JP5110989B2 - Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics - Google Patents

Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics Download PDF

Info

Publication number
JP5110989B2
JP5110989B2 JP2007183291A JP2007183291A JP5110989B2 JP 5110989 B2 JP5110989 B2 JP 5110989B2 JP 2007183291 A JP2007183291 A JP 2007183291A JP 2007183291 A JP2007183291 A JP 2007183291A JP 5110989 B2 JP5110989 B2 JP 5110989B2
Authority
JP
Japan
Prior art keywords
less
steel plate
heat input
high heat
thick steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007183291A
Other languages
Japanese (ja)
Other versions
JP2009019244A (en
Inventor
宏行 高岡
喜臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007183291A priority Critical patent/JP5110989B2/en
Priority to KR1020080054532A priority patent/KR100967498B1/en
Priority to CN2008101274249A priority patent/CN101343712B/en
Publication of JP2009019244A publication Critical patent/JP2009019244A/en
Application granted granted Critical
Publication of JP5110989B2 publication Critical patent/JP5110989B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Description

本発明は、例えば船舶や海洋構造物等の溶接構造物に適用される厚鋼板に関し、殊に大入熱溶接後の熱影響部(Heat Affected Zone:HAZ)の靭性に優れると共に、脆性亀裂伝播停止特性にも優れた厚鋼板に関するものである。   The present invention relates to a thick steel plate applied to a welded structure such as a ship or an offshore structure, and particularly has excellent toughness of a heat affected zone (HAZ) after high heat input welding and brittle crack propagation. The present invention relates to a thick steel plate having excellent stopping characteristics.

近年、例えばコンテナ船等の大型化が進められ、板厚が50mm以上の厚鋼板が用いられることがある。このような厚鋼板を効率良く溶接するために、入熱量が40kJ/mm以上であるような大入熱溶接若しくは超大入熱溶接(以下、「大入熱溶接」で代表することがある)を行うことが求められている。   In recent years, for example, container ships have been increased in size, and thick steel plates having a thickness of 50 mm or more are sometimes used. In order to efficiently weld such thick steel plates, large heat input or super large heat input welding (hereinafter, may be represented by “high heat input welding”) such that the heat input amount is 40 kJ / mm or more. There is a need to do.

しかしながら、大入熱溶接を行うと、HAZが高温のオーステナイト領域まで加熱されてから徐冷されるため、その組織が粗大化し、HAZ靭性が著しく劣化するという問題がある。こうしたことから、従来では、溶接入熱量の制限を余儀なくされていた。   However, if high heat input welding is performed, the HAZ is heated to a high temperature austenite region and then gradually cooled, so that the structure becomes coarse and the HAZ toughness is remarkably deteriorated. For these reasons, conventionally, the amount of welding heat input has been limited.

このような大入熱溶接で良好なHAZ靭性を達成するために、例えば特許文献1は、厚鋼板中のC含有量を低減させると共に、不可避的に混入してくるPの含有量を制限し、加えてNbおよびBの含有量を適切な範囲に制御することを提案している。また特許文献2は、溶接用鋼中に存在するTiN系介在物の中にNbを積極的に含有させて、粗大フェライトの生成を抑制している。しかしながらこれらの技術では、TiNが不足しているか、またはTiNが足りている場合にはそのTiNが粗大化していたり、CaO酸化物等によるピン止め効果が十分でないために、HAZ靭性の更なる改善の余地がある。また、後述する母材鋼板の脆性亀裂伝播停止特性については考慮されていない。   In order to achieve good HAZ toughness by such high heat input welding, for example, Patent Document 1 reduces the C content in the thick steel plate and limits the content of P that is inevitably mixed. In addition, it is proposed to control the contents of Nb and B within an appropriate range. Further, Patent Document 2 suppresses the formation of coarse ferrite by positively containing Nb in TiN-based inclusions present in welding steel. However, in these techniques, when TiN is insufficient or when TiN is sufficient, the TiN is coarsened or the pinning effect due to CaO oxide or the like is not sufficient, so that HAZ toughness is further improved. There is room for. Moreover, the brittle crack propagation stop characteristic of the base material steel plate mentioned later is not considered.

特許文献3は、鋼材にNを比較的多量に含有させ、且つTiとBの含有量バランスを適切に制御することを提案している。しかしながらこうした技術においても、TiNやBNの析出量が十分でなかったり、微細でなかったりし、またNb無添加で焼入れ性が低いためにフェライトが粗大になったりするため、HAZ靭性の更なる改善の余地がある。また、後述する母材鋼板の脆性亀裂伝播停止特性については考慮されていない。   Patent Document 3 proposes that a steel material contains a relatively large amount of N and appropriately controls the content balance of Ti and B. However, even in such a technique, the precipitation amount of TiN or BN is not sufficient or fine, and the ferrite becomes coarse due to low hardenability without addition of Nb, so that the HAZ toughness is further improved. There is room for. Moreover, the brittle crack propagation stop characteristic of the base material steel plate mentioned later is not considered.

一方、船舶、海洋構造物、低温貯蔵タンク、ラインパイプ、建築・土木構造物等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きく、高度の安全性が求められるようになっている。そのため、これらの構造物に使用される鋼材には、低温靭性が要求されることが多い。特に最近では、不慮の事故等で構造物に亀裂が発生した場合であっても、破壊に至ることを防止するという観点から、低温における脆性亀裂伝播停止特性、いわゆるアレスト特性が優れていることが要求されている。   On the other hand, large-scale structures such as ships, offshore structures, low-temperature storage tanks, line pipes, and construction / civil engineering structures have a large impact on the economy and the environment due to accidents caused by brittle fracture, and a high degree of safety is required. It is like that. Therefore, steel materials used for these structures are often required to have low temperature toughness. Particularly recently, from the viewpoint of preventing breakage even when a crack has occurred in a structure due to an accident, etc., it is excellent in brittle crack propagation stop characteristics at low temperatures, so-called arrest characteristics. It is requested.

近年、鋼材の表層部の組織を超微細化する技術が、脆性亀裂伝播停止特性を向上させる上で有効であることも提案されている。こうした技術として、例えば特許文献4には、脆性亀裂が伝播する際に、鋼材表層部に発生するシアリップ(塑性変形領域)が脆性亀裂伝播停止特性の向上に有効であることが開示されている。しかしながら、このような技術では、鋼材表層部のみを一旦冷却した後に復熱させ、且つ復熱中に加工を加えることによって、脆性亀裂伝播停止特性に効果のある組織を得るものであり、実生産規模での制御が容易でないと考えられるプロセスを実施する必要がある。またフェライトが加工再結晶することを利用して微細化を得るものであるが、加工再結晶フェライトは成長が起こり易く、組織的な安定性に欠けるために、微妙な熱履歴の変動によって組織や材質の不均一を生じ易いという問題もある。   In recent years, it has also been proposed that a technique for making the structure of the surface layer portion of steel material ultrafine is effective in improving the brittle crack propagation stop characteristics. As such a technique, for example, Patent Document 4 discloses that when a brittle crack propagates, a shear lip (plastic deformation region) generated in a steel surface layer portion is effective in improving the brittle crack propagation stop characteristic. However, in such a technique, only the steel surface layer portion is once cooled and then reheated, and by processing during recuperation, a structure effective for brittle crack propagation stop characteristics is obtained. It is necessary to implement a process that is considered to be difficult to control. In addition, ferrite is processed and recrystallized to obtain a finer structure. However, processed recrystallized ferrite is prone to growth and lacks structural stability. There is also a problem that non-uniformity of the material tends to occur.

また、特許文献5には、板厚方向の硬度分布の均一化を目的として、Vを含有させた鋼材を用いて、加熱したスラブを直接冷却して温度差を付与してフェライトを生成させてから圧延を開始し、圧延途中または圧延終了後に再度変態点近傍の温度域で復熱させる方法が提案されている。この技術は、Vの析出硬化を板厚中心部だけに作用させて、板厚方向での硬度分布の均一化を可能とし、脆性亀裂伝播停止特性の向上を図ったものである。しかしながら、V化合物を適切に析出させるためには、プロセスを一層複雑にすることが必要となり、上記のような「組織安定化」の解決には必ずしも直結していないものである。   In Patent Document 5, for the purpose of uniform hardness distribution in the thickness direction, a steel material containing V is used to directly cool a heated slab to give a temperature difference to generate ferrite. A method has been proposed in which rolling is started from the beginning and reheated again in the temperature range near the transformation point during or after the rolling. In this technique, precipitation hardening of V is applied only to the center portion of the plate thickness, the hardness distribution in the plate thickness direction can be made uniform, and the brittle crack propagation stop characteristic is improved. However, in order to appropriately precipitate the V compound, it is necessary to further complicate the process, and this is not necessarily directly related to the solution of the “structure stabilization” as described above.

上記のように、これまでにも脆性亀裂伝播停止特性を良好にするための技術が各種提案されているが、いずれも工業な規模で希望する組織を安定して達成することは難しく、工業的規模であっても安定して脆性亀裂伝播停止特性が実現できる技術の確立が望まれているのが実情である。また、これらの技術では、大入熱溶接時のHAZ靭性を向上させることについては何ら考慮されていない。
特開2003−166033号公報 特開2004−218010号公報 特開2005−200716号公報 特開平4−141517号公報 特開平8−253812号公報
As described above, various technologies for improving the brittle crack propagation stopping characteristics have been proposed so far, but it is difficult to stably achieve the desired structure on an industrial scale. The fact is that it is desired to establish a technology capable of stably realizing the brittle crack propagation stopping characteristics even on a scale. In these techniques, no consideration is given to improving the HAZ toughness during high heat input welding.
Japanese Patent Laid-Open No. 2003-166033 JP 2004-2181010 A JP-A-2005-200716 JP-A-4-141517 JP-A-8-253812

本発明はこうした状況の下でなされたものであって、その目的は、大入熱溶接でも良好なHAZ靭性を示すと共に、脆性亀裂伝播停止特性にも優れた厚鋼板を提供することである。   The present invention has been made under such circumstances, and an object of the present invention is to provide a thick steel plate that exhibits good HAZ toughness even in high heat input welding and has excellent brittle crack propagation stop characteristics.

上記目的を達成し得た本発明の厚鋼板とは、C:0.030〜0.15%(質量%の意味、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:0.8〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Ti:0.015〜0.03%、B:0.0010〜0.0035%、N:0.0050〜0.01%、Ca:0.005%以下(0%を含まない)、O:0.01%以下(0%を含まない)を夫々含有すると共に、下記(1)式および(2)式を満足し、残部がFeおよび不可避不純物からなり、且つベイナイト分率が95面積%以上の組織であると共に、ベイナイトの転位密度(ρ1/2)が1.0×106〜5.0×107(m-1)である点に要旨を有するものである。
1.5≦[Ti]/[N]≦4.0 … (1)
40≦X値≦160 … (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]
(式中、[ ]は各元素の含有量(質量%)を表す。)
The thick steel plate of the present invention that can achieve the above object is C: 0.030 to 0.15% (meaning mass%, the same shall apply hereinafter), Si: 1.0% or less (not including 0%), Mn: 0.8 to 2.0%, P: 0.03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10 %, Ti: 0.015-0.03%, B: 0.0010-0.0035%, N: 0.0050-0.01%, Ca: 0.005% or less (excluding 0%), O: each containing 0.01% or less (excluding 0%), satisfying the following formulas (1) and (2), the balance being Fe and inevitable impurities, and a bainite fraction of 95 areas % or more with a tissue, have a summary to point dislocation density of bainite ([rho 1/2) is 1.0 × 10 6 ~5.0 × 10 7 (m -1) Is shall.
1.5 ≦ [Ti] / [N] ≦ 4.0 (1)
40 ≦ X value ≦ 160 (2)
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(In the formula, [] represents the content (% by mass) of each element.)

