated in the steel material to suppress coarsening of austenite grains generated in the HAZ when high heat input welding is performed, and deterioration in HAZ toughness is suppressed. Has been proposed. However, as a result of investigations by the present inventors, when the weld metal reaches a high temperature of 1400 ° C. or higher, the heat in the HAZ particularly close to the weld metal (hereinafter sometimes referred to as “bond portion”) is affected by the heat received during welding. It turned out that the said TiN lose | dissolves in solid solution and deterioration of HAZ toughness cannot fully be suppressed.

また特許文献2には、母材とHAZの靭性を向上させる技術として、鋼材に含まれる酸化物と窒化物の存在形態を制御することが開示されている。この文献には、TiとZrを組み合わせて使用することにより、微細な酸化物と窒化物を生成させて母材とHAZの靭性を向上させること、また、こうした微細な酸化物と窒化物を生成させるには、製造工程においてTi、Zrの順に添加すればよいことが開示されている。しかし本発明者らが検討したところ、HAZの靭性を更に高めるには酸化物量を増やせばよいが、上記特許文献2の技術において、酸化物量を増加させるためにTiやZrを多量に添加すると、TiやZrなどの炭化物が形成され、鋼材(母材)の靭性が却って低下することが分かった。   Patent Document 2 discloses controlling the form of oxides and nitrides contained in steel as a technique for improving the toughness of the base material and the HAZ. In this document, Ti and Zr are used in combination to produce fine oxides and nitrides to improve the toughness of the matrix and HAZ, and to produce such fine oxides and nitrides. It is disclosed that Ti and Zr may be added in this order in the manufacturing process. However, as a result of investigations by the present inventors, it is only necessary to increase the amount of oxide in order to further increase the toughness of HAZ. However, in the technique of Patent Document 2 described above, if a large amount of Ti or Zr is added to increase the amount of oxide, It turned out that carbide | carbonized_materials, such as Ti and Zr, are formed and the toughness of steel materials (base material) falls on the contrary.

ところで本発明者らは、溶接時に高温の熱影響を受けた場合でもHAZの靭性が劣化しない鋼材を特許文献3に先に提案している。この鋼材は、La23−SiO2系酸化物やCe23−SiO2系酸化物、La23−Ce23−SiO2系酸化物などの複合酸化物を鋼材中に分散させたものであり、この複合酸化物は、溶鋼中では液状で存在するため鋼中に微細分散し、しかも溶接時には熱影響を受けても固溶消失しないため、HAZの靭性を向上させる。上記特許文献3には、上記複合酸化物を生成させるため、溶存酸素量を調整した溶鋼へLaやCeを添加し、次いでSiを添加すればよいことも開示している。また特許文献3には、鋼材にTiを含有させて鋼材組織中にTiNを析出させることにより、HAZの靭性が更に高められること、またこうしたTiNを生成させるには、上記複合酸化物が生成した溶鋼へTiを添加すればよいことを開示している。 By the way, the present inventors have previously proposed a steel material in which the HAZ toughness does not deteriorate even when subjected to high-temperature heat effects during welding. This steel material is composed of complex oxides such as La 2 O 3 —SiO 2 oxide, Ce 2 O 3 —SiO 2 oxide, and La 2 O 3 —Ce 2 O 3 —SiO 2 oxide in the steel material. Since this composite oxide exists in liquid steel in a liquid state, it is finely dispersed in the steel, and since the solid solution does not disappear even if it is affected by heat during welding, the toughness of the HAZ is improved. Patent Document 3 discloses that in order to generate the composite oxide, La and Ce are added to the molten steel whose dissolved oxygen content is adjusted, and then Si is added. Further, Patent Document 3 describes that the toughness of HAZ can be further enhanced by adding Ti to the steel material and precipitating TiN in the steel material structure, and in order to generate such TiN, the composite oxide is generated. It discloses that Ti should be added to molten steel.

ところで近年では、建築物が高層化、大スパン化するに伴い、従来の490MPa級鋼材からより強度の高い590MPa級高張力鋼材を使用する動きが強まっている。上記特許文献3の技術では、HAZ靭性の改善については取り組まれているが、建築用高張力鋼材で要求される低降伏比(YR≦80%)を具備した鋼材については検討されていない。   By the way, in recent years, with the increase in the number of buildings and the increase in span, there has been an increase in the use of 590 MPa class high strength steel materials having higher strength than conventional 490 MPa class steel materials. In the technique of Patent Document 3 described above, improvement of HAZ toughness has been addressed, but steel materials having a low yield ratio (YR ≦ 80%) required for high-strength steel materials for construction have not been studied.

一方、特許文献4には、微細な炭窒化物を分散させると共に、フェライトを一定量以上確保することで、引張強度590N/mm以上の鋼板で低降伏比を実現している。しかし上記鋼板が、入熱量:30kJ/mm以上の溶接を施した場合のHAZ靭性に優れているとは必ずしも言い難く、低降伏比とHAZ靭性の両特性に優れた鋼材の実現が切望されている。
特公昭55−26164号公報(特許請求の範囲、第3頁等参照) 特開2003−213366号公報(特許請求の範囲、段落0007、段落0008、段落0018、段落0023等参照) 特開2005−48265号公報(特許請求の範囲、段落0013、段落0052、段落0056等参照) 特許第2901890号公報
On the other hand, Patent Document 4 realizes a low yield ratio with a steel sheet having a tensile strength of 590 N / mm 2 or more by dispersing fine carbonitrides and securing a certain amount or more of ferrite. However, it is difficult to say that the steel sheet is excellent in HAZ toughness when welding with a heat input of 30 kJ / mm or more, and the realization of a steel material excellent in both characteristics of low yield ratio and HAZ toughness is eagerly desired. Yes.
Japanese Patent Publication No. 55-26164 (refer to claims, page 3, etc.) JP 2003-213366 A (refer to claims, paragraph 0007, paragraph 0008, paragraph 0018, paragraph 0023, etc.) JP 2005-48265 A (see claims, paragraph 0013, paragraph 0052, paragraph 0056, etc.) Japanese Patent No. 2901890

本発明は上記事情に鑑みてなされたものであって、その目的は、入熱量が30kJ/mm以上の溶接を行った場合のHAZ靭性に優れると共に、590MPa以上の高強度域において80%以下の低い降伏比を示す鋼材、およびその製法を提供することにある。   The present invention has been made in view of the above circumstances, and the object thereof is excellent in HAZ toughness when welding with a heat input of 30 kJ / mm or more and 80% or less in a high strength region of 590 MPa or more. An object of the present invention is to provide a steel material having a low yield ratio and a manufacturing method thereof.

即ち、上記課題を解決することのできた本発明に係る鋼材とは、
C:0.03〜0.2%(「質量%」の意味。以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:1.0〜2.0%、および
N :0.01%以下(0%を含まない)を含み、
P :0.02%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、および
Al:0.01%以下(0%を含まない)を満足し、
REM:0.001〜0.1%および/またはCa:0.0003〜0.005%と、
Zr:0.001〜0.05%を夫々含有し、
残部が鉄および不可避的不純物からなる鋼材であって、
該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2を含有し、且つ、
全組織に占めるフェライト分率が4〜24%で残部がベイナイト組織および/またはマルテンサイト組織である点に要旨を有する。
That is, the steel material according to the present invention that has solved the above problems is
C: 0.03 to 0.2% (meaning “mass%”; the same shall apply hereinafter)
Si: 0.5% or less (excluding 0%),
Mn: 1.0-2.0%, and N: 0.01% or less (not including 0%),
P: 0.02% or less (excluding 0%),
S: 0.015% or less (not including 0%) and Al: 0.01% or less (not including 0%),
REM: 0.001-0.1% and / or Ca: 0.0003-0.005%,
Zr: 0.001 to 0.05% each contained,
The balance is steel consisting of iron and inevitable impurities,
When the composition of all oxides contained in the steel material is measured, it contains REM oxide and / or CaO and ZrO 2 , and
The gist is that the ferrite fraction in the entire structure is 4 to 24% and the balance is a bainite structure and / or a martensite structure.

前記鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOの合計が5%以上で、且つZrO2が5%以上を満足することが好ましい。 The steel material preferably satisfies a total of REM oxide and / or CaO of 5% or more and ZrO 2 of 5% or more when the composition of all oxides contained in the steel material is measured.

前記鋼材は、更に他の元素として、Ti:0.08%以下(0%を含まない)を含むと共に、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有することが好ましい。Tiを含むことによって溶接熱影響部の靭性を一層向上させることができるからである。上記の通り鋼材がTiを含む場合には、全酸化物の組成を測定したときに、Tiが0.3%以上であることが好ましい。 The steel material further contains Ti: 0.08% or less (not including 0%) as another element, and contains Ti 2 O 3 when the composition of all oxides contained in the steel material is measured. It is preferable to do. It is because the toughness of the weld heat affected zone can be further improved by including Ti. As described above, when the steel material contains Ti, it is preferable that Ti 2 O 3 is 0.3% or more when the composition of all oxides is measured.

前記鋼材は、更に他の元素として、
Cu:2%以下(0%を含まない)、
Ni:2%以下(0%を含まない)、
Cr:1.5%以下(0%を含まない)、
Mo:1%以下(0%を含まない)、
Nb:0.05%以下(0%を含まない)、
V :0.1%以下(0%を含まない)、および
B :0.005%以下(0%を含まない)
よりなる群から選ばれる1種以上の元素を含むものが好ましく、こうした元素を含有することで母材の強度を高めることができる。
The steel material, as another element,
Cu: 2% or less (excluding 0%),
Ni: 2% or less (excluding 0%),
Cr: 1.5% or less (excluding 0%),
Mo: 1% or less (excluding 0%),
Nb: 0.05% or less (excluding 0%),
V: 0.1% or less (not including 0%), and B: 0.005% or less (not including 0%)
Those containing one or more elements selected from the group consisting of these elements are preferred, and the strength of the base material can be increased by containing these elements.

本発明に係る鋼材は、例えば溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加すれば製造できる。上記鋼材が特にTiを含む場合には、溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、TiとZrを添加することが好ましい。この場合には、上記溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加するに先立って、Tiを添加することが好ましい。   The steel material according to the present invention can be manufactured, for example, by adding at least one element selected from the group consisting of REM and Ca and Zr to molten steel whose dissolved oxygen content is adjusted to a range of 0.0020 to 0.010%. . When the steel material contains Ti in particular, at least one element selected from the group consisting of REM and Ca, Ti, and Zr to a molten steel whose dissolved oxygen content is adjusted to a range of 0.0020 to 0.010%. Is preferably added. In this case, it is preferable to add Ti prior to adding at least one element selected from the group consisting of REM and Ca and Zr to the molten steel in which the amount of dissolved oxygen is adjusted.

本発明によれば、大入熱溶接において1400℃レベルの高温に達しても鋼材中に固溶消失しない組成の酸化物を、鋼材中に分散させるため、小〜中入熱溶接に限らず大入熱溶接においても、溶接熱影響部(HAZ)の靭性劣化を防止することができる。また、硬質のベイナイト組織および/またはマルテンサイト組織の中に、適正量のフェライト相が混在する組織とすることで、上記HAZ靭性を損ねることなく、590MPa以上の高強度域において80%以下の低降伏比を示す鋼材が得られる。   According to the present invention, in order to disperse, in the steel material, an oxide having a composition that does not dissolve in the steel material even when reaching a high temperature of 1400 ° C. in the high heat input welding, it is not limited to small to medium heat input welding. Even in heat input welding, it is possible to prevent toughness deterioration of the weld heat affected zone (HAZ). Further, by making the hard bainite structure and / or martensite structure a structure in which an appropriate amount of ferrite phase is mixed, the HAZ toughness is not impaired, and a low strength of 80% or less in a high strength region of 590 MPa or more. A steel material with a yield ratio is obtained.

本発明者らは、まず、HAZの靭性を高めるべく、上記特許文献3とは異なる組成の酸化物を鋼材中に分散させることによってHAZ靭性の向上を達成できないかについて検討を重ねた。その結果、REMおよび/またはCaと、Zrを鋼材に複合添加し、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2が含有するように調整すれば、溶接熱影響部の靭性を高めることができること、またこうした成分系に更にTiを複合添加することによって、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有するように調整すれば、溶接熱影響部の靭性が一層向上することを見出した。また、上記酸化物によりHAZ靭性の向上を阻害させることなく、590MPa以上の高強度鋼板において80%以下の低い降伏比を達成させるには、硬質のベイナイト組織および/またはマルテンサイト組織の中に軟質のフェライト相を適正量存在させればよいことを見出し、本発明を完成した。以下、上記本発明について詳述する。 The present inventors first studied whether or not improvement in HAZ toughness could be achieved by dispersing an oxide having a composition different from that of Patent Document 3 in the steel material in order to increase the toughness of HAZ. As a result, when REM and / or Ca and Zr are combined and added to the steel material and the composition of all oxides contained in the steel material is measured, the REM oxide and / or CaO and ZrO 2 may be contained. If adjusted to, the toughness of the weld heat affected zone can be increased, and when the composition of all oxides contained in the steel material is measured by further adding Ti to such a component system, Ti 2 O It has been found that the toughness of the weld heat-affected zone can be further improved by adjusting to contain 3 . Moreover, in order to achieve a low yield ratio of 80% or less in a high-strength steel plate of 590 MPa or more without inhibiting the improvement of HAZ toughness by the above oxide, a soft bainite structure and / or martensite structure is used. It was found that an appropriate amount of the ferrite phase should be present, and the present invention was completed. Hereinafter, the present invention will be described in detail.

まず、本発明の鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2を含有するものである。この様に、REMの酸化物および/またはCaOと、ZrO2が含まれるようにすれば、溶接時に熱影響を受けて1400℃レベルの高温になっても上記酸化物は固溶消失しないため、溶接時のHAZにおいてオーステナイト粒の粗大化を防止することができ、その結果として、REMやCa、Zrを夫々単独添加して酸化物を形成する場合よりもHAZの靭性をより改善することができる。 First, the steel material of the present invention contains REM oxide and / or CaO and ZrO 2 when the composition of all oxides contained in the steel material is measured. As described above, if the oxide of REM and / or CaO and ZrO 2 are included, the oxide does not disappear in a solid solution even at a high temperature of 1400 ° C. due to the thermal influence during welding. It is possible to prevent coarsening of austenite grains in the HAZ at the time of welding, and as a result, it is possible to further improve the toughness of the HAZ as compared with the case where an oxide is formed by adding REM, Ca, or Zr individually. .

しかも上記酸化物あるいは複合酸化物を組み合わせて鋼材中に含有させれば、鋼材中に含まれる全酸化物の絶対量を増大させることができ、鋼材(母材)の靭性劣化の原因となるREMの硫化物やCaの硫化物、或いはZr炭化物の生成を防止でき、結果として母材の靭性劣化を抑えつつHAZの靭性を向上させることができる。   Moreover, if the oxides or composite oxides are combined and contained in the steel material, the absolute amount of all oxides contained in the steel material can be increased, and REM that causes toughness deterioration of the steel material (base material). As a result, the HAZ toughness can be improved while suppressing the deterioration of the toughness of the base metal.

本発明の鋼材は、(a)REMの酸化物および/またはCaOと、ZrO2を含有するか、あるいは(b)REMおよび/またはCaと、Zrを含む複合酸化物を含有するか、(c)REMの酸化物および/またはCaOと、ZrO2を含有すると共に、REMおよび/またはCaと、Zrを含む複合酸化物を含有するものであればよい。REMおよび/またはCaと、Zrを含む複合酸化物とは、例えばREMとZrを含む複合酸化物、CaとZrを含む複合酸化物、REMとCaとZrを含む複合酸化物などが挙げられる。 The steel material of the present invention contains (a) an oxide of REM and / or CaO and ZrO 2 , or (b) a composite oxide containing REM and / or Ca and Zr, or (c ) Any oxide containing REM and / or CaO and ZrO 2 and any composite oxide containing REM and / or Ca and Zr may be used. Examples of the composite oxide containing REM and / or Ca and Zr include a composite oxide containing REM and Zr, a composite oxide containing Ca and Zr, and a composite oxide containing REM, Ca, and Zr.

本発明の鋼材は、上述した酸化物の他に、更にTi酸化物を含有することが好ましい。即ち、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有するものであればよい。Ti酸化物を含有することで、鋼材中に分散する酸化物量を更に増大させることができるため、HAZの靭性を一層向上させることができる。 The steel material of the present invention preferably further contains a Ti oxide in addition to the oxides described above. That is, when measuring the composition of the total oxides contained in the steel, as long as it contains the Ti 2 O 3. By containing the Ti oxide, the amount of oxide dispersed in the steel material can be further increased, so that the toughness of the HAZ can be further improved.

上記Ti酸化物は、鋼材中に単独酸化物(Ti)として含有していてもよいし、例えば上記複合酸化物(即ち、REMとZrを含む複合酸化物、CaとZrを含む複合酸化物、REMとCaとZrを含む複合酸化物)に包含されて複合酸化物として含有していてもよい。 The Ti oxide may be contained in the steel material as a single oxide (Ti 2 O 3 ), for example, the composite oxide (that is, a composite oxide containing REM and Zr, a composite containing Ca and Zr). Oxides, composite oxides containing REM, Ca, and Zr) may be included as composite oxides.

上記鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、全酸化物に占めるREMの酸化物および/またはCaOの合計が5%以上で、且つ全酸化物に占めるZrO2が5%以上を満足することが好ましい。その理由は、HAZの靭性向上に寄与する酸化物量を確保するためである。REMの酸化物および/またはCaOの合計は10%以上であることが好ましく、より好ましくは15%以上、更に好ましくは20%以上である。一方、ZrO2は10%以上であることが好ましく、より好ましくは15%以上、更に好ましくは20%以上である。 When the composition of the total oxide contained in the steel material is measured, the total amount of REM oxide and / or CaO in the total oxide is 5% or more, and ZrO 2 in the total oxide is ZrO 2 in the total oxide. It is preferable to satisfy 5% or more. The reason is to ensure the amount of oxide that contributes to the improvement of HAZ toughness. The total of REM oxides and / or CaO is preferably 10% or more, more preferably 15% or more, and still more preferably 20% or more. On the other hand, ZrO 2 is preferably 10% or more, more preferably 15% or more, and further preferably 20% or more.

上記鋼材がTi酸化物を含有する場合は、該鋼材に含まれる全酸化物の組成を測定したときに、Tiが0.3%以上を満足することが好ましい。より好ましくは1%以上、更に好ましくは3%以上、特に好ましくは5%以上、最も好ましくは10%以上である。 When the steel material contains Ti oxide, it is preferable that Ti 2 O 3 satisfies 0.3% or more when the composition of all oxides contained in the steel material is measured. More preferably, it is 1% or more, more preferably 3% or more, particularly preferably 5% or more, and most preferably 10% or more.

本発明の鋼材は、該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2およびTiの合計が55%以上であることが好ましい。これらの酸化物の合計が55%未満では、HAZの靭性向上に寄与する酸化物量が不足し、HAZの靭性を充分に改善できないからである。より好ましくは60%以上、更に好ましくは65%以上である。 The steel material of the present invention preferably has a total of 55% or more of the oxide of REM and / or CaO, and ZrO 2 and Ti 2 O 3 when the composition of all oxides contained in the steel material is measured. . This is because if the total of these oxides is less than 55%, the amount of oxide that contributes to improving the toughness of the HAZ is insufficient, and the toughness of the HAZ cannot be sufficiently improved. More preferably, it is 60% or more, More preferably, it is 65% or more.

なお、全酸化物の組成の残りの成分は特に限定されないが、例えばSiO2やAl23、MnOであればよい。SiO2やAl23、MnO以外の「その他」の成分は5%未満に抑えることが好ましい。 The remaining components of the total oxide composition are not particularly limited, but may be, for example, SiO 2 , Al 2 O 3 , or MnO. It is preferable to keep the “other” components other than SiO 2 , Al 2 O 3 and MnO to less than 5%.

鋼材に含まれる酸化物の組成は、鋼材の断面を例えばEPMA(Electron Probe X-ray Micro Analyzer;電子線マイクロプローブX線分析計)で観察し、観察視野内に認められる介在物を定量分析すれば測定できる。EPMAの観察は、例えば加速電圧を20kV,試料電流を0.01μA,観察視野面積を1〜5cm2とし、介在物の中央部での組成を特性X線の波長分散分光により定量分析する。 The composition of the oxide contained in the steel material is determined by observing the cross section of the steel material with, for example, EPMA (Electron Probe X-ray Micro Analyzer) and quantitatively analyzing the inclusions observed in the observation field. Can be measured. In the observation of EPMA, for example, the acceleration voltage is 20 kV, the sample current is 0.01 μA, the observation visual field area is 1 to 5 cm 2, and the composition at the center of the inclusion is quantitatively analyzed by wavelength dispersion spectroscopy of characteristic X-rays.

分析対象とする介在物の大きさは、最大径が0.2μm以上のものとし、分析個数は少なくとも100個とする。   The size of inclusions to be analyzed is a maximum diameter of 0.2 μm or more, and the number of analyzes is at least 100.

分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,La,CeおよびOとし、既知物質を用いて各元素のX線強度と元素濃度の関係を予め検量線として求めておき、分析対象とする介在物から得られたX線強度と前記検量線から分析対象とする介在物に含まれる元素濃度を定量し、酸素含量が5%以上の介在物を酸化物とする。但し、一つの介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に換算して酸化物の組成を算出する。本発明の鋼材では、こうして個々の酸化物について得られた定量結果を平均したものを酸化物の平均組成とする。   The analysis target elements are Al, Mn, Si, Ti, Zr, Ca, La, Ce, and O. Using a known substance, the relationship between the X-ray intensity and the element concentration of each element is obtained in advance as a calibration curve. From the X-ray intensity obtained from the inclusions to be measured and the calibration curve, the element concentration contained in the inclusions to be analyzed is quantified, and inclusions having an oxygen content of 5% or more are defined as oxides. However, when a plurality of elements are observed from one inclusion, the composition of the oxide is calculated in terms of a single oxide of each element from the ratio of X-ray intensity indicating the presence of these elements. In the steel material of the present invention, the average of the quantitative results thus obtained for the individual oxides is taken as the average composition of the oxides.

次に、本発明の鋼材(母材)における成分組成について説明する。本発明の鋼材は、REM:0.001〜0.1%および/またはCa:0.0003〜0.005%と、Zr:0.001〜0.05%を含有するところに特徴がある。こうした範囲を定めた理由は以下の通りである。   Next, the component composition in the steel material (base material) of the present invention will be described. The steel material of the present invention is characterized in that it contains REM: 0.001 to 0.1% and / or Ca: 0.0003 to 0.005% and Zr: 0.001 to 0.05%. The reasons for setting these ranges are as follows.

REM、CaおよびZrは、鋼材中にREMの酸化物やCaO、ZrO2、或いは複合酸化物を形成してHAZの靭性向上に寄与する元素である。本発明の鋼材では、REMとCaは夫々単独で用いても併用してもよい。 REM, Ca, and Zr are elements that contribute to improving the toughness of HAZ by forming REM oxide, CaO, ZrO 2 , or a composite oxide in the steel material. In the steel material of the present invention, REM and Ca may be used alone or in combination.

REMを含有させる場合は、0.001%以上とすべきであり、好ましくは0.006%以上、より好ましくは0.010%以上である。しかし過剰に添加すると、REMの硫化物が生成して母材の靭性が劣化するため、0.1%以下に抑えるべきである。好ましくは0.09%以下であり、より好ましくは0.08%以下とする。なお、本発明において、REMとは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味であり、これらの元素のなかでも、La、CeおよびYよりなる群から選ばれる少なくとも1種の元素を含有することが好ましく、より好ましくはLaおよび/またはCeを含有させるのがよい。   When REM is contained, it should be 0.001% or more, preferably 0.006% or more, more preferably 0.010% or more. However, if added excessively, sulfide of REM is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.1% or less. Preferably it is 0.09% or less, More preferably, it is 0.08% or less. In the present invention, REM means a lanthanoid element (15 elements from La to Ln) and Sc (scandium) and Y (yttrium). Among these elements, La, Ce and Y It is preferable to contain at least one element selected from the group consisting of, and more preferably La and / or Ce.

Caを含有させる場合は、0.0003%以上とすべきであり、好ましくは0.0005%以上、より好ましくは0.0008%以上である。しかし過剰に添加すると、粗大なCaの硫化物が生成して母材の靭性が劣化するため、0.005%以下に抑えるべきである。好ましくは0.004%以下であり、より好ましくは0.003%以下とする。   When Ca is contained, it should be 0.0003% or more, preferably 0.0005% or more, more preferably 0.0008% or more. However, if excessively added, coarse Ca sulfide is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.005% or less. Preferably it is 0.004% or less, More preferably, it is 0.003% or less.

Zrは、0.001%以上含有させるべきであり、好ましくは0.003%以上、より好ましくは0.005%以上である。しかし過剰に添加すると、粗大なZrの炭化物が生成して母材の靭性が劣化するため、0.05%以下に抑えるべきである。好ましくは0.04%以下であり、より好ましくは0.03%以下とする。   Zr should be contained in an amount of 0.001% or more, preferably 0.003% or more, and more preferably 0.005% or more. However, if added excessively, coarse Zr carbide is generated and the toughness of the base material deteriorates, so it should be suppressed to 0.05% or less. Preferably it is 0.04% or less, More preferably, it is 0.03% or less.

本発明の鋼材は、REMおよび/またはCaと、Zrを含むほか、基本元素として、C:0.03〜0.2%、Si:0.5%以下(0%を含まない)、Mn:1.0〜2.0%、およびN:0.01%以下(0%を含まない)を含むものである。このような範囲を定めた理由は以下の通りである。   In addition to containing REM and / or Ca and Zr, the steel material of the present invention includes C: 0.03 to 0.2%, Si: 0.5% or less (not including 0%), Mn: 1.0 to 2.0%, and N: 0.01% or less (not including 0%). The reason for setting such a range is as follows.

Cは、鋼材(母材)の強度を確保するために欠くことのできない元素であり、こうした効果を発揮させるには、0.03%以上含有させる必要がある。好ましくは0.04%以上であり、より好ましくは0.05%以上である。しかし0.2%を超えると、溶接時にHAZに島状マルテンサイトが多く生成してHAZの靭性劣化を招くばかりでなく、溶接性にも悪影響を及ぼす。従ってCは0.2%以下、好ましくは0.18%以下、より好ましくは0.15%以下に抑える必要がある。   C is an element indispensable for securing the strength of a steel material (base material), and in order to exert such effects, it is necessary to contain 0.03% or more. Preferably it is 0.04% or more, More preferably, it is 0.05% or more. However, if it exceeds 0.2%, a lot of island martensite is generated in the HAZ at the time of welding and not only causes deterioration of the toughness of the HAZ, but also adversely affects the weldability. Therefore, C must be suppressed to 0.2% or less, preferably 0.18% or less, more preferably 0.15% or less.

Siは、脱酸作用を有すると共に鋼材(母材)の強度向上に寄与する元素である。こうした効果を有効に発揮させるには、0.02%以上含有させることが好ましく、より好ましくは0.05%以上、更に好ましくは0.1%以上含有させるのがよい。しかし0.5%を超えると、鋼材(母材)の溶接性や母材靭性が劣化するため、0.5%以下に抑える必要がある。好ましくは0.45%以下であり、より好ましくは0.4%以下に抑える。なお、HAZの更なる高靭性が求められる場合、Siは0.3%以下に抑えるのがよい。より好ましくは0.05%以下であり、更に好ましくは0.01%以下である。但し、このようにSi含有量を抑えるとHAZの靭性は向上するが、強度は低下する傾向があるため、他の強度増加元素の添加が必要となる。   Si is an element that has a deoxidizing action and contributes to improving the strength of the steel (base material). In order to exhibit such an effect effectively, it is preferable to contain 0.02% or more, more preferably 0.05% or more, and still more preferably 0.1% or more. However, if it exceeds 0.5%, the weldability and base material toughness of the steel (base material) deteriorate, so it is necessary to keep it to 0.5% or less. Preferably it is 0.45% or less, More preferably, it restrains to 0.4% or less. In addition, when the further high toughness of HAZ is calculated | required, it is good to suppress Si to 0.3% or less. More preferably, it is 0.05% or less, More preferably, it is 0.01% or less. However, when the Si content is suppressed in this way, the toughness of the HAZ is improved, but the strength tends to decrease, so the addition of another strength increasing element is necessary.

MnもSiと同様に脱酸および強度確保のために必要であり、構造部材としての最低強度を確保するには、1.0%以上とする。好ましくは1.2%以上、より好ましくは1.3%以上である。しかし、2.0%を超えて過剰に含有させるとHAZ靭性が劣化するので、Mn量は2.0%以下とする。好ましくは1.8%以下であり、より好ましくは1.6%以下である。   Mn is also necessary for deoxidation and securing strength in the same manner as Si, and is 1.0% or more to secure the minimum strength as a structural member. Preferably it is 1.2% or more, More preferably, it is 1.3% or more. However, since the HAZ toughness deteriorates when the content exceeds 2.0%, the Mn content is set to 2.0% or less. Preferably it is 1.8% or less, More preferably, it is 1.6% or less.

Nは、窒化物(例えば、ZrNやTiNなど)を析出する元素であり、該窒化物は溶接時にHAZに生成するオーステナイト粒の粗大化を防止してフェライト変態を促進するため、HAZの靭性を向上させるのに寄与する。こうした効果を有効に発揮させるには、0.002%以上含有させることが好ましく、より好ましくは0.003%以上である。Nは多いほどオーステナイト粒の微細化が促進されるため、HAZの靭性向上に有効に作用する。しかし0.01%を超えると、固溶N量が増大して母材の靭性が劣化する。従ってNは0.01%以下に抑える必要があり、好ましくは0.009%以下、より好ましくは0.008%以下とする。   N is an element that precipitates nitrides (for example, ZrN and TiN), and the nitrides prevent austenite grains formed in the HAZ during welding and promote ferrite transformation, so that the toughness of the HAZ is increased. Contributes to improvement. In order to exhibit such an effect effectively, it is preferable to make it contain 0.002% or more, More preferably, it is 0.003% or more. The more N, the more refined austenite grains are promoted, which effectively works to improve the toughness of HAZ. However, if it exceeds 0.01%, the amount of solute N increases and the toughness of the base material deteriorates. Therefore, N must be suppressed to 0.01% or less, preferably 0.009% or less, more preferably 0.008% or less.

本発明の鋼材は、上記元素を含むほか、P:0.02%以下(0%を含まない)、S:0.015%以下(0%を含まない)およびAl:0.01%以下(0%を含まない)を満たすものである。このような範囲を定めた理由は以下の通りである。   The steel material of the present invention contains the above elements, P: 0.02% or less (not including 0%), S: 0.015% or less (not including 0%), and Al: 0.01% or less ( 0% is not included). The reason for setting such a range is as follows.

Pは、偏析し易い元素であり、特に鋼材中の結晶粒界に偏析して靭性を劣化させる。従ってPは0.02%以下に抑制する必要があり、好ましくは0.018%以下、より好ましくは0.015%以下とする。   P is an element that easily segregates, and particularly segregates at a grain boundary in the steel material to deteriorate toughness. Therefore, P must be suppressed to 0.02% or less, preferably 0.018% or less, more preferably 0.015% or less.

Sは、Mnと結合して硫化物(MnS)を生成し、母材の靭性や板厚方向の延性を劣化させる有害な元素である。またSは、LaやCeと結合してLaSやCeSを生成し、酸化物の生成を阻害する。従ってSは0.015%以下に抑えるべきであり、好ましくは0.012%以下、より好ましくは0.008%以下、特に0.006%以下とする。   S is a harmful element that combines with Mn to produce sulfide (MnS) and degrades the toughness of the base material and the ductility in the thickness direction. S combines with La and Ce to form LaS and CeS and inhibits the formation of oxides. Therefore, S should be suppressed to 0.015% or less, preferably 0.012% or less, more preferably 0.008% or less, and particularly 0.006% or less.

Alは、脱酸力の強い元素であり、過剰に添加すると酸化物を還元して所望の酸化物を生成し難くなる。従ってAlは0.01%以下に抑える必要があり、好ましくは0.0090%以下、より好ましくは0.0080%以下とする。   Al is an element having a strong deoxidizing power, and when added in excess, the oxide is reduced and it becomes difficult to produce a desired oxide. Therefore, Al must be suppressed to 0.01% or less, preferably 0.0090% or less, more preferably 0.0080% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避的不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、MgやAs,Seなど)の混入が許容され得る。また、更に下記元素を積極的に含有させることも可能である。   The contained elements defined in the present invention are as described above, and the balance is iron and unavoidable impurities, and as the unavoidable impurities, elements brought in depending on the situation of raw materials, materials, production facilities, etc. (for example, Mg and As , Se, etc.) can be permitted. Further, it is possible to further contain the following elements.

〈Ti:0.08%以下(0%を含まない)〉
Tiは、鋼材中にTi酸化物を生成してHAZの靭性向上に寄与する元素である。こうした効果を有効に発揮させるには、Tiは0.005%以上含有させることが好ましく、より好ましくは0.007%以上、更に好ましくは0.01%以上とする。しかし過剰に添加すると、酸化物が多量に生成し過ぎて鋼材(母材)の靭性を劣化させるため、0.08%以下に抑えるべきである。好ましくは0.07%以下であり、より好ましくは0.06%以下とする。
<Ti: 0.08% or less (excluding 0%)>
Ti is an element that contributes to improving the toughness of HAZ by generating Ti oxide in the steel material. In order to exert such an effect effectively, Ti is preferably contained in an amount of 0.005% or more, more preferably 0.007% or more, and further preferably 0.01% or more. However, if added excessively, a large amount of oxide is generated and the toughness of the steel (base material) is deteriorated, so it should be suppressed to 0.08% or less. Preferably it is 0.07% or less, More preferably, it is 0.06% or less.

本発明の鋼材には、強度を高めるために、Cu:2%以下(0%を含まない)、Ni:2%以下(0%を含まない)、Cr:1.5%以下(0%を含まない)、Mo:1%以下(0%を含まない)、Nb:0.05%以下(0%を含まない)、V:0.1%以下(0%を含まない)およびB:0.005%以下(0%を含まない)よりなる群から選ばれる1種以上の元素を含有させることも有効である。こうした範囲を定めた理由は以下の通りである。   In order to increase the strength of the steel material of the present invention, Cu: 2% or less (excluding 0%), Ni: 2% or less (not including 0%), Cr: 1.5% or less (0% Mo: 1% or less (not including 0%), Nb: 0.05% or less (not including 0%), V: 0.1% or less (not including 0%), and B: 0 It is also effective to contain one or more elements selected from the group consisting of 0.005% or less (not including 0%). The reasons for setting these ranges are as follows.

〈Cu:2%以下(0%を含まない)〉
Cuは、鋼材を固溶強化させる元素であり、こうした効果を有効に発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上である。特に0.6%以上含有させると、固溶強化のほか、時効析出強化も発揮し、大幅な強度向上が可能となる。しかし2%を超えて含有させると、鋼材(母材)の靭性が低下するため、Cuは2%以下に抑えるのがよい。好ましくは1.8%以下であり、より好ましくは1.6%以下とする。
<Cu: 2% or less (excluding 0%)>
Cu is an element for solid solution strengthening of the steel material, and in order to exhibit such an effect effectively, it is preferable to contain 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. In particular, when 0.6% or more is contained, in addition to solid solution strengthening, aging precipitation strengthening is also exhibited, and a significant improvement in strength becomes possible. However, if the content exceeds 2%, the toughness of the steel material (base material) decreases, so Cu should be suppressed to 2% or less. Preferably it is 1.8% or less, More preferably, you may be 1.6% or less.

〈Ni:2%以下(0%を含まない)〉
Niは、鋼材の強度を高めると共に、鋼材の靭性を向上させるのに有効に作用する元素であり、こうした作用を発揮させるには、0.05%以上含有させることが好ましい。より好ましくは0.1%以上であり、更に好ましくは0.2%以上とする。Niは多いほど好ましいが、高価な元素であるため経済的観点から2%以下に抑えることが好ましい。より好ましくは1.8%以下であり、更に好ましくは1.6%以下である。
<Ni: 2% or less (excluding 0%)>
Ni is an element that effectively acts to increase the strength of the steel material and improve the toughness of the steel material. In order to exert such an effect, Ni is preferably contained in an amount of 0.05% or more. More preferably, it is 0.1% or more, More preferably, it is 0.2% or more. The more Ni, the better. However, since it is an expensive element, it is preferable to suppress it to 2% or less from an economical viewpoint. More preferably, it is 1.8% or less, More preferably, it is 1.6% or less.

〈Cr:1.5%以下(0%を含まない)〉
Crを添加して強度を高めるには、0.01%以上含有させることが好ましい。より好ましくは0.02%以上、更に好ましくは0.03%以上である。しかし1.5%を超えると溶接性が劣化するため、Crは1.5%以下に抑えることが好ましい。より好ましくは1.3%以下であり、更に好ましくは1.1%以下である。
<Cr: 1.5% or less (excluding 0%)>
In order to increase the strength by adding Cr, the content is preferably 0.01% or more. More preferably it is 0.02% or more, and still more preferably 0.03% or more. However, if it exceeds 1.5%, weldability deteriorates, so Cr is preferably suppressed to 1.5% or less. More preferably, it is 1.3% or less, More preferably, it is 1.1% or less.

〈Mo:1%以下(0%を含まない)〉
Moを添加して強度を高めるには、0.01%以上含有させるのが望ましい。より好ましくは0.02%以上であり、更に好ましくは0.03%以上含有させるのがよい。但し、1%を超えると溶接性を悪化させるためMoは1%以下とするのが好ましい。より好ましくは0.9%以下であり、更に好ましくは0.8%以下に抑えることが推奨される。
<Mo: 1% or less (excluding 0%)>
In order to increase the strength by adding Mo, it is desirable to contain 0.01% or more. More preferably it is 0.02% or more, and still more preferably 0.03% or more. However, if it exceeds 1%, the weldability deteriorates, so Mo is preferably 1% or less. More preferably, it is 0.9% or less, and more preferably 0.8% or less.

〈Nb:0.05%以下(0%を含まない)〉
Nbを添加して強度を高めるには、0.005%以上含有させるのが好ましい。より好ましくは0.007%以上であり、更に好ましくは0.01%以上である。しかし0.05%を超えると炭化物(NbC)が析出して母材靭性が劣化するので、Nbは0.05%以下に抑えるのが好ましい。より好ましくは0.04%以下であり、更に好ましくは0.03%以下である。
<Nb: 0.05% or less (excluding 0%)>
In order to increase the strength by adding Nb, it is preferable to contain 0.005% or more. More preferably, it is 0.007% or more, More preferably, it is 0.01% or more. However, if it exceeds 0.05%, carbide (NbC) precipitates and the base material toughness deteriorates, so Nb is preferably suppressed to 0.05% or less. More preferably, it is 0.04% or less, More preferably, it is 0.03% or less.

〈V:0.1%以下(0%を含まない)〉
Vを添加して強度を高めるには、0.005%以上含有させるのが望ましい。より好ましくは0.01%以上、更に好ましくは0.03%以上含有させるのがよい。しかし0.1%を超えると、溶接性が悪化する共に母材の靭性が劣化するため、Vは0.1%以下とするのが好ましい。より好ましくは0.08%以下、更に好ましくは0.06%以下に抑えるのがよい。
<V: 0.1% or less (excluding 0%)>
In order to increase the strength by adding V, it is desirable to contain 0.005% or more. More preferably 0.01% or more, still more preferably 0.03% or more. However, if it exceeds 0.1%, the weldability deteriorates and the toughness of the base material deteriorates. Therefore, V is preferably 0.1% or less. More preferably, it is 0.08% or less, and more preferably 0.06% or less.

〈B:0.005%以下(0%を含まない)〉
Bは、鋼材の強度を高めると共に、溶接時に加熱されたHAZが冷却される過程において鋼中のNと結合してBNを析出し、オーステナイト粒内からのフェライト変態を促進させる。こうした効果を有効に発揮させるには、0.0003%以上含有させるのが好ましい。より好ましくは0.0005%以上であり、更に好ましくは0.0008%以上である。しかし0.005%を超えると、鋼材(母材)の靭性が劣化するため、Bは0.005%以下とするのが好ましい。より好ましくは0.004%以下であり、更に好ましくは0.003%以下とするのがよい。
<B: 0.005% or less (excluding 0%)>
B increases the strength of the steel material and, in the process of cooling the HAZ heated during welding, combines with N in the steel to precipitate BN and promote ferrite transformation from within the austenite grains. In order to exhibit such an effect effectively, it is preferable to contain 0.0003% or more. More preferably, it is 0.0005% or more, More preferably, it is 0.0008% or more. However, if it exceeds 0.005%, the toughness of the steel (base material) deteriorates, so B is preferably 0.005% or less. More preferably, it is 0.004% or less, and further preferably 0.003% or less.

また本発明において、高強度と低降伏比を両立させるには、金属組織を、全組織に占めるフェライトの分率が4〜24%で残部がベイナイト組織および/またはマルテンサイト組織のものとする必要がある。   In the present invention, in order to achieve both high strength and a low yield ratio, the metal structure needs to have a ferrite fraction of 4 to 24% in the entire structure and the balance being a bainite structure and / or a martensite structure. There is.

図1は、フェライト分率と降伏比の関係を示すグラフであり、後述する実施例の結果を整理したものであるが、この図1より、降伏比:80%以下を達成するには、フェライト分率を4%以上とする必要あることがわかる。降伏比をより低下させるには、フェライト分率:7%以上が好ましく、より好ましくは10%以上である。   FIG. 1 is a graph showing the relationship between the ferrite fraction and the yield ratio, and is a summary of the results of Examples described later. From FIG. 1, in order to achieve a yield ratio of 80% or less, ferrite is used. It can be seen that the fraction needs to be 4% or more. In order to further reduce the yield ratio, the ferrite fraction is preferably 7% or more, more preferably 10% or more.

一方、図2は、フェライト分率と引張強度(TS)の関係を示すグラフであり、後述する実施例の結果を整理したものであるが、この図2より、引張強度を590MPa以上に確実に高めるには、フェライト分率を24%以下とする必要があることがわかる。引張強度をより高めるには、フェライト分率を22%以下とすることが好ましく、より好ましくは20%以下である。   On the other hand, FIG. 2 is a graph showing the relationship between the ferrite fraction and the tensile strength (TS), which is a summary of the results of Examples to be described later. From FIG. 2, the tensile strength is reliably set to 590 MPa or more. It can be seen that the ferrite fraction must be 24% or less in order to increase it. In order to further increase the tensile strength, the ferrite fraction is preferably 22% or less, more preferably 20% or less.

尚、本発明でいう「残部がベイナイト組織および/またはマルテンサイト組織」とは、ベイナイト組織および/またはマルテンサイト組織を76〜96%含み、該ベイナイト組織および/またはマルテンサイト組織および上記フェライト以外に、製造工程で不可避的に形成され得るその他の組織(セメンタイト、MA)を含む意図である。   The “remaining bainite structure and / or martensite structure” as used in the present invention includes 76 to 96% of bainite structure and / or martensite structure, in addition to the bainite structure and / or martensite structure and the ferrite. It is intended to include other structures (cementite, MA) that may be inevitably formed in the manufacturing process.

次に、本発明の鋼材を製造するに当たり、好適に採用できる製法について説明する。上述の通り、鋼材中に、REMの酸化物および/またはCaOと、ZrO2を適量含有させるには、後記の実施例から明らかなように、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを添加する直前の溶存酸素量を適切に制御する、即ち、溶存酸素量を適切に制御した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加することが大変有効である。該方法で製造すれば、REMやCa、Zrの添加量をある程度多くしても上記酸化物を確実に形成させることができ、結果としてREMの硫化物やCaの硫化物、或いはZrの炭化物の生成を防止することができるからである。 Next, a production method that can be suitably employed in producing the steel material of the present invention will be described. As described above, in order to contain an appropriate amount of REM oxide and / or CaO and ZrO 2 in the steel material, as is apparent from the examples described later, at least one selected from the group consisting of REM and Ca is used. The element and the amount of dissolved oxygen immediately before adding Zr are appropriately controlled, that is, the molten steel in which the amount of dissolved oxygen is appropriately controlled is combined with at least one element selected from the group consisting of REM and Ca, and Zr. It is very effective to add them. If manufactured by this method, the oxide can be formed reliably even if the amount of REM, Ca, or Zr added is increased to some extent. As a result, REM sulfide, Ca sulfide, or Zr carbide can be formed. This is because generation can be prevented.

このとき上記溶存酸素量が0.0020%未満では、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加しても、酸素量不足になるため、HAZの靭性向上に寄与する酸化物量を確保することができず、しかも酸化物を形成できなかったREMやCaが硫化物を形成したり、Zrが炭化物を形成して母材の靭性を劣化する。上記元素を複合添加する前の溶存酸素量は、0.0025%以上に調整することが好ましく、より好ましくは0.0030%以上である。しかし溶存酸素量が0.010%を超えていると、溶鋼中の酸素量が多すぎるため、溶鋼中の酸素と上記元素の反応が激しくなり溶製作業上好ましくないばかりか、粗大なREMの酸化物、Caの酸化物やZrO2が生成する。従って溶存酸素量は0.010%以下に抑えるべきであり、好ましくは0.008%以下、より好ましくは0.007%以下とする。 At this time, if the amount of dissolved oxygen is less than 0.0020%, even if Zr is added in combination with at least one element selected from the group consisting of REM and Ca, the amount of oxygen becomes insufficient, so the HAZ toughness is improved. REM or Ca, which could not secure the amount of contributing oxides and could not form oxides, formed sulfides, or Zr formed carbides, deteriorating the toughness of the base material. The amount of dissolved oxygen before adding the above elements is preferably adjusted to 0.0025% or more, and more preferably 0.0030% or more. However, if the amount of dissolved oxygen exceeds 0.010%, the amount of oxygen in the molten steel is too large, and the reaction between the oxygen in the molten steel and the above elements becomes violent, which is not preferable for melting work. Oxides, Ca oxides, and ZrO 2 are formed. Therefore, the amount of dissolved oxygen should be suppressed to 0.010% or less, preferably 0.008% or less, more preferably 0.007% or less.

上記REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加した後は、合金元素を添加して鋼材の成分を調整すればよい。   After at least one element selected from the group consisting of REM and Ca and Zr are added in combination, an alloy element may be added to adjust the components of the steel material.

なお、上記溶存酸素量を調整した溶鋼へ上記元素を添加するに当たっては、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加すればよく、例えばREMとCaを複合添加する場合には、(a)溶存酸素量を調整した溶鋼へREMとCaとZrを添加した後、合金元素を添加して鋼材の成分を調整してもよいし、(b)溶存酸素量を調整した溶鋼へREM(あるいはCa)とZrを添加した後、Ca(あるいはREM)以外の合金元素を添加して鋼材の成分を調整し、次いでCa(あるいはREM)を添加してもよい。   In addition, when adding the said element to the molten steel which adjusted the amount of dissolved oxygen, what is necessary is just to compound-add at least 1 sort (s) of elements selected from the group which consists of REM and Ca, for example, REM and Ca are compounded. In order to do this, (a) after adding REM, Ca, and Zr to the molten steel in which the amount of dissolved oxygen is adjusted, the alloy elements may be added to adjust the components of the steel material, and (b) the amount of dissolved oxygen is adjusted. After adding REM (or Ca) and Zr to the adjusted molten steel, an alloy element other than Ca (or REM) may be added to adjust the components of the steel material, and then Ca (or REM) may be added.

上記溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加する手順は特に限定されず、例えば(a)REMおよびCaよりなる群から選ばれる少なくとも1種の元素を添加した後に、Zrを添加してもよいし、(b)Zrを添加した後に、REMおよびCaよりなる群から選ばれる少なくとも1種の元素を添加してもよいし、(c)REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを同時に複合添加してもよい。REMとCaを複合添加する場合には、(d)REM(あるいはCa)を添加した後に、Zrを添加し、次いでCa(あるいはREM)を添加してもよいし、(e)REMとCaとZrを同時に複合添加してもよい。   The procedure for adding at least one element selected from the group consisting of REM and Ca and Zr to the molten steel with the dissolved oxygen content adjusted is not particularly limited. For example, (a) selected from the group consisting of REM and Ca Zr may be added after at least one element is added, or (b) at least one element selected from the group consisting of REM and Ca may be added after adding Zr. (C) At least one element selected from the group consisting of REM and Ca and Zr may be simultaneously added in combination. When REM and Ca are added in combination, (d) REM (or Ca) may be added, then Zr may be added, and then Ca (or REM) may be added. (E) REM and Ca Zr may be combined and added simultaneously.

本発明の鋼材がTiを含む場合、溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加した後に、(a)鋼材の成分調整する際に併せてTiを添加してもよいし、(b)鋼材の成分調整した後に、Tiを添加してもよい。好ましくは溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、TiとZrを添加するのが好ましい。   When the steel material of the present invention contains Ti, after adding Zr in combination with at least one element selected from the group consisting of REM and Ca to the molten steel in which the amount of dissolved oxygen is adjusted, (a) adjusting the components of the steel material At the same time, Ti may be added, or (b) Ti may be added after adjusting the components of the steel material. Preferably, at least one element selected from the group consisting of REM and Ca, and Ti and Zr are added to the molten steel in which the amount of dissolved oxygen is adjusted.

この場合、溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加するに先立って、Tiを添加することが推奨される。溶存酸素量を調整した溶鋼へ、Tiを添加すれば、まずTiが形成されるが、Tiは溶鋼との界面エネルギーが小さいため、形成されたTiのサイズは微細になる。次いでREMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加することによってREMの酸化物やCaO、ZrO2が、上記Tiを生成核として成長するため、結果的に粒子の個数が増大し、オーステナイト粒の粗大化抑制効果が大きくなる。 In this case, it is recommended to add Ti prior to adding at least one element selected from the group consisting of REM and Ca and Zr to the molten steel in which the amount of dissolved oxygen is adjusted. If Ti is added to the molten steel whose amount of dissolved oxygen is adjusted, Ti 2 O 3 is first formed, but since Ti 2 O 3 has a small interfacial energy with the molten steel, the size of the formed Ti 2 O 3 is It becomes fine. Then, by adding Zr in combination with at least one element selected from the group consisting of REM and Ca, the REM oxide, CaO, and ZrO 2 grow using the Ti 2 O 3 as a production nucleus. In addition, the number of particles increases, and the effect of suppressing austenite grain coarsening increases.

ところで、転炉や電気炉で一次精錬された溶鋼中の溶存酸素量は、通常0.010%を超えている。そこで本発明の製法では、REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを複合添加する前、或いはTiを添加する前に、溶鋼中の溶存酸素量を上記範囲に調整する必要がある。溶存酸素量を調整する方法としては、例えばRH式脱ガス精錬装置を用いて真空C脱酸する方法や、SiやMn,Ti,Alなどの脱酸性元素を添加する方法などが挙げられ、勿論これらの方法を適宜組み合わせて溶存酸素量を調整しても良い。また、RH式脱ガス精錬装置の代わりに、取鍋加熱式精錬装置や簡易式溶鋼処理設備などを用いて溶存酸素量を調整しても良い。この場合、真空C脱酸による溶存酸素量の調整はできないため、溶存酸素量の調整にはSi等の脱酸性元素を添加する方法を採用すれば良い。Si等の脱酸性元素を添加する方法を採用するときは、転炉から取鍋へ出鋼する際に脱酸性元素を添加しても構わない。   By the way, the amount of dissolved oxygen in molten steel primarily refined in a converter or electric furnace usually exceeds 0.010%. Therefore, in the manufacturing method of the present invention, the amount of dissolved oxygen in the molten steel is adjusted to the above range before adding Zr in combination with at least one element selected from the group consisting of REM and Ca, or before adding Ti. There is a need. Examples of the method for adjusting the amount of dissolved oxygen include a method of vacuum C deoxidation using an RH type degassing refining device, a method of adding a deacidifying element such as Si, Mn, Ti, Al, etc. The amount of dissolved oxygen may be adjusted by appropriately combining these methods. Moreover, you may adjust the amount of dissolved oxygen using a ladle heating type refining apparatus, a simple molten steel processing facility, etc. instead of the RH type degassing refining apparatus. In this case, since the amount of dissolved oxygen cannot be adjusted by vacuum C deoxidation, a method of adding a deacidifying element such as Si may be employed to adjust the amount of dissolved oxygen. When employing a method of adding a deoxidizing element such as Si, the deoxidizing element may be added when steel is removed from the converter to the ladle.

溶鋼へ添加するREMやCa,Zr,Tiの形態は特に限定されず、例えば、REMとして、純Laや純Ce,純Yなど、或いは純Ca,純Zr,純Ti、更にはFe−Si−La合金,Fe−Si−Ce合金,Fe−Si−Ca合金,Fe−Si−La−Ce合金,Fe−Ca合金,Ni−Ca合金などを添加すればよい。また、溶鋼へミッシュメタルを添加してもよい。ミッシュメタルとは、セリウム族希土類元素の混合物であり、具体的には、Ceを40〜50%程度,Laを20〜40%程度含有している。但し、ミッシュメタルには不純物としてCaを含むことが多いので、ミッシュメタルがCaを含む場合は本発明で規定する範囲を満足する必要がある。   The form of REM, Ca, Zr, Ti added to the molten steel is not particularly limited. For example, as REM, pure La, pure Ce, pure Y, or pure Ca, pure Zr, pure Ti, and further Fe-Si- A La alloy, Fe—Si—Ce alloy, Fe—Si—Ca alloy, Fe—Si—La—Ce alloy, Fe—Ca alloy, Ni—Ca alloy, or the like may be added. Moreover, you may add misch metal to molten steel. Misch metal is a mixture of cerium group rare earth elements, and specifically contains about 40 to 50% of Ce and about 20 to 40% of La. However, since misch metal often contains Ca as an impurity, when the misch metal contains Ca, the range specified in the present invention must be satisfied.

また、上記金属組織を得るには、上記成分組成を満たす鋼材を用い、製造過程において、加熱・熱間圧延の後に焼入れ、オーステナイト−フェライト二相域(以下、単に「二相域」という)での熱処理(焼入れ)および焼戻し処理を行うことが推奨される。   In addition, in order to obtain the metal structure, a steel material satisfying the above component composition is used, and in the manufacturing process, after heating / hot rolling, quenching is performed in an austenite-ferrite two-phase region (hereinafter simply referred to as “two-phase region”). It is recommended to perform heat treatment (quenching) and tempering.

図3は、焼入れ開始温度(図3では特に直接焼入れを行う場合の焼入れ開始温度)とフェライト分率の関係を示すグラフであり、後述する実施例の実験結果を整理したものである。この図3より、引張強度:590MPa以上を確実に達成すべくフェライト分率を24%以下に抑えるには、焼入れ開始温度をフェライト変態開始温度(Ar3)以上とするのがよいことがわかる。   FIG. 3 is a graph showing the relationship between the quenching start temperature (quenching start temperature in the case of direct quenching in FIG. 3) and the ferrite fraction, and is a summary of the experimental results of examples described later. From FIG. 3, it can be seen that the quenching start temperature is preferably set to be equal to or higher than the ferrite transformation start temperature (Ar3) in order to suppress the ferrite fraction to 24% or less in order to reliably achieve the tensile strength of 590 MPa or more.

上記焼入れは、熱間圧延直後に焼入れを行う直接焼入れ(DQ)の他、熱間圧延材を用いてオフラインで焼入れ(RQ)を行ってもよい。尚、上記DQ処理の場合には、やり直しができないことから、上記RQ処理の場合よりも、上記焼入れ開始温度の厳格な温度管理が要求される。   In addition to direct quenching (DQ) in which quenching is performed immediately after hot rolling, the quenching may be performed offline using a hot rolled material (RQ). In the case of the DQ process, since the process cannot be performed again, stricter temperature control of the quenching start temperature is required than in the case of the RQ process.

また、硬質のベイナイト組織および/またはマルテンサイト組織の中に規定量のフェライト相を混在させるには、二相域での熱処理を行なうことが有効である。図4は、二相域(近辺)での熱処理温度とフェライト分率の関係を示すグラフであり、後述する実施例の実験結果を整理したものであるが、この図4より、降伏比:80%以下を達成すべくフェライトを4%以上確保するには、Ac1以上Ac3以下で熱処理する必要があることがわかる。尚、Ac1以上Ac3以下(二相域温度)で5分以上保持することが望ましい。   In order to mix a prescribed amount of ferrite phase in the hard bainite structure and / or martensite structure, it is effective to perform heat treatment in a two-phase region. FIG. 4 is a graph showing the relationship between the heat treatment temperature and the ferrite fraction in the two-phase region (nearby), and is a summary of the experimental results of Examples described later. From this FIG. 4, the yield ratio: 80 It can be seen that heat treatment at Ac1 or more and Ac3 or less is necessary to secure 4% or more of ferrite in order to achieve% or less. In addition, it is desirable to hold at Ac1 or more and Ac3 or less (two-phase region temperature) for 5 minutes or more.

上記二相域に加熱後は、焼入れ(例えばRQ)を行い、その後フェライト変態開始温度(Ac1)以下の温度で焼戻して鋼材の強度を調整すればよい。   After heating to the two-phase region, quenching (for example, RQ) is performed, and then the strength of the steel material is adjusted by tempering at a temperature equal to or lower than the ferrite transformation start temperature (Ac1).

こうして得られる本発明の鋼材は、例えば橋梁や高層建造物、船舶などの構造物(特には高層建造物)の材料として使用でき、小〜中入熱溶接はもとより大入熱溶接においても、溶接熱影響部の靭性劣化を防ぐことができると共に、高強度と低降伏比の両立を図ることができる。   The steel material of the present invention thus obtained can be used as a material for structures (particularly high-rise buildings) such as bridges, high-rise buildings, and ships, and can be used not only in small to medium heat input welding but also in high heat input welding. While preventing toughness deterioration of the heat affected zone, it is possible to achieve both high strength and low yield ratio.

以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.

溶銑を240トン転炉で一次精錬した後、該転炉から取鍋へ出鋼し、成分調整および温度調整しながら二次精錬を行った。ここで、取鍋では、下記表1に示す脱酸方法で、下記表1に示す溶存酸素量に調整した。その後、下記表1に示す順序で元素を添加した。次いで必要に応じて残りの合金元素を添加して最終的に下記表2に示す組成に調整した。なお、二次精錬にはRH式脱ガス精錬装置等を用いて脱Hや脱Sなどを行なった。また、表1における鋼種No.16の溶存酸素量「−」は、定量限界未満であることを示す。   After the hot metal was first refined in a 240-ton converter, the steel was removed from the converter into a ladle and subjected to secondary refining while adjusting the components and adjusting the temperature. Here, in the ladle, the amount of dissolved oxygen shown in Table 1 below was adjusted by the deoxidation method shown in Table 1 below. Thereafter, the elements were added in the order shown in Table 1 below. Subsequently, the remaining alloying elements were added as necessary to finally adjust the compositions shown in Table 2 below. In the secondary refining, dehydrogenation and desulfurization were performed using an RH type degassing refining apparatus. In Table 1, the steel type No. A dissolved oxygen amount “−” of 16 indicates that it is less than the limit of quantification.

なお、表1において、LaはFe−La合金の形態で、CeはFe−Ce合金の形態で、REMはLaを50%程度とCeを25%程度含有するミッシュメタルの形態で、CaはNi−Ca合金、またはCa−Si合金、またはFe−Ca圧粉体の形態で、ZrはZr単体で、TiはFe−Ti合金の形態で、夫々添加した。また、表2中「−」は元素を添加していないことを示しており、「<」(未満)は元素を添加していないが不可避的に含まれていたため、定量限界未満の範囲で検出されたことを意味している。   In Table 1, La is in the form of an Fe-La alloy, Ce is in the form of an Fe-Ce alloy, REM is in the form of a misch metal containing about 50% La and about 25% Ce, and Ca is Ni. Zr was added in the form of Zr alone, and Ti was added in the form of an Fe-Ti alloy in the form of -Ca alloy, Ca-Si alloy, or Fe-Ca compact. In Table 2, "-" indicates that no element was added, and "<" (less than) did not add an element but was inevitably contained, so detection was in the range below the limit of quantification. It means that it was done.

表2には、Ac1、Ac3およびAr3を併記する。該Ac1、Ac3およびAr3は、下記方法で測定したものである。   Table 2 also shows Ac1, Ac3 and Ar3. The Ac1, Ac3 and Ar3 are measured by the following method.

〈冷却時フェライト変態開始温度(Ar3)の測定方法〉
加工フォーマスター試験片を1100℃に加熱して10秒間保持後、1000℃で累積圧下率25%の加工、更に900℃で累積圧下率25%の加工を施し、その後、800℃から冷却速度1℃/sで冷却し、冷却中に体積が膨張し始める温度をAr3変態温度として求めた。
<Method for measuring ferrite transformation start temperature (Ar3) during cooling>
The processed formaster test piece is heated to 1100 ° C. and held for 10 seconds, then processed at 1000 ° C. with a cumulative reduction of 25%, further processed at 900 ° C. with a cumulative reduction of 25%, and then at a cooling rate of 1 from 800 ° C. The temperature at which the volume began to expand during cooling was determined as the Ar3 transformation temperature.

〈加熱時フェライト変態開始温度(Ac1)および加熱時フェライト変態終了温度(Ac3)の測定方法〉
加工フォーマスター試験片を加熱速度10℃/sで常温から1000℃まで加熱する過程において、体積が縮小し始める温度をAc1変態温度、更に加熱を続けて体積が膨張し始める温度をAc3変態温度とした。
<Measurement Method of Ferrite Transformation Start Temperature (Ac1) During Heating and Ferrite Transformation End Temperature (Ac3) During Heating>
In the process of heating the processed formaster specimen from room temperature to 1000 ° C. at a heating rate of 10 ° C./s, the temperature at which the volume begins to shrink is Ac1 transformation temperature, and the temperature at which the volume begins to expand further after heating is the Ac3 transformation temperature. did.

Figure 2007247004
Figure 2007247004

Figure 2007247004
Figure 2007247004

上記溶製後、連続鋳造して得られたスラブに熱間圧延を施した後、直接焼入れ(DQ)またはオフラインでの焼入れ(RQ)を行った。更にオーステナイト−フェライト二相域または該二相域近傍まで加熱し、次いで焼入れを行った後に、焼戻しを行って表3に示す板厚の鋼板を得た。上記熱間圧延における(仕上)圧延終了温度[圧延終了時のt(板厚)/4部位の温度]、焼入れ方法と焼入れ開始温度(焼入れ開始時のt/4部位の温度)、二相域(近辺)での熱処理温度(t/4部位の温度)、および焼戻し温度(t/4部位の温度)を表3に示す。   After the above melting, the slab obtained by continuous casting was hot-rolled and then directly quenched (DQ) or offline quenched (RQ). Further, the steel was heated to the austenite-ferrite two-phase region or the vicinity of the two-phase region and then quenched, and then tempered to obtain steel plates having the thicknesses shown in Table 3. (Finish) rolling end temperature in the above hot rolling [temperature of t (sheet thickness) / 4 part at the end of rolling], quenching method and quenching start temperature (temperature of t / 4 part at the start of quenching), two-phase region Table 3 shows the heat treatment temperature (temperature at the t / 4 site) and the tempering temperature (temperature at the t / 4 site) in (near).

尚、表3の圧延終了時のt/4部位の温度は、下記(1)〜(6)の要領で求めたものである。
(1)プロセスコンピュータにおいて、加熱開始から加熱終了までの雰囲気温度、在炉時間に基づき、鋼片の表面から裏面までの板厚方向の任意の位置の加熱温度を算出する。
(2)上記算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置の圧延温度を差分法など計算に適した方法を用いて算出しつつ、圧延を実施する。
(3)鋼板表面温度は、圧延ライン上に設置された放射型温度計を用いて実測する(ただし、プロセスコンピュータ上においても計算を実施する)。
(4)粗圧延開始時、粗圧延終了時および仕上圧延開始時にそれぞれ実測した鋼板表面温度を、プロセスコンピュータ上の計算温度と照合する。
(5)粗圧延開始時、粗圧延終了時および仕上圧延開始時の計算温度と上記実測温度の差が±30℃以上の場合は、実測表面温度と計算表面温度が一致する様に再計算し、プロセスコンピュータ上の計算温度とする。
(6)上記計算温度の補正を行って、t/4部位の仕上圧延終了温度を求める。
In addition, the temperature of the t / 4 site | part at the time of completion | finish of rolling of Table 3 is calculated | required in the way of the following (1)-(6).
(1) In the process computer, based on the atmospheric temperature from the start of heating to the end of heating and the in-furnace time, the heating temperature at an arbitrary position in the thickness direction from the front surface to the back surface of the steel slab is calculated.
(2) Using the calculated heating temperature, calculate the rolling temperature at any position in the plate thickness direction based on the rolling pass schedule during rolling and the cooling method between the passes (water cooling or air cooling). Rolling while calculating using a suitable method.
(3) The steel sheet surface temperature is measured using a radiation type thermometer installed on the rolling line (however, calculation is also performed on a process computer).
(4) The steel plate surface temperature measured at the start of rough rolling, at the end of rough rolling and at the start of finish rolling is collated with the calculated temperature on the process computer.
(5) When the difference between the calculated temperature at the start of rough rolling, at the end of rough rolling and at the start of finish rolling and the above measured temperature is ± 30 ° C or more, recalculate so that the measured surface temperature matches the calculated surface temperature. The calculated temperature on the process computer.
(6) The above calculated temperature is corrected to determine the finish rolling finish temperature at the t / 4 part.

また、二相域(近辺)での熱処理温度(t/4部位の温度)は下記(1)(2)の要領で求めたものである。更に、焼入れ温度(焼入れ開始時のt/4部位の温度)および焼戻し温度(t/4部位の温度)も同様にして求めたものである。
(1)プロセスコンピュータにおいて、加熱開始から加熱終了までの雰囲気温度、在炉時間に基づき、鋼片の表面から裏面までの板厚方向の任意の位置の加熱温度を算出する。
(2)算出された計算温度から、t/4部位の温度を求める。
In addition, the heat treatment temperature (temperature at the t / 4 site) in the two-phase region (near) is obtained by the following procedures (1) and (2). Further, the quenching temperature (temperature at the t / 4 site at the start of quenching) and the tempering temperature (temperature at the t / 4 site) were obtained in the same manner.
(1) In the process computer, based on the atmospheric temperature from the start of heating to the end of heating and the in-furnace time, the heating temperature at an arbitrary position in the thickness direction from the front surface to the back surface of the steel slab is calculated.
(2) The temperature of the t / 4 part is obtained from the calculated temperature.

上記の様にして得られた鋼板を用いて、引張試験、組織観察、EPMAによる介在物組成の調査、およびHAZ靭性の評価を、それぞれ下記の要領で実施した。   Using the steel sheet obtained as described above, a tensile test, structure observation, investigation of inclusion composition by EPMA, and evaluation of HAZ toughness were carried out in the following manner.

〈引張試験〉
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJISZ 2201の4号試験片を採取して、JISZ 2241の要領で引張試験を行ない、引張強度(TS)を測定した。そして、TSが590MPa以上でYRが80%以下のものを、引張特性に優れていると評価した。
<Tensile test>
Sample No. 4 of JISZ 2201 was sampled in the direction perpendicular to the rolling direction from the t (plate thickness) / 4 part of each steel plate, and a tensile test was conducted in accordance with the procedure of JISZ 2241 to determine the tensile strength (TS). It was measured. And what TS was 590 Mpa or more and YR was 80% or less evaluated that it was excellent in the tensile characteristic.

〈金属組織の観察〉
フェライト分率は下記の様にして測定した。
(i)圧延方向に平行で且つ鋼板表面に対して垂直な、鋼板表裏面を含む板厚断面を観察できるよう上記鋼板からサンプルを採取する。
(ii)湿式エメリー研磨紙(#150〜#1000)での研磨、またはそれと同等の機能を有する研磨方法(ダイヤモンドスラリー等の研磨剤を用いた研磨等)により、観察面の鏡面仕上を行う。
(iii)研磨されたサンプルを、3%ナイタール溶液を用いて腐食し、フェライト組織の結晶粒界を現出させる。
(iv)t(板厚)/4部位において、現出させた組織を100倍あるいは400倍の倍率で写真撮影し(本実施例では6cm×8cmの写真として撮影)、フェライト組織を黒色に着色する。
<Observation of metal structure>
The ferrite fraction was measured as follows.
(I) A sample is taken from the steel plate so that a plate thickness cross section including the steel plate front and back surfaces parallel to the rolling direction and perpendicular to the steel plate surface can be observed.
(Ii) The observation surface is mirror-finished by polishing with wet emery polishing paper (# 150 to # 1000) or a polishing method having the same function (polishing using an abrasive such as diamond slurry).
(Iii) The polished sample is corroded using a 3% nital solution to reveal the grain boundaries of the ferrite structure.
(Iv) At t (plate thickness) / 4 portion, the exposed structure was photographed at a magnification of 100 times or 400 times (taken as a photograph of 6 cm × 8 cm in this example), and the ferrite structure was colored black To do.

次に、前記写真を画像解析装置に取り込む(前記写真の領域は、100倍の場合は600μm×800μm、400倍の場合は150μm×200μmに相当する)。画像解析装置への取り込みは、いずれの倍率の場合も、領域の合計が1mm×1mm以上となるよう取り込む(即ち、100倍の場合は上記写真を少なくとも6枚、400倍の場合は上記写真を少なくとも35枚取り込む)。
(v)画像解析装置において、写真毎に黒色の面積率を算出し、全ての写真の平均値をフェライト分率とする。
Next, the photograph is taken into an image analysis apparatus (the area of the photograph corresponds to 600 μm × 800 μm when the magnification is 100 times, and 150 μm × 200 μm when the magnification is 400 times). Capture to the image analyzer at any magnification so that the total area is 1 mm x 1 mm or more (ie, at least 6 photos for 100x and above for 400x). Capture at least 35).
(V) In the image analysis apparatus, the black area ratio is calculated for each photograph, and the average value of all photographs is defined as the ferrite fraction.

尚、上記顕微鏡観察において、いずれの実施例においても、残部はベイナイト組織および/またはマルテンサイト組織であることを確認した。   In addition, in the said microscope observation, in any Example, it was confirmed that the remainder is a bainite structure and / or a martensite structure.

〈介在物組成の調査〉
各鋼板のt(板厚)/4位置における横断面からサンプルを切り出した。切り出されたサンプル表面を島津製作所製「EPMA−8705(装置名)」を用いて600倍で観察し、最大径が0.2μm以上の析出物について成分組成を定量分析した。観察条件は、加速電圧を20kV,試料電流を0.01μA,観察視野面積を1〜5cm2,分析個数を100個とし、特性X線の波長分散分光により析出物中央部での成分組成を定量分析した。分析対象元素は、Al,Mn,Si,Ti,Zr,Ca,La,CeおよびOとし、既知物質を用いて各元素の電子線強度と元素濃度の関係を予め検量線として求めておき、次いで、前記析出物から得られた電子線強度と前記検量線からその析出物の元素濃度を定量した。
<Investigation of inclusion composition>
A sample was cut out from the cross section at the t (plate thickness) / 4 position of each steel plate. The cut sample surface was observed 600 times using “EPMA-8705 (device name)” manufactured by Shimadzu Corporation, and the component composition of the precipitate having a maximum diameter of 0.2 μm or more was quantitatively analyzed. The observation conditions are an acceleration voltage of 20 kV, a sample current of 0.01 μA, an observation visual field area of 1 to 5 cm 2 , and an analysis number of 100, and the component composition at the center of the precipitate is determined by wavelength dispersion spectroscopy of characteristic X-rays. analyzed. The analysis target elements are Al, Mn, Si, Ti, Zr, Ca, La, Ce, and O, and a relationship between the electron beam intensity and the element concentration of each element is obtained in advance using a known substance as a calibration curve. The element concentration of the precipitate was determined from the electron beam intensity obtained from the precipitate and the calibration curve.

得られた定量結果のうち酸素含量が5%以上の析出物を酸化物とし、平均したものを酸化物の平均組成とした。全酸化物の平均組成を下記表4に示す。なお、一つの介在物から複数の元素が観測された場合には、それらの元素の存在を示すX線強度の比から各元素の単独酸化物に換算して酸化物の組成を算出した。   Of the obtained quantitative results, a precipitate having an oxygen content of 5% or more was defined as an oxide, and the average was defined as the average composition of the oxide. The average composition of all oxides is shown in Table 4 below. When a plurality of elements were observed from one inclusion, the composition of the oxide was calculated in terms of the X-ray intensity ratio indicating the presence of these elements, converted to a single oxide of each element.

上記サンプル表面をEPMAで観察した結果、観察された酸化物は、REMおよび/またはCaとZrを含む複合酸化物、或いは更にTiを含む複合酸化物が大半であったが、単独酸化物としてREMの酸化物、CaO、ZrO2、Tiも生成していた。 As a result of observing the sample surface with EPMA, most of the observed oxides were REM and / or a composite oxide containing Ca and Zr, or a composite oxide containing Ti. The oxides of CaO, ZrO 2 and Ti 2 O 3 were also produced.

〈HAZ靭性の評価〉
次に、HAZの靭性を評価するため、入熱量30〜170kJ/mmでエレクトロスラグ溶接を行い、溶接継手を作製した。そして該溶接継手のボンド部にVノッチを入れたJISZ2242(2006)で規定の試験片を用いて、0℃でシャルピー衝撃試験を行い、吸収エネルギー(vE0)を測定した。実施例No.ごとに採取した3本の試験片の平均値を求め、vE0が150J以上のものをHAZ靭性に優れると評価した。
<Evaluation of HAZ toughness>
Next, in order to evaluate the toughness of the HAZ, electroslag welding was performed at a heat input of 30 to 170 kJ / mm to produce a welded joint. And using the test piece prescribed | regulated by JISZ2242 (2006) which made the V notch in the bond part of this welded joint, the Charpy impact test was done at 0 degreeC, and the absorbed energy (vE0) was measured. Example No. An average value of three test pieces collected every time was obtained, and those having vE 0 of 150 J or more were evaluated as having excellent HAZ toughness.

測定結果を表3に併記する。   The measurement results are also shown in Table 3.

Figure 2007247004
Figure 2007247004

Figure 2007247004
Figure 2007247004

表1〜4から次のように考察できる(尚、下記No.は、表3の実施例No.を示す)。No.1〜3、6〜17、20〜22は、本発明で規定する要件を満足する例であり、鋼材にREMの酸化物および/またはCaOと、ZrO2を含有しているため、溶接熱影響部の靭性が良好な鋼材が得られている。また、フェライト分率も本発明で規定する要件を満足しており、590MPa以上の強度と80%以下の降伏比を両立できている。 Tables 1 to 4 can be considered as follows (in addition, the following No. indicates Example No. in Table 3). No. 1 to 3, 6 to 17, and 20 to 22 are examples that satisfy the requirements defined in the present invention. Since the steel material contains REM oxide and / or CaO and ZrO 2 , the influence of welding heat Steel material with good toughness of the part is obtained. Moreover, the ferrite fraction also satisfies the requirements defined in the present invention, and both a strength of 590 MPa or more and a yield ratio of 80% or less can be achieved.

一方、No.4、5、18、19、23〜31は、本発明で規定するいずれかの要件を外れる例である。特に、No.23〜30は、鋼材にREMの酸化物および/またはCaOと、ZrO2の何れか一方を含有していないため、溶接熱影響部の靭性が劣っている。 On the other hand, no. 4, 5, 18, 19, 23 to 31 are examples that do not meet any of the requirements defined in the present invention. In particular, no. Since Nos. 23 to 30 do not contain any one of REM oxide and / or CaO and ZrO 2 in the steel material, the toughness of the weld heat affected zone is inferior.

No.4、5、28、29は、フェライト分率が規定範囲を下回るため、降伏比が高くなっている。   No. 4, 5, 28 and 29 have a high yield ratio because the ferrite fraction is below the specified range.

No.18、19、27は、フェライト分率が規定範囲を上回るため、高強度のものが得られていない。   No. Nos. 18, 19 and 27 have high strength because the ferrite fraction exceeds the specified range.

No.23は、Mnが不足しているため高強度を達成できていない。   No. No. 23 cannot achieve high strength because Mn is insufficient.

No.31は、MnおよびAlが過剰であり、溶存酸素量も少ないため、規定の酸化物を十分確保できず、HAZ靭性に劣っている。   No. No. 31 has an excess of Mn and Al and a small amount of dissolved oxygen, so that a prescribed oxide cannot be secured sufficiently and is inferior in HAZ toughness.

フェライト分率と降伏比の関係を示すグラフである。It is a graph which shows the relationship between a ferrite fraction and a yield ratio. フェライト分率と引張強度(TS)の関係を示すグラフである。It is a graph which shows the relationship between a ferrite fraction and tensile strength (TS). 熱間圧延終了後の焼入れ開始温度とフェライト分率の関係を示すグラフである。It is a graph which shows the relationship between the quenching start temperature after completion | finish of hot rolling, and a ferrite fraction. 二相域(近辺)での熱処理温度とフェライト分率の関係を示すグラフである。It is a graph which shows the relationship between the heat processing temperature and ferrite fraction in a two-phase area | region (near vicinity).

Claims (8)

C:0.03〜0.2%(「質量%」の意味。以下同じ)、
Si:0.5%以下(0%を含まない)、
Mn:1.0〜2.0%、および
N :0.01%以下(0%を含まない)を含み、
P :0.02%以下(0%を含まない)、
S :0.015%以下(0%を含まない)、および
Al:0.01%以下(0%を含まない)を満足し、
REM:0.001〜0.1%および/またはCa:0.0003〜0.005%と、
Zr:0.001〜0.05%を夫々含有し、
残部が鉄および不可避的不純物からなる鋼材であって、
該鋼材に含まれる全酸化物の組成を測定したときに、REMの酸化物および/またはCaOと、ZrO2を含有し、且つ、
全組織に占めるフェライト分率が4〜24%で残部がベイナイト組織および/またはマルテンサイト組織であることを特徴とする溶接熱影響部の靭性に優れた低降伏比高張力鋼材。
C: 0.03 to 0.2% (meaning “mass%”; the same shall apply hereinafter)
Si: 0.5% or less (excluding 0%),
Mn: 1.0-2.0%, and N: 0.01% or less (not including 0%),
P: 0.02% or less (excluding 0%),
S: 0.015% or less (not including 0%) and Al: 0.01% or less (not including 0%),
REM: 0.001-0.1% and / or Ca: 0.0003-0.005%,
Zr: 0.001 to 0.05% each contained,
The balance is steel consisting of iron and inevitable impurities,
When the composition of all oxides contained in the steel material is measured, it contains REM oxide and / or CaO and ZrO 2 , and
A low-yield ratio high-tensile steel material excellent in toughness of a weld heat-affected zone, characterized in that the ferrite fraction in the entire structure is 4 to 24% and the balance is a bainite structure and / or a martensite structure.
前記REMの酸化物および/またはCaOの合計が5%以上で、且つ前記ZrO2が5%以上を満足するものである請求項1に記載の鋼材。 The steel material according to claim 1, wherein the total of the REM oxide and / or CaO satisfies 5% or more and the ZrO 2 satisfies 5% or more. 前記鋼材が、更に他の元素として、Ti:0.08%以下(0%を含まない)を含むと共に、前記鋼材に含まれる全酸化物の組成を測定したときに、Tiを含有するものである請求項1または2に記載の鋼材。 The steel material further contains Ti: 0.08% or less (not including 0%) as another element, and also contains Ti 2 O 3 when the composition of all oxides contained in the steel material is measured. The steel material according to claim 1 or 2. 前記Tiが0.3%以上を満足するものである請求項3に記載の鋼材。 The steel material according to claim 3, wherein the Ti 2 O 3 satisfies 0.3% or more. 前記鋼材が、更に他の元素として、
Cu:2%以下(0%を含まない)、
Ni:2%以下(0%を含まない)、
Cr:1.5%以下(0%を含まない)、
Mo:1%以下(0%を含まない)、
Nb:0.05%以下(0%を含まない)、
V :0.1%以下(0%を含まない)、および
B :0.005%以下(0%を含まない)
よりなる群から選ばれる1種以上の元素を含むものである請求項1〜4のいずれかに記載の鋼材。
The steel material is still another element,
Cu: 2% or less (excluding 0%),
Ni: 2% or less (excluding 0%),
Cr: 1.5% or less (excluding 0%),
Mo: 1% or less (excluding 0%),
Nb: 0.05% or less (excluding 0%),
V: 0.1% or less (not including 0%), and B: 0.005% or less (not including 0%)
The steel material according to any one of claims 1 to 4, comprising at least one element selected from the group consisting of:
請求項1〜5のいずれかに記載の鋼材を製造する方法であって、
溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、
REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、Zrを添加することを特徴とする溶接熱影響部の靭性に優れた低降伏比高張力鋼材の製法。
A method for producing the steel material according to any one of claims 1 to 5,
To the molten steel with the dissolved oxygen content adjusted to the range of 0.0020-0.010%,
A method for producing a low-yield-ratio high-tensile steel material excellent in toughness of a weld heat-affected zone, characterized by adding at least one element selected from the group consisting of REM and Ca and Zr.
請求項3〜5のいずれかに記載の鋼材を製造する方法であって、
溶存酸素量を0.0020〜0.010%の範囲に調整した溶鋼へ、
REMおよびCaよりなる群から選ばれる少なくとも1種の元素と、TiとZrを添加することを特徴とする溶接熱影響部の靭性に優れた低降伏比高張力鋼材の製法。
A method for producing the steel material according to any one of claims 3 to 5,
To the molten steel with the dissolved oxygen content adjusted to the range of 0.0020-0.010%,
A method for producing a low-yield ratio high-tensile steel material excellent in toughness of a weld heat-affected zone, characterized by adding at least one element selected from the group consisting of REM and Ca, and Ti and Zr.
上記溶存酸素量を調整した溶鋼へ、REMおよびCaよりなる群から選ばれる少なくとも1種の元素とZrを添加するに先立って、Tiを添加する請求項7に記載の製法。   The process according to claim 7, wherein Ti is added to the molten steel with the dissolved oxygen content adjusted before adding at least one element selected from the group consisting of REM and Ca and Zr.
JP2006073303A 2006-03-16 2006-03-16 Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method Expired - Fee Related JP4950528B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006073303A JP4950528B2 (en) 2006-03-16 2006-03-16 Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
CN200710084708XA CN101037757B (en) 2006-03-16 2007-02-26 Low yield ratio and high tension steel material excellent in toughness of weld heat-affected zone, and process for producing the same
KR1020070025616A KR100899053B1 (en) 2006-03-16 2007-03-15 Low yield ratio and high tension steel material excellent in toughness of weld heat-affected zone, and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073303A JP4950528B2 (en) 2006-03-16 2006-03-16 Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2007247004A true JP2007247004A (en) 2007-09-27
JP4950528B2 JP4950528B2 (en) 2012-06-13

Family

ID=38591621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073303A Expired - Fee Related JP4950528B2 (en) 2006-03-16 2006-03-16 Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method

Country Status (2)

Country Link
JP (1) JP4950528B2 (en)
CN (1) CN101037757B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2010121200A (en) * 2008-11-21 2010-06-03 Kobe Steel Ltd Low yield ratio steel having excellent toughness in weld heat-affected zone, and method for producing the same
JP2012046815A (en) * 2010-08-30 2012-03-08 Kobe Steel Ltd METHOD FOR PRODUCING Zr-CONTAINING STEEL
WO2013190975A1 (en) 2012-06-19 2013-12-27 株式会社神戸製鋼所 Steel material having excellent toughness in weld-heat-affected zone
JP2014009387A (en) * 2012-06-29 2014-01-20 Kobe Steel Ltd High tensile strength steel plate having excellent base metal toughness and haz toughness
CN112522594A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Thin-specification fire-resistant weather-resistant steel plate/belt and production method thereof
JPWO2021255855A1 (en) * 2020-06-17 2021-12-23

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179868A (en) * 2008-01-31 2009-08-13 Kobe Steel Ltd High tensile strength steel plate having excellent weldability
DK2434027T3 (en) * 2009-05-22 2015-12-07 Jfe Steel Corp Steel materials for welding with high heat input
JP5651090B2 (en) * 2011-01-18 2015-01-07 株式会社神戸製鋼所 Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP5883257B2 (en) * 2011-09-13 2016-03-09 株式会社神戸製鋼所 Steel material excellent in toughness of base metal and weld heat-affected zone, and manufacturing method thereof
TWI551387B (en) * 2012-03-01 2016-10-01 Jfe Steel Corp Large heat into the welding steel
EP3385399A4 (en) * 2015-12-04 2019-05-22 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202422A (en) * 1989-12-29 1991-09-04 Nippon Steel Corp Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPH03236419A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH042713A (en) * 1990-04-19 1992-01-07 Nippon Steel Corp Deoxidizing method in steelmaking process
JPH0860293A (en) * 1994-08-24 1996-03-05 Sumitomo Metal Ind Ltd High tensile strength steel
JP2000129392A (en) * 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2003213366A (en) * 2002-01-24 2003-07-30 Nippon Steel Corp Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996010654A1 (en) * 1994-09-30 1996-04-11 Nippon Steel Corporation Highly corrosion-resistant martensitic stainless steel with excellent weldability and process for producing the same
CN1236092C (en) * 2001-11-16 2006-01-11 Posco公司 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03202422A (en) * 1989-12-29 1991-09-04 Nippon Steel Corp Production of thick high tensile steel plate excellent in toughness in weld heat-affected zone
JPH03236419A (en) * 1990-02-13 1991-10-22 Nippon Steel Corp Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH042713A (en) * 1990-04-19 1992-01-07 Nippon Steel Corp Deoxidizing method in steelmaking process
JPH0860293A (en) * 1994-08-24 1996-03-05 Sumitomo Metal Ind Ltd High tensile strength steel
JP2000129392A (en) * 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2003213366A (en) * 2002-01-24 2003-07-30 Nippon Steel Corp Steel having excellent toughness in base metal and large -small heat input weld heat-affected zone

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009138255A (en) * 2007-11-13 2009-06-25 Kobe Steel Ltd High tensile strength thick steel plate for welding, having excellent toughness in heat-affected zone at large heat-input welding
JP2010121200A (en) * 2008-11-21 2010-06-03 Kobe Steel Ltd Low yield ratio steel having excellent toughness in weld heat-affected zone, and method for producing the same
JP2012046815A (en) * 2010-08-30 2012-03-08 Kobe Steel Ltd METHOD FOR PRODUCING Zr-CONTAINING STEEL
WO2013190975A1 (en) 2012-06-19 2013-12-27 株式会社神戸製鋼所 Steel material having excellent toughness in weld-heat-affected zone
KR20150015506A (en) 2012-06-19 2015-02-10 가부시키가이샤 고베 세이코쇼 Steel material having excellent toughness in weld-heat-affected zone
JP2014009387A (en) * 2012-06-29 2014-01-20 Kobe Steel Ltd High tensile strength steel plate having excellent base metal toughness and haz toughness
CN112522594A (en) * 2019-09-19 2021-03-19 宝山钢铁股份有限公司 Thin-specification fire-resistant weather-resistant steel plate/belt and production method thereof
CN112522594B (en) * 2019-09-19 2022-10-21 宝山钢铁股份有限公司 Thin-specification fire-resistant weather-resistant steel plate/belt and production method thereof
JPWO2021255855A1 (en) * 2020-06-17 2021-12-23
WO2021255855A1 (en) * 2020-06-17 2021-12-23 日本製鉄株式会社 Steel sheet
JP7410437B2 (en) 2020-06-17 2024-01-10 日本製鉄株式会社 steel plate

Also Published As

Publication number Publication date
CN101037757B (en) 2010-09-22
CN101037757A (en) 2007-09-19
JP4950528B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950528B2 (en) Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method
JP4825057B2 (en) Steel with excellent toughness of weld heat affected zone and its manufacturing method
JP4515430B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
JP5342902B2 (en) Steel material excellent in toughness and base metal fatigue characteristics of weld heat-affected zone and its manufacturing method
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5202031B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4515427B2 (en) Steel with excellent toughness and fatigue crack growth resistance in weld heat affected zone and its manufacturing method
JP6926774B2 (en) Steel plate and steel plate manufacturing method
JP5231042B2 (en) Steel material excellent in toughness of weld heat-affected zone and method for producing the same
JP4950529B2 (en) Steel with excellent toughness and base metal toughness of weld heat affected zone and its manufacturing method
KR101169866B1 (en) Steel material having excellent toughness in welding heat-affected zone, and method for producing the same
JP5234951B2 (en) Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same
JP2011074447A (en) High strength steel excellent in toughness in high heat input weld heat-affected zone
JP5234952B2 (en) Low yield ratio steel material excellent in toughness of weld heat affected zone, and method for producing the same
JP5103037B2 (en) Thick steel plate with excellent toughness of base metal and weld heat affected zone
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP2004315925A (en) Low yield ratio high strength steel having excellent toughness and weldability
JP2005060825A (en) Steel sheet with low yield ratio, high strength and high toughness, and manufacturing method therefor
JP2004323917A (en) High strength high toughness steel sheet
JP2011038180A (en) Steel member having excellent toughness in weld heat affected zone, and method for producing the same
JP4515428B2 (en) Steel material excellent in toughness and brittle fracture occurrence characteristics of weld heat affected zone and its manufacturing method
JP2021169641A (en) Joint bending roll steel pipe
JP4515429B2 (en) Steel with excellent toughness and brittle crack stopping characteristics in weld heat affected zone and its manufacturing method
KR100899053B1 (en) Low yield ratio and high tension steel material excellent in toughness of weld heat-affected zone, and process for producing the same
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950528

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees