JP5903907B2 - High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof - Google Patents

High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof Download PDF

Info

Publication number
JP5903907B2
JP5903907B2 JP2012016058A JP2012016058A JP5903907B2 JP 5903907 B2 JP5903907 B2 JP 5903907B2 JP 2012016058 A JP2012016058 A JP 2012016058A JP 2012016058 A JP2012016058 A JP 2012016058A JP 5903907 B2 JP5903907 B2 JP 5903907B2
Authority
JP
Japan
Prior art keywords
heat
affected zone
heat input
toughness
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012016058A
Other languages
Japanese (ja)
Other versions
JP2012177192A (en
Inventor
植田 圭治
圭治 植田
鈴木 伸一
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012016058A priority Critical patent/JP5903907B2/en
Publication of JP2012177192A publication Critical patent/JP2012177192A/en
Application granted granted Critical
Publication of JP5903907B2 publication Critical patent/JP5903907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、建築、橋梁、造船、海洋構造物、ラインパイプ等に供して好適な引張強さが780MPa以上で板厚12mm以上の高強度厚鋼板に係り、特に、溶接入熱400kJ/cmを超える1層の大入熱溶接で溶接熱影響部の靭性に優れ、かつ小入熱溶接熱影響部の耐硬化特性にも優れる鋼板およびその製造方法に関する。   The present invention relates to a high strength thick steel plate having a tensile strength of 780 MPa or more and a plate thickness of 12 mm or more suitable for use in buildings, bridges, shipbuilding, offshore structures, line pipes, etc. In particular, a welding heat input of 400 kJ / cm. The present invention relates to a steel sheet excellent in the toughness of the weld heat-affected zone by one layer of large heat input welding, and also in the hardening resistance of the small heat input weld heat-affected zone, and a method for producing the same.

建築、土木および橋梁等の各分野で使用される鋼構造物は、一般に溶接接合によって所望形状に仕上げられている。このような構造物においては、安全性の観点から、使用される鋼材の母材の機械的特性は勿論のこと、溶接部の性能に優れることが要求される。   Steel structures used in various fields such as architecture, civil engineering and bridges are generally finished in a desired shape by welding. In such a structure, from the viewpoint of safety, not only the mechanical characteristics of the base material of the steel material used but also the performance of the welded portion is required to be excellent.

一般的な溶接接合方法として、被覆アーク溶接法やMIG、MAGといったガスシールドアーク溶接法などの小入熱溶接法が広く用いられている。これらの溶接方法を鋼材に適用した場合には、溶接熱影響部では溶融点直下の高温オーステナイト域まで加熱された後、ただちにAr点以下の低温域にまで急速に冷却されるため、溶接熱影響部が硬化し、低温割れ性が低下することが問題となる。特に、鋼材の強度を確保するために、CやBなど鋼板の焼入れ性を高めるための合金元素を多量に添加した引張強さが780MPaを超える高張力鋼板においては、小入熱溶接熱影響部の耐硬化特性の低下が顕著となる。 As a general welding joining method, a small heat input welding method such as a covering arc welding method or a gas shield arc welding method such as MIG or MAG is widely used. When these welding methods are applied to steel materials, the welding heat affected zone is heated to a high temperature austenite region immediately below the melting point, and then immediately cooled to a low temperature region below Ar 1 point. The problem is that the affected part is cured and the low temperature cracking property is lowered. In particular, in a high-tensile steel plate having a tensile strength exceeding 780 MPa in which a large amount of alloy elements such as C and B for enhancing the hardenability of the steel plate is secured in order to ensure the strength of the steel material, Decrease in the curing resistance of the film becomes remarkable.

一方で、近年、建築構造物の大型化に伴い、溶接施工の能率向上と施工コストの低減の観点から、1層大入熱溶接の適用範囲が拡大し、例えば、建築構造の柱−梁溶接では、2電極サブマージアーク溶接などの溶接入熱が400kJ/cmを超えるような大入熱溶接が適用されている。   On the other hand, in recent years, with the enlargement of building structures, the scope of application of one-layer large heat input welding has been expanded from the viewpoint of improving the efficiency of welding construction and reducing construction costs. Then, large heat input welding such as two-electrode submerged arc welding in which welding heat input exceeds 400 kJ / cm is applied.

また、大地震が頻発することから建築構造物の耐震性向上も重要な課題で、溶接継手部で、高い靭性を有することが要求されるようになっている。例えば、柱−梁接合部については、試験温度0℃におけるシャルピー吸収エネルギーが70Jを超えることが要求されている。   In addition, since large earthquakes frequently occur, improvement of the earthquake resistance of the building structure is also an important issue, and the welded joint portion is required to have high toughness. For example, for column-beam joints, Charpy absorbed energy at a test temperature of 0 ° C. is required to exceed 70 J.

鋼材に大入熱溶接を適用した場合、最も靭性が劣化する領域は溶接熱影響部のボンド部で、溶接時に溶融点直下の高温に曝されるため、オーステナイトの結晶粒が最も粗大化し易く、また引き続き、非常に遅い冷却速度(例えば、板厚50mmを2電極サブマージア−ク溶接の1層溶接で入熱約500kJ/cmで冷却した場合は800℃〜500℃の冷却速度が0.4℃/sec程度)となるため、島状マルテンサイトを含む脆弱な上部ベイナイト組織に変態し易いことが靭性低下の原因となっている。特に、ベイナイトラス間に生成した、針状に伸長した島状マルテンサイトは、脆性破壊の伝播経路となり、靭性に対して非常に有害な組織である。   When high heat input welding is applied to the steel material, the region where the toughness is most deteriorated is the bond part of the weld heat affected zone, and since it is exposed to a high temperature just below the melting point during welding, the austenite crystal grains are most easily coarsened, In addition, a very slow cooling rate (for example, when cooling is performed at a heat input of about 500 kJ / cm in one-layer welding of two-electrode submerged arc welding with a plate thickness of 50 mm, a cooling rate of 800 ° C. to 500 ° C. is 0.4 ° C. Therefore, it is easy to transform into a fragile upper bainite structure including island martensite, which causes a decrease in toughness. In particular, island-shaped martensite generated between bainite laths and elongated in a needle shape serves as a propagation path of brittle fracture, and is a structure that is extremely harmful to toughness.

特に、強度を高めるためにBを添加した鋼板では、大入熱溶接の冷却過程で固溶Nと固溶Bが結合してBNとして析出し、固溶Bによる焼入れ性を高める効果が消失する。このため、Bを添加した引張強さが780MPa級の鋼材では、溶接熱影響部での島状マルテンサイト生成が助長され、一層靭性の低下が問題となる。   In particular, in a steel sheet to which B is added to increase the strength, solid solution N and solid solution B are combined and precipitated as BN in the cooling process of high heat input welding, and the effect of improving the hardenability by solid solution B disappears. . For this reason, in a steel material having a tensile strength of 780 MPa with B added, the formation of island martensite in the weld heat affected zone is promoted, and a further reduction in toughness becomes a problem.

特許文献1は700MPa超級非調質厚鋼板およびその製造方法に関し、鋼組成を極低炭素でかつ高合金元素とし、鋼板のミクロ組織をベイニティックフェライト相とすることにより、高強度と熱影響部で高靭性を達成することが記載されている。   Patent Document 1 relates to a 700 MPa super-grade non-heat-treated thick steel plate and a method for producing the same, and by making the steel composition a very low carbon and high alloy element and making the microstructure of the steel plate a bainitic ferrite phase, high strength and thermal effect are disclosed. It is described that high toughness is achieved at the part.

特許文献2は溶接性に優れた低降伏比高張力鋼板に関し、鋼中に焼入れ性元素であるMn、CrおよびMoを添加するとともに、介在物制御の観点からN、Ti、ZrおよびHfを厳格に制御することにより、溶接割れ性、溶接部高靭性と、鋼板の高強度低降伏比を達成することが記載されている。   Patent Document 2 relates to a low-yield-ratio high-tensile steel sheet excellent in weldability. In addition to adding hardenable elements Mn, Cr and Mo to the steel, N, Ti, Zr and Hf are strictly applied from the viewpoint of inclusion control. It is described that, by controlling to, the weld cracking property, the welded portion high toughness, and the high strength and low yield ratio of the steel plate are achieved.

特許文献3は溶接性に優れた高張力鋼の製造方法に関し、Cuの析出硬化を活用して炭素当量を低下させて、高強度化と高溶接性および大入熱溶接部の高靭性を達成することが記載されている。   Patent Document 3 relates to a method for producing high-strength steel excellent in weldability, and lowers the carbon equivalent by utilizing precipitation hardening of Cu to achieve high strength, high weldability, and high toughness of high heat input welds. It is described to do.

特許文献4は大入熱溶接部の熱影響部靭性が優れた低降伏比高張力鋼板およびその製造方法に関し、鋼板のミクロ組織を粒界析出フェライトとベイナイトとすることにより、鋼板の高強度、低降伏比と、大入熱溶接部の高靭性を達成することが記載されている。   Patent Document 4 relates to a low-yield-ratio high-tensile steel sheet having excellent heat-affected zone toughness of a high heat input weld and its manufacturing method. By making the microstructure of the steel sheet grain boundary precipitated ferrite and bainite, the high strength of the steel sheet, It is described that a low yield ratio and high toughness of a high heat input weld are achieved.

特開2004−232056号公報JP 2004-232056 A 特開2001−226740号公報JP 2001-226740 A 特開平5−163527号公報JP-A-5-163527 特開平9−202936号公報JP-A-9-202936

しかしながら、特許文献1および特許文献2に記載された製造方法では、溶接入熱量が400kJ/cmを超える1層大入熱溶接の溶接熱影響部での高靭性を安定して達成することが困難である。また、Bを添加しているために、大入熱溶接部ではBN生成により、焼入れ性が低下し、島状マルテンサイトの生成が助長され、大入熱溶接熱影響部の靭性が不十分である。一方、小入熱溶接熱影響部では、極微量の添加で焼入れ性を大きく上昇する効果を有する固溶Bが焼入れ性上昇に有効なため、耐硬化特性に劣る。   However, in the manufacturing methods described in Patent Document 1 and Patent Document 2, it is difficult to stably achieve high toughness in the weld heat affected zone of single-layer large heat input welding where the heat input of welding exceeds 400 kJ / cm. It is. In addition, since B is added, hardenability is reduced due to BN generation in the large heat input welded part, the formation of island martensite is promoted, and the toughness of the large heat input welded heat affected part is insufficient. is there. On the other hand, in the low heat input welding heat-affected zone, solid solution B, which has the effect of greatly increasing the hardenability with the addition of a very small amount, is effective in increasing the hardenability, and therefore has poor curing resistance.

特許文献3に記載された技術では、Cuの多量添加が不可欠であり、圧延中の鋼板表面割れ等、表面性状が劣化するだけでなく、Bを添加しているために、大入熱溶接部ではBN生成により、焼入れ性が低下し、島状マルテンサイトの生成が助長され、大入熱溶接熱影響部の靭性が不十分である。一方、小入熱溶接熱影響部では、極微量の添加で焼入れ性を大きく上昇する効果を有する固溶Bが焼入れ性上昇に有効なため、耐硬化特性に劣る。   In the technique described in Patent Document 3, it is indispensable to add a large amount of Cu, and not only the surface properties such as surface cracking of the steel sheet during rolling deteriorate, but also B is added, so that a high heat input welded part. Then, hardenability falls by BN production | generation, the production | generation of an island-like martensite is promoted, and the toughness of a high heat input welding heat affected zone is inadequate. On the other hand, in the low heat input welding heat-affected zone, solid solution B, which has the effect of greatly increasing the hardenability with the addition of a very small amount, is effective in increasing the hardenability, and therefore has poor curing resistance.

特許文献4に記載された技術では、鋼板および大入熱溶接継手において780MPa以上の高強度を満足することが困難である。   With the technique described in Patent Document 4, it is difficult to satisfy a high strength of 780 MPa or more in a steel plate and a high heat input welded joint.

そこで、本発明は、溶接入熱量が400kJ/cmを超える大入熱溶接の溶接熱影響部での高靭性を安定して達成するとともに、溶接入熱量が30kJ/cm未満の小入熱溶接熱影響部での耐硬化特性に優れた引張強さが780MPa以上の高強度厚鋼板およびその製造方法を提供することを目的とする。   Accordingly, the present invention stably achieves high toughness in the weld heat affected zone of high heat input welding with a welding heat input exceeding 400 kJ / cm, and a low heat input welding heat with a welding heat input of less than 30 kJ / cm. An object of the present invention is to provide a high-strength thick steel plate having a tensile strength of 780 MPa or more excellent in hardening resistance at the affected part and a method for producing the same.

本発明者らは、上記課題を達成するため、厚鋼板を対象に母材強度、1層大入熱熱影響部の靭性、および小入熱溶接熱影響部の耐硬化特性を決定する各種要因に関して鋭意研究を行い、以下の知見を得た。
1.母材が780MPa以上の引張強さで、溶接入熱量が400kJ/cmを超える1層大入熱溶接部での、試験温度0℃のシャルピー衝撃エネルギーが70J以上を安定して達成するためには、鋼組成を適切に選定して、大入熱溶接熱影響部の上部ベイナイト組織中に、生成する脆化組織である針状の島状マルテンサイトの形態を制御することが重要である。
2.まず、鋼材に大入熱溶接を適用した場合に、結晶粒の粗大化を抑制することが重要で、これにより、上部ベイナイト組織および島状マルテンサイト組織の粗大化を抑制する効果も有する。このためには、TiとNを適量添加して、鋼中にTiNを分散することにより、結晶粒の成長を抑制することができる。
3.ただし、大入熱溶接時の溶融境界線の極近傍では、一部のTiNが溶解し、固溶Nが生成するため、鋼板の高強度化のために固溶Bを利用していると、固溶Nと結合してBNが析出し、溶融境界線の極近傍で焼入れ性が極端に低下するため、島状マルテンサイトの生成が促進し、靭性が顕著に劣化する。このため、鋼板には実質的にBを添加しないことが重要である。
4.さらに、島状マルテンサイトの生成量を支配するC添加量の上限を厳格に管理するだけでなく、Crを積極的に添加することにより、島状マルテンサイトの形態を制御することができる。
In order to achieve the above-mentioned problems, the present inventors have made various factors that determine the base material strength, the toughness of the one-layer large heat input heat affected zone, and the hardening resistance of the small heat input weld heat affected zone for thick steel plates. The following findings were obtained through earnest research.
1. In order to stably achieve a Charpy impact energy at a test temperature of 0 ° C. of 70 J or more in a one-layer large heat input weld zone where the base metal has a tensile strength of 780 MPa or more and the welding heat input exceeds 400 kJ / cm. It is important to appropriately select the steel composition and control the shape of the needle-like island martensite which is the embrittled structure formed in the upper bainite structure of the high heat input welding heat affected zone.
2. First, when large heat input welding is applied to a steel material, it is important to suppress the coarsening of crystal grains, thereby having the effect of suppressing the coarsening of the upper bainite structure and the island-like martensite structure. For this purpose, the growth of crystal grains can be suppressed by adding appropriate amounts of Ti and N and dispersing TiN in the steel.
3. However, in the very vicinity of the melting boundary line at the time of high heat input welding, a part of TiN is dissolved and solute N is generated. Therefore, when solid solution B is used to increase the strength of the steel sheet, Bonding with solute N precipitates BN, and the hardenability is extremely reduced in the vicinity of the melting boundary line. Therefore, the formation of island martensite is promoted and the toughness is significantly deteriorated. For this reason, it is important not to add B substantially to a steel plate.
4). Furthermore, not only is the upper limit of the amount of C added that governs the amount of island martensite generated strictly controlled, but the form of island martensite can be controlled by positively adding Cr.

具体的には、Crを2.0%以上添加することにより、島状マルテンサイト中のC濃度が低下し、島状マルテンサイト自体の硬さが低下するとともに、ベイナイトラスが湾曲し、島状マルテンサイトの形状が針状から粒状に変化するため、靭性に対する有害性が顕著に低下する。   Specifically, by adding 2.0% or more of Cr, the C concentration in the island martensite decreases, the hardness of the island martensite itself decreases, and the bainite lath curves, Since the shape of martensite changes from acicular to granular, harmfulness to toughness is significantly reduced.

図1は、再現大入熱溶接熱影響部(入熱量400kJ/cm相当)のミクロ組織を示し、(a)は1.02Cr系(鋼No.A)の場合、(b)は3.05Cr系(鋼No.B)の場合を示す。1.02Cr系鋼(鋼No.A)では、上部ベイナイト組織中に生成する島状マルテンサイトが脆性破壊の伝播を助長する針状に伸長した形態となり、一方、3.05Cr系鋼(鋼No.B)では、生成する島状マルテンサイトが粒状となり、脆性破壊の伝播を抑制する効果を有する。   FIG. 1 shows a microstructure of a reproducible high heat input weld heat affected zone (equivalent to a heat input of 400 kJ / cm), where (a) is a 1.02Cr system (steel No. A) and (b) is 3.05Cr. The case of the system (steel No. B) is shown. In 1.02Cr steel (steel No. A), the island-like martensite formed in the upper bainite structure is elongated in a needle shape that promotes the propagation of brittle fracture, while 3.05Cr steel (steel No. A). In (B), the generated island-like martensite becomes granular and has an effect of suppressing the propagation of brittle fracture.

表3に、1.02Cr系鋼(鋼No.A)と3.05Cr系鋼(鋼No.B)の島状マルテンサイト形態の定量評価と再現熱サイクル試験後のシャルピー衝撃試験結果(0℃における吸収エネルギー(vEo)の3本の個値と平均値)を示す。1.02Cr系鋼(鋼No.A)では、島状マルテンサイトの面積分率が10.9%、平均サイズが3.3μm、アスペクト比が9.3であった。一方、3.05Cr系鋼(鋼No.B)では、島状マルテンサイトの面積分率が11.3%、平均サイズが2.6μm、アスペクト比が2.1であった。3.05Cr系鋼(鋼No.B)は平均値131Jが得られたが、1.02Cr系鋼(鋼No.A)は平均値24Jであった。
表1に供試鋼の化学成分を、表2に、試験片に付与した再現熱サイクルパターンを示す。再現熱サイクルパターンは後述する2電極サブマージアーク溶接の1層溶接の熱サイクルパターン(板厚50mm、溶接入熱450kJ/cm)に相当し、室温から1400℃まで30sで等速加熱後、1400℃で1s保持した後、冷却を開始し、1400℃から800℃まで300s、800℃から500℃まで550s、500℃から200℃まで950sで等速冷却した後、室温まで放冷した。
尚、島状マルテンサイトは、試料にレペラ腐食(JOURNAL OF METALS、March、1980、p.38−39)を実施して倍率1000倍の光学顕微鏡で観察して同定し、平均面積分率、平均サイズ、平均アスペクト比は、倍率1000倍の光学顕微鏡で撮影した画像を画像解析装置を用いて求めた。平均サイズは平均円相当径で評価した。
Table 3 shows the results of quantitative evaluation of island martensite morphology of 1.02Cr steel (steel No. A) and 3.05Cr steel (steel No. B), and Charpy impact test results (0 ° C) after a reproducible thermal cycle test. The three individual values and the average value of the absorbed energy (vEo) are shown. In the 1.02Cr steel (steel No. A), the area fraction of island martensite was 10.9%, the average size was 3.3 μm, and the aspect ratio was 9.3. On the other hand, in the 3.05Cr steel (steel No. B), the area fraction of island martensite was 11.3%, the average size was 2.6 μm, and the aspect ratio was 2.1. An average value of 131 J was obtained for 3.05Cr steel (steel No. B), while an average value of 24 J was obtained for 1.02Cr steel (steel No. A).
Table 1 shows the chemical composition of the test steel, and Table 2 shows the reproducible thermal cycle pattern applied to the test piece. The reproducible thermal cycle pattern corresponds to the thermal cycle pattern of two-layer submerged arc welding (plate thickness 50 mm, welding heat input 450 kJ / cm), which will be described later, and is heated at a constant rate from room temperature to 1400 ° C. for 30 s and then 1400 ° C. Then, cooling was started, cooling was performed at a constant rate from 1400 ° C. to 800 ° C. for 300 s, from 800 ° C. to 500 ° C. for 550 s, from 500 ° C. to 200 ° C. for 950 s, and then allowed to cool to room temperature.
In addition, island martensite is identified by observing with an optical microscope having a magnification of 1000 times after carrying out repeller corrosion (JOURNAL OF METALS, March, 1980, p.38-39) on the sample. The size and average aspect ratio were determined using an image analysis device for an image taken with an optical microscope having a magnification of 1000 times. The average size was evaluated by the average equivalent circle diameter.

3.小入熱溶接熱影響部で優れた耐硬化特性を達成するためには、C、Mn、Cr等の焼入れ性向上元素の添加量を厳格に管理するだけでなく、極微量の添加で焼入れ性を大きく上昇し、ひいては小入熱溶接熱影響部の耐硬化特性を顕著に低下させる効果を有するBを実質的に無添加とすることが重要である。 3. In order to achieve excellent hardening resistance in the heat-affected zone with small heat input, not only the addition amount of hardenability improving elements such as C, Mn, Cr, etc. is strictly controlled, but also hardenability can be achieved by adding a very small amount. It is important to substantially eliminate the addition of B, which has an effect of significantly reducing the hardening resistance of the heat-affected zone of the small heat input welding.

本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.鋼組成が、質量%で、
C:0.03〜0.075%、
Si:0.01〜0.40%、
Mn:0.1〜1.3%、
P:0.015%以下、
S:0.003%以下、
Al:0.01〜0.05%、
Cr:2.0〜5.0%、
Ti:0.005〜0.03%、
N:0.002〜0.007%を含有し、
実質的にBを含まず、残部がFeおよび不可避的不純物からなり、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板。
2.鋼組成に、質量%でさらに、
Cu:0.05〜0.9%、
Ni:0.05〜1.0%、
Mo:0.05〜1.0%、
Nb:0.005〜0.05%、
V:0.01〜0.1%、
を含有する、1に記載の、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板。
3.鋼組成に、質量%でさらに、
REM:0.02%以下、
Ca:0.005%以下、
Mg:0.005%以下、
を含有する、1または2に記載の、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板。
4.1乃至3のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、1000〜1250℃に再加熱後、圧延終了温度が750℃以上となる熱間圧延を行うことを特徴とする、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板の製造方法。
5.熱間圧延後、Ac変態点以上に再加熱し、保持後、室温まで冷却することを特徴とする、4記載の引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板の製造方法。
6.更に、400〜650℃で焼戻すことを特徴とする4または5に記載の引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. Steel composition is mass%,
C: 0.03-0.075%,
Si: 0.01-0.40%,
Mn: 0.1 to 1.3%,
P: 0.015% or less,
S: 0.003% or less,
Al: 0.01 to 0.05%,
Cr: 2.0 to 5.0%,
Ti: 0.005 to 0.03%,
N: 0.002 to 0.007% is contained,
Substantially does not contain B, the balance consists of Fe and inevitable impurities, and the toughness of the high heat input heat affected zone with a tensile strength (TS) of 780 MPa or more and the hardening resistance of the low heat input weld heat affected zone Excellent high-strength thick steel plate.
2. In addition to the steel composition,
Cu: 0.05 to 0.9%,
Ni: 0.05 to 1.0%,
Mo: 0.05-1.0%,
Nb: 0.005 to 0.05%,
V: 0.01 to 0.1%
2. A high-strength thick steel plate excellent in toughness of a high heat input welding heat-affected zone having a tensile strength (TS) of 780 MPa or more and excellent hardening resistance of the low heat input weld heat-affected zone.
3. In addition to the steel composition,
REM: 0.02% or less,
Ca: 0.005% or less,
Mg: 0.005% or less,
The high-strength thick steel plate excellent in the toughness of the high heat input welding heat-affected zone having a tensile strength (TS) of 780 MPa or more and the hardening resistance of the small heat input weld heat-affected zone.
The slab or steel slab comprising the steel composition described in any one of 4.1 to 3 is reheated to 1000 to 1250 ° C, and then hot rolling is performed so that the rolling end temperature is 750 ° C or higher. The manufacturing method of the high strength thick steel plate excellent in the toughness of the high heat input heat-affected zone having a tensile strength (TS) of 780 MPa or more and the hardening resistance of the low heat input heat-affected zone.
5. The toughness of the heat-affected zone with a high heat input weld having a tensile strength (TS) of 780 MPa or more, characterized in that after hot rolling, the steel is reheated to the Ac 3 transformation point or higher, held, and then cooled to room temperature. And manufacturing method of high-strength thick steel plate with excellent resistance to hardening in heat affected zone.
6). Furthermore, the toughness of the high heat input heat affected zone having a tensile strength (TS) of 780 MPa or more and the hardening resistance of the low heat input heat affected zone, characterized by tempering at 400 to 650 ° C. A method for producing high-strength thick steel plates with excellent characteristics.

本発明によれば、引張強さ780MPa以上を有し、溶接入熱量が400kJ/cmを超える1層大入熱溶接部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた、板厚12mm以上の厚鋼板が得られ、鋼構造物の大型化、鋼構造物の耐震性、安全性、溶接施工能率向上に大きく寄与し、産業上格段の効果を奏する。   According to the present invention, a plate having a tensile strength of 780 MPa or more and excellent in toughness of a one-layer large heat input welded portion having a welding heat input exceeding 400 kJ / cm and a hardening resistance property of a small heat input heat affected zone. A thick steel plate with a thickness of 12 mm or more is obtained, which greatly contributes to increasing the size of the steel structure, improving the earthquake resistance, safety, and welding efficiency of the steel structure, and has a remarkable industrial effect.

再現大入熱溶接熱影響部(入熱量400kJ/cm相当)のミクロ組織を示す図で、(a)は1.98Mn−1.02Cr系の場合、(b)は0.32Mn−3.05Cr系の場合を示す図。It is a figure which shows the microstructure of a reproduction large heat input welding heat affected zone (equivalent to 400 kJ / cm of heat input), (a) is 1.98Mn-1.02Cr system, (b) is 0.32Mn-3.05Cr. The figure which shows the case of a system | strain.

本発明では成分組成を規定する。説明において%は質量%とする。   In the present invention, the component composition is defined. In the description,% is mass%.

[成分組成]
C:0.03〜0.075%
Cは、鋼の強度を増加させ、構造用鋼材として必要な強度を確保するために必要な元素でその効果を得るため、0.03%以上の含有を必要とする。
[Ingredient composition]
C: 0.03-0.075%
C increases the strength of the steel and needs to be contained in an amount of 0.03% or more in order to obtain the effect with an element necessary for ensuring the strength required as a structural steel material.

一方、0.075%を超える含有は、大入熱溶接熱影響部におけるミクロ組織中の島状マルテンサイトの面積分率が増大し、靭性を顕著に劣化させる。また、小入熱溶接熱影響部の耐硬化特性を劣化させるとともに、母材の低温靭性も劣化させるため、0.03〜0.075%の範囲に限定する。好ましくは、0.035〜0.07%である。   On the other hand, if the content exceeds 0.075%, the area fraction of island martensite in the microstructure in the high heat input welding heat-affected zone increases, and the toughness is remarkably deteriorated. Moreover, while deteriorating the hardening-resistant characteristic of a small heat input welding heat-affected zone, the low temperature toughness of a base material is also degraded, so it is limited to 0.03 to 0.075%. Preferably, it is 0.035 to 0.07%.

Si:0.01〜0.40%
Siは、脱酸材として作用し、製鋼上、少なくとも0.01%必要であるが、0.40%を超えて含有すると、母材の靭性、小入熱溶接熱影響部の耐硬化特性が劣化するだけでなく、大入熱溶接熱影響部のミクロ組織中の島状マルテンサイトが増大し、熱影響部靭性が顕著に劣化するため、0.01〜0.40%の範囲に限定する。好ましくは、0.05〜0.35%である。
Si: 0.01-0.40%
Si acts as a deoxidizing material, and at least 0.01% is necessary for steelmaking. However, when it exceeds 0.40%, the toughness of the base material and the resistance to hardening of the heat-affected zone of the small heat input welding are reduced. In addition to deterioration, island-shaped martensite in the microstructure of the high heat input welding heat-affected zone increases, and the heat-affected zone toughness deteriorates remarkably, so it is limited to the range of 0.01 to 0.40%. Preferably, it is 0.05 to 0.35%.

Mn:0.1〜1.3%
Mnは、鋼の焼入れ性を増加させる効果を有し、母材の強度を確保するために0.1%以上は必要である。一方、1.3%を超えて含有すると、母材の靭性および溶接性が著しく劣化するだけでなく、溶接熱影響部では粗大で針状の島状マルテンサイトの生成を促進し靭性を顕著に劣化させるため、0.1〜1.3%の範囲に限定する。好ましくは、0.2〜1.25%である。
Mn: 0.1 to 1.3%
Mn has the effect of increasing the hardenability of the steel, and 0.1% or more is necessary to ensure the strength of the base material. On the other hand, if the content exceeds 1.3%, not only the toughness and weldability of the base metal are remarkably deteriorated, but also the weld heat-affected zone promotes the formation of coarse and needle-like island martensite and significantly increases the toughness. In order to deteriorate, it limits to 0.1 to 1.3% of range. Preferably, it is 0.2 to 1.25%.

P:0.015%以下
Pは、鋼の強度を増加させ靭性を劣化させる元素で、特に大入熱溶接熱影響部では島状マルテンサイトの生成を助長する効果を有し、靭性を劣化させるので、0.015%を上限とし、可能なかぎり低減することが望ましい。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.002%以上とすることが望ましい。
P: 0.015% or less P is an element that increases the strength of steel and degrades toughness, and has an effect of promoting the formation of island-like martensite, particularly in a high heat input welding heat-affected zone, and degrades toughness. Therefore, it is desirable that the upper limit is 0.015% and is reduced as much as possible. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.002% or more.

S:0.003%以下
Sは母材の低温靭性や延性を劣化させるため、0.003%を上限として可能なかぎり低減することが望ましい。
S: 0.003% or less Since S deteriorates the low-temperature toughness and ductility of the base material, it is desirable to reduce 0.003% as much as possible.

Al:0.01〜0.05%
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中のNをAlNとして固定し、母材および大入熱溶接熱影響部の靭性向上に寄与する。このような効果を得るため、0.01%以上を含有する。
Al: 0.01 to 0.05%
Al acts as a deoxidizer and is most commonly used in the molten steel deoxidation process for high strength steels. Further, N in the steel is fixed as AlN, which contributes to improvement of the toughness of the base material and the high heat input welding heat affected zone. In order to acquire such an effect, 0.01% or more is contained.

一方、0.05%を超えて含有すると、母材の靭性が低下するとともに、溶接時に溶接金属部に混入して、溶接金属の靭性を劣化させるため、0.05%以下に限定する。好ましくは、0.015〜0.045%である。   On the other hand, if the content exceeds 0.05%, the toughness of the base metal is lowered and mixed into the weld metal part during welding to deteriorate the toughness of the weld metal, so the content is limited to 0.05% or less. Preferably, it is 0.015 to 0.045%.

Cr:2.0〜5.0%
Crは、本発明では、Bを実質的に含まず母材の引張強さ780MPa以上を確保する上で強度向上のために添加が必要であるだけでなく、Crを含有させることにより母材および溶接部の島状マルテンサイトの靭性に対する有害性を顕著に低下させる重要な元素である。まず、大入熱溶接熱影響部において、ベイナイトラスを湾曲化させる効果を介して島状マルテンサイトの形態を針状から塊状へと変化させる。また、高温域での炭素の拡散速度を顕著に低下させる効果を有することから島状マルテンサイトの硬さを低下させる。これらの効果を得るため、2.0%以上を含有する。一方、5.0%を超えて含有すると、母材の靭性および溶接性が著しく劣化するため、2.0〜5.0%の範囲に限定する。好ましくは、2.1〜4.8%である。
Cr: 2.0-5.0%
In the present invention, Cr not only contains B but also needs to be added to improve the strength in order to ensure the tensile strength of the base material of 780 MPa or more. It is an important element that significantly reduces the harmfulness to the toughness of island martensite in the weld zone. First, in the high heat input welding heat-affected zone, the form of island martensite is changed from a needle shape to a lump shape through the effect of curving the bainite lath. In addition, the hardness of the island martensite is reduced because it has the effect of significantly reducing the diffusion rate of carbon in the high temperature range. In order to acquire these effects, it contains 2.0% or more. On the other hand, if the content exceeds 5.0%, the toughness and weldability of the base material are remarkably deteriorated, so the content is limited to the range of 2.0 to 5.0%. Preferably, it is 2.1 to 4.8%.

Ti:0.005〜0.03%
Tiは、Nとの親和力が強く凝固時にTiNとして析出し、大入熱溶接熱影響部でのオーステナイト粒の粗大化を抑制して高靭化に寄与する。このような効果を確保するため、0.005%以上を添加する。
Ti: 0.005 to 0.03%
Ti has a strong affinity for N and precipitates as TiN during solidification, thereby suppressing the austenite grain coarsening in the high heat input welding heat-affected zone and contributing to high toughness. In order to ensure such an effect, 0.005% or more is added.

一方、0.03%を超えて添加するとTiN粒子が粗大化して、オーステナイト粒の粗大化抑制効果が飽和するため、0.005〜0.03%とする。好ましくは、0.008〜0.025%である。   On the other hand, if added over 0.03%, the TiN particles become coarse and the effect of suppressing the coarsening of the austenite grains is saturated, so 0.005 to 0.03%. Preferably, it is 0.008 to 0.025%.

N:0.002〜0.007%
NはTiNを形成するため必要で、大入熱溶接熱影響部でのオーステナイト粒の粗大化抑制に必要なTiN量を確保するため、0.002%以上とする。
N: 0.002 to 0.007%
N is necessary for forming TiN, and is made 0.002% or more in order to secure an amount of TiN necessary for suppressing coarsening of austenite grains in the high heat input welding heat-affected zone.

一方、0.007%を超えて含有すると、固溶N量の増加により、母材および溶接部靭性が著しく低下するため、0.007%以下に限定する。好ましくは、0.0025〜0.0065%である。   On the other hand, if the content exceeds 0.007%, the toughness of the base metal and the welded portion is remarkably reduced due to an increase in the amount of solute N, so the content is limited to 0.007% or less. Preferably, it is 0.0025 to 0.0065%.

以上が本発明の基本成分組成で、残部Feおよび不可避的不純物とする。なお、Bは不可避的不純物として混入する場合でも、大入熱溶接熱影響部靭性の靭性を劣化させたり、小入熱溶接熱影響部を硬化させるので、本発明では不可避的不純物としてBを3ppm以下とする、実質的にBを含まない成分組成とする。更に特性を向上させる場合、Cu、Ni、Mo、Nb、V、REM、Ca、Mg:の1種または2種以上を含有することができる。   The above is the basic component composition of the present invention, and the remainder is Fe and inevitable impurities. Even when B is mixed as an inevitable impurity, the toughness of the high heat input welding heat-affected zone toughness is deteriorated or the small heat input welding heat-affected zone is hardened. Therefore, in the present invention, B is 3 ppm as an inevitable impurity. It is set as the following and the component composition which does not contain B substantially. Furthermore, when improving a characteristic, 1 type (s) or 2 or more types of Cu, Ni, Mo, Nb, V, REM, Ca, Mg: can be contained.

Cu:0.05〜0.9%、Ni:0.05〜1.0%、Mo:0.05〜1.0%、Nb:0.005〜0.05%、V:0.01〜0.1%の1種または2種以上
CuおよびNiは、高靭性を保ちつつ強度を増加させることが可能な元素で、大入熱溶接熱影響部靭性や耐低温割れ性への影響も小さい。Cuを添加する場合は、そのような効果を得るため、0.05%以上とし、0.9%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるため、添加する場合は、0.05〜0.9%とする。尚、好ましくは0.1〜0.7%である。
Cu: 0.05-0.9%, Ni: 0.05-1.0%, Mo: 0.05-1.0%, Nb: 0.005-0.05%, V: 0.01- One or more of 0.1% Cu and Ni are elements that can increase the strength while maintaining high toughness, and have little effect on the high heat input heat affected zone toughness and cold crack resistance. . When Cu is added, in order to obtain such an effect, the content is set to 0.05% or more, and when it exceeds 0.9%, hot brittleness is caused to deteriorate the surface properties of the steel sheet. 0.05 to 0.9%. In addition, Preferably it is 0.1-0.7%.

Niを添加する場合は、そのような効果を得るため、0.05%以上とし、1.0%を超えると、効果が飽和し、経済的に不利になるため、添加する場合は、0.05〜1.0%とする。尚、好ましくは0.1〜0.9%である。   In the case of adding Ni, in order to obtain such an effect, the content is made 0.05% or more, and if it exceeds 1.0%, the effect is saturated and economically disadvantageous. 05 to 1.0%. In addition, Preferably it is 0.1-0.9%.

Mo、Nb、Vは、いずれも鋼の強度向上に寄与する元素である。Moを添加する場合、0.05%以上含有することが好ましいが、1.0%を超えると、母材靭性および溶接性に悪影響を及ぼすため、添加する場合は、0.05〜1.0%とする。   Mo, Nb, and V are all elements that contribute to improving the strength of steel. When Mo is added, it is preferable to contain 0.05% or more. However, if it exceeds 1.0%, the base metal toughness and weldability are adversely affected. %.

Nbを添加する場合、0.005%以上含有することが好ましいが、0.05%を超えると、大入熱溶接熱影響部では島状マルテンサイトの生成を助長して、靭性を劣化させるため、添加する場合は、0.005%以上、0.05%以下とする。   When Nb is added, the content is preferably 0.005% or more. However, if it exceeds 0.05%, the high heat input welding heat-affected zone promotes the formation of island martensite and deteriorates toughness. When added, the content is made 0.005% or more and 0.05% or less.

Vを添加する場合、0.01%以上含有することが好ましいが、0.1%を超えると、母材靭性および大入熱熱影響部靭性を劣化させるため、添加する場合は、0.01%以上、0.1%以下とする。   When V is added, it is preferable to contain 0.01% or more. However, if it exceeds 0.1%, the base material toughness and the large heat input heat affected zone toughness are deteriorated. % To 0.1%.

REM:0.02%以下、Ca:0.005%以下およびMg:0.005%以下の1種または2種以上
REM、CaおよびMgは、いずれも靭性向上に寄与し、所望する特性に応じて選択して添加する。
One or more of REM: 0.02% or less, Ca: 0.005% or less and Mg: 0.005% or less REM, Ca and Mg all contribute to toughness improvement, depending on the desired properties Select and add.

REM:0.02%以下
REMを、添加する場合、0.002%以上とすることが好ましいが、0.02%を超えても効果が飽和するため、添加する場合は0.02%を上限とする。
REM: 0.02% or less When REM is added, the content is preferably 0.002% or more, but the effect is saturated even if it exceeds 0.02%. And

Ca:0.005%以下
Caは、酸硫化物の形態制御に有効であり、靭性に悪影響を及ぼす粗大なMnS等の生成を抑制して、微細なCa酸硫化物を形成するとともに、大入熱溶接熱影響部のオーステナイト結晶粒を微細化して、靭性を向上させる有用な元素である。このような効果を得るためには0.0005%以上を添加する。一方、0.005%を超えると、Ca酸硫化物が粗大化し靭性に悪影響を及ぼすため、添加する場合は、0.0005〜0.005%に限定する。好ましくは、0.0008〜0.0045%である。
Ca: 0.005% or less Ca is effective in controlling the form of oxysulfide, suppresses the formation of coarse MnS and the like that adversely affects toughness, and forms fine Ca oxysulfide. It is a useful element that refines austenite crystal grains in the heat-affected zone and improves toughness. In order to obtain such an effect, 0.0005% or more is added. On the other hand, if it exceeds 0.005%, Ca oxysulfide becomes coarse and adversely affects toughness. Therefore, when added, the content is limited to 0.0005 to 0.005%. Preferably, it is 0.0008 to 0.0045%.

Mg:0.005%以下
Mgは、大入熱溶接熱影響部のオーステナイト結晶粒を微細化して靭性を向上させる有用な元素で、添加する場合は、0.001%以上とすることが好ましい。一方、0.005%を超えても効果が飽和するため、0.005%を上限とする。上記した成分以外の残部は、Feおよび不可避的不純物である。
Mg: 0.005% or less Mg is a useful element for improving the toughness by refining the austenite crystal grains in the high heat input welding heat-affected zone, and when added, it is preferably 0.001% or more. On the other hand, even if it exceeds 0.005%, the effect is saturated, so 0.005% is made the upper limit. The balance other than the above components is Fe and inevitable impurities.

[製造条件]
説明において、温度「℃」は、板厚の1/2における温度を意味するものとする。
[Production conditions]
In the description, the temperature “° C.” means a temperature at half the plate thickness.

鋼素材加熱温度:1000℃〜1250℃
上述した組成の鋳片または鋼片を転炉、電気炉、真空溶解炉等、通常公知の方法による溶鋼から製造し、1000℃〜1250℃に再加熱する。
Steel material heating temperature: 1000 ° C-1250 ° C
A slab or steel slab having the above composition is produced from molten steel by a generally known method such as a converter, electric furnace, vacuum melting furnace, etc., and reheated to 1000 ° C to 1250 ° C.

再加熱温度が1000℃未満では、熱間圧延での変形抵抗が高く、1パス当たりの圧下量が大きく取れず、圧延パス数が増加し、圧延能率が低下する。また、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合が生じる。一方、再加熱温度が1250℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大するため、1000〜1250℃の範囲とする。   If the reheating temperature is less than 1000 ° C., the deformation resistance in hot rolling is high, and the amount of reduction per pass cannot be made large, the number of rolling passes increases, and the rolling efficiency decreases. Moreover, the case where the casting defect in steel materials (slab) cannot be crimped occurs. On the other hand, if the reheating temperature exceeds 1250 ° C, surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases, so the range is 1000 to 1250 ° C.

熱間圧延:圧延終了温度750℃以上
圧延終了温度が750℃未満の場合、変形抵抗が高くなるため、圧延荷重が増大し、圧延機への負担が大きくなる。また、厚肉材を750℃未満の圧延温度まで低下させるためには、圧延途中で待機する必要があり、生産性を大きく阻害する。このため、圧延終了温度を750℃以上とした。
Hot rolling: rolling end temperature of 750 ° C. or higher When the rolling end temperature is less than 750 ° C., the deformation resistance increases, so the rolling load increases and the burden on the rolling mill increases. Further, in order to reduce the thick material to a rolling temperature of less than 750 ° C., it is necessary to wait in the middle of rolling, which greatly hinders productivity. For this reason, the rolling end temperature was set to 750 ° C. or higher.

なお、板厚が70mmを超える極厚鋼板の場合には、熱間圧延においてザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。   In the case of an extremely thick steel plate having a plate thickness exceeding 70 mm, it is desirable to secure at least one or more rolling passes with a reduction rate of 15% or more per pass for hot pressing in the hot rolling.

熱間圧延後の冷却方法および熱処理方法は、引張強さ(TS)として780MPa以上が得られるように、板厚に応じて、1.熱間圧延後、空冷、2.熱間圧延後、加速冷却、3.熱間圧延後、直接焼入れ、4.熱間圧延後、再加熱後の焼きならし、5.熱間圧延後、再加熱焼入れ、6.2、3、4、5については、更に焼戻し処理のいずれかを適宜選定する。   The cooling method and heat treatment method after hot rolling are performed according to the thickness of the plate so that a tensile strength (TS) of 780 MPa or more is obtained. 1. Air-cooling after hot rolling; 2. accelerated cooling after hot rolling; 3. Hardened directly after hot rolling. 4. Normalizing after hot rolling and after reheating; After hot rolling, for reheating and quenching, 6.2, 3, 4, and 5, further, any one of tempering treatments is appropriately selected.

熱間圧延後、加速冷却する場合、冷却速度が60℃/sを超えると、鋼板位置毎の冷却速度制御が困難となり、材質ばらつきが生じるため、60℃/s未満とすることが望ましい。冷却速度は板厚方向の各位置における冷却速度を平均した平均冷却速度とする。   In the case of accelerated cooling after hot rolling, if the cooling rate exceeds 60 ° C./s, it becomes difficult to control the cooling rate for each steel plate position, resulting in material variations. The cooling rate is an average cooling rate obtained by averaging the cooling rates at the respective positions in the thickness direction.

再加熱、焼きならし、もしくは焼入れ処理のいずれかを施す場合、再加熱温度はAc変態点以上とするが1100℃以上になると鋼板表面性状が劣化するために、好ましくは1100℃未満とする。また、保持時間は、1hr以上になるとオーステナイト粒の粗大化により、母材の靭性が劣化するので1hr未満が望ましく、熱処理炉内の均熱が良ければ、短時間の保持でも良い。 When any one of reheating, normalizing, and quenching is performed, the reheating temperature is set to the Ac 3 transformation point or higher, but when it becomes 1100 ° C. or higher, the steel sheet surface properties deteriorate, and therefore preferably less than 1100 ° C. . Further, if the holding time is 1 hr or longer, the toughness of the base material deteriorates due to the coarsening of austenite grains. Therefore, the holding time is preferably less than 1 hr. If the soaking in the heat treatment furnace is good, the holding time may be short.

熱間圧延後、直接焼入れまたは熱間圧延後、再加熱焼入れ後を施す場合の平均冷却速度は条切り歪を低減するという観点から80℃/s以下とすることが望ましい。なお、Ac点は化学組成との相関が概ね次(2)式で整理できる。
Ac=854−180C+44Si−14Mn−17.8Ni−1.7Cr (2)
(ただし、C、Si、Mn、Ni、Cr:各合金元素の含有量(質量%))
焼もどし処理を施す場合は引張り強さ780MPa以上が確保されるように焼戻し温度と保持時間を選定する。母材の靭性および延性を向上させるため、焼もどし温度を400℃以上とするが、650℃を超えると母材強度が大幅に低下し、引張り強さ780MPa以上が確保されなくなるため、400℃以上、650℃以下とする。
The average cooling rate in the case of performing hot rolling, direct quenching or hot rolling, and after reheating quenching is desirably 80 ° C./s or less from the viewpoint of reducing the cut strain. Incidentally, the Ac 3 points can be roughly correlated with the chemical composition by the following equation (2).
Ac 3 = 854-180C + 44Si-14Mn-17.8Ni-1.7Cr (2)
(However, C, Si, Mn, Ni, Cr: content of each alloy element (mass%))
When tempering is performed, the tempering temperature and holding time are selected so that a tensile strength of 780 MPa or more is ensured. In order to improve the toughness and ductility of the base material, the tempering temperature is set to 400 ° C. or more. However, if the temperature exceeds 650 ° C., the base material strength is significantly reduced, and the tensile strength of 780 MPa or more cannot be secured. 650 ° C. or lower.

保持時間は、1hr以上になると、母材強度が大幅に低下するので、1hr以内が望ましく、熱処理炉内の均熱が良ければ、短時間の保持でもかまわない。   When the holding time is 1 hr or longer, the strength of the base material is greatly reduced. Therefore, the holding time is preferably within 1 hr, and if the soaking in the heat treatment furnace is good, the holding time may be short.

上述した製造方法のいずれかにより得られる鋼板のミクロ組織はベイニティックフェライトあるいはベイニティックフェライトとマルテンサイトの混合組織である。パーライトおよびセメンタイト等の組織が混在すると強度が低下するが、面積率で15%以下であり、影響は無視できる。また、ベイニティックフェライト中に、硬質第2相として混在する島状マルテンサイトは面積分率で5%以下であって靭性の低下は生じていない。   The microstructure of the steel sheet obtained by any of the manufacturing methods described above is bainitic ferrite or a mixed structure of bainitic ferrite and martensite. When a structure such as pearlite and cementite is mixed, the strength decreases, but the area ratio is 15% or less, and the influence can be ignored. In addition, island-like martensite mixed as a hard second phase in bainitic ferrite has an area fraction of 5% or less, and no reduction in toughness occurs.

転炉-取鍋精錬-連続鋳造法で、表4に示す種々の成分組成に調製した鋼スラブを、表5に示す種々の熱間圧延条件により板厚50mmの鋼板とし、一部の鋼板には、熱処理を施した。   Steel slabs prepared in various components and compositions shown in Table 4 by the converter-ladder refining-continuous casting method were made into steel plates having a thickness of 50 mm under various hot rolling conditions shown in Table 5, and some steel plates were Was subjected to heat treatment.

各鋼板の板厚(t)の1/4位置(板厚1/4位置、板厚方向1/4・tと言う場合がある)から、JIS4号引張試験片を採取し、JIS Z 2241(1998年)の既定に準拠して引張試験を実施し、引張特性を調査した。   A JIS No. 4 tensile test piece was taken from 1/4 position of the thickness (t) of each steel sheet (may be referred to as 1/4 thickness position, 1/4 mm in thickness direction), and JIS Z 2241 ( 1998), a tensile test was conducted to investigate tensile properties.

また、同じく各鋼板の板厚1/4位置から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠してシャルピー衝撃試験を実施し、0℃における吸収エネルギー(vE)(3本平均値)を求め、母材靭性を評価した。 Similarly, V-notch test specimens were collected from the position of 1/4 of the thickness of each steel plate in accordance with JIS Z 2202 (1998) and Charpy impact in accordance with JIS Z 2242 (1998). The test was carried out, the absorbed energy (vE 0 ) (average value of 3) at 0 ° C. was determined, and the base material toughness was evaluated.

また、各鋼板の板厚1/4位置から再現熱サイクル試験片を採取し、表2に示した再現熱サイクルを付与した。再現熱サイクル試験後のサンプルより、ミクロ観察用のサンプルおよびJIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠してシャルピー衝撃試験を実施し、0℃における吸収エネルギー(vE)(3本平均値)を求めた。ミクロ組織の観察は、試料にレペラ腐食(JOURNAL OF METALS、March、1980、p.38−39)を実施して倍率1000倍の光学顕微鏡で観察して、島状マルテンサイトを同定し、平均面積分率、平均サイズ、平均アスペクト比は、倍率1000倍の光学顕微鏡で撮影した画像を画像解析装置を用いて求めた。平均サイズは平均円相当径で評価した。 Moreover, the reproduction thermal cycle test piece was extract | collected from the plate | board thickness 1/4 position of each steel plate, and the reproduction thermal cycle shown in Table 2 was provided. Samples for micro observation and V-notch test specimens were collected from the samples after the reproducible thermal cycle test in accordance with the provisions of JIS Z 2202 (1998), and Charpy in accordance with the provisions of JIS Z 2242 (1998). An impact test was performed, and the absorbed energy (vE 0 ) (average value of three) at 0 ° C. was determined. Microscopic observation was performed by observing the sample with an optical microscope having a magnification of 1000 times to identify island-like martensite and carrying out the average area of repera corrosion (JOURNAL OF METALS, March, 1980, p.38-39). The fraction, average size, and average aspect ratio were determined using an image analysis apparatus for images taken with an optical microscope with a magnification of 1000 times. The average size was evaluated by the average equivalent circle diameter.

また、各鋼板から採取した継手用試験板に、V開先を施し、2電極サブマージアーク溶接(溶接入熱量:450kJ/cm)の1層溶接により、溶接継手を作製し、シャルピー衝撃試験と硬さ試験を行った。   In addition, V-grooves are applied to joint test plates taken from each steel plate, welded joints are produced by one-layer welding of two-electrode submerged arc welding (welding heat input: 450 kJ / cm), Charpy impact test and hard The test was conducted.

シャルピー衝撃試験は切欠き位置を板厚方向1/4・tのボンド部とするJIS4号衝撃試験片を採取し、試験温度:0℃で実施し、継手ボンド部の0℃における吸収エネルギー(vE)(3本平均値)を求めた。 For the Charpy impact test, a JIS No. 4 impact test piece having a notch position of 1 / 4.t in the thickness direction was taken and tested at a test temperature of 0 ° C., and the absorbed energy at 0 ° C. of the joint bond portion (vE 0 ) (average value of three).

さらに、得られた各厚鋼板から、JIS Z 3101(1990年)に準拠して、被覆アーク溶接による溶接熱影響部の最高硬さ試験を実施した。なお、試験片形状は1号試験材を用い、室温(25℃)にて試験を実施した。また、供給ワイヤは、JIS Z 3212相当を使用した。   Furthermore, the maximum hardness test of the weld heat affected zone by covering arc welding was carried out from each of the obtained thick steel plates in accordance with JIS Z 3101 (1990). In addition, the test piece shape implemented the test at room temperature (25 degreeC) using No. 1 test material. The supply wire used was JIS Z 3212 equivalent.

本発明範囲は、母材の引張り強さ(TS):780MPa以上、母材靭性(0℃における吸収エネルギー(vE)(3本平均値)):70J以上、再現熱サイクル試験後の0℃における吸収エネルギー(vE)(3本平均値):70J以上、サブマージアーク溶接継手ボンド部の0℃における吸収エネルギー(vE)(3本平均値):70J以上、溶接熱影響部の最高硬さ試験結果:HV(98N)≦350とした。 The scope of the present invention is that the tensile strength (TS) of the base material: 780 MPa or more, the toughness of the base material (absorbed energy (vE 0 ) (average of 3) at 0 ° C.): 70 J or more, 0 ° C. after the reproducible thermal cycle test Absorbed energy (vE 0 ) (average value of 3 tubes): 70 J or more, absorbed energy (vE 0 ) (average value of 3 tubes) at 0 ° C. of the submerged arc welded joint bond portion: 70 J or more, highest hardness of weld heat affected zone Test result: HV (98N) ≦ 350.

得られた結果を、表6に示す。鋼No.1〜8−1は発明例でいずれも、引張強さ780MPa以上、且つ高強度、且つ高靭性の母材特性を有する。   Table 6 shows the obtained results. Steel No. 1-8-1 is an example of an invention, and all have the base material characteristic of tensile strength 780 Mpa or more, high strength, and high toughness.

また、溶接入熱:450kJ/cmの1層大入熱溶接施工を施した場合であっても、ボンド部でのvEが70J以上と優れた溶接熱影響部靭性が得られる。 Further, even when a one-layer large heat input welding construction with a welding heat input of 450 kJ / cm is performed, an excellent weld heat affected zone toughness of vJ 0 at the bond portion of 70 J or more can be obtained.

さらに、被覆アーク溶接熱影響部の最高硬さがHV350以下と、優れた小入熱溶接熱影響部の耐硬化特性が得られることが認められる。   Furthermore, it can be seen that the maximum hardness of the heat-affected zone of the coated arc welding is HV350 or less, and excellent hardening resistance of the heat-affected zone of small heat input welding can be obtained.

一方、本発明の範囲を外れる比較例(鋼No.8−2、9〜18)は、母材強度、母材靭性、再現熱サイクル靭性、大入熱溶接部靭性、小入熱溶接熱影響部の耐硬化特性の、いずれか、あるいは複数の特性が目標値を満足しない。   On the other hand, comparative examples (steel Nos. 8-2 and 9 to 18) out of the scope of the present invention are base material strength, base material toughness, reproducible thermal cycle toughness, large heat input weld toughness, and small heat input welding heat influence. One or more of the curing resistance characteristics of the part does not satisfy the target value.

Claims (6)

鋼組成が、質量%で、
C:0.03〜0.075%、
Si:0.11〜0.40%、
Mn:0.1〜1.3%、
P:0.015%以下、
S:0.003%以下、
Al:0.01〜0.05%、
Cr:2.0〜5.0%、
Ti:0.005〜0.03%、
N:0.002〜0.007%を含有し、
Bの含有量が3ppm以下であり、残部がFeおよび不可避的不純物からなり、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板。
Steel composition is mass%,
C: 0.03-0.075%,
Si: 0.11 to 0.40%,
Mn: 0.1 to 1.3%,
P: 0.015% or less,
S: 0.003% or less,
Al: 0.01 to 0.05%,
Cr: 2.0 to 5.0%,
Ti: 0.005 to 0.03%,
N: 0.002 to 0.007% is contained,
The B content is 3 ppm or less, the balance is Fe and inevitable impurities, and the toughness of the high heat input heat affected zone with a tensile strength (TS) of 780 MPa or more and the hardening resistance of the small heat input weld heat affected zone. High-strength thick steel plate with excellent characteristics.
鋼組成に、質量%でさらに、
Cu:0.05〜0.9%、
Ni:0.05〜1.0%、
Mo:0.05〜1.0%、
Nb:0.005〜0.05%、
V:0.01〜0.1%、
の1種または2種以上を含有する、請求項1に記載の、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板。
In addition to the steel composition,
Cu: 0.05 to 0.9%,
Ni: 0.05 to 1.0%,
Mo: 0.05-1.0%,
Nb: 0.005 to 0.05%,
V: 0.01 to 0.1%
The toughness of the high heat input heat affected zone having a tensile strength (TS) of 780 MPa or more and the hardening resistance of the low heat input weld heat affected zone according to claim 1, comprising one or more of Excellent high-strength thick steel plate.
鋼組成に、質量%でさらに、
REM:0.02%以下、
Ca:0.005%以下、
Mg:0.005%以下、
の1種または2種以上を含有する、請求項1または2に記載の、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板。
In addition to the steel composition,
REM: 0.02% or less,
Ca: 0.005% or less,
Mg: 0.005% or less,
The toughness of the high heat input heat affected zone having a tensile strength (TS) of 780 MPa or more and the hardening resistance of the low heat input heat affected zone according to claim 1 or 2, comprising one or more of High-strength thick steel plate with excellent characteristics.
請求項1乃至3のいずれか一つに記載した鋼組成からなる鋳片または鋼片を、1000〜1250℃に再加熱後、圧延終了温度が750℃以上となる熱間圧延を行うことを特徴とする、引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板の製造方法。   The slab or steel slab comprising the steel composition according to any one of claims 1 to 3 is reheated to 1000 to 1250 ° C, and then hot-rolled to a rolling end temperature of 750 ° C or higher. The manufacturing method of the high strength thick steel plate excellent in the toughness of the high heat input heat-affected zone having a tensile strength (TS) of 780 MPa or more and the hardening resistance of the low heat input heat-affected zone. 熱間圧延後、Ac変態点以上に再加熱し、保持後、室温まで冷却することを特徴とする、請求項4記載の引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板の製造方法。 The high heat-input welding heat-affected zone having a tensile strength (TS) of 780 MPa or more according to claim 4, wherein the steel is reheated to the Ac 3 transformation point or higher after hot rolling, and cooled to room temperature after holding. Of high-strength thick steel plate with excellent toughness and low-heat-input welding heat-affected zone hardening characteristics. 更に、400〜650℃で焼戻すことを特徴とする請求項4または5に記載の引張強さ(TS)が780MPa以上の大入熱溶接熱影響部の靭性と小入熱溶接熱影響部の耐硬化特性に優れた高強度厚鋼板の製造方法。   Furthermore, tempering is performed at 400 to 650 ° C. The toughness of the high heat input heat affected zone having a tensile strength (TS) of 780 MPa or more and the low heat input weld heat affected zone of claim 4 or 5. A method for producing high-strength thick steel plates with excellent curing resistance.
JP2012016058A 2011-02-02 2012-01-30 High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof Active JP5903907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012016058A JP5903907B2 (en) 2011-02-02 2012-01-30 High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011020613 2011-02-02
JP2011020613 2011-02-02
JP2012016058A JP5903907B2 (en) 2011-02-02 2012-01-30 High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012177192A JP2012177192A (en) 2012-09-13
JP5903907B2 true JP5903907B2 (en) 2016-04-13

Family

ID=46979216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012016058A Active JP5903907B2 (en) 2011-02-02 2012-01-30 High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5903907B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6299676B2 (en) * 2015-06-09 2018-03-28 Jfeスチール株式会社 High-tensile steel plate and manufacturing method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813032A (en) * 1994-06-24 1996-01-16 Sumitomo Metal Ind Ltd Production of steel plate excellent in weldability and toughness at low temperature
JP3471570B2 (en) * 1997-03-06 2003-12-02 新日本製鐵株式会社 High heat input welding steel with excellent anticorrosion properties and its steel structure
JP2001214235A (en) * 2000-01-31 2001-08-07 Sumitomo Metal Ind Ltd High tensile strength steel excellent in weld heat affected zone toughness
WO2009123076A1 (en) * 2008-03-31 2009-10-08 新日本製鐵株式会社 Refractory steel material with welded joint excellent in unsusceptibility to reheat embrittlement and toughness and process for producing the same
JP5407478B2 (en) * 2009-03-26 2014-02-05 Jfeスチール株式会社 High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same

Also Published As

Publication number Publication date
JP2012177192A (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4730102B2 (en) Low yield ratio high strength steel with excellent weldability and manufacturing method thereof
JP5354164B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
JP2012207237A (en) 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF
JP2018053281A (en) Rectangular steel tube
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP4120531B2 (en) Manufacturing method of high strength thick steel plate for building structure with excellent super tough heat input welding heat affected zone toughness
JP2007177326A (en) High tensile strength thin steel sheet having low yield ratio and its production method
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP4998708B2 (en) Steel material with small material anisotropy and excellent fatigue crack propagation characteristics and method for producing the same
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4923968B2 (en) Steel material with excellent fatigue crack propagation resistance
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP5903907B2 (en) High strength thick steel plate with excellent tensile strength (TS) of high heat input heat affected zone with high heat input and high heat resistance of low heat input weld heat affected zone and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160229

R150 Certificate of patent or registration of utility model

Ref document number: 5903907

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250