本発明の厚鋼板では、良好な低温靭性およびHAZ靭性の観点から、(a)δ域の温度範囲が40℃以下であることや、(b)深さt/4の位置(t=板厚)において、Ti系炭・窒化物の平均粒子径が43nm以下であること、等の要件を満足させることが好ましい。尚、「Ti系炭・窒化物」とは、Tiを含む炭化物、窒化物および炭窒化物のいずれをも含む趣旨である。   In the thick steel plate of the present invention, from the viewpoint of good low temperature toughness and HAZ toughness, (a) the temperature range of the δ region is 40 ° C. or less, and (b) the position of the depth t / 4 (t = plate thickness) ), It is preferable to satisfy the requirements such that the average particle diameter of the Ti-based charcoal / nitride is 43 nm or less. The “Ti-based carbon / nitride” is intended to include any of carbides, nitrides, and carbonitrides containing Ti.

本発明の厚鋼板には、必要によって、更に(a)Nb:0.035%以下(0%を含まない)、(b)Cu:2.0%以下(0%を含まない)、Ni:2.0%以下(0%を含まない)およびCr:2.0%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Mo:1.0%以下(0%を含まない)、(d)V:0.1%以下(0%を含まない)、(e)Mg,Sr,Baよりなる群から選ばれる1種以上:合計で0.01%以下(0%を含まない)、(f)希土類元素:0.01%以下(0%を含まない)、(g)Zr,TaおよびHfよりなる群から選ばれる1種以上:合計で0.05%以下(0%を含まない)、(h)Co:2.5%以下(0%を含まない)および/またはW:2.5%以下(0%を含まない)、等を含有することも有用であり、含有される成分に応じて、鋼板の特性が更に改善される。   In the thick steel plate of the present invention, if necessary, (a) Nb: 0.035% or less (not including 0%), (b) Cu: 2.0% or less (not including 0%), Ni: One or more selected from the group consisting of 2.0% or less (excluding 0%) and Cr: 2.0% or less (not including 0%), (c) Mo: 1.0% or less (0% (D) V: 0.1% or less (not including 0%), (e) one or more selected from the group consisting of Mg, Sr, and Ba: 0.01% or less in total (0 %), (F) rare earth element: 0.01% or less (not including 0%), (g) one or more selected from the group consisting of Zr, Ta and Hf: 0.05% or less in total (0) not included, (h) Co: not more than 2.5% (not including 0%) and / or W: not more than 2.5% (not including 0%), etc. It is also useful to have, and the properties of the steel sheet are further improved depending on the components contained.

本発明によれば、各成分の量および組織を適切な範囲内に収めると共に、上記(1)式および(2)式を満足するように化学成分組成を調整し、且つベイナイトの転位密度を制御することによって、大入熱溶接でも優れたHAZ靭性を示すと共に、脆性亀裂伝播停止特性にも優れた厚鋼板が実現できた。   According to the present invention, the amount and structure of each component fall within an appropriate range, the chemical component composition is adjusted so as to satisfy the above formulas (1) and (2), and the dislocation density of bainite is controlled. As a result, a thick steel plate having excellent HAZ toughness even in high heat input welding and excellent in brittle crack propagation stopping characteristics was realized.

本発明者らは、Ti系炭・窒化物を微細化することによって、大入熱溶接でも良好なHAZ靭性を達成させることを試みた。従来のTi系炭・窒化物の分散状態は、溶鋼凝固時の冷却速度が一定であれば、Ti、Nの添加バランスのみにより定まるものと考えられてきた。しかし本発明者らが鋭意検討した結果、鋼の状態図において表されるδ域の温度範囲を縮小させることにより、同じTi、N添加量でも、Ti系炭・窒化物を微細分散させ得ることを見出した。   The present inventors tried to achieve good HAZ toughness even in high heat input welding by refining Ti-based charcoal / nitride. The dispersion state of conventional Ti-based charcoal / nitride has been considered to be determined only by the balance of addition of Ti and N if the cooling rate during solidification of molten steel is constant. However, as a result of intensive studies by the present inventors, it is possible to finely disperse Ti-based carbon / nitride even with the same Ti and N addition amount by reducing the temperature range in the δ region represented in the phase diagram of steel. I found.

上記(2)式の関係を規定するX値は、δ域の温度範囲に関する関数である。本発明者らは、HAZ靭性の改善を試みて上記(2)式の関係を見出したのであるが、まずその経緯について説明する。上記「δ域」とは、鋼の状態図においてδ鉄が含まれる領域を意味する。この「δ鉄が含まれる領域」は、δ鉄のみの領域の他にも、δ+γの2相領域など、δ鉄と他の状態が含まれる領域も包含する。そして「δ域の温度範囲」とは、δ鉄が含まれる温度範囲(δ域の上限温度と下限温度との差)をいう。ここで特定組成の鋼において、例えばδ鉄のみの温度範囲とδ+γ鉄の温度範囲がある場合、これらの温度範囲の合計が、δ域の温度範囲である。このδ域の温度範囲は、総合熱力学計算ソフトウェア(Thermo−calc、CRC総合研究所から購入可能)に、鋼板の化学成分組成を入力することにより計算することができる。   The X value that defines the relationship of the above equation (2) is a function related to the temperature range in the δ region. The present inventors have tried to improve the HAZ toughness and found the relationship of the above formula (2). First, the background will be described. The “δ region” means a region including δ iron in the steel phase diagram. The “region including δ iron” includes not only a region including δ iron but also a region including δ iron and other states such as a two-phase region of δ + γ. The “temperature range in the δ range” refers to a temperature range including δ iron (difference between the upper limit temperature and the lower limit temperature in the δ range). Here, in the steel having a specific composition, for example, when there is a temperature range of only δ iron and a temperature range of δ + γ iron, the sum of these temperature ranges is the temperature range of the δ region. The temperature range of the δ region can be calculated by inputting the chemical composition of the steel sheet into comprehensive thermodynamic calculation software (Thermo-calc, available from CRC Research Institute).

このδ鉄中ではTiの拡散速度が速いため、δ域の温度範囲が広いと、δ鉄が存在する時間が長くなり、粗大なTi系炭・窒化物が形成され易くなると考えられる。そこで化学成分組成を調整してδ域の温度範囲を縮小することにより、Ti系炭・窒化物を微細化することを検討した。そのためにThermo−calcの計算にて、特定成分を基準に化学成分量の1つだけを変更することにより、各化学成分のδ域の温度範囲への影響を調べた。そのような検討により、δ域の温度範囲と相関関係にあり、化学成分組成の関数で表されるX値を定めた:
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]
(式中、[ ]は各元素の含有量(質量%)を表す。)
Since the diffusion rate of Ti is fast in this δ iron, it is considered that if the temperature range in the δ region is wide, the time during which the δ iron exists becomes longer, and coarse Ti-based carbon / nitride is likely to be formed. Therefore, the refinement of the Ti-based carbon / nitride was studied by adjusting the chemical composition and reducing the temperature range in the δ region. For this purpose, in Thermo-calc calculation, the influence of each chemical component on the temperature range in the δ region was examined by changing only one of the chemical component amounts based on the specific component. As a result of such studies, an X value correlated with the temperature range of the δ region and expressed as a function of the chemical composition was determined:
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(In the formula, [] represents the content (% by mass) of each element.)

X値の上記式中の係数は、特定成分の鋼から、各化学成分を変化させた場合のδ域の温度範囲の変化量に対応する。具体的には、例えば[C]の係数の「500」は、C量を0.01%だけ増大させたときに、Thermo−calcの計算にてδ域の温度範囲が約5℃減少することを意味する。そしてX値とδ域の温度範囲とは、ほぼ反比例の関係(X値が増大すれば、δ域の温度範囲は減少するという関係)にある。   The coefficient in the above formula of the X value corresponds to the amount of change in the temperature range in the δ region when each chemical component is changed from the specific component steel. Specifically, for example, when the coefficient of [C] is “500”, when the C content is increased by 0.01%, the temperature range in the δ region decreases by about 5 ° C. in the calculation of Thermo-calc. Means. The X value and the temperature range in the δ region are in an inversely proportional relationship (the relationship that the temperature range in the δ region decreases as the X value increases).

尚、上記X値を規定する元素のうちには、本発明の厚鋼板の基本成分(C,Si,Mn)以外にも、必要によって含有されるものも含まれるが(Nb,Cu,Ni,Cr,Mo,V等)、これらの元素を含まないときには、これらの項目がないものとしてX値を計算し、これらの元素を含むときには、上記式からX値を計算すれば良い。   In addition to the basic components (C, Si, Mn) of the thick steel plate of the present invention, the elements that define the X value include elements that are included as necessary (Nb, Cu, Ni, Cr, Mo, V, etc.) When these elements are not included, the X value is calculated assuming that these items are not present, and when these elements are included, the X value may be calculated from the above formula.

このような考えに基づいて、様々なX値を有する鋼板を製造して調べたところ、X値を増大させることで、Ti系炭・窒化物の平均粒子径を微細化でき、HAZ靭性を向上させ得ることを見出した。   Based on this idea, steel sheets with various X values were manufactured and investigated, and by increasing the X value, the average particle diameter of Ti-based charcoal / nitride can be refined and the HAZ toughness improved. I found out that I could make it.

そしてX値を増大させることで、更に、鋼板の低温靭性も向上することを見出した。この現象は、X値を増大させることで、Ti系炭・窒化物の平均粒子径が減少したことによるものと推定される。   And it discovered that the low temperature toughness of a steel plate was further improved by increasing X value. This phenomenon is presumed to be due to a decrease in the average particle size of the Ti-based carbon / nitride by increasing the X value.

上記のように本発明の厚鋼板は、その化学成分組成が下記(2)式:
40≦X値≦160 … (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]
(式中、[ ]は各元素の含有量(質量%)を表す。)
を満たしている点に、大きな特徴がある。但し、本発明は、上記のような推定理由(δ域の温度範囲の減少による炭・窒化物の平均粒子径の減少、平均粒子径の減少によるHAZ靭性および低温靭性の向上等)には制限されず、本発明の範囲は、特許請求の範囲により定められる。即ち特許請求の範囲に規定する構成要件を満たす厚鋼板は、本発明の範囲内に包含される。
As described above, the thick steel plate of the present invention has a chemical component composition represented by the following formula (2):
40 ≦ X value ≦ 160 (2)
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(In the formula, [] represents the content (% by mass) of each element.)
There is a major feature in that However, the present invention is limited to the above estimation reasons (decrease in the average particle diameter of charcoal / nitride due to decrease in temperature range of δ region, improvement of HAZ toughness and low temperature toughness due to decrease in average particle diameter, etc.) Rather, the scope of the invention is defined by the claims. That is, a thick steel plate that satisfies the structural requirements defined in the claims is included within the scope of the present invention.

各化学成分量が適正範囲内であれば、X値が大きくなるほど、Ti系炭・窒化物の平均粒子径、およびHAZ靭性並びに母材靭性が向上する。このX値の下限は、40(好ましくは45、より好ましくは50)である。X値の上限は、各化学成分の適正量から定められ、160(好ましくは100以下、より好ましくは75以下)である。硬質相MA組織(マルテンサイト−オーステナイトの混合組織)の生成抑制の観点から、X値の好ましい上限は、75以下である。   If the amount of each chemical component is within an appropriate range, the average particle diameter of the Ti-based carbon / nitride, the HAZ toughness, and the base material toughness improve as the X value increases. The lower limit of the X value is 40 (preferably 45, more preferably 50). The upper limit of the X value is determined from an appropriate amount of each chemical component and is 160 (preferably 100 or less, more preferably 75 or less). From the viewpoint of suppressing generation of a hard phase MA structure (mixed structure of martensite and austenite), the preferable upper limit of the X value is 75 or less.

本発明の厚鋼板では、X値が40以上となるように化学成分組成を調整することにより、Ti系炭・窒化物を微細にしている。しかしTi含有量とN含有量とのバランスが崩れると、鋼板の靭性、特にHAZ靭性が劣化する。具体的にはTi含有量[Ti]とN含有[N]の比([Ti]/[N])が4.0を超える場合には、Ti系炭・窒化物が粗大になり、HAZ靭性が低下する。逆に1.5未満であれば、過剰Nの影響で、低温靭性およびHAZ靭性が低下する。よって本発明の厚鋼板では、X値を規定する上記(2)式に加えて、下記(1)式:
1.5≦[Ti]/[N]≦4.0 … (1)
を満たすように、Ti含有量[Ti]とN含有量[N]とのバランスが図られていることも特徴の1つとする。この[Ti]/[N]の好ましい下限は2.0であり、好ましい上限は3.5である。
In the thick steel plate of the present invention, the Ti-based carbon / nitride is made fine by adjusting the chemical composition so that the X value is 40 or more. However, when the balance between the Ti content and the N content is lost, the toughness of the steel sheet, particularly the HAZ toughness, is deteriorated. Specifically, when the ratio of Ti content [Ti] to N content [N] ([Ti] / [N]) exceeds 4.0, the Ti-based carbon / nitride becomes coarse, and the HAZ toughness Decreases. On the other hand, if it is less than 1.5, the low temperature toughness and the HAZ toughness are reduced by the influence of excess N. Therefore, in the thick steel plate of the present invention, in addition to the above formula (2) that defines the X value, the following formula (1):
1.5 ≦ [Ti] / [N] ≦ 4.0 (1)
One of the characteristics is that the Ti content [Ti] and the N content [N] are balanced so as to satisfy the above. The preferable lower limit of [Ti] / [N] is 2.0, and the preferable upper limit is 3.5.

靭性の観点から、本発明の厚鋼板中のTi系炭・窒化物は微細であることが好ましい。よって本発明の厚鋼板中のTi系炭・窒化物は、好ましくは43nm以下、より好ましくは40nm以下、更に好ましくは35nm以下である。   From the viewpoint of toughness, the Ti-based carbon / nitride in the thick steel plate of the present invention is preferably fine. Therefore, the Ti-based carbon / nitride in the thick steel plate of the present invention is preferably 43 nm or less, more preferably 40 nm or less, and still more preferably 35 nm or less.

本発明におけるTi系炭・窒化物の平均粒子径の値は、以下のようにして測定した値である。まず、鋼板の熱履歴を代表する部分として深さt/4の位置(t=板厚)を、透過型電子顕微鏡(TEM)で、観察倍率6万倍以上、観察視野2.0μm×2.0μm以上、観察箇所5箇所以上の条件で観察する。そしてその視野中の各炭・窒化物の面積を測定し、この面積から各炭・窒化物の円相当径を算出する。この各炭・窒化物の円相当径を算術平均(相加平均)して得られる値を、本発明におけるTi系炭・窒化物の平均粒子径とする。   The value of the average particle diameter of the Ti-based carbon / nitride in the present invention is a value measured as follows. First, a position at a depth t / 4 (t = plate thickness) as a portion representing the thermal history of a steel plate is observed with a transmission electron microscope (TEM) at an observation magnification of 60,000 times or more and an observation field of view of 2.0 μm × 2. Observation is performed under conditions of 0 μm or more and five or more observation places. Then, the area of each charcoal / nitride in the field of view is measured, and the equivalent circle diameter of each charcoal / nitride is calculated from this area. The value obtained by arithmetic average (arithmetic mean) of the equivalent circle diameters of each charcoal / nitride is defined as the average particle diameter of the Ti-based charcoal / nitride in the present invention.

尚、Ti系炭・窒化物であるかの判別は、各炭・窒化物粒子の主体となる成分によって定まる。即ち、「Ti系炭・窒化物」とは、炭素および窒素を除いた残りの元素の合計質量を100%としたとき、Tiの割合が50質量%以上になるものを言う。元素の量は、エネルギー分散型X線検出器(EDX)によって決定することができる。但し、あまりに微細な炭・窒化物は測定できないため、本発明における「Ti系炭・窒化物」は、5nm以上のものに限定する。   In addition, discrimination | determination whether it is Ti type | system | group charcoal / nitride is decided by the component used as the main body of each charcoal / nitride particle | grain. That is, “Ti-based charcoal / nitride” means that the ratio of Ti is 50% by mass or more when the total mass of the remaining elements excluding carbon and nitrogen is 100%. The amount of element can be determined by an energy dispersive X-ray detector (EDX). However, since too fine carbon / nitride cannot be measured, “Ti-based carbon / nitride” in the present invention is limited to 5 nm or more.

厚鋼板では、上記のようにHAZ靭性が良好であることに加え、船舶、海洋構造物、低温貯蔵タンク、ラインパイプ、建築、橋梁等の大型構造物においては、脆性破壊に伴う事故が経済や環境に及ぼす影響が大きく、高度の安全性が求められている。本発明者らは、脆性亀裂伝播停止特性の向上を合わせて達成するという観点からも検討を重ねてきた。その結果、脆性亀裂伝播停止特性を向上させるには、ベイナイトを主体とする(ベイナイト分率が95面積%以上)組織とすると共に、ベイナイトの転位密度を所定の範囲となるように制御すれば、脆性亀裂伝播停止特性を向上させ得ることを見出した。   In steel plates, in addition to having good HAZ toughness as described above, in large structures such as ships, offshore structures, low-temperature storage tanks, line pipes, buildings, bridges, etc. The impact on the environment is large and a high level of safety is required. The present inventors have also studied from the viewpoint of achieving the improvement of the brittle crack propagation stopping characteristics together. As a result, in order to improve the brittle crack propagation stop characteristics, it is a structure mainly composed of bainite (bainite fraction is 95 area% or more), and if the dislocation density of bainite is controlled to be within a predetermined range, It has been found that the brittle crack propagation stop property can be improved.

本発明の厚鋼板では、ベイナイトの転位密度(ρ1/2)を1.0×106〜5.0×107(m-1)の範囲に制御することによって、優れた脆性亀裂伝播停止特性が実現できる。金属材料は、予想される理想破壊強度よりも低い応力で破壊することが知られている。こうした現象は、金属材料内部に様々な欠陥が存在することによるものであることも知られている。こうした欠陥の種類としては、介在物、析出物、異相粒子、転位等があり、これらの組織因子の制御によって、母材靭性の改善が行われている。 In the thick steel sheet of the present invention, excellent brittle crack propagation stoppage is achieved by controlling the dislocation density (ρ 1/2 ) of bainite within a range of 1.0 × 10 6 to 5.0 × 10 7 (m −1 ). Characteristics can be realized. It is known that metal materials break at a stress lower than the expected ideal fracture strength. It is also known that such a phenomenon is due to the presence of various defects inside the metal material. Examples of such defects include inclusions, precipitates, heterogeneous particles, dislocations, and the like, and the toughness of the base material is improved by controlling these structure factors.

本発明者らは、脆性亀裂伝播停止特性にもこれらの欠陥因子が影響を与えていると考え、特に転位密度に着目した組織制御を行うことによって、脆性亀裂伝播停止特性が改善されることが判明したのである。転位密度を適切な範囲に制御することによって、脆性亀裂伝播停止特性が良好となるメカニズムについては、十分に明らかにできた訳ではないが、おそらく転位密度が高くなり過ぎると、転位の合体等による亀裂先端部の応力集中によって、新たな劈開破面が形成され易くなり、そのため脆性亀裂の伝播が停止しにくくなるものと推定される。   The present inventors consider that these defect factors also affect the brittle crack propagation stopping characteristics, and the brittle crack propagation stopping characteristics may be improved by performing structure control focusing on the dislocation density. It turns out. By controlling the dislocation density to an appropriate range, the mechanism of improving the brittle crack propagation stopping property has not been fully clarified, but if the dislocation density is too high, it is probably due to dislocation coalescence. It is presumed that the stress concentration at the crack tip part makes it easy to form a new cleavage fracture surface, and therefore it is difficult to stop the propagation of the brittle crack.

上記の効果を発揮させるためには、ベイナイトの転位密度(ρ1/2)は1.0×106〜5.0×107(m-1)の範囲に制御することが必要である。ベイナイトの転位密度(ρ1/2)が1.0×106(m-1)未満では、母材強度が確保できず、逆に転位密度(ρ1/2)が5.0×107(m-1)を超えると、脆性亀裂伝播停止特性が却って劣化することになる。この転位密度の好ましい下限は5.0×106(m-1)、より好ましくは1.0×10(m-1)、更に好ましくは1.5×107(m-1)[若しくは2.0×10(m-1)以上]であり、好ましい上限は4.0×107(m-1)[より好ましくは3.0×107(m-1)]である。 In order to exert the above effects, it is necessary to control the dislocation density (ρ 1/2 ) of bainite within a range of 1.0 × 10 6 to 5.0 × 10 7 (m −1 ). If the dislocation density (ρ 1/2 ) of bainite is less than 1.0 × 10 6 (m −1 ), the strength of the base material cannot be secured, and conversely, the dislocation density (ρ 1/2 ) is 5.0 × 10 7. If (m -1 ) is exceeded, the brittle crack propagation stop property will deteriorate instead. The preferable lower limit of the dislocation density is 5.0 × 10 6 (m −1 ), more preferably 1.0 × 10 7 (m −1 ), and still more preferably 1.5 × 10 7 (m −1 ) [or 2.0 × 10 7 (m −1 ) or more], and a preferable upper limit is 4.0 × 10 7 (m −1 ) [more preferably 3.0 × 10 7 (m −1 )].

上記転位密度の測定は、一般的な手法であるX線回折法を採用すれば良い。例えば、「CAMP―ISIJ VoL.17(2004)P396〜399」に記載された手法に基づいて、(200)面の半価幅から転位密度を求めることができる。本発明では、25mm角の試験片を採取し、板厚方向で1/4部位の圧延面と水平な面を電解研磨して測定面とした。   For measurement of the dislocation density, an X-ray diffraction method which is a general method may be employed. For example, based on the method described in “CAMP-ISIJ VoL.17 (2004) P396-399”, the dislocation density can be obtained from the half width of the (200) plane. In the present invention, a 25 mm square test piece was collected, and a rolled surface and a horizontal surface at a ¼ portion in the thickness direction were electrolytically polished to obtain a measurement surface.

本発明では、ベイナイトを主体とする組織であることが必要である。また転位密度を上記のように規定することによって、良好な脆性亀裂伝播停止特性が発揮されることになる。但し、こうした効果を発揮させるためには、必ずしも100面積%がベイナイト組織である必要はなく、ベイナイト分率で95面積%以上であれば良い。ベイナイト以外の組織としては、マルテンサイト、フェライトまたはパーライト等が挙げられる。尚、本発明において、ベイナイト分率は、下記の方法に従って測定した。   In the present invention, it is necessary to have a structure mainly composed of bainite. Further, by defining the dislocation density as described above, a good brittle crack propagation stopping characteristic is exhibited. However, in order to exhibit such an effect, 100 area% does not necessarily need to be a bainite structure, and it is sufficient if the bainite fraction is 95 area% or more. Examples of structures other than bainite include martensite, ferrite, and pearlite. In the present invention, the bainite fraction was measured according to the following method.

[ベイナイト分率の測定方法]
各鋼板のt/4(t:板厚)位置から採取した2cm角の試験片を、鏡面研磨した後、ナイタール腐食液(2%硝酸−エタノール溶液)でエッチングし、光学顕微鏡によって組織を観察し(倍率:100倍)、n=10(回)として撮影した写真を画像解析装置(Media Cybernetics製:Imega−Pro Plus)によって、ベイナイト分率を算出した。この際、フェライト以外のラス状組織は全てベイナイトとみなした。
[Measurement method of bainite fraction]
A 2 cm square test piece taken from the t / 4 (t: plate thickness) position of each steel plate is mirror-polished, etched with a nital etchant (2% nitric acid-ethanol solution), and the structure is observed with an optical microscope. The bainite fraction was calculated by an image analyzer (manufactured by Media Cybernetics: Imega-Pro Plus) for a photograph taken at (magnification: 100 times) and n = 10 (times). At this time, all lath structures other than ferrite were regarded as bainite.

本発明の厚鋼板は、その化学成分組成が上記(1)式および(2)式の関係を満足すると共に、ベイナイトの転位密度を制御することによって、HAZ靭性と共に脆性亀裂伝播停止特性が優れたものとなる。しかし、これらの要件を満足していても、夫々の化学成分(各元素)の含有量が適正範囲内になければ、上記の効果を達成することができない。よって本発明の厚鋼板は、上記(1)式および(2)式、並びにベイナイトの転位密度が規定範囲を満たすことに加えて、夫々の化学成分の量が、以下に記載するような適正範囲内にあることも特徴とする。以下、化学成分について個々に説明する。   The thick steel plate of the present invention satisfies the relationship of the above formulas (1) and (2), and has excellent HAZ toughness and brittle crack propagation stopping characteristics by controlling the dislocation density of bainite. It will be a thing. However, even if these requirements are satisfied, the above effects cannot be achieved unless the content of each chemical component (each element) is within an appropriate range. Therefore, in the thick steel sheet of the present invention, in addition to the above formulas (1) and (2) and the dislocation density of bainite satisfying the specified range, the amount of each chemical component is in an appropriate range as described below. It is also characterized by being inside. Hereinafter, chemical components will be described individually.

[C:0.030〜0.15%]
Cは、鋼板の強度を確保するために必要な元素であり、また鋼の状態図におけるδ域の温度範囲を縮小させるために有効な元素である。C含有量が0.030%未満ではそれらの効果が発揮されなくなる。一方、C含有量が0.15%を超えると、硬質の第2相MA組織が多くなり過ぎて、母材靭性およびHAZ靭性が低下する。そこでC含有量を0.030〜0.15%と定めた。C含有量の好ましい下限は0.040%であり(より好ましくは0.050%以上)、好ましい上限は0.10%(より好ましくは0.070%以下)である。
[C: 0.030 to 0.15%]
C is an element necessary for ensuring the strength of the steel sheet, and is an effective element for reducing the temperature range in the δ region in the steel phase diagram. If the C content is less than 0.030%, those effects are not exhibited. On the other hand, when the C content exceeds 0.15%, the hard second-phase MA structure is excessively increased, and the base material toughness and the HAZ toughness are lowered. Therefore, the C content is set to 0.030 to 0.15%. The preferable lower limit of the C content is 0.040% (more preferably 0.050% or more), and the preferable upper limit is 0.10% (more preferably 0.070% or less).

[Si:1.0%以下(0%を含まない)]
Siは、鋼板の強度を確保するために有効な元素であり、そのためには、0.10%以上(より好ましくは0.20%以上)含有させることが好ましい。しかしSiを過剰に含有させると、MA組織が多く生成し、母材靭性およびHAZ靭性が低下するため、その上限を1.0%とする必要がある。Si量の好ましい上限は0.8%であり、より好ましくは0.50%、更に好ましくは0.40%である。
[Si: 1.0% or less (excluding 0%)]
Si is an effective element for ensuring the strength of the steel sheet, and for that purpose, it is preferable to contain 0.10% or more (more preferably 0.20% or more). However, when Si is excessively contained, a large amount of MA structure is generated, and the base material toughness and the HAZ toughness are lowered. Therefore, the upper limit thereof needs to be 1.0%. The upper limit with preferable Si amount is 0.8%, More preferably, it is 0.50%, More preferably, it is 0.40%.

[Mn:0.8〜2.0%]
Mnは、焼入れ性を向上させ、鋼板の強度を確保するのに有効な元素である。Mn含有量が0.8%未満では、強度確保の作用が充分に発揮されない。一方、Mn含有量が2.0%を超えると、母材靭性およびHAZ靭性が低下する。そこでMn含有量を、0.8〜2.0%と定めた。Mn含有量の好ましい下限は1.00%であり、より好ましくは1.20%、更に好ましくは1.50%である。一方、Mn量の好ましい上限は1.80%、より好ましくは1.60%である。
[Mn: 0.8 to 2.0%]
Mn is an element effective for improving the hardenability and ensuring the strength of the steel sheet. When the Mn content is less than 0.8%, the effect of securing the strength is not sufficiently exhibited. On the other hand, if the Mn content exceeds 2.0%, the base metal toughness and the HAZ toughness are lowered. Therefore, the Mn content is set to 0.8 to 2.0%. The minimum with preferable Mn content is 1.00%, More preferably, it is 1.20%, More preferably, it is 1.50%. On the other hand, the preferable upper limit of the amount of Mn is 1.80%, more preferably 1.60%.

[P:0.03%以下(0%を含まない)]
不純物元素であるPは、母材靭性およびHAZ靭性に悪影響を及ぼすため、その量は、できるだけ少ないことが好ましい。よってP量は、0.03%以下、好ましくは0.010%以下である。しかし工業的に、鋼中のP量を0%にすることは困難である。
[P: 0.03% or less (excluding 0%)]
Since the impurity element P adversely affects the base material toughness and the HAZ toughness, the amount is preferably as small as possible. Therefore, the amount of P is 0.03% or less, preferably 0.010% or less. However, industrially, it is difficult to reduce the P content in steel to 0%.

[S:0.01%以下(0%を含まない)]
Sは、MnSを形成して延性を低下させる元素であり、特に高張力鋼において悪影響が大きくなるため、その量は、できるだけ少ないことが好ましい。よってS量は、0.01%以下、好ましくは0.005%以下である。しかし工業的に、鋼中のS量を0%にすることは困難である。
[S: 0.01% or less (excluding 0%)]
S is an element that forms MnS and lowers the ductility, and the adverse effect is large particularly in high-strength steel. Therefore, the amount is preferably as small as possible. Therefore, the amount of S is 0.01% or less, preferably 0.005% or less. However, industrially, it is difficult to reduce the amount of S in steel to 0%.

[Al:0.01〜0.10%]
Alは、脱酸、およびミクロ組織の微細化により母材靭性を向上させる効果を有する元素である。このような効果を充分に発揮させるため、Alを0.01%以上含有させる。もっともAlを過剰に含有させると、却って母材靭性およびHAZ靭性が低下するため、上限を0.10%とする。Al含有量の好ましい下限は0.020%である。一方、その好ましい上限は0.060%であり、より好ましくは0.040%以下である。
[Al: 0.01 to 0.10%]
Al is an element having an effect of improving the base material toughness by deoxidation and refinement of the microstructure. In order to sufficiently exhibit such an effect, Al is contained in an amount of 0.01% or more. However, if Al is excessively contained, the base metal toughness and the HAZ toughness are lowered, so the upper limit is made 0.10%. The minimum with preferable Al content is 0.020%. On the other hand, the preferable upper limit is 0.060%, more preferably 0.040% or less.

[Ti:0.015〜0.03%]
Tiは、Nと微細な窒化物を形成し、溶接時におけるHAZのオーステナイト粒の粗大化を抑制することにより(いわゆるピンニング効果)、HAZ靭性を向上させるために有効な元素である。このような効果を充分に発揮させるためには、Tiを0.015%以上含有する。しかしTi含有量が過剰になると、却ってHAZ靭性が劣化するため、Ti含有量の上限を0.03%と定めた。Ti含有量は、好ましくは0.017%以上、0.020%以下とするのが良い。
[Ti: 0.015-0.03%]
Ti is an effective element for improving HAZ toughness by forming fine nitrides with N and suppressing the coarsening of austenite grains of HAZ during welding (so-called pinning effect). In order to sufficiently exhibit such an effect, Ti is contained by 0.015% or more. However, if the Ti content becomes excessive, the HAZ toughness deteriorates on the contrary, so the upper limit of the Ti content was set to 0.03%. The Ti content is preferably 0.017% or more and 0.020% or less.

[B:0.0010〜0.0035%]
Bは、大入熱溶接の際に、HAZ、殊にボンド部の付近で、BNを核にした粒内フェライトを生成させると共に、固溶Nの固定作用も有し、HAZ靭性改善に重要な元素である。本発明では、その効果を充分に発揮させるためにBを、通常の厚鋼板中の含有量よりも多く、0.0010%以上含有させている。しかしB含有量が過剰になると、大入熱溶接の際に粗大なベイナイト組織が形成されるため、却ってHAZ靭性が劣化する。そのためB含有量の上限を0.0035%と定めた。B含有量の好ましい下限は0.0015%(より好ましくは0.0020%以上)、好ましい上限は0.0030%(より好ましくは0.0025%以下)である。
[B: 0.0010 to 0.0035%]
B produces HAZ, especially in the vicinity of the bond part, in the vicinity of the bond part, and generates intragranular ferrite with BN as the nucleus, and also has a fixing action of solute N, which is important for improving HAZ toughness. It is an element. In this invention, in order to fully exhibit the effect, B is contained more than the content in a normal thick steel plate, 0.0010% or more. However, if the B content is excessive, a coarse bainite structure is formed during high heat input welding, and the HAZ toughness deteriorates. Therefore, the upper limit of the B content is set to 0.0035%. A preferable lower limit of the B content is 0.0015% (more preferably 0.0020% or more), and a preferable upper limit is 0.0030% (more preferably 0.0025% or less).

[N:0.0050〜0.01%]
Nは、Tiと結合して微細な炭窒化物を形成し、大入熱溶接の際にオーステナイト粒の粗大化を抑制し、HAZ靭性を向上させる効果を有する元素である。N含有量が少な過ぎると、上記効果が充分に発揮されないため、その下限を0.0050%と定めた。一方、N含有量が過剰になると、母材靭性およびHAZ靭性に悪影響を及ぼすため、その上限を0.01%と定めた。N含有量の好ましい下限は0.0055%であり、より好ましくは0.0060%以上である。またN含有量の好ましい上限は0.0090%であり、より好ましくは0.0080%以下である。
[N: 0.0050 to 0.01%]
N is an element that combines with Ti to form fine carbonitrides, suppresses the coarsening of austenite grains during high heat input welding, and improves the HAZ toughness. If the N content is too small, the above effect is not sufficiently exhibited, so the lower limit was set to 0.0050%. On the other hand, if the N content is excessive, the base material toughness and the HAZ toughness are adversely affected, so the upper limit was set to 0.01%. The minimum with preferable N content is 0.0055%, More preferably, it is 0.0060% or more. Moreover, the upper limit with preferable N content is 0.0090%, More preferably, it is 0.0080% or less.

[Ca:0.005%以下(0%を含まない)]
Caは、HAZ靭性を向上させる効果を有する元素である。詳しくは、Caは、MnSを球状化するという介在物の形態制御による異方性を低減させることによって、HAZ靭性を向上させる。一方、CaS、CaOを形成し、HAZのオーステナイト粒の粗大化を抑制することによってHAZ靭性を向上させる。このような効果を充分に発揮させるために鋼板中に、Caを好ましくは0.0005%以上含有させることが好ましい。しかしながら、Caの含有量が過剰であると、却って母材靭性およびHAZ靭性を劣化させるので、その上限を0.005%と定めた。Ca量の好ましい上限は0.0030%であり、より好ましくは0.0025%である。
[Ca: 0.005% or less (excluding 0%)]
Ca is an element having an effect of improving HAZ toughness. Specifically, Ca improves HAZ toughness by reducing anisotropy due to inclusion shape control of spheroidizing MnS. On the other hand, HAS toughness is improved by forming CaS and CaO and suppressing the coarsening of HAZ austenite grains. In order to sufficiently exhibit such an effect, it is preferable to contain 0.0005% or more of Ca in the steel sheet. However, if the Ca content is excessive, the base metal toughness and the HAZ toughness are deteriorated. Therefore, the upper limit is set to 0.005%. The upper limit with preferable Ca amount is 0.0030%, More preferably, it is 0.0025%.

[O:0.01%以下(0%を含まない)]
Oは、Al、Ca、Mg等と反応して高温で安定な酸化物を形成し、HAZの旧オーステナイト粒の粗大化を防止するのに有効に働く元素である。こうした効果はその含有量が多くなればなるほど増大するが、過剰になると清浄度が低下してしまい、HAZ靭性が却って低下するので、その上限を0.01%と定めた。
[O: 0.01% or less (excluding 0%)]
O is an element that reacts with Al, Ca, Mg and the like to form a stable oxide at a high temperature and effectively works to prevent coarsening of the prior austenite grains of HAZ. Such an effect increases as the content increases. However, when the content is excessive, the cleanliness decreases and the HAZ toughness decreases. Therefore, the upper limit is set to 0.01%.

本発明の厚鋼板は、上記成分の他は基本的に、Feおよび不可避不純物からなる。しかし本発明は、他の元素が含有される厚鋼板を排除するものではなく、本発明の範囲には、本発明の効果が損なわれない範囲で、他の成分元素を含有している厚鋼板も含まれる。   The thick steel plate of the present invention basically comprises Fe and inevitable impurities in addition to the above components. However, the present invention does not exclude thick steel plates containing other elements, and within the scope of the present invention is a thick steel plate containing other component elements as long as the effects of the present invention are not impaired. Is also included.

例えば本発明の厚鋼板には、上記成分の他、必要に応じて、更に(a)Nb:0.035%以下(0%を含まない)、(b)Cu:2.0%以下(0%を含まない)、Ni:2.0%以下(0%を含まない)およびCr:2.0%以下(0%を含まない)よりなる群から選ばれる1種以上、(c)Mo:1.0%以下(0%を含まない)、(d)V:0.1%以下(0%を含まない)、(e)Mg,Sr,Baよりなる群から選ばれる1種以上を合計0.01%以下(0%を含まない)、(f)希土類元素:0.01%以下(0%を含まない)、(g)Zr,TaおよびHfよりなる群から選ばれる1種以上:合計で0.05%以下(0%を含まない)、(h)Co:2.5%以下(0%を含まない)および/またはW:2.5%以下(0%を含まない)、等を含有させることも有効であり、含有させる成分の種類に応じて、鋼板の特性がさらに改善される。   For example, in the thick steel plate of the present invention, in addition to the above components, if necessary, (a) Nb: 0.035% or less (excluding 0%), (b) Cu: 2.0% or less (0 %), Ni: 2.0% or less (not including 0%) and Cr: 2.0% or less (not including 0%), (c) Mo: 1.0% or less (not including 0%), (d) V: 0.1% or less (not including 0%), (e) one or more selected from the group consisting of Mg, Sr, and Ba 0.01% or less (not including 0%), (f) rare earth element: 0.01% or less (not including 0%), (g) one or more selected from the group consisting of Zr, Ta and Hf: 0.05% or less in total (excluding 0%), (h) Co: 2.5% or less (excluding 0%) and / or W: 2.5% or less (0% It is also effective to contain (not contained), etc., and the characteristics of the steel sheet are further improved according to the type of the ingredient to be contained.

[Nb:0.035%以下(0%を含まない)]
Nbは、素地の焼入れ性を向上させて鋼板の強度を高めるために有効な元素であり、必要により含有される。しかしながら、Nb含有量が過剰になると、母材靭性およびHAZ靭性が低下するため、その上限を0.035%と定めた。Nbは、その効果を発揮させるためには、0.005%以上含有させることが好ましく、より好ましくは0.010%以上含有させるのが良い。またNb含有量のより好ましい上限は0.025%であり、更に好ましくは0.020%以下とするのが良い。
[Nb: 0.035% or less (excluding 0%)]
Nb is an effective element for improving the hardenability of the substrate and increasing the strength of the steel sheet, and is contained as necessary. However, when the Nb content is excessive, the base material toughness and the HAZ toughness are lowered, so the upper limit was set to 0.035%. Nb is preferably contained in an amount of 0.005% or more, more preferably 0.010% or more in order to exert the effect. A more preferable upper limit of the Nb content is 0.025%, and further preferably 0.020% or less.

[Cu:2.0%以下(0%を含まない)、Ni:2.0%以下(0%を含まない)およびCr:2.0%以下(0%を含まない)よりなる群から選ばれる1種以上]
Cu,NiおよびCrは、いずれも焼入れ性を高めて強度向上に寄与する元素であり、必要に応じて添加することができる。このうちCuは、Cと同様にδ域の温度範囲を縮小させて、Ti系炭窒化物を微細化する効果を有すると考えられる。またNiも、δ域の温度範囲を縮小させるために有効な元素である。このような効果を充分に発揮させるために、いずれもその含有量は好ましくは0.20%以上、より好ましくは0.40%以上であることが推奨される。しかしこれらの量が過剰であると、母材靭性およびHAZ靭性が低下する傾向があるため、その上限はいずれも2.0%と定めた。好ましくは1.0%以下である。
[Selected from the group consisting of Cu: 2.0% or less (not including 0%), Ni: 2.0% or less (not including 0%), and Cr: 2.0% or less (not including 0%) One or more
Cu, Ni, and Cr are all elements that increase the hardenability and contribute to improving the strength, and can be added as necessary. Among these, Cu is considered to have the effect of reducing the temperature range in the δ region in the same way as C and miniaturizing the Ti-based carbonitride. Ni is also an effective element for reducing the temperature range in the δ region. In order to fully exhibit such an effect, it is recommended that the content thereof is preferably 0.20% or more, more preferably 0.40% or more. However, if these amounts are excessive, the base material toughness and the HAZ toughness tend to decrease, so the upper limit was set at 2.0%. Preferably it is 1.0% or less.

[Mo:1.0%以下(0%を含まない)]
Moは、焼入れ性を高めて強度を向上させることに加えて、焼戻し脆性を防止するために有効な元素であり、必要に応じて添加することができる。このような効果を充分に発揮させるために、Mo含有量は、好ましくは0.05%以上、より好ましくは0.10%以上であることが推奨される。しかしMo含有量が過剰になると、母材靭性およびHAZ靭性が劣化するため、その上限を1.0%と定めた。Mo含有量は、より好ましくは0.50%以下である。
[Mo: 1.0% or less (excluding 0%)]
Mo is an element effective for improving hardenability and improving strength and preventing temper embrittlement, and can be added as necessary. In order to sufficiently exhibit such an effect, it is recommended that the Mo content is preferably 0.05% or more, more preferably 0.10% or more. However, when the Mo content is excessive, the base metal toughness and the HAZ toughness deteriorate, so the upper limit was set to 1.0%. The Mo content is more preferably 0.50% or less.

[V:0.1%以下(0%を含まない)]
Vは、少量の添加により、焼入れ性および焼戻し軟化抵抗を高める効果を有する元素であり、必要に応じて添加することができる。このような効果を充分に発揮させるために、V量は、好ましくは0.01%以上、より好ましくは0.02%以上であることが推奨される。しかしV量が過剰であると、母材靭性およびHAZ靭性が劣化するため、その上限を0.1%と定めた。V量は、好ましくは0.05%以下である。
[V: 0.1% or less (excluding 0%)]
V is an element having an effect of enhancing hardenability and temper softening resistance by addition of a small amount, and can be added as necessary. In order to sufficiently exhibit such effects, it is recommended that the V amount is preferably 0.01% or more, more preferably 0.02% or more. However, if the amount of V is excessive, the base metal toughness and the HAZ toughness deteriorate, so the upper limit was set to 0.1%. The amount of V is preferably 0.05% or less.

[Mg,Sr,Baよりなる群から選ばれる1種以上:合計0.01%以下(0%を含まない)]
Mg,SrおよびBaは、厚鋼板中に微細な酸化物を生成し、HAZのオーステナイト粒の粗大化を抑制することによってHAZ靭性を向上させるのに有効な元素である。このような効果を十分に発揮させるためには、これらの1種以上(合計で)を0.0003%以上含有させることが好ましい。しかしながら、これらの含有量が過剰になると、却って母材靭性およびHAZ靭性を劣化させるので、その上限を0.01%とした。より好ましい上限は、0.0040%であり、更に好ましくは0.0020%である。
[One or more selected from the group consisting of Mg, Sr, and Ba: Total 0.01% or less (excluding 0%)]
Mg, Sr and Ba are effective elements for improving the HAZ toughness by generating fine oxides in the thick steel plate and suppressing the coarsening of the austenite grains of the HAZ. In order to fully exhibit such an effect, it is preferable to contain 0.0003% or more of these one or more (total). However, if these contents are excessive, the base metal toughness and the HAZ toughness are deteriorated, so the upper limit was made 0.01%. A more preferable upper limit is 0.0040%, still more preferably 0.0020%.

[希土類元素:0.01%以下(0%を含まない)]
希土類元素(REM)は、酸化物または硫化物として存在し、HAZのオーステナイト粒微細化やフェライト変態の促進作用によってHAZ靭性を改善する作用があり、必要によって有効に活用することができる。しかしながら、REMを過剰に含有させると、HAZ靭性を却って劣化させるので、その上限は0.01%とすることが好ましい。REMのより好ましい上限は0.003%である。尚、本発明で用いるREMは、ランタノイド系列希土類元素のいずれをも含むものであり、これらの1種以上を含有させれば良い。
[Rare earth elements: 0.01% or less (excluding 0%)]
Rare earth elements (REM) exist as oxides or sulfides, have the effect of improving HAZ toughness by promoting the austenite grain refinement of HAZ and promoting ferrite transformation, and can be effectively utilized as necessary. However, if REM is excessively contained, the HAZ toughness is deteriorated, so the upper limit is preferably made 0.01%. A more preferable upper limit of REM is 0.003%. In addition, REM used by this invention contains all of the lanthanoid series rare earth elements, and what is necessary is just to contain these 1 or more types.

[Zr,TaおよびHfよりなる群から選ばれる1種以上:合計で0.05%以下(0%を含まない)]
Zr,TaおよびHfは、Tiと同様に炭素・窒化物を形成し、溶接時におけるHAZのオーステナイト粒の粗大化を抑制するので、HAZ靭性の改善に有効な元素である。このような効果を十分に発揮させるため、上記元素の1種以上を合計で0.001%以上含有させることが好ましいが、これらの含有量が過剰になると、母材靭性およびHAZ靭性が却って低下させるので、これらの元素を含有させる場合、その合計で0.05%以下とすることが好ましく、より好ましくは0.03%以下とするのが良い。
[One or more selected from the group consisting of Zr, Ta and Hf: 0.05% or less in total (excluding 0%)]
Zr, Ta, and Hf are elements that are effective in improving HAZ toughness because they form carbon and nitrides similarly to Ti and suppress the coarsening of austenite grains of HAZ during welding. In order to exert such effects sufficiently, it is preferable to contain one or more of the above elements in a total amount of 0.001% or more. However, if these contents are excessive, the base material toughness and the HAZ toughness are decreased. Therefore, when these elements are contained, the total amount is preferably 0.05% or less, and more preferably 0.03% or less.

[Co:2.5%以下(0%を含まない)および/またはW:2.5%以下(0%を含まない)]
CoおよびWは、焼入れ性を向上させ、鋼板の強度を高める効果を有する元素である。このような効果を充分に発揮させるため、これらの1つまたは両方を、夫々0.2%以上で含有させることが好ましい。しかしこれらの量が過剰であると、母材靭性およびHAZ靭性が劣化するため、これらの量の上限を、いずれも2.5%と定めた。
[Co: 2.5% or less (not including 0%) and / or W: 2.5% or less (not including 0%)]
Co and W are elements having an effect of improving hardenability and increasing the strength of the steel sheet. In order to sufficiently exhibit such an effect, it is preferable to contain one or both of these at 0.2% or more. However, if these amounts are excessive, the base material toughness and the HAZ toughness deteriorate, so the upper limit of these amounts was set to 2.5%.

本発明の厚鋼板を製造するに当たっては、上記のように化学成分組成、[Ti]/[N]およびX値の要件を満たす鋼を、通常の溶製法によって溶製し、この溶鋼を冷却してスラブとした後、例えば950〜1300℃の範囲に加熱したあと、熱間圧延を行い、下記(3)式で規定されるT値±50℃の温度範囲における累積圧下率を40%以上とし、引き続き750〜800℃での累積圧下率を10〜30%となるように圧延を終了し、その後冷却するようにすれば良い。
T値=750+4000[Nb]+32600[B]+250[Mo]+400[V]…(3)
In producing the thick steel plate of the present invention, the steel satisfying the requirements of the chemical composition, [Ti] / [N] and X value as described above is melted by an ordinary melting method, and the molten steel is cooled. For example, after heating to a range of 950 to 1300 ° C., hot rolling is performed, and the cumulative rolling reduction in the temperature range of T value ± 50 ° C. defined by the following formula (3) is 40% or more. Then, rolling may be finished so that the cumulative rolling reduction at 750 to 800 ° C. becomes 10 to 30%, and then cooled.
T value = 750 + 4000 [Nb] +32600 [B] +250 [Mo] +400 [V] (3)

尚上記(3)式で規定されるT値は、ベイナイト転位密度調整の指標となるものである。また上記T値を規定する元素のうちには、本発明の厚鋼板において必要によって含有される成分(B,Mo,V)も含まれるが、これらの元素を含有しないときには、これらの項目がないものとしてT値を計算し、これらの元素を含むときには、上記(3)式からT値を計算すれば良い。   The T value defined by the above equation (3) serves as an index for adjusting the bainite dislocation density. In addition, among the elements that define the T value, components (B, Mo, V) that are contained as necessary in the thick steel plate of the present invention are also included, but when these elements are not included, these items are absent. When the T value is calculated as an object and these elements are included, the T value may be calculated from the above equation (3).

上記(3)式で規定されるT値±50℃の温度範囲における累積圧下率を40%以上とするのは、転位密度確保という観点からであり、このときの圧下率が40%未満となると低転位密度となる。また750〜800℃での累積圧下率を10〜30%とするのも転位の確保という観点からであり、このときの圧下率が10%未満では低転位密度となり、30%を超えると高転位密度となる。   The reason why the cumulative rolling reduction in the temperature range of T value ± 50 ° C. defined by the above formula (3) is 40% or more is from the viewpoint of securing the dislocation density, and when the rolling reduction at this time is less than 40% Low dislocation density. The cumulative rolling reduction at 750 to 800 ° C. is set to 10 to 30% from the viewpoint of securing dislocations. If the rolling reduction at this time is less than 10%, a low dislocation density is obtained. It becomes density.

本発明の厚鋼板は、X値を制御してδ域の温度範囲を狭くさせているので、溶鋼を通常の条件で冷却(例えば1500℃から1100℃までを0.1〜2.0℃/秒の冷却速度で冷却)してスラブを形成することにより、十分に小さいTi系炭・窒化物の平均粒子径を形成することができる。但し、より微細な炭・窒化物を形成させるために、鋳造機の冷却水量や冷却方法を変更させて、凝固時の冷却速度を向上させることが好ましい。   Since the thick steel plate of the present invention controls the X value to narrow the temperature range in the δ region, the molten steel is cooled under normal conditions (for example, from 1500 ° C. to 1100 ° C. at 0.1 to 2.0 ° C. / By cooling at a cooling rate of seconds) to form a slab, a sufficiently small average particle diameter of Ti-based carbon / nitride can be formed. However, in order to form finer charcoal / nitrides, it is preferable to change the cooling water amount and cooling method of the casting machine to improve the cooling rate during solidification.

本発明は厚鋼板に関するものであり、該分野において厚鋼板とは、JISで定義されるように、一般に板厚が3.0mm以上であるものを指す。しかし本発明の厚鋼板の板厚は、好ましくは20mm以上、好ましくは40mm以上、更に好ましくは60mm以上である。なぜなら本発明の厚鋼板は、入熱量が40kJ/mmであるような大入熱溶接若しくは超大入熱溶接であっても良好なHAZ靭性を示すので、板厚が厚くても、入熱量を増大させることで効率よく溶接できるからである。   The present invention relates to a thick steel plate. In this field, a thick steel plate generally refers to one having a plate thickness of 3.0 mm or more as defined by JIS. However, the plate thickness of the steel plate of the present invention is preferably 20 mm or more, preferably 40 mm or more, and more preferably 60 mm or more. This is because the thick steel plate of the present invention exhibits good HAZ toughness even with high heat input or super high heat input welding where the heat input is 40 kJ / mm, so even if the plate thickness is thick, the heat input is increased. This is because it can be efficiently welded.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより以下の実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples as a matter of course, and appropriate modifications are made within a range that can meet the purpose described above and below. Of course, it is also possible to implement them, and they are all included in the technical scope of the present invention.

下記表1〜4に示す組成の鋼を、通常の溶製法によって溶製し、この溶鋼を0.1〜2.0℃/分の冷却速度で1500℃から1100℃まで冷却してスラブとした後、1100℃に加熱して熱間圧延を行い、および場合により焼戻しを行い、板厚60mmの高張力鋼板を製造した。このとき、前記(3)式で規定されるT値±50℃の温度範囲における累積圧下率、および750〜800℃での累積圧下率を制御した。下記表1〜4には、鋼板の化学成分組成から計算した[Ti]/[N]、X値、Thermo−calcから計算したδ域の温度範囲の値(表中で「δ域」と記載)、およびT値を併記した。   Steels having the compositions shown in the following Tables 1 to 4 were melted by a normal melting method, and this molten steel was cooled from 1500 ° C. to 1100 ° C. at a cooling rate of 0.1 to 2.0 ° C./min to form a slab. Thereafter, it was heated to 1100 ° C. and hot-rolled, and optionally tempered to produce a high-tensile steel plate having a thickness of 60 mm. At this time, the cumulative rolling reduction in the temperature range of T value ± 50 ° C. defined by the formula (3) and the cumulative rolling reduction at 750 to 800 ° C. were controlled. In the following Tables 1 to 4, the [Ti] / [N] calculated from the chemical composition of the steel sheet, the X value, the value of the temperature range of the δ region calculated from Thermo-calc (described as “δ region” in the table) ) And T values are also shown.

Figure 0005110989
Figure 0005110989

Figure 0005110989
Figure 0005110989

Figure 0005110989
Figure 0005110989

Figure 0005110989
Figure 0005110989

上記のようにして製造した鋼板について、下記要領でTi系炭・窒化物の平均粒子径、鋼板の引張強度、母材靭性、HAZ靭性および脆性亀裂伝播停止特性を、下記の方法で測定すると共に、ベイナイトの面積率、転位密度を前述した方法によって測定した。これらの結果を、製造方法(T値±50℃の温度範囲における累積圧下率、750〜800℃での累積圧下率)と共に、下記表5〜8に示す。   For the steel sheet produced as described above, the average particle diameter of the Ti-based carbon / nitride, the tensile strength of the steel sheet, the base material toughness, the HAZ toughness, and the brittle crack propagation stopping characteristics were measured by the following method. The area ratio and dislocation density of bainite were measured by the methods described above. These results are shown in Tables 5 to 8 below together with the production method (cumulative rolling reduction in the temperature range of T value ± 50 ° C., cumulative rolling reduction at 750 to 800 ° C.).

[Ti系炭・窒化物の平均粒子径]
深さt/4の位置(t=板厚)を、透過型電子顕微鏡(TEM)で、観察倍率6万倍、観察視野2.0μm×2.0μm、観察箇所5箇所の条件で観察した。そしてその視野中の各炭・窒化物の面積を測定し、この面積から各炭・窒化物の円相当径を算出した。この各炭窒化物の円相当径を算術平均(相加平均)して、各鋼板におけるTi系炭・窒化物の平均粒子径を算出した。
[Average particle diameter of Ti-based charcoal / nitride]
The position at the depth t / 4 (t = plate thickness) was observed with a transmission electron microscope (TEM) under the conditions of an observation magnification of 60,000 times, an observation field of view 2.0 μm × 2.0 μm, and five observation locations. Then, the area of each charcoal / nitride in the field of view was measured, and the equivalent circle diameter of each charcoal / nitride was calculated from this area. The average equivalent diameter of each carbonitride was arithmetically averaged (arithmetic average), and the average particle diameter of the Ti-based carbonitride / nitride in each steel sheet was calculated.

[鋼板の引張強度]
深さt/4の位置(t=板厚)で、試験片の長手方向が鋼板の板幅方向(C方向)となるようにJIS4号試験片を採取し、引張試験を行うことにより、引張強度を測定した。
[Tensile strength of steel sheet]
At a depth t / 4 (t = plate thickness), a JIS No. 4 test piece was sampled so that the longitudinal direction of the test piece would be the plate width direction (C direction) of the steel plate, and a tensile test was performed to The strength was measured.

[母材靭性]
深さt/4の位置(t=板厚)で、試験片の長手方向が鋼板の圧延方向(L方向)となるように、JIS Z 2242に規定するVノッチ標準試験片を採取し、各温度でシャルピー衝撃試験(衝撃刃半径:2mm)を行い、−40℃における吸収エネルギー(vE-40)を測定した。
[Base material toughness]
At the position of depth t / 4 (t = plate thickness), V-notch standard test pieces defined in JIS Z 2242 are sampled so that the longitudinal direction of the test pieces is the rolling direction (L direction) of the steel sheet, A Charpy impact test (impact blade radius: 2 mm) was performed at the temperature, and the absorbed energy (vE -40 ) at -40 ° C was measured.

[HAZ靭性]
入熱40kJ/mmで溶接(エレクトロガスアーク溶接)を行い、図1に示す部位からJIS4号試験片を採取し(ノッチ位置は、ボンドから0.5mmHAZ側)、−40℃でシャルピー衝撃試験(衝撃刃半径:2mm)を行い、吸収エネルギー(vE-40)を測定した。本発明では、引張強度が200J以上のものを合格とした。
[HAZ toughness]
Welding (electrogas arc welding) was performed at a heat input of 40 kJ / mm, and a JIS No. 4 specimen was taken from the site shown in FIG. 1 (the notch position was 0.5 mm HAZ side from the bond) and Charpy impact test (impact The blade radius was 2 mm), and the absorbed energy (vE- 40 ) was measured. In the present invention, those having a tensile strength of 200 J or more were regarded as acceptable.

[脆性亀裂伝播停止特性の評価]
脆性亀裂伝播停止特性は、日本溶接協会の鋼種認定試験方法に規定される方法に準じて試験を行った。即ち、50mm正方試験片に29mm深さのノッチ加工をした試験(ESSO試験)により、脆性亀裂伝播性能(Kca値)が600N/mm1.5を示す温度Tk(℃)を求めることによって行った。本発明では、Tk≦−40℃を合格とした。
[Evaluation of brittle crack propagation stop characteristics]
The brittle crack propagation stop property was tested according to the method specified in the steel type certification test method of the Japan Welding Association. That is, the test was performed by obtaining a temperature Tk (° C.) at which the brittle crack propagation performance (Kca value) is 600 N / mm 1.5 by a test (ESSO test) in which a 50 mm square test piece was notched to a depth of 29 mm. In the present invention, Tk ≦ −40 ° C. is regarded as acceptable.

Figure 0005110989
Figure 0005110989

Figure 0005110989
Figure 0005110989

Figure 0005110989
Figure 0005110989

Figure 0005110989
Figure 0005110989

これらの結果から、次のように考察できる。まず試験No.1〜46のものは、本発明で規定する要件を満たすものであるが、いずれの特性(鋼板の引張強度、母材靭性、HAZ靭性および脆性亀裂伝播停止特性)も良好であることが分かる。   From these results, it can be considered as follows. First, test no. 1 to 46 satisfy the requirements defined in the present invention, but it is understood that all the properties (tensile strength of steel plate, base metal toughness, HAZ toughness and brittle crack propagation stop property) are good.

これに対して、試験No.47〜75のものでは、本発明で規定する要件のいずれか欠くものであり、いずれかの特性が劣化している。   In contrast, test no. In the case of 47 to 75, any of the requirements defined in the present invention is lacking, and any of the characteristics is deteriorated.

HAZ靭性(vE-40)測定用の試験片を採取した位置を示す概略図である。It is the schematic which shows the position which extract | collected the test piece for HAZ toughness (vE- 40 ) measurement.

Claims (11)

C:0.030〜0.15%(質量%の意味、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:0.8〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Ti:0.015〜0.03%、B:0.0010〜0.0035%、N:0.0050〜0.01%、Ca:0.005%以下(0%を含まない)、O:0.01%以下(0%を含まない)、Nb:0.035%以下(0%を含まない)を夫々含有すると共に、下記(1)式および(2)式を満足し、残部がFeおよび不可避不純物からなり、且つベイナイト分率が95面積%以上の組織であると共に、ベイナイトの転位密度(ρ1/2)が5.0×10 6 〜5.0×107(m-1)であることを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用厚鋼板。
1.5≦[Ti]/[N]≦4.0 … (1)
40≦X値≦160 … (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]
(式中、[ ]は各元素の含有量(質量%)を表す。)
C: 0.030 to 0.15% (meaning of mass%, the same shall apply hereinafter), Si: 1.0% or less (excluding 0%), Mn: 0.8 to 2.0%, P: 0.0. 03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10%, Ti: 0.015 to 0.03%, B: 0.0010 to 0.0035%, N: 0.0050 to 0.01%, Ca: 0.005% or less (not including 0%), O: 0.01% or less (not including 0%) , Nb: 0.035% or less (excluding 0% ), respectively, satisfies the following formulas (1) and (2), the balance is Fe and inevitable impurities, and the bainite fraction is 95 area % or more with a tissue, wherein a dislocation density of bainite ([rho 1/2) is 5.0 × 10 6 ~5.0 × 10 7 (m -1) High heat input welding steel plate excellent in brittle crack propagation stopping characteristics.
1.5 ≦ [Ti] / [N] ≦ 4.0 (1)
40 ≦ X value ≦ 160 (2)
X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(In the formula, [] represents the content (% by mass) of each element.)
C:0.030〜0.15%(質量%の意味、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:0.8〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Ti:0.015〜0.03%、B:0.0010〜0.0035%、N:0.0050〜0.01%、Ca:0.005%以下(0%を含まない)、O:0.01%以下(0%を含まない)と、更に、Cu:2.0%以下(0%を含まない)、Ni:2.0%以下(0%を含まない)およびCr:2.0%以下(0%を含まない)よりなる群から選ばれる1種以上を夫々含有すると共に、下記(1)式および(2)式を満足し、残部がFeおよび不可避不純物からなり、且つベイナイト分率が95面積%以上の組織であると共に、ベイナイトの転位密度(ρC: 0.030 to 0.15% (meaning of mass%, the same shall apply hereinafter), Si: 1.0% or less (excluding 0%), Mn: 0.8 to 2.0%, P: 0.0. 03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10%, Ti: 0.015 to 0.03%, B: 0.0010 to 0.0035%, N: 0.0050 to 0.01%, Ca: 0.005% or less (not including 0%), O: 0.01% or less (not including 0%) Further, Cu: 2.0% or less (not including 0%), Ni: 2.0% or less (not including 0%), and Cr: 2.0% or less (not including 0%) And the following formulas (1) and (2) are satisfied, the balance is composed of Fe and inevitable impurities, and the bainite fraction is 9 With an area% or more organizations, the dislocation density of bainite ([rho 1/21/2 )が5.0×10) Is 5.0 × 10 66 〜5.0×10~ 5.0 × 10 77 (m(m -1-1 )であることを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用厚鋼板。A thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics.
1.5≦[Ti]/[N]≦4.0 … (1)1.5 ≦ [Ti] / [N] ≦ 4.0 (1)
40≦X値≦160 … (2)40 ≦ X value ≦ 160 (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(式中、[ ]は各元素の含有量(質量%)を表す。)(In the formula, [] represents the content (% by mass) of each element.)
C:0.030〜0.15%(質量%の意味、以下同じ)、Si:1.0%以下(0%を含まない)、Mn:0.8〜2.0%、P:0.03%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Al:0.01〜0.10%、Ti:0.015〜0.03%、B:0.0010〜0.0035%、N:0.0050〜0.01%、Ca:0.005%以下(0%を含まない)、O:0.01%以下(0%を含まない)、Nb:0.035%以下(0%を含まない)と、更に、Cu:2.0%以下(0%を含まない)、Ni:2.0%以下(0%を含まない)およびCr:2.0%以下(0%を含まない)よりなる群から選ばれる1種以上を夫々含有すると共に、下記(1)式および(2)式を満足し、残部がFeおよび不可避不純物からなり、且つベイナイト分率が95面積%以上の組織であると共に、ベイナイトの転位密度(ρC: 0.030 to 0.15% (meaning of mass%, the same shall apply hereinafter), Si: 1.0% or less (excluding 0%), Mn: 0.8 to 2.0%, P: 0.0. 03% or less (not including 0%), S: 0.01% or less (not including 0%), Al: 0.01 to 0.10%, Ti: 0.015 to 0.03%, B: 0.0010 to 0.0035%, N: 0.0050 to 0.01%, Ca: 0.005% or less (not including 0%), O: 0.01% or less (not including 0%), Nb: 0.035% or less (not including 0%), Cu: 2.0% or less (not including 0%), Ni: 2.0% or less (not including 0%), and Cr: Each contains at least one selected from the group consisting of 2.0% or less (excluding 0%), satisfies the following formulas (1) and (2), and the balance is Fe and Consists avoid impurities, and with bainite fraction is 95 area% or more of the tissue, the dislocation density of bainite ([rho 1/21/2 )が5.0×10) Is 5.0 × 10 66 〜5.0×10~ 5.0 × 10 77 (m(m -1-1 )であることを特徴とする脆性亀裂伝播停止特性に優れた大入熱溶接用厚鋼板。A thick steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics.
1.5≦[Ti]/[N]≦4.0 … (1)1.5 ≦ [Ti] / [N] ≦ 4.0 (1)
40≦X値≦160 … (2)40 ≦ X value ≦ 160 (2)
X値=500[C]+32[Si]+8[Mn]−9[Nb]X value = 500 [C] +32 [Si] +8 [Mn] -9 [Nb]
+14[Cu]+17[Ni]−5[Cr]−25[Mo]−34[V]+14 [Cu] +17 [Ni] -5 [Cr] -25 [Mo] -34 [V]
(式中、[ ]は各元素の含有量(質量%)を表す。)(In the formula, [] represents the content (% by mass) of each element.)
δ域の温度範囲が40℃以下である請求項1〜3のいずれかに記載の大入熱溶接用厚鋼板。 The thick steel plate for high heat input welding according to any one of claims 1 to 3, wherein the temperature range of the δ region is 40 ° C or lower. 深さt/4の位置(t=板厚)において、Ti系炭・窒化物の平均粒子径が43nm以下である請求項1〜4のいずれかに記載の大入熱溶接用厚鋼板。 The thick steel plate for high heat input welding according to any one of claims 1 to 4 , wherein an average particle diameter of the Ti-based carbon / nitride is 43 nm or less at a position at a depth t / 4 (t = plate thickness). 更に、Mo:1.0%以下(0%を含まない)を含有するものである請求項1〜5のいずれかに記載の大入熱溶接用厚鋼板。   Furthermore, it contains Mo: 1.0% or less (excluding 0%), The thick steel plate for high heat input welding in any one of Claims 1-5. 更に、V:0.1%以下(0%を含まない)を含有するものである請求項1〜6のいずれかに記載の大入熱溶接用厚鋼板。   The thick steel plate for high heat input welding according to any one of claims 1 to 6, further comprising V: 0.1% or less (not including 0%). 更に、Mg,Sr,Baよりなる群から選ばれる1種以上:合計で0.01%以下(0%を含まない)含有するものである請求項1〜7のいずれかに記載の大入熱溶接用厚鋼板。   Furthermore, 1 type or more chosen from the group which consists of Mg, Sr, Ba: It is what contains 0.01% or less in total (excluding 0%), The large heat input in any one of Claims 1-7 Thick steel plate for welding. 更に、希土類元素:0.01%以下(0%を含まない)を含有するものである請求項1〜8のいずれかに記載の大入熱溶接用厚鋼板。   Furthermore, the thick steel plate for high heat input welding in any one of Claims 1-8 which contains rare earth elements: 0.01% or less (0% is not included). 更に、Zr,TaおよびHfよりなる群から選ばれる1種以上:合計で0.05%以下(0%を含まない)を含有するものである請求項1〜9のいずれかに記載の大入熱溶接用厚鋼板。   Furthermore, 1 type or more chosen from the group which consists of Zr, Ta, and Hf: 0.05% or less (it does not contain 0%) in total is contained, The large input in any one of Claims 1-9 Thick steel plate for heat welding. 更に、Co:2.5%以下(0%を含まない)および/またはW:2.5%以下(0%を含まない)を含有するものである請求項1〜10のいずれかに記載の大入熱溶接用厚鋼板。   Furthermore, Co: 2.5% or less (0% is not included) and / or W: 2.5% or less (not including 0%) is contained. Heavy steel plate for high heat input welding.
JP2007183291A 2007-07-12 2007-07-12 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics Expired - Fee Related JP5110989B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007183291A JP5110989B2 (en) 2007-07-12 2007-07-12 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
KR1020080054532A KR100967498B1 (en) 2007-07-12 2008-06-11 Thick plate for high heat-input welding excellent in brittle crack arrestibility
CN2008101274249A CN101343712B (en) 2007-07-12 2008-06-30 Heavy steel plate for high-heat energy input soldering with excellent shortness fissure spread stop character

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007183291A JP5110989B2 (en) 2007-07-12 2007-07-12 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics

Publications (2)

Publication Number Publication Date
JP2009019244A JP2009019244A (en) 2009-01-29
JP5110989B2 true JP5110989B2 (en) 2012-12-26

Family

ID=40245824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007183291A Expired - Fee Related JP5110989B2 (en) 2007-07-12 2007-07-12 Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics

Country Status (3)

Country Link
JP (1) JP5110989B2 (en)
KR (1) KR100967498B1 (en)
CN (1) CN101343712B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4914783B2 (en) * 2007-08-07 2012-04-11 株式会社神戸製鋼所 Large steel plate for high heat input welding with excellent shearability
JP5318691B2 (en) * 2009-07-27 2013-10-16 株式会社神戸製鋼所 High strength thick steel plate for containment vessel with excellent low temperature toughness
JP5643542B2 (en) * 2010-05-19 2014-12-17 株式会社神戸製鋼所 Thick steel plate with excellent fatigue characteristics
JP5208178B2 (en) * 2010-09-30 2013-06-12 株式会社神戸製鋼所 High-strength steel sheet with a tensile strength of 980 MPa or more and excellent low-temperature toughness of multilayer prime joints
WO2012070355A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron-beam welded joint, steel material for electron-beam welding, and manufacturing method therefor
WO2012070359A1 (en) * 2010-11-22 2012-05-31 新日本製鐵株式会社 Electron beam welded joint, steel material for use in electron beam welded joint, and manufacturing method thereof
JP5704706B2 (en) * 2011-03-16 2015-04-22 株式会社神戸製鋼所 High-strength thick steel plate with excellent HAZ toughness
JP5824401B2 (en) * 2012-03-30 2015-11-25 株式会社神戸製鋼所 Steel sheet with excellent resistance to hydrogen-induced cracking and method for producing the same
JP5949682B2 (en) * 2012-07-03 2016-07-13 Jfeスチール株式会社 Manufacturing method of steel plate for high heat input welding with excellent brittle crack propagation stop properties
KR101732997B1 (en) * 2013-03-26 2017-05-08 제이에프이 스틸 가부시키가이샤 High strength thick steel plate for high heat input welding with excellent brittle crack arrestability and manufacturing method therefor
CN103952639B (en) * 2014-04-04 2016-05-04 日照钢铁控股集团有限公司 There is the pipe line steel that excellent spreading resistance destroys
CN107854842A (en) * 2017-12-16 2018-03-30 苏州胤宗智能科技有限公司 A kind of cold-resistant two-player swing and its processing technology
RU2767261C1 (en) * 2018-09-28 2022-03-17 ДжФЕ СТИЛ КОРПОРЕЙШН High-strength steel plate for acid-resistant pipeline and method of producing steel plate, high-strength steel pipe in which high-strength steel plate is used for acid-resistant pipeline
BR112021005768A2 (en) * 2018-09-28 2021-06-29 Jfe Steel Corporation high strength steel sheet for acid resistant piping and method for producing the same, and high strength steel tube using high strength steel sheet for acid resistant piping
JP7261364B1 (en) * 2023-01-20 2023-04-19 株式会社神戸製鋼所 steel plate

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794687B2 (en) * 1989-03-29 1995-10-11 新日本製鐵株式会社 Method for producing HT80 steel excellent in high weldability, stress corrosion cracking resistance and low temperature toughness
JP2000129392A (en) 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2002047531A (en) 2000-05-22 2002-02-15 Nippon Steel Corp High tensile strength steel for welded structure having excellent fatigue characteristic and its production method
JP3525905B2 (en) * 2001-03-29 2004-05-10 Jfeスチール株式会社 Method for producing structural steel with excellent toughness in weld heat affected zone
KR100928797B1 (en) * 2002-12-26 2009-11-25 주식회사 포스코 Ultra low carbon bainite steel with excellent toughness of high heat input welding heat affected zone and manufacturing method
JP4041447B2 (en) * 2003-09-29 2008-01-30 株式会社神戸製鋼所 Thick steel plate with high heat input welded joint toughness
JP2005232515A (en) * 2004-02-18 2005-09-02 Kobe Steel Ltd Thick steel plate having excellent high heat input welded join toughness
JP4280222B2 (en) 2004-10-28 2009-06-17 新日本製鐵株式会社 Ultra-high-strength steel sheet and ultra-high-strength steel pipe excellent in pipeline deformation characteristics and low-temperature toughness, and methods for producing them
JP4523908B2 (en) * 2005-11-11 2010-08-11 新日本製鐵株式会社 Steel sheet for high strength line pipe having excellent tensile strength of 900 MPa class or more excellent in low temperature toughness, line pipe using the same, and production method thereof
JP4976906B2 (en) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance

Also Published As

Publication number Publication date
JP2009019244A (en) 2009-01-29
KR100967498B1 (en) 2010-07-07
CN101343712A (en) 2009-01-14
KR20090006728A (en) 2009-01-15
CN101343712B (en) 2011-10-12

Similar Documents

Publication Publication Date Title
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP5773098B1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP4976905B2 (en) Thick steel plate with excellent HAZ toughness and base metal toughness
WO2013089156A1 (en) High-strength h-section steel with excellent low temperature toughness, and manufacturing method thereof
JP4976906B2 (en) Thick steel plate with excellent HAZ toughness, base material toughness, elongation, and strength-elongation balance
JP4914783B2 (en) Large steel plate for high heat input welding with excellent shearability
JP2008045174A (en) High-strength thick steel plate for structural purpose having excellent brittle crack propagation property and its production method
KR20130051518A (en) High-strength steel sheet and method for producing same
WO2014175122A1 (en) H-shaped steel and method for producing same
WO2021199629A1 (en) Steel sheet and method for manufacturing same
JP5181460B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5181496B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP5234951B2 (en) Steel material excellent in toughness of weld heat-affected zone and base metal low-temperature toughness, and method for producing the same
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
WO2015194619A1 (en) High-strength steel plate and process for producing same
JP5034392B2 (en) Structural high-strength thick steel plate with excellent brittle crack propagation stopping characteristics and method for producing the same
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JP2010168644A (en) Thick steel plate excellent in toughness of welding heat-affected zone
WO2015064077A1 (en) Ferrite-martensite two-phase stainless steel, and method for producing same
JP2008111166A (en) High strength thick steel plate for structural use having excellent brittle crack arrest property, and its production method
JP2018168411A (en) Manufacturing method of high strength/high toughness steel plate
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP6390813B2 (en) Low-temperature H-section steel and its manufacturing method
JP4354754B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5110989

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees