JP2009179868A - High tensile strength steel plate having excellent weldability - Google Patents
High tensile strength steel plate having excellent weldability Download PDFInfo
- Publication number
- JP2009179868A JP2009179868A JP2008021730A JP2008021730A JP2009179868A JP 2009179868 A JP2009179868 A JP 2009179868A JP 2008021730 A JP2008021730 A JP 2008021730A JP 2008021730 A JP2008021730 A JP 2008021730A JP 2009179868 A JP2009179868 A JP 2009179868A
- Authority
- JP
- Japan
- Prior art keywords
- heat input
- less
- haz toughness
- value
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、橋梁や高層建造物、船舶などの溶接構造物に適用される高張力鋼板に関し、殊に小入熱溶接後から大入熱溶接後での熱影響部(以下、単に「HAZ」と呼ぶことがある)の靭性に優れた高張力鋼板に関するものである。 The present invention relates to a high-tensile steel plate applied to a welded structure such as a bridge, a high-rise building, and a ship, and in particular, a heat-affected zone (hereinafter simply referred to as “HAZ”) after a small heat input weld to a large heat input weld. It may be referred to as a high-tensile steel plate having excellent toughness.
近年、上記各種溶接構造物の大型化に伴い、板厚が50mm以上である厚鋼板の溶接が不可避となっている。このため、あらゆる分野において、溶接施工効率の改善という観点から、25kJ/mm以上の大入熱溶接が指向される状況である。 In recent years, with the increase in size of the above various welded structures, it is inevitable to weld thick steel plates having a plate thickness of 50 mm or more. For this reason, in all fields, high heat input welding of 25 kJ / mm or more is directed from the viewpoint of improving welding construction efficiency.
しかしながら、大入熱溶接を行うと、HAZが高温のオーステナイト領域まで加熱されてから徐冷されるので、HAZ部(特にHAZ部のボンド部付近)の組織が粗大化、その部分の靭性が劣化しやすいという問題がある。こうしたHAZ部における靭性(以下、「HAZ靭性」と呼ぶことがある)を良好に確保することが、永年の課題となっている。 However, if high heat input welding is performed, the HAZ is heated to a high temperature austenite region and then gradually cooled, so the structure of the HAZ part (particularly near the bond part of the HAZ part) becomes coarse and the toughness of that part deteriorates. There is a problem that it is easy to do. It has been a long-standing problem to ensure such good toughness in the HAZ portion (hereinafter sometimes referred to as “HAZ toughness”).
大入熱溶接時におけるHAZ靭性の劣化防止のための技術は、これまでにも様々提案されている。HAZ靭性を改善する技術として、鋼材中にTi含有窒化物を分散させることが有効であることが知られている。こうした技術としては、例えば特許文献1に示されるように、強度が590MPa超級のベイナイト鋼において、合金元素の適正化を図ると共に、Ti含有窒化物の制御によって良好なHAZ靭性を確保することが提案されている。 Various techniques for preventing the deterioration of the HAZ toughness during high heat input welding have been proposed so far. As a technique for improving HAZ toughness, it is known that it is effective to disperse a Ti-containing nitride in a steel material. As such a technique, for example, as shown in Patent Document 1, in bainite steel having a strength of over 590 MPa, it is proposed to optimize the alloy elements and to secure good HAZ toughness by controlling Ti-containing nitrides. Has been.
本発明者らは、溶接時に高温の熱影響を受けた場合でもHAZの靭性が劣化しない鋼材を特許文献2に先に提案している。この技術では、鋼材にNを多量に添加し、且つTiとBの添加バランスを適切に制御することによって、溶接後も未固溶で存在するTiNの量を増加させ、HAZ靭性を改善するものである。 The present inventors have previously proposed a steel material in which the HAZ toughness does not deteriorate even when it is affected by high-temperature heat during welding. In this technology, a large amount of N is added to the steel, and the balance of addition of Ti and B is appropriately controlled to increase the amount of TiN that remains in an insoluble state after welding, thereby improving the HAZ toughness. It is.
一方、高張力鋼板では、上記のような大入熱溶接に限らず、入熱量が2kJ/mm程度の小入熱での溶接も行われることがあり、こうした小入熱溶接ではHAZの強度過多が発生し、溶接割れが発生したり、HAZ靭性が劣化する傾向がある。こうした問題に対しては、各合金元素の含有量によって求められるCeq値やPcm値を低減することによって改善できることが知られている(例えば特許文献3)。 On the other hand, high-strength steel sheets are not limited to high heat input welding as described above, but may be welded with a small heat input of about 2 kJ / mm. , And there is a tendency for weld cracks to occur and HAZ toughness to deteriorate. It is known that such problems can be improved by reducing the Ceq value and Pcm value determined by the content of each alloy element (for example, Patent Document 3).
本発明者らは、比較的強度の低い490MPa級の鋼板において、溶接鋼中に存在するTiN系介在物の中にNbを積極的に含有させると共に、Ti/Nb比を制御し、粒径が0.01〜0.25μmである介在物の個数を1mm2当りで1.0×104個以上とすることにより、幅広い入熱範囲でのHAZ靭性を確保する技術を提案している(特許文献4)。
しかしながら、これまで提案されている技術では、強度が590MPa超級のベイナイト鋼板において、小入熱溶接から大入熱溶接までの広い入熱量範囲に亘って安定的に良好なHAZ靭性を確保するまでに至っていないのが実情である。 However, in the technology proposed so far, in a bainite steel sheet having a strength exceeding 590 MPa, it is possible to stably ensure good HAZ toughness over a wide heat input range from small heat input welding to large heat input welding. The situation is not reached.
本発明はこのような状況に鑑みてなされたものであって、その目的は、小入熱溶接から大入熱溶接までの広い入熱量範囲で溶接を行っても、安定的に良好なHAZ靭性を確保できるような、溶接性に優れた590MPa超級のベイナイト高張力鋼板を提供することにある。 The present invention has been made in view of such circumstances, and its purpose is to stably provide good HAZ toughness even when welding is performed in a wide heat input range from small heat input welding to large heat input welding. Is to provide a bainite high-strength steel sheet having a weldability exceeding 590 MPa.
上記課題を解決することのできた本発明に係る高張力鋼板とは、C:0.01〜0.08%(「質量%」の意味。以下同じ)、Si:0.30%以下(0%を含む)、Mn:0.5〜2.0%、Al:0.01〜0.05%、Cr:0.5〜2.0%、Nb:0.005〜0.050%、Ti:0.010〜0.040%、B:0.0010〜0.0050%、N:0.0020〜0.0100%、Ca:0.0050%以下(0%を含まない)を夫々含有し、残部が鉄および不可避的不純物からなり、下記(1)式で規定されるBP値が120〜300(質量%)の範囲にあると共に、下記(2)式で規定されるPcm値が0.20(質量%)以下であり、且つ円相当直径で0.05μm以下のTi含有窒化物が1mm2当り5.0×106個以上存在し、このうち円相当直径で0.01〜0.03μmのTi含有窒化物個数が全Ti含有窒化物個数に対して75%以上を占めるものである点に要旨を有するものである。
BP値=414[C]+78[Si]+31[Mn]+79[Cr]−14[Cu]−26[Ni]+2280[Nb]+218[Mo] …(1)
Pcm値=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B] …(2)
但し、[C],[Si],[Mn],[Cr],[Cu],[Ni],[Nb],[Mo],[V]および[B]は、夫々C,Si,Mn,Cr,Cu,Ni,Nb,Mo,VおよびBの含有量(質量%)を示す。
The high-tensile steel plate according to the present invention that has solved the above problems is C: 0.01 to 0.08% (meaning “mass%”; the same applies hereinafter), Si: 0.30% or less (0% Mn: 0.5 to 2.0%, Al: 0.01 to 0.05%, Cr: 0.5 to 2.0%, Nb: 0.005 to 0.050%, Ti: 0.010 to 0.040%, B: 0.0010 to 0.0050%, N: 0.0020 to 0.0100%, Ca: 0.0050% or less (excluding 0%), respectively. The balance consists of iron and inevitable impurities, the BP value defined by the following formula (1) is in the range of 120 to 300 (mass%), and the Pcm value defined by the following formula (2) is 0.20. (at mass%) or less, and the following Ti-containing nitride 0.05μm circle equivalent diameter 1 mm 2 per 5.0 × 10 6 There above, Ti-containing nitride number of 0.01~0.03μm Among equivalent circle diameter and has a gist in that those occupying more than 75% of the total Ti-containing nitride number.
BP value = 414 [C] +78 [Si] +31 [Mn] +79 [Cr] −14 [Cu] −26 [Ni] +2280 [Nb] +218 [Mo] (1)
Pcm value = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B] (2)
However, [C], [Si], [Mn], [Cr], [Cu], [Ni], [Nb], [Mo], [V] and [B] are respectively C, Si, Mn, The contents (% by mass) of Cr, Cu, Ni, Nb, Mo, V and B are shown.
尚、上記「円相当直径」とは、Ti含有窒化物の大きさに着目して、その面積が等しくなる様に想定した円の直径を求めたもので、透過型電子顕微鏡(TEM)観察面上で認められる窒化物のものである。また、本発明で対象とするTi含有窒化物とは、TiNは勿論のこと、Tiの一部(原子比で50%以下程度)を他の窒化物形成元素(例えば、Nb,Zr,V等)で置換した窒化物をも含む趣旨である。 The “equivalent circle diameter” refers to the diameter of a circle that is assumed to have the same area by paying attention to the size of the Ti-containing nitride, and is a transmission electron microscope (TEM) observation surface. Of the nitrides identified above. Further, the Ti-containing nitride targeted in the present invention includes not only TiN but also a part of Ti (at an atomic ratio of about 50% or less) to other nitride-forming elements (for example, Nb, Zr, V, etc.). This also includes the nitride substituted with ().
本発明の厚鋼板には、必要によって更に、(a)Cuおよび/またはNi:2.0%以下(0%を含まない)、(b)Mo:0.5%以下(0%を含まない)および/またはV:0.1〜0.5%、(c)Mg,ZrおよびREMよりなる群から選ばれる1種以上の元素:合計で0.010%以下(0%を含まない)等を含有させることも有用であり、含有させる元素の種類に応じて高張力鋼板の特性が更に改善されることになる。 In the thick steel plate of the present invention, if necessary, (a) Cu and / or Ni: 2.0% or less (not including 0%), (b) Mo: 0.5% or less (not including 0%) And / or V: 0.1 to 0.5%, (c) one or more elements selected from the group consisting of Mg, Zr and REM: 0.010% or less in total (excluding 0%), etc. It is also useful to contain, and the characteristics of the high-tensile steel sheet will be further improved according to the type of element to be contained.
本発明によれば、上記(1)式で規定されるBP値、(2)式で規定されるPcm値を適切な範囲に制御しつつ、鋼板の化学成分組成を適切な範囲内に納め、更に微細なTi含有窒化物の分散状態(個数/密度)を適切に制御することによって、小入熱溶接から大入熱溶接までの広い入熱量範囲で溶接を行っても、安定的に良好なHAZ靭性を確保できるような、溶接性に優れた590MPa超級のベイナイト高張力鋼板が実現できた。 According to the present invention, while controlling the BP value defined by the above formula (1) and the Pcm value defined by the formula (2) within an appropriate range, the chemical composition of the steel sheet is within an appropriate range, Furthermore, by controlling the dispersion state (number / density) of fine Ti-containing nitride appropriately, even if welding is performed in a wide heat input range from small heat input welding to large heat input welding, it is stable and good. A bainite high-tensile steel plate of 590 MPa and superior in weldability that can ensure HAZ toughness could be realized.
強度が590MPa超級の鋼板では、HAZにおいてベイナイト組織が形成されることになるのであるが、ベイナイト組織形態に対する合金元素の影響については、不明な点が多かった。本発明者らは、ベイナイト鋼板のHAZ靭性に及ぼす合金元素の影響を把握するため、ベイナイト組織形態と合金設計指針について検討した。 In a steel sheet having a strength exceeding 590 MPa, a bainite structure is formed in the HAZ, but there are many unclear points regarding the influence of alloy elements on the bainite structure morphology. In order to grasp the influence of the alloy elements on the HAZ toughness of the bainite steel sheet, the present inventors examined the bainite structure morphology and the alloy design guidelines.
その結果、HAZのベイナイト組織(ブロックサイズ)が10μm以下となるように微細化すれば、良好なHAZ靭性が確保できるとの着想が得られた。次いで、ベイナイトブロックの微細化は、ベイナイト組織の変態駆動力と相関があると考え、変態駆動力を上昇させる成分設計を実施すればよいと考え、各種合金の影響について検討した。 As a result, the idea was obtained that good HAZ toughness could be secured if the HAZ bainite structure (block size) was refined to 10 μm or less. Next, the refinement of the bainite block was considered to have a correlation with the transformation driving force of the bainite structure, and it was considered that the component design for increasing the transformation driving force should be carried out, and the influence of various alloys was examined.
ベイナイト変態の形成過程を考えると、その変態駆動力は、ベイナイト変態の駆動力が発生する温度(以下、「T0温度」と呼ぶ)と、実際にベイナイト変態が発生する温度(以下、「Bs点」と呼ぶ)との差で説明できると考えられた。 Considering the formation process of the bainite transformation, the transformation driving force includes the temperature at which the driving force of the bainite transformation is generated (hereinafter referred to as “T 0 temperature”) and the temperature at which the bainite transformation is actually generated (hereinafter referred to as “Bs”). It was thought that this could be explained by the difference between this point and the point.
そこで、夫々の温度(T0温度、Bs点)に対する合金元素の影響について更に検討した。上記T0温度については、熱力学計算で算出できることから、熱力学計算ソフトウェア(Thermo−calc、CRC総合研究所から購入可能)を用いて、各合金元素の影響について検討し、各元素の影響について定式化した。一方、Bs点については、現時点では、理論的に算出することができないため、実験値を用いた。即ち、合金元素が異なる鋼種のBs点を実験で求め、各元素の影響を回帰分析によって定式した。得られた、両式の差をとり、(T0温度―Bs点)の式とすることによって、下記(1)式で規定されるBP値が求められたのである。そして、このBP値が120〜300(質量%)の範囲内にあるとき、大入熱溶接を行ってもHAZが適切なベイナイト組織形態となって、良好なHAZ靭性が達成されるのである。尚、上記BP値の好ましい下限は140であり、好ましい上限は260である。 Therefore, the influence of alloy elements on each temperature (T 0 temperature, Bs point) was further examined. Since the above T 0 temperature can be calculated by thermodynamic calculation, the influence of each alloy element is examined using thermodynamic calculation software (Thermo-calc, available from CRC Research Institute), and the influence of each element. Formulated. On the other hand, since the Bs point cannot be calculated theoretically at present, experimental values are used. That is, Bs points of steel types having different alloying elements were obtained by experiments, and the influence of each element was formulated by regression analysis. By taking the difference between the two formulas and obtaining the formula (T 0 temperature−Bs point), the BP value defined by the following formula (1) was obtained. And when this BP value exists in the range of 120-300 (mass%), even if it carries out large heat input welding, HAZ will become a suitable bainite structure form and favorable HAZ toughness will be achieved. The preferable lower limit of the BP value is 140, and the preferable upper limit is 260.
BP値=414[C]+78[Si]+31[Mn]+79[Cr]−14[Cu]−26[Ni]+2280[Nb]+218[Mo] …(1)
但し、[C],[Si],[Mn],[Cr],[Cu],[Ni],[Nb]および[Mo]は、夫々C,Si,Mn,Cr,Cu,Ni,NbおよびMoの含有量(質量%)を示す。
BP value = 414 [C] +78 [Si] +31 [Mn] +79 [Cr] −14 [Cu] −26 [Ni] +2280 [Nb] +218 [Mo] (1)
However, [C], [Si], [Mn], [Cr], [Cu], [Ni], [Nb] and [Mo] are C, Si, Mn, Cr, Cu, Ni, Nb and Mo content (mass%) is shown.
尚、上記BP値を規定する元素のうちには、本発明の厚鋼板の基本成分(C,Si,Mn,Cr,Nb)以外にも、必要によって含有されるものも含まれるが、(Cu,Ni,Mo等)、これらの元素を含まないときには、その項目がないものとしてBP値を計算し、この元素を含むときには、上記(1)式からBP値を計算すればよい。 In addition to the basic components (C, Si, Mn, Cr, Nb) of the thick steel plate of the present invention, the elements that define the BP value include those contained if necessary, but (Cu , Ni, Mo, etc.) When these elements are not included, the BP value is calculated assuming that the item is not present. When these elements are included, the BP value may be calculated from the above equation (1).
本発明の高張力鋼板においては、小入熱溶接から大入熱溶接まで安定的に良好なHAZ靭性を確保するために、下記(2)式で規定されるPcm値も適切な範囲に制御する必要がある(前記特許文献3)。 In the high-strength steel sheet of the present invention, the Pcm value defined by the following equation (2) is also controlled within an appropriate range in order to ensure a stable HAZ toughness from small heat input welding to large heat input welding. It is necessary (Patent Document 3).
Pcm値=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B] …(2)
但し、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo],[V]および[B]は、夫々C,Si,Mn,Cu,Ni,Cr,Mo,VおよびBの含有量(質量%)を示す。
Pcm value = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B] (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo], [V] and [B] are respectively C, Si, Mn, Cu, Ni, Content (mass%) of Cr, Mo, V, and B is shown.
上記(2)式で規定されるPcm値は、強度過多に基づくHAZ靭性劣化を招かないために重要な要件であり、各元素の硬化能をC含有量に換算したものであり、炭素当量Ceqに相当するものである。このPcm値を0.20(質量%)以下に制御することによって、小入熱溶接から大入熱溶接まで安定的に良好なHAZ靭性を確保できることになる。 The Pcm value defined by the above formula (2) is an important requirement in order not to cause deterioration of HAZ toughness due to excessive strength, and is obtained by converting the hardening ability of each element into C content, and the carbon equivalent Ceq It is equivalent to. By controlling this Pcm value to 0.20 (mass%) or less, it is possible to stably ensure good HAZ toughness from small heat input welding to large heat input welding.
尚、上記(1)式と同様に、上記Pcm値を規定する元素のうちには、本発明の厚鋼板の基本成分(C,Si,Mn,Cr,B)以外にも、必要によって含有されるものも含まれるが(Cu,Ni,Mo,V等)、これらの元素を含まないときには、その項目がないものとしてPcm値を計算し、この元素を含むときには、上記(2)式からPcm値を計算すればよい。 As in the above formula (1), among the elements that define the Pcm value, other than the basic components (C, Si, Mn, Cr, B) of the thick steel plate of the present invention, it is contained as necessary. Although those are not included (Cu, Ni, Mo, V, etc.), when these elements are not included, the Pcm value is calculated assuming that there is no such item. When these elements are included, Pcm is calculated from the above equation (2). Calculate the value.
ところで、本発明者らは、溶接時の高温においても溶け残るTi含有窒化物(以下、TiNで代表することがある)を増加させることに成功しているのであるが(前記特許文献2)、こうした技術を基本として、HAZ靭性を更に改善するために検討を重ねた。 By the way, the present inventors have succeeded in increasing the Ti-containing nitride (hereinafter, sometimes represented by TiN) that remains undissolved even at high temperatures during welding (Patent Document 2). Based on these technologies, studies were made to further improve the HAZ toughness.
溶接時には、微細TiNは溶解すると共に、粗大なTiNは粒成長するような挙動(オストワルド成長)を示すことになる。本発明者らは、こうした挙動に着目し、できるだけ微細なTiNを多量に分散させてやることによって、粒成長した後においてもTiN分布が微細均一になるようにするには、円相当直径で0.05μm以下のTiNが1mm2当り5.0×106個以上となるように制御すれば良いことを見出した。 At the time of welding, fine TiN dissolves and coarse TiN exhibits a behavior that causes grain growth (Ostwald growth). The present inventors pay attention to such a behavior, and in order to make the TiN distribution fine and uniform even after grain growth by dispersing as much TiN as possible as much as possible, the equivalent circle diameter is 0. It has been found that the TiN of 0.05 μm or less may be controlled to be 5.0 × 10 6 or more per 1 mm 2 .
また上記のようなオストワルド成長は、TiNのサイズ分布(バラツキ)が大きいと促進されて、溶接後の組織が不均一になり易いことにも着目し、こうした現象をできるだけ抑制するには、TiN全体に占める微細TiNの割合が一定量以上となるように均一に分散してやればよいとの着想が得られた。具体的には、円相当直径で0.01〜0.03μmの微細TiN個数が全TiN個数に対して75%以上を占める様にすれば、溶接後の組織が不均一になることが防止できることが判明したのである。 In addition, the Ostwald growth as described above is promoted when the size distribution (variation) of TiN is large, and attention is also paid to the fact that the structure after welding tends to be non-uniform. The idea was obtained that the fine TiN content should be uniformly dispersed so that the proportion of the fine TiN becomes a certain amount or more. Specifically, if the number of fine TiN having an equivalent circle diameter of 0.01 to 0.03 μm accounts for 75% or more of the total number of TiN, it is possible to prevent the structure after welding from becoming uneven. It turned out.
本発明の鋼板においては、後述する制御によって、微細なTiNを主体として分散させるものである。従って、一部粗大なTiN(例えば、円相当直径で0.05μmよりも大きいTiN)が含まれていても、こうした粗大TiNは鋼板の特性にそれほど影響を与えないので、「全TiN」はこうした粗大TiNも含む趣旨である。尚、0.01〜0.03μmの微細TiN個数が全TiN個数に対して占める割合(以下、「占有率」と呼ぶことがある)は、好ましくは77%以上であり、より好ましくは80%以上である。 In the steel plate of the present invention, fine TiN is mainly dispersed by the control described later. Therefore, even if partially coarse TiN (for example, TiN larger than 0.05 μm in equivalent circle diameter) is included, such coarse TiN does not significantly affect the properties of the steel sheet, so “total TiN” is such The purpose is to include coarse TiN. The ratio of the fine TiN number of 0.01 to 0.03 μm to the total TiN number (hereinafter sometimes referred to as “occupancy ratio”) is preferably 77% or more, more preferably 80%. That's it.
次に、本発明の鋼材(母材)における成分組成について説明する。上記のように、本発明の鋼板は、その化学成分組成が上記(1)式および(2)式の関係式を満足していても、夫々の化学成分(元素)の含有量が適正範囲内になければ、優れたHAZ靭性を達成することができない。従って、本発明の厚鋼板では、TiN(Ti含有窒化物)の分布状況が良好であることおよび化学成分が上記(1)式および(2)式を満たすことに加えて、夫々の化学成分の量が、以下に記載するような適正範囲内にあることも必要である。これらの成分の範囲限定理由は、下記の通りである。 Next, the component composition in the steel material (base material) of the present invention will be described. As described above, even if the chemical composition of the steel sheet of the present invention satisfies the relational expressions of the above formulas (1) and (2), the content of each chemical component (element) is within an appropriate range. Otherwise, excellent HAZ toughness cannot be achieved. Therefore, in the thick steel plate of the present invention, the distribution of TiN (Ti-containing nitride) is good and the chemical components satisfy the above formulas (1) and (2). It is also necessary that the amount be in the proper range as described below. The reasons for limiting the ranges of these components are as follows.
[C:0.01〜0.08%]
Cは、鋼板の強度を確保するために欠くことのできない元素であり、C含有量が0.01%未満では、鋼板の強度が確保できない。好ましくは0.02%以上である。しかしながら、C含有量が過剰になると広い入熱量範囲での良好なHAZ靭性を確保できなくなる。従ってCは0.08%以下、好ましくは0.06%以下に抑える必要がある。
[C: 0.01 to 0.08%]
C is an element indispensable for ensuring the strength of the steel sheet. If the C content is less than 0.01%, the strength of the steel sheet cannot be ensured. Preferably it is 0.02% or more. However, when the C content is excessive, good HAZ toughness in a wide heat input range cannot be secured. Therefore, C must be suppressed to 0.08% or less, preferably 0.06% or less.
[Si:0.30%以下(0%を含む)]
Siは、固溶強化によって鋼板の強度を確保するのに有用な元素であるが、過剰に含有すると、HAZにMA相が多く生成したり、Ti含有窒化物の粗大化を招くことになり、広い入熱量範囲での良好なHAZ靭性を確保できなくなる。こうした観点から、Si含有量は0.30%以下にする必要があり、好ましくは0.25%以下に抑える。尚、良好なHAZ靭性を確保するという観点からすれば、Si含有量は0%であっても良い。
[Si: 0.30% or less (including 0%)]
Si is an element useful for securing the strength of the steel sheet by solid solution strengthening, but if contained excessively, a large amount of MA phase is generated in HAZ, or the Ti-containing nitride is coarsened. It becomes impossible to ensure good HAZ toughness in a wide heat input range. From such a viewpoint, the Si content needs to be 0.30% or less, and is preferably suppressed to 0.25% or less. From the viewpoint of ensuring good HAZ toughness, the Si content may be 0%.
[Mn:0.5〜2.0%]
Mnは、鋼板の焼入れ性を高めて強度・HAZ靭性を確保する上で有用な元素であり、こうした効果を有効に発揮させるには、0.5%以上含有させる必要がある。好ましくは0.8%以上である。しかし、2.0%を超えて過剰に含有させるとHAZの硬化が著しくなり、HAZ靭性が劣化するので、Mn含有量は2.0%以下とする。好ましくは1.6%以下である。
[Mn: 0.5 to 2.0%]
Mn is an element useful for enhancing the hardenability of the steel sheet and ensuring the strength and the HAZ toughness. In order to effectively exhibit such effects, it is necessary to contain 0.5% or more. Preferably it is 0.8% or more. However, if the content exceeds 2.0%, the HAZ is remarkably hardened and the HAZ toughness deteriorates. Therefore, the Mn content is set to 2.0% or less. Preferably it is 1.6% or less.
[Al:0.01〜0.05%]
Alは、脱酸元素として有用である。こうした効果を発揮させるためには、0.01%以上含有させる必要があり、好ましくは0.02%以上である。しかしながら、Al含有量が過剰になると、HAZにMA相が多く生成してHAZ靭性が劣化するので、0.05%以下に抑える必要があり、好ましくは0.04%以下とする。
[Al: 0.01 to 0.05%]
Al is useful as a deoxidizing element. In order to exhibit such an effect, it is necessary to contain 0.01% or more, preferably 0.02% or more. However, if the Al content is excessive, a large amount of MA phase is formed in the HAZ and the HAZ toughness is deteriorated. Therefore, it is necessary to suppress the content to 0.05% or less, and preferably 0.04% or less.
[Cr:0.5〜2.0%]
Crは、前記温度Toを低下させるよりも更にBs点を低下させ、ベイナイト変態の駆動力を確保してHAZ組織を微細化させるのに有効に作用する元素である。こうした効果を発揮させるには、Crは0.5%以上含有させる必要があり、好ましくは0.7%以上とする。しかしながら、Cr含有量が過剰になると、大入熱溶接時でのHAZ靭性が却って劣化するため、2.0%以下に抑える必要がある。好ましくは1.6%以下である。
[Cr: 0.5 to 2.0%]
Cr is an element that effectively acts to lower the Bs point than to lower the temperature To, to secure the driving force for bainite transformation and to refine the HAZ structure. In order to exhibit such an effect, Cr needs to be contained by 0.5% or more, and preferably 0.7% or more. However, if the Cr content is excessive, the HAZ toughness at the time of high heat input welding deteriorates, so it is necessary to suppress it to 2.0% or less. Preferably it is 1.6% or less.
[Nb:0.005〜0.050%]
Nbは、少量で鋼板の高強度化に寄与する効果を発揮する元素である。こうした効果を発揮させるためには0.005%以上含有させる必要があり、好ましくは0.012%以上である。しかしながら、Nb含有量が過剰になると、ベイナイト組織が粗大化し、大入熱溶接時のHAZ靭性が劣化することになる。こうしたことから、Nb含有量は0.050%以下とする必要があり、好ましくは0.030%以下である。
[Nb: 0.005 to 0.050%]
Nb is an element that exhibits an effect that contributes to increasing the strength of a steel sheet in a small amount. In order to exhibit such an effect, it is necessary to contain 0.005% or more, preferably 0.012% or more. However, when the Nb content is excessive, the bainite structure is coarsened, and the HAZ toughness during high heat input welding is deteriorated. For these reasons, the Nb content needs to be 0.050% or less, preferably 0.030% or less.
[Ti:0.010〜0.040%]
Tiは、Nと反応して微細なTi含有窒化物(例えば、TiN)を形成し、HAZのオーステナイト粒(γ粒)粗大化を抑制し、大入熱溶接時のHAZ靭性を良好にするのに有用な元素である。こうした効果を有効に発揮させるには、Tiは0.010%以上含有させることが必要であり、好ましくは0.012%以上(より好ましくは0.015%以上)とする。しかしながら、Ti含有量が過剰になると、Ti含有窒化物が粗大になってその個数が減少するため、大入熱溶接時のHAZ靭性が劣化する。こうしたことから、Ti含有量は0.040%以下に抑えるべきである。好ましくは0.035%以下(より好ましくは0.030%以下)とする。
[Ti: 0.010 to 0.040%]
Ti reacts with N to form fine Ti-containing nitrides (for example, TiN), suppresses HAZ austenite grain (γ grain) coarsening, and improves HAZ toughness during high heat input welding. Is a useful element. In order to exhibit such an effect effectively, Ti needs to be contained in an amount of 0.010% or more, preferably 0.012% or more (more preferably 0.015% or more). However, if the Ti content is excessive, the Ti-containing nitride becomes coarse and the number thereof decreases, so that the HAZ toughness during high heat input welding deteriorates. For these reasons, the Ti content should be suppressed to 0.040% or less. Preferably it is 0.035% or less (more preferably 0.030% or less).
[B:0.0010〜0.0050%]
Bは、高温時に溶け残ったTiNを核にBNとして析出しHAZ組織を均一化する作用を発揮する。こうした効果を有効に発揮させるには、0.0010%以上含有させる必要がある。好ましくは0.0015%以上である。しかし、B含有量が過剰になると、広い入熱量範囲でのHAZ靭性が劣化するので、0.0050%以下とする必要がある。好ましくは0.0040%以下とするのがよい。
[B: 0.0010 to 0.0050%]
B exhibits the effect of making the HAZ structure uniform by precipitating TiN remaining undissolved at high temperatures as BN in the nucleus. In order to exhibit such an effect effectively, it is necessary to make it contain 0.0010% or more. Preferably it is 0.0015% or more. However, if the B content becomes excessive, the HAZ toughness in a wide heat input range deteriorates, so it is necessary to make it 0.0050% or less. Preferably it is 0.0040% or less.
[N:0.0020〜0.0100%]
Nは、Ti含有窒化物を微細分散させてHAZの旧γ粒径を均一微細化させる上で有用な元素である。こうした効果を発揮させるためには、N含有量を0.0020%以上とする必要がある。好ましくは0.0035%以上である。しかしながら、N含有量が過剰になると、固溶N量が増大して、広い入熱量範囲でのHAZ靭性が劣化する。従ってNは0.0100%以下に抑える必要があり、好ましくは0.0070%以下とする。
[N: 0.0020 to 0.0100%]
N is an element useful for finely dispersing the Ti-containing nitride to uniformly refine the old γ grain size of the HAZ. In order to exert such effects, the N content needs to be 0.0020% or more. Preferably it is 0.0035% or more. However, when the N content is excessive, the solid solution N amount is increased and the HAZ toughness in a wide heat input range is deteriorated. Therefore, N must be suppressed to 0.0100% or less, preferably 0.0070% or less.
[Ca:0.0050%以下(0%を含まない)]
Caは、粗大なTi含有窒化物を低減(酸化物系介在物に複合して晶出する粗大窒化物が減少する)させる効果を有し、HAZ靭性の改善に寄与する元素である。こうした効果は、Ca含有量が増大するにつれて増加するが、0.0010%以上含有させることが好ましい。しかしながら、Ca含有量が過剰になると、介在物が粗大化してHAZ靭性が劣化するため、0.0050%以下に抑える必要がある。好ましくは0.0030%以下である。
[Ca: 0.0050% or less (excluding 0%)]
Ca is an element that has an effect of reducing coarse Ti-containing nitrides (reducing coarse nitrides that are crystallized in combination with oxide inclusions) and contributes to improvement of HAZ toughness. Such an effect increases as the Ca content increases, but it is preferable to contain 0.0010% or more. However, if the Ca content is excessive, inclusions become coarse and the HAZ toughness deteriorates, so it is necessary to keep the content to 0.0050% or less. Preferably it is 0.0030% or less.
本発明で規定する含有元素は上記の通りであって、残部は鉄および不可避的不純物であり、該不可避的不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素(例えば、P,S,Sn,As,Pb等)の混入が許容され得る。また、更に下記元素を積極的に含有させることも有効であり、含有される成分の種類に応じて鋼板の特性が更に改善される。 The contained elements specified in the present invention are as described above, and the balance is iron and unavoidable impurities, and the elements (for example, P, S) brought in as raw materials, materials, production facilities, etc. as the unavoidable impurities. , Sn, As, Pb, etc.) can be permitted. Further, it is also effective to positively contain the following elements, and the characteristics of the steel sheet are further improved according to the types of components contained.
[Cuおよび/またはNi:2.0%以下(0%を含まない)]
CuおよびNiは、マトリクスの靭性を改善させる効果を発揮し、HAZ靭性を改善するのに有効な元素である。これらの元素の含有量が過剰になると、HAZ硬化が著しくなると共に、ベイナイト変態の駆動力を低下させて、大入熱溶接時のHAZ靭性が却って劣化する。こうしたことから、これら元素を含有させるときは、その含有量(1種または2種の含有量)は2.0%以下に抑える必要があり、好ましくは1.5%以下である。尚、上記効果を発揮させる上では、これらの元素の1種または2種(合計)で、0.1%以上含有させることが好ましい。より好ましくは0.4%以上とする。
[Cu and / or Ni: 2.0% or less (excluding 0%)]
Cu and Ni are elements that exhibit the effect of improving the toughness of the matrix and are effective in improving the HAZ toughness. When the content of these elements is excessive, HAZ hardening becomes remarkable and the driving force of the bainite transformation is lowered, so that the HAZ toughness at the time of high heat input welding is deteriorated. For these reasons, when these elements are contained, the content (one or two kinds) needs to be suppressed to 2.0% or less, and preferably 1.5% or less. In order to exert the above effect, it is preferable to contain 0.1% or more of one or two of these elements (total). More preferably, it is 0.4% or more.
[Mo:0.4%以下(0%を含まない)および/またはV:0.1〜0.5%]
MoおよびVは、前記温度T0を上昇させるがBs点を低下させ、ベイナイト変態の駆動力を確保してHAZ組織を微細化させるのに有効に作用する元素である。こうした効果は、Moについてはその含有量が増加するにつれて、Vについては0.1%以上含有させることによって有効に発揮される。しかしながら、これらの含有量が過剰になると、大入熱溶接時のHAZ靭性が却って劣化するため、Moで0.4%以下、Vで0.5%以下に抑えることが好ましい。
[Mo: 0.4% or less (not including 0%) and / or V: 0.1-0.5%]
Mo and V are elements that effectively act to raise the temperature T 0 but lower the Bs point, secure a driving force for bainite transformation, and refine the HAZ structure. Such an effect is effectively exhibited by containing 0.1% or more of V as the content of Mo increases. However, if these contents are excessive, the HAZ toughness at the time of high heat input welding deteriorates, so it is preferable to keep Mo to be 0.4% or less and V to 0.5% or less.
[Mg,ZrおよびREMよりなる群から選ばれる1種以上の元素:合計で0.010%以下]
Mg,ZrおよびREM(希土類元素)は、鋼板中の酸化物系介在物を微細化させることによって、大入熱溶接時のHAZ靭性の向上に寄与する元素である。こうした効果は、それらの含有量が増加するにつれて増大するが、含有量が過剰になると、介在物が粗大化して大入熱溶接時のHAZ靭性が劣化するため、合計で0.010%以下に抑えることが好ましい。尚、本発明において、REM(希土類元素)とは、ランタノイド元素(LaからLnまでの15元素)およびSc(スカンジウム)とY(イットリウム)を含む意味である。
[One or more elements selected from the group consisting of Mg, Zr and REM: 0.010% or less in total]
Mg, Zr and REM (rare earth elements) are elements that contribute to improvement of HAZ toughness during high heat input welding by refining oxide inclusions in the steel sheet. These effects increase as their content increases, but if the content becomes excessive, the inclusions become coarse and the HAZ toughness during high heat input welding deteriorates, so the total is 0.010% or less. It is preferable to suppress. In the present invention, REM (rare earth element) means a lanthanoid element (15 elements from La to Ln), Sc (scandium) and Y (yttrium).
本発明において、Ti含有窒化物の微細分散を上記のように制御するには、下記(3)式で規定されるX値を10以上となるように成分組成を調整し、圧延前の加熱時間を4時間以内とすると共に、鋳造時の冷却速度を、1500〜1300℃の温度範囲を10℃/min以上で冷却するようにしてスラブを形成することが推奨される。また、この様に冷却速度を制御するには、スラブ厚を低下させたり、冷却水量を増加させたりする手段が挙げられる。これらの製造条件について、説明する。 In the present invention, in order to control the fine dispersion of the Ti-containing nitride as described above, the component composition is adjusted so that the X value defined by the following formula (3) is 10 or more, and the heating time before rolling It is recommended that the slab be formed so that the cooling rate during casting is cooled at a temperature range of 1500 to 1300 ° C. at 10 ° C./min or more. In order to control the cooling rate in this way, means for reducing the slab thickness or increasing the amount of cooling water can be used. These manufacturing conditions will be described.
X値=500[C]+32[Si]+8[Mn]−9[Nb]+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V] …(3)
但し、[C],[Si],[Mn],[Nb],[Cu],[Ni],[Cr],[Mo]および[V]は、夫々C,Si,Mn,Nb,Cu,Ni,Cr,MoおよびVの含有量(質量%)を示す。
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb] +14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V] (3)
However, [C], [Si], [Mn], [Nb], [Cu], [Ni], [Cr], [Mo] and [V] are respectively C, Si, Mn, Nb, Cu, Content (mass%) of Ni, Cr, Mo, and V is shown.
尚、前記(1)式および(2)式と同様に、上記X値を規定する元素のうちには、本発明の鋼板の基本成分(C,Si,Mn,Nb,Cr)以外にも、必要によって含有されるものも含まれるが(Cu,Ni,Mo,V等)、この元素を含まないときには、その項目がないものとしてX値を計算し、この元素を含むときには、上記(3)式からX値を計算すればよい。 In addition to the basic components (C, Si, Mn, Nb, Cr) of the steel sheet of the present invention, among the elements that define the X value, as in the formulas (1) and (2), Although it is included if necessary (Cu, Ni, Mo, V, etc.), when this element is not included, the X value is calculated assuming that there is no such item, and when this element is included, (3) The X value may be calculated from the equation.
Ti含有窒化物は鋼塊の鋳造時に析出するが、その析出状態は合金元素の影響を受けることを、本発明者らは明らかにしている(例えば、特願2006−163852号)。上記(3)式の関係を規定するX値は、δ域の温度範囲に関する関数である。前記「δ域」とは、鋼の状態図においてδ鉄が含まれる領域を意味する。この「δ鉄が含まれる領域」は、δ鉄のみの領域の他にも、δ+γの2相領域など、δ鉄と他の状態が含まれる領域も包含する。そして「δ域の温度範囲」とは、δ鉄が含まれる温度範囲(δ域の上限温度と下限温度との差)をいう。ここで特定組成の鋼において、例えばδ鉄のみの温度範囲とδ+γ鉄の温度範囲がある場合、これらの温度範囲の合計が、δ域の温度範囲である。このδ域の温度範囲は、熱力学計算ソフトウェア(Thermo−calc、CRC総合研究所から購入可能)に、鋼板の化学成分組成を入力することにより計算することができる。 The present inventors have clarified that the Ti-containing nitride precipitates during the casting of the steel ingot, but the precipitation state is affected by the alloy elements (for example, Japanese Patent Application No. 2006-163852). The X value that defines the relationship of the above expression (3) is a function related to the temperature range in the δ region. The “δ region” means a region including δ iron in the steel phase diagram. The “region including δ iron” includes not only a region including δ iron but also a region including δ iron and other states such as a two-phase region of δ + γ. The “temperature range in the δ range” refers to a temperature range including δ iron (difference between the upper limit temperature and the lower limit temperature in the δ range). Here, in the steel having a specific composition, for example, when there is a temperature range of only δ iron and a temperature range of δ + γ iron, the sum of these temperature ranges is the temperature range of the δ region. The temperature range of the δ region can be calculated by inputting the chemical composition of the steel sheet into thermodynamic calculation software (Thermo-calc, available from CRC Research Institute).
このδ鉄中ではTiの拡散速度が速いため、δ域の温度範囲が広いと、δ鉄が存在する時間が長くなり、粗大なTi含有窒化物が形成され易くなると考えられる。そこで化学成分組成を調整してδ域の温度範囲を縮小することにより、Ti含有窒化物を微細化することを検討した。そのためにThermo−calcの計算にて、特定成分を基準に化学成分量の1つだけを変更することにより、各化学成分のδ域の温度範囲への影響を調べた。そのような検討により、δ域の温度範囲と相関関係にあり、化学成分組成の関数で表される上記X値が求められたのである。 Since the diffusion rate of Ti is fast in this δ iron, it is considered that when the temperature range in the δ region is wide, the time during which δ iron is present becomes longer, and coarse Ti-containing nitrides are easily formed. Therefore, the refinement of the Ti-containing nitride was studied by adjusting the chemical composition and reducing the temperature range in the δ region. For this purpose, in Thermo-calc calculation, the influence of each chemical component on the temperature range in the δ region was examined by changing only one of the chemical component amounts based on the specific component. As a result of such studies, the above-mentioned X value, which is correlated with the temperature range of the δ region and expressed as a function of the chemical composition, was determined.
X値の上記式中の係数は、特定成分の鋼から、各化学成分を変化させた場合のδ域の温度範囲の変化量に対応する。具体的には、例えば[C]の係数の「500」は、C量を0.01%だけ増大させたときに、Thermo−calcの計算にてδ域の温度範囲が約5℃減少することを意味する。そしてX値とδ域の温度範囲とは、ほぼ反比例の関係(X値が増大すれば、δ域の温度範囲は減少するという関係)にある。 The coefficient in the above formula of the X value corresponds to the amount of change in the temperature range in the δ region when each chemical component is changed from the specific component steel. Specifically, for example, when the coefficient of [C] is “500”, when the C content is increased by 0.01%, the temperature range in the δ region decreases by about 5 ° C. in the calculation of Thermo-calc. Means. The X value and the temperature range in the δ region are in an inversely proportional relationship (the relationship that the temperature range in the δ region decreases as the X value increases).
このような考えに基づいて、様々なX値を有する鋼板を製造して調べたところ、X値を増大させることで、Ti含有窒化物の平均粒子径を微細化でき、HAZ靭性を向上させ得ることが判明した。各化学成分量が適正範囲内であれば、X値が大きくなるほど、Ti含有窒化物の平均粒子径、およびHAZ靭性並びに母材靭性が向上する。このX値の下限は、10(好ましくは15、より好ましくは20)である。X値の上限は、各化学成分の適正量から定められ、128である。 Based on such an idea, steel sheets having various X values were manufactured and examined. By increasing the X value, the average particle diameter of the Ti-containing nitride can be refined and the HAZ toughness can be improved. It has been found. If the amount of each chemical component is within an appropriate range, the average particle diameter, the HAZ toughness, and the base material toughness of the Ti-containing nitride improve as the X value increases. The lower limit of the X value is 10 (preferably 15, more preferably 20). The upper limit of the X value is determined from the appropriate amount of each chemical component and is 128.
一方、圧延前の加熱時間が4時間を超えると、TiNの粗大化が進み、0.05μm以下の個数が低減し、また鋳造時の冷却速度(1500〜1300℃の温度範囲)が10℃/min未満となっても、TiNの粗大化が進み、円相当直径が0.05μm以下のTi含有窒化物個数が低減することになる。 On the other hand, when the heating time before rolling exceeds 4 hours, TiN becomes coarse, the number of 0.05 μm or less decreases, and the cooling rate during casting (temperature range of 1500 to 1300 ° C.) is 10 ° C. / Even if it is less than min, the coarsening of TiN progresses, and the number of Ti-containing nitrides having an equivalent circle diameter of 0.05 μm or less is reduced.
本発明の高張力鋼板の厚みについては限定するものではないが、基本的には板厚が3.0mm以上の厚鋼板を想定したものである。本発明の厚鋼板の板厚は、好ましくは50mm以上、より好ましくは60mm以上である。即ち、本発明の厚鋼板は、入熱量が5〜100kJ/mmの広い範囲の入熱量溶接であっても良好なHAZ靭性を示すので、板厚が厚くても、入熱量を増大させることで効率良く溶接できるものである。 The thickness of the high-tensile steel plate of the present invention is not limited, but basically a thick steel plate having a thickness of 3.0 mm or more is assumed. The plate thickness of the thick steel plate of the present invention is preferably 50 mm or more, more preferably 60 mm or more. In other words, the thick steel plate of the present invention exhibits good HAZ toughness even in a wide range of heat input welding with a heat input of 5 to 100 kJ / mm. Therefore, even if the plate thickness is large, the heat input is increased. It can be efficiently welded.
こうして得られる本発明の高張力鋼板は、例えば橋梁や高層建造物、船舶などの構造物の材料として使用でき、小〜中入熱溶接はもとより大入熱溶接においても、溶接熱影響部の靭性劣化を防ぐことができる。 The high-strength steel sheet of the present invention thus obtained can be used as a material for structures such as bridges, high-rise buildings, ships, etc., and the toughness of the weld heat-affected zone not only in small to medium heat input welding but also in high heat input welding Deterioration can be prevented.
以下、本発明を実施例によって更に詳細に説明するが、下記実施例は本発明を限定する性質のものではなく、前・後記の趣旨に適合し得る範囲で適当に変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are not intended to limit the present invention, and may be implemented with appropriate modifications within a range that can meet the purpose described above and below. These are all possible and are within the scope of the present invention.
下記表1、2に示す組成のAlキルド鋼板を溶製し、この溶鋼を鋳造時(1500〜1300℃の温度範囲)における冷却速度を制御しつつ冷却してスラブ(断面形状:150mm×250mm)とした後、加熱時間を制御しつつ1100℃に加熱して熱間圧延を行い、板厚:50mmの熱間圧延板とし、圧延後に空冷をして試験板とした。尚、表1において、REMはCeを50%程度とLaを25%程度含有するミッシュメタルの形態で添加した。また表1中「−」は元素を添加していないことを示している。 An Al killed steel sheet having the composition shown in Tables 1 and 2 below is melted, and this molten steel is cooled while controlling the cooling rate at the time of casting (a temperature range of 1500 to 1300 ° C.) and a slab (cross-sectional shape: 150 mm × 250 mm) Then, while controlling the heating time, it was heated to 1100 ° C. and hot-rolled to obtain a hot-rolled plate having a thickness of 50 mm, and air-cooled after rolling to obtain a test plate. In Table 1, REM was added in the form of a misch metal containing about 50% Ce and about 25% La. In Table 1, "-" indicates that no element is added.
上記のようにして製造した各試験板について、下記の要領でTi含有窒化物の個数密度(円相当直径で0.05μm以下のものの個数、および円相当直径で0.01〜0.03μmのものの占有率)、厚鋼板の引張強度TS、HAZ靭性を測定した。これらの結果を、X値[=500[C]+32[Si]+8[Mn]−9[Nb]+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]]、鋳造時の冷却速度、および圧延前加熱時間と共に、下記表3、4に示す。 For each test plate produced as described above, the number density of Ti-containing nitrides (the number of equivalent-circle diameters of 0.05 μm or less and the equivalent-circle diameter of 0.01 to 0.03 μm) was as follows. Occupancy ratio), tensile strength TS and HAZ toughness of the thick steel plate were measured. These results are represented by the X value [= 500 [C] +32 [Si] +8 [Mn] -9 [Nb] +14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]]. Tables 3 and 4 below show the cooling rate during casting and the heating time before rolling.
[Ti含有窒化物の個数密度の測定]
各鋼板のt(板厚)/4部位を、透過型電子顕微鏡(TEM)で、観察倍率6万倍、観察視野2×2(μm)、観察箇所5箇所の条件で観察した。そして画像解析によって、その視野中の各Ti含有窒化物の面積を測定し、この面積から各窒化物の円相当直径を算出した。尚、Ti含有窒化物であることは、EDX(エネルギー分散型X線検出器)によって判別した。
[Measurement of number density of Ti-containing nitride]
The t (plate thickness) / 4 portion of each steel plate was observed with a transmission electron microscope (TEM) under the conditions of an observation magnification of 60,000, an observation field of view 2 × 2 (μm), and five observation locations. Then, the area of each Ti-containing nitride in the field of view was measured by image analysis, and the equivalent circle diameter of each nitride was calculated from this area. In addition, it was discriminate | determined by EDX (energy dispersive X-ray detector) that it was Ti containing nitride.
円相当直径が0.05μm以下となるTi含有窒化物の個数を、1mm2当りに換算して求めると共に、円相当直径が0.01〜0.03μmの微細なTi含有窒化物の全Ti含有窒化物(円相当直径で0.05μmを超えるものも含む)に対する個数割合(占有率:%)を計算した。 The number of Ti-containing nitrides having an equivalent circle diameter of 0.05 μm or less is calculated per 1 mm 2 , and the total Ti content of the fine Ti-containing nitride having an equivalent circle diameter of 0.01 to 0.03 μm The number ratio (occupancy:%) with respect to nitrides (including those with an equivalent circle diameter exceeding 0.05 μm) was calculated.
[引張試験]
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJIS Z 2201の4号試験片を採取し、JIS Z 2241の要領で引張試験を行ない、引張強度(TS)を測定した。そして、TSが590MPa以上のものを合格と評価した。
[Tensile test]
Sample No. 4 of JIS Z 2201 was taken from t (plate thickness) / 4 part of each steel plate in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with JIS Z 2241. Tensile strength (TS) Was measured. And the thing with TS of 590 Mpa or more was evaluated as a pass.
[HAZ靭性の評価]
各鋼板のt(板厚)/4部位から、圧延方向に対して直角の方向にJIS Z 2201の4号試験片を採取し、小入熱溶接および大入熱溶接を模擬した熱サイクル試験を行い、HAZ靭性を評価した。このとき熱サイクル試験は、下記(A),(B)の2つの条件で行った。
(A)試験片を1400℃(最高温度)に加熱して5秒間保持した後、800〜500℃の温度範囲を40秒かけて冷却する。
(B)試験片を1400℃(最高温度)に加熱して5秒間保持した後、800〜500℃の温度範囲を200秒かけて冷却する。
[Evaluation of HAZ toughness]
Sample No. 4 of JIS Z 2201 was sampled from the t (plate thickness) / 4 part of each steel plate in a direction perpendicular to the rolling direction, and a heat cycle test simulating small heat input welding and large heat input welding was performed. And HAZ toughness was evaluated. At this time, the thermal cycle test was performed under the following two conditions (A) and (B).
(A) After heating a test piece to 1400 degreeC (maximum temperature) and hold | maintaining for 5 second, the temperature range of 800-500 degreeC is cooled over 40 second.
(B) After heating a test piece to 1400 degreeC (maximum temperature) and hold | maintaining for 5 second, the temperature range of 800-500 degreeC is cooled over 200 second.
上記(A)の条件は、溶接入熱量が4kJ/mmに相当する熱サイクルを与えたものであり、上記(B)は、溶接入熱量が25kJ/mmに相当する熱サイクルを与えたものである。 The above condition (A) is a heat cycle corresponding to a welding heat input of 4 kJ / mm, and (B) is a heat cycle corresponding to a heat input of 25 kJ / mm. is there.
得られた各試験片に対し、JIS Z 2242に準拠して、−10℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-10)を測定した。このとき3本の試験片について吸収エネルギー(vE-10)を測定し、その平均値を求めた。そして、vE-10の値が、上記(A)の条件のもので150Jを超えるもの、上記(B)の条件のもので120Jを超えるものを、夫々HAZ靭性に優れると評価した。 Each of the obtained test pieces was subjected to a Charpy impact test at −10 ° C. in accordance with JIS Z 2242, and the absorbed energy (vE −10 ) was measured. At this time, the absorbed energy (vE -10 ) was measured for three test pieces, and the average value was obtained. And it evaluated that the value of vE- 10 was more than 150 J under the condition (A) and more than 120 J under the condition (B) as excellent in HAZ toughness.
これらの結果から、次のように考察できる(尚、下記No.は、表1〜4の鋼No.を示す)。No.1〜16は、本発明で規定する要件を満足する例であり、化学成分組成、BP値、Pcm値、X値およびTi含有窒化物の微細分散が適切になされており、広い入熱量範囲でHAZの靭性が良好な鋼板が得られていることが分かる。 From these results, it can consider as follows (In addition, the following No. shows steel No. of Tables 1-4.). No. Nos. 1 to 16 are examples satisfying the requirements defined in the present invention, in which chemical component composition, BP value, Pcm value, X value, and fine dispersion of Ti-containing nitride are appropriately performed, and in a wide heat input range. It can be seen that a steel sheet having good HAZ toughness is obtained.
これに対して、No.17〜33は、本発明で規定するいずれかの要件を外れる例であり、溶接熱影響部の靭性が劣っている。詳細には、下記の通りである。 In contrast, no. 17 to 33 are examples that deviate from any of the requirements defined in the present invention, and the toughness of the weld heat affected zone is inferior. Details are as follows.
No.17は、鋼板中のC含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、HAZ靭性が劣化している。 No. No. 17 is such that the C content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness is deteriorated even when the form of the Ti-containing nitride is good.
No.18は、鋼板中のSi含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態が不良になっており(微細なTi含有窒化物が得られていない)、小入熱および大入熱のいずれにおいても良好なHAZ靭性が得られていない。No.19は、鋼板中のMn含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、大入熱溶接時のHAZ靭性が劣化している。 No. No. 18 is that the Si content in the steel sheet exceeds the range specified in the present invention, and the form of the Ti-containing nitride is inferior (fine Ti-containing nitride is not obtained). Good HAZ toughness is not obtained in both heat and large heat input. No. No. 19 is the one in which the Mn content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness at the time of high heat input welding is deteriorated even if the Ti-containing nitride has a good form.
No.20は、鋼板中のAlの含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、小入熱溶接時および大入熱溶接時のいずれにおいてもHAZ靭性が劣化している。No.21は、鋼板中のCr含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、大入熱溶接時のHAZ靭性が劣化している。 No. No. 20 is that the content of Al in the steel sheet exceeds the range specified in the present invention, and even when the form of the Ti-containing nitride is good, either at the time of small heat input welding or at the time of large heat input welding HAZ toughness is also deteriorated. No. No. 21 is the one in which the Cr content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness at the time of high heat input welding is deteriorated even if the form of the Ti-containing nitride is good.
No.22は、鋼板中のNb含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、大入熱溶接時のHAZ靭性が劣化している。No.23は、鋼板中のNi含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、大入熱溶接時のHAZ靭性が劣化している。 No. No. 22 is that the Nb content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness at the time of high heat input welding is deteriorated even if the form of the Ti-containing nitride is good. No. No. 23 has a Ni content in the steel sheet exceeding the range specified in the present invention, and the HAZ toughness at the time of high heat input welding is deteriorated even if the Ti-containing nitride has a good form.
No.24,25は、鋼板中のTi含有量が本発明で規定する範囲を外れるものであり、Ti含有窒化物の形態が不良になっており(微細なTi含有窒化物が得られていない)、少なくとも大入熱溶接時のHAZ靭性が劣化している。 No. 24 and 25 are those in which the Ti content in the steel sheet is outside the range defined in the present invention, and the form of the Ti-containing nitride is poor (a fine Ti-containing nitride has not been obtained), At least the HAZ toughness during high heat input welding is degraded.
No.26は、鋼板中のB含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、小入熱溶接時および大入熱溶接時のいずれにおいてもHAZ靭性が劣化している。No.27は、鋼板中のN含有量が本発明で規定する範囲を超えるものであり、Ti含有窒化物の形態は良好であっても、大入熱溶接時のHAZ靭性が劣化している。 No. 26, the B content in the steel sheet exceeds the range specified in the present invention, and even when the Ti-containing nitride is in good form, both in the case of small heat input welding and large heat input welding HAZ toughness is degraded. No. In No. 27, the N content in the steel sheet exceeds the range specified in the present invention, and the HAZ toughness during large heat input welding is deteriorated even if the Ti-containing nitride has a good form.
No.28は、鋼板中にCaを含まないものであり、Ti含有窒化物の形態が不良になっており(微細なTi含有窒化物が得られていない)、大入熱溶接時の良好なHAZ靭性が得られていない。 No. No. 28 does not contain Ca in the steel sheet, the form of the Ti-containing nitride is poor (fine Ti-containing nitride is not obtained), and good HAZ toughness during high heat input welding Is not obtained.
No.29は、鋼板中にNbを含まず、またCu含有量が本発明で規定する範囲を超えるものであり(Pcm値も大きくなっている)、Ti含有窒化物の形態は良好であっても、小入熱溶接時および大入熱溶接時のいずれにおいてもHAZ靭性が劣化している。 No. No. 29 does not contain Nb in the steel sheet, and the Cu content exceeds the range specified in the present invention (Pcm value is also increased), and even if the form of the Ti-containing nitride is good, The HAZ toughness is deteriorated both in the small heat input welding and the large heat input welding.
No.30は、鋼板中のCr含有量が本発明で規定する範囲に満たないものであり(BP値も小さくなっている)、Ti含有窒化物の形態は良好であっても、小入熱溶接時および大入熱溶接時のいずれにおいてもHAZ靭性が劣化している。No.31は、鋼板中のMo含有量が本発明の好ましい範囲を超えるものであり、Ti含有窒化物の形態が不良になっており(微細なTi含有窒化物が得られていない)、小入熱溶接時および大入熱溶接時のいずれにおいてもHAZ靭性が劣化している。 No. No. 30 is the content of Cr in the steel sheet is less than the range specified in the present invention (BP value is also small), and even when the Ti-containing nitride is in good form, at the time of small heat input welding In addition, the HAZ toughness is deteriorated both in the high heat input welding. No. No. 31 has a Mo content in the steel sheet exceeding the preferred range of the present invention, and the form of the Ti-containing nitride is poor (a fine Ti-containing nitride has not been obtained), and a small heat input. The HAZ toughness is deteriorated in both welding and high heat input welding.
No.32,33は、製造条件が適切な条件から外れており、Ti含有窒化物が粗大化しており、Ti含有窒化物の十分な個数密度が達成されておらず、大入熱溶接時のHAZ靭性が劣化している。 No. In Nos. 32 and 33, the production conditions deviate from the appropriate conditions, the Ti-containing nitride is coarsened, the sufficient number density of the Ti-containing nitride has not been achieved, and the HAZ toughness during high heat input welding Has deteriorated.
Claims (4)
BP値=414[C]+78[Si]+31[Mn]+79[Cr]−14[Cu]−26[Ni]+2280[Nb]+218[Mo] …(1)
Pcm値=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B] …(2)
但し、[C],[Si],[Mn],[Cr],[Cu],[Ni],[Nb],[Mo],[V]および[B]は、夫々C,Si,Mn,Cr,Cu,Ni,Nb,Mo,VおよびBの含有量(質量%)を示す。 C: 0.01 to 0.08% (meaning “mass%”; the same applies hereinafter), Si: 0.30% or less (including 0%), Mn: 0.5 to 2.0%, Al: 0 0.01 to 0.05%, Cr: 0.5 to 2.0%, Nb: 0.005 to 0.050%, Ti: 0.010 to 0.040%, B: 0.0010 to 0.0050 %, N: 0.0020 to 0.0100%, Ca: 0.0050% or less (excluding 0%), respectively, the balance is made of iron and inevitable impurities, and is defined by the following formula (1) The BP value is in the range of 120 to 300 (mass%), the Pcm value defined by the following formula (2) is 0.20 (mass%) or less, and the equivalent circle diameter is 0.05 μm or less. There are 5.0 × 10 6 or more Ti-containing nitrides per 1 mm 2 , of which a circle equivalent diameter is 0.01 to 0.03 μm T A high-tensile steel sheet excellent in weldability, wherein the number of i-containing nitrides accounts for 75% or more of the total number of Ti-containing nitrides.
BP value = 414 [C] +78 [Si] +31 [Mn] +79 [Cr] −14 [Cu] −26 [Ni] +2280 [Nb] +218 [Mo] (1)
Pcm value = [C] + [Si] / 30 + [Mn] / 20 + [Cu] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 [B] (2)
However, [C], [Si], [Mn], [Cr], [Cu], [Ni], [Nb], [Mo], [V] and [B] are respectively C, Si, Mn, The contents (% by mass) of Cr, Cu, Ni, Nb, Mo, V and B are shown.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008021730A JP2009179868A (en) | 2008-01-31 | 2008-01-31 | High tensile strength steel plate having excellent weldability |
CN2008101907148A CN101497967B (en) | 2008-01-31 | 2008-12-30 | High tension steel plate with excellent weldability |
KR1020080136979A KR20090084666A (en) | 2008-01-31 | 2008-12-30 | High-tension steel plate having excellent weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008021730A JP2009179868A (en) | 2008-01-31 | 2008-01-31 | High tensile strength steel plate having excellent weldability |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2009179868A true JP2009179868A (en) | 2009-08-13 |
Family
ID=40945237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008021730A Withdrawn JP2009179868A (en) | 2008-01-31 | 2008-01-31 | High tensile strength steel plate having excellent weldability |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2009179868A (en) |
KR (1) | KR20090084666A (en) |
CN (1) | CN101497967B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021263A (en) * | 2009-07-17 | 2011-02-03 | Kobe Steel Ltd | Steel plate excellent in weld heat affected zone toughness |
WO2022097589A1 (en) * | 2020-11-05 | 2022-05-12 | Jfeスチール株式会社 | Steel sheet and method for manufacturing same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109628828B (en) * | 2018-12-27 | 2020-11-20 | 江阴兴澄特种钢铁有限公司 | Low-yield-ratio ultra-thick hydroelectric high-strength steel plate and manufacturing method thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4696615B2 (en) * | 2005-03-17 | 2011-06-08 | 住友金属工業株式会社 | High-tensile steel plate, welded steel pipe and manufacturing method thereof |
JP4464909B2 (en) * | 2005-11-22 | 2010-05-19 | 株式会社神戸製鋼所 | High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone |
JP4825025B2 (en) * | 2006-03-09 | 2011-11-30 | 株式会社神戸製鋼所 | High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness |
JP4950528B2 (en) * | 2006-03-16 | 2012-06-13 | 株式会社神戸製鋼所 | Low yield ratio high strength steel with excellent toughness of heat affected zone and its manufacturing method |
-
2008
- 2008-01-31 JP JP2008021730A patent/JP2009179868A/en not_active Withdrawn
- 2008-12-30 KR KR1020080136979A patent/KR20090084666A/en active Search and Examination
- 2008-12-30 CN CN2008101907148A patent/CN101497967B/en not_active Expired - Fee Related
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011021263A (en) * | 2009-07-17 | 2011-02-03 | Kobe Steel Ltd | Steel plate excellent in weld heat affected zone toughness |
WO2022097589A1 (en) * | 2020-11-05 | 2022-05-12 | Jfeスチール株式会社 | Steel sheet and method for manufacturing same |
JP7099653B1 (en) * | 2020-11-05 | 2022-07-12 | Jfeスチール株式会社 | Steel plate and its manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
CN101497967A (en) | 2009-08-05 |
CN101497967B (en) | 2011-08-24 |
KR20090084666A (en) | 2009-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4660250B2 (en) | Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding | |
JP6729823B2 (en) | Method of manufacturing wear-resistant steel | |
JP5397363B2 (en) | Thick high-strength steel sheet with excellent low-temperature toughness in the heat affected zone by high heat input welding | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JP5110989B2 (en) | Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics | |
WO2010032428A1 (en) | High-strength steel plate and process for producing same | |
JP4638956B2 (en) | Refractory steel material excellent in reheat embrittlement resistance and toughness of welded joint and method for producing the same | |
JP5207914B2 (en) | Thick steel plate with excellent toughness of base metal and weld heat affected zone | |
JP4976906B2 (en) | Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance | |
JP5729803B2 (en) | High-tensile steel plate and manufacturing method thereof | |
JP4356949B2 (en) | Thick steel plate with excellent toughness in weld heat affected zone | |
JP4656417B2 (en) | Low yield ratio refractory steel | |
WO2013088715A1 (en) | Steel material for high-heat-input welding | |
JP5320274B2 (en) | Thick steel plate with excellent toughness and strength uniformity in the heat affected zone | |
JPWO2013077022A1 (en) | Steel for welding | |
JP2007177327A (en) | Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone | |
JP5297692B2 (en) | High-tensile steel plate excellent in toughness of weld heat-affected zone and suppression of fatigue crack growth and manufacturing method thereof | |
JP6729522B2 (en) | Thick wear-resistant steel plate, method of manufacturing the same, and method of manufacturing wear-resistant member | |
JP4279231B2 (en) | High-strength steel material with excellent toughness in weld heat affected zone | |
JP5103037B2 (en) | Thick steel plate with excellent toughness of base metal and weld heat affected zone | |
JP4276576B2 (en) | Thick high-strength steel sheet with excellent heat input and heat-affected zone toughness | |
JP5515954B2 (en) | Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness | |
JP2009179868A (en) | High tensile strength steel plate having excellent weldability | |
JP4768526B2 (en) | Thick steel plate with excellent high heat input HAZ toughness and low temperature base metal toughness | |
JP2006241510A (en) | Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110201 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20110405 |