JP5139015B2 - Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same - Google Patents

Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same Download PDF

Info

Publication number
JP5139015B2
JP5139015B2 JP2007241503A JP2007241503A JP5139015B2 JP 5139015 B2 JP5139015 B2 JP 5139015B2 JP 2007241503 A JP2007241503 A JP 2007241503A JP 2007241503 A JP2007241503 A JP 2007241503A JP 5139015 B2 JP5139015 B2 JP 5139015B2
Authority
JP
Japan
Prior art keywords
less
toughness
temperature
steel sheet
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007241503A
Other languages
Japanese (ja)
Other versions
JP2009074111A (en
Inventor
学 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007241503A priority Critical patent/JP5139015B2/en
Priority to CN2008101448931A priority patent/CN101392352B/en
Priority to KR1020080091062A priority patent/KR20090029656A/en
Publication of JP2009074111A publication Critical patent/JP2009074111A/en
Priority to KR1020120027772A priority patent/KR20120034094A/en
Application granted granted Critical
Publication of JP5139015B2 publication Critical patent/JP5139015B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、母材の低温靭性に優れると共に、大入熱溶接したときの溶接熱影響部の靭性にも優れた厚肉高強度鋼板、およびその製造方法に関するものである。   The present invention relates to a thick-walled high-strength steel sheet that is excellent in low-temperature toughness of a base material and also excellent in toughness of a weld heat-affected zone when subjected to high heat input welding, and a method for producing the same.

板厚が60〜80mm程度の厚肉鋼板(厚物)を溶接する際には、溶接施工効率向上の観点から、大入熱溶接が適用されるのが一般である。しかしながら、こうした大入熱溶接では、溶接入熱量は100〜500kJ/cmにも及び、母材(鋼板)の熱影響部(以下、「HAZ」と略記することがある)の靭性が劣化しやすく、こうした靭性を確保することが重要な要件となっている。こうしたHAZ靭性を改善するための技術がこれまで様々提案されている。   When welding a thick steel plate (thick material) having a thickness of about 60 to 80 mm, large heat input welding is generally applied from the viewpoint of improving welding construction efficiency. However, in such high heat input welding, the heat input of welding reaches 100 to 500 kJ / cm, and the toughness of the heat-affected zone (hereinafter sometimes abbreviated as “HAZ”) of the base material (steel plate) is likely to deteriorate. Ensuring such toughness is an important requirement. Various techniques for improving the HAZ toughness have been proposed so far.

また、上記のような鋼板では、HAZの靭性は勿論のこと、母材自体が高強度・高靭性であることも重要な要件である。こうした特性に関して、板厚が60mm未満の薄鋼板(薄物)では、組織制御の容易さから、高靭性が「ばらつき」なしに安定して確保されている。これに対して、上記のような厚物では、圧延による歪みが導入しにくいことから、高靭性を「ばらつき」なしに安定して確保することが困難であるのが実情である。   In the steel sheet as described above, not only the toughness of the HAZ but also the base material itself has high strength and high toughness. Regarding such characteristics, in a thin steel plate (thin material) having a thickness of less than 60 mm, high toughness is stably ensured without “variation” because of easy structure control. On the other hand, since it is difficult to introduce distortion due to rolling in the above-described thick materials, it is actually difficult to ensure high toughness stably without “variation”.

母材の靭性、特に低温での靭性を向上するためには、組織の微細化が有効であることは知られている。例えば、特許文献1には、仕上げ圧延温度をAr3変態点以上、900℃以下で熱間圧延を行った後、鋼板の組織の回復の制御または固溶状態のBによる焼入れ性を向上させるために、圧延終了後に20秒以内に加速冷却を開始することによって、組織の微細化を達成する技術が提案されている。 In order to improve the toughness of the base material, particularly the toughness at low temperatures, it is known that refinement of the structure is effective. For example, Patent Document 1 discloses that after hot rolling at a finish rolling temperature of not less than Ar 3 transformation point and not more than 900 ° C., control of recovery of the structure of the steel sheet or improvement of hardenability by B in a solid solution state. In addition, there has been proposed a technique for achieving fine structure by starting accelerated cooling within 20 seconds after the end of rolling.

上記のような技術では、板厚が20〜80mm程度の鋼板での高HAZ靭性を実現している。しかしながら、技術では板厚が60mm以上の厚肉鋼板の対象として含まれており、こうした厚肉鋼板に対しては、最も母材の靭性向上に有効であるが制御に難しい圧延によって組織を微細化するのではなく、加速冷却による制御によって母材の組織の微細化を図るものであるので、希望するほどの高靭性を安定して確保することはできず、靭性レベルも−20℃での靭性しか補償できていないのが実情である。
特許第3899014号公報
With the above-described technology, high HAZ toughness is realized with a steel plate having a thickness of about 20 to 80 mm. However, the technology includes a thick steel plate with a thickness of 60 mm or more. For such a thick steel plate, the microstructure is refined by rolling, which is the most effective in improving the toughness of the base material but is difficult to control. However, since the microstructure of the base material is refined by control by accelerated cooling, the desired high toughness cannot be stably ensured, and the toughness level is -20 ° C. The fact is that we can only compensate.
Japanese Patent No. 3899014

本発明は前記の様な事情に着目してなされたものであって、その目的は、母材の優れた低温靭性をばらつきなく安定して確保すると共に、大入熱溶接したときの溶接熱影響部の靭性にも優れた厚肉高強度鋼板、およびこうした鋼板を製造するための有用な方法を提供することにある。   The present invention has been made paying attention to the circumstances as described above, and its purpose is to stably ensure excellent low temperature toughness of the base material without variation, and also to affect the heat of welding when performing high heat input welding. An object of the present invention is to provide a thick high-strength steel plate excellent in toughness of the part and a useful method for producing such a steel plate.

前記目的を達成することのできた本発明の厚肉高強度鋼板とは、C:0.03〜0.08%(質量%の意味、以下同じ)、Si:0.05%以下(0%を含む)、Mn:1.4〜1.7%、Al:0.01〜0.06%、P:0.05%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Cu:0.20〜0.40%、Ni:0.20〜0.60%、Nb:0.005〜0.015%、Ti:0.005〜0.03%、B:0.0005〜0.0030%およびN:0.0030〜0.0090%を夫々含有し、残部が鉄および不可避不純物からなり、且つベイナイト相を主体とする組織からなり、
表面から深さt/4(tは板厚を表す、以下同じ)の位置において、隣り合う結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、その最大結晶粒径が円相当直径で20μm以下である点に要旨を有するものである。
The thick-walled high-strength steel sheet of the present invention that has achieved the above object is C: 0.03 to 0.08% (meaning mass%, the same shall apply hereinafter), Si: 0.05% or less (0% Mn: 1.4 to 1.7%, Al: 0.01 to 0.06%, P: 0.05% or less (excluding 0%), S: 0.01% or less (0% Cu: 0.20-0.40%, Ni: 0.20-0.60%, Nb: 0.005-0.015%, Ti: 0.005-0.03%, B : 0.0005-0.0030% and N: 0.0030-0.0090%, respectively, the balance consists of iron and inevitable impurities, and consists of a structure mainly composed of bainite phase,
When a region surrounded by a large-angle grain boundary where the orientation difference between adjacent crystals is 15 ° or more is defined as a crystal grain at a position of depth t / 4 from the surface (t represents a plate thickness, the same applies hereinafter), the maximum The main point is that the crystal grain size is 20 μm or less in terms of the equivalent circle diameter.

尚、本発明において、「ベイナイト相を主体とする」とは、ベイナイト相が組織中に90面積%以上を占める状態を意味する。また「円相当直径」とは、同一面積の円に換算したときの直径(円相当直径)を意味する。   In the present invention, “mainly composed of a bainite phase” means a state in which the bainite phase occupies 90 area% or more in the structure. The “equivalent circle diameter” means a diameter (equivalent circle diameter) when converted to a circle having the same area.

本発明の厚肉高強度鋼板には、必要によって、(1)Cr:0.20%以下(0%を含まない)、Mo:0.10%以下(0%を含まない)およびV:0.040%以下(0%を含まない)よりなる群から選択される1種以上、(2)Ca:0.004%以下(0%を含まない)、等を含有させることも有効であり、含有させる成分に応じて鋼板の特性が更に改善される。   In the thick high-strength steel sheet of the present invention, if necessary, (1) Cr: 0.20% or less (not including 0%), Mo: 0.10% or less (not including 0%), and V: 0 It is also effective to contain at least one selected from the group consisting of 0.040% or less (not including 0%), (2) Ca: 0.004% or less (not including 0%), etc. The properties of the steel sheet are further improved depending on the components to be contained.

上記のような本発明の厚肉高強度鋼板では、−40℃におけるシャルピー吸収エネルギーvE-40の最小値が150J以上であるような高い母材低温靭性が安定して確保できるものとなる。 In the thick high-strength steel sheet of the present invention as described above, high base metal low temperature toughness such that the minimum value of Charpy absorbed energy vE- 40 at -40 ° C is 150 J or more can be stably secured.

一方、上記のような本発明の厚肉高強度鋼板を製造するに当たっては、鋼スラブを、950〜1200℃の温度に加熱して熱間圧延を施す際に、鋼板表面から深さt/4の位置の温度が830℃以上、860℃以下である範囲で、圧下率:5%以上の圧延を行うと共に、前記温度が770℃以上、810℃未満である範囲で、圧下率:5%以上の圧延を行い、且つ前記温度が810℃以上、830℃未満での圧下率を2%以下(0%を含む)として圧延を行うようにすれば良い。   On the other hand, in manufacturing the thick high-strength steel sheet of the present invention as described above, when the steel slab is heated to a temperature of 950 to 1200 ° C. and subjected to hot rolling, the depth t / 4 from the steel sheet surface. In the range where the temperature at 830 ° C. or more and 860 ° C. or less, rolling reduction: 5% or more is performed, and in the range where the temperature is 770 ° C. or more and less than 810 ° C., the reduction rate: 5% or more. And rolling at a temperature of 810 ° C. or more and less than 830 ° C. is 2% or less (including 0%).

本発明においては、ベイナイト相を主体とする組織を有する鋼板において、その化学成分組成を厳密に規定すると共に、隣り合う結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、その最大結晶粒の微細化を図ることによって、母材における優れた低温靭性をばらつきなく安定して確保すると共に、大入熱溶接したときの溶接熱影響部の靭性にも優れた厚肉高強度鋼板が実現でき、こうした鋼板は、造船や橋梁分野を始めとする各種大型溶接構造物の素材として有用である。   In the present invention, in a steel sheet having a structure mainly composed of a bainite phase, the chemical composition is strictly defined, and a region surrounded by a large-angle grain boundary in which the orientation difference between adjacent crystals is 15 ° or more is defined as a crystal grain. In this case, by refining the largest crystal grains, the excellent low-temperature toughness of the base metal can be ensured stably without variation, and the toughness of the heat affected zone when welding with high heat input is also excellent. Thick, high-strength steel sheets can be realized, and such steel sheets are useful as materials for various large welded structures including shipbuilding and bridge fields.

本発明者は、前記課題を解決するために、特にベイナイト組織である鋼板に着目し、その鋼板における母材強度・低温靭性に優れると共に、大入熱溶接したときのHAZ靭性にも優れた鋼板を実現するべく、様々な角度から検討した。その結果、次のような知見が得られた。これまでにも、結晶粒の平均値を微細化することによって、母材靭性(シャルピー衝撃吸収特性)が改善されると考えられていたのであるが、組織の平均的な微細化を図るだけでは、粗大な結晶粒が存在することがあり、特に厚肉鋼板ではこうした粗大結晶粒の存在が靭性低下やそのばらつきの発生の原因となることが判明した。   In order to solve the above-mentioned problems, the present inventor has focused particularly on a steel sheet having a bainite structure, and has excellent base metal strength and low-temperature toughness in the steel sheet, and also excellent in HAZ toughness when subjected to high heat input welding. We studied from various angles in order to realize this. As a result, the following knowledge was obtained. In the past, it was thought that the base material toughness (Charpy impact absorption characteristics) would be improved by refining the average value of crystal grains. Coarse crystal grains may be present, and it has been found that the presence of such coarse crystal grains causes a decrease in toughness and variations thereof, particularly in thick steel plates.

本発明者は、こうした現象に着目し、粗大な結晶粒の存在をできるだけなくすという観点から検討を進めた。その結果、化学成分組成を厳密に規定した鋼板を用いて、適切な条件下で製造し、隣り合う結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたときに、その最大結晶粒の微細化を図るようにすれば、粗大な結晶粒が存在する状態を回避でき、靭性低下やそのばらつきを回避しつつ、HAZ靭性に優れた厚肉高強度鋼板が実現できることを見出し、本発明を完成した。   The present inventor paid attention to such a phenomenon, and proceeded with studies from the viewpoint of eliminating the presence of coarse crystal grains as much as possible. As a result, when using steel plates with strictly defined chemical composition, manufactured under appropriate conditions, the region surrounded by large-angle grain boundaries where the orientation difference between adjacent crystals is 15 ° or more is used as the crystal grains. If the maximum crystal grains are made finer, the presence of coarse crystal grains can be avoided, and a high-thickness high-strength steel sheet with excellent HAZ toughness can be realized while avoiding toughness deterioration and variations. The present invention has been completed.

ベイナイト組織ではオーステナイトに対して、何通りかの方位関係を持って生成することになるのであるが、鋼板の化学成分組成、組織の生成温度、その他の条件等によって選択される各結晶格子の方位関係が変化することになり、一定の結晶方位差を有する結晶粒界では、母材の低温靭性が良好になることが判明したのである。そして、上記最大結晶粒を適切に規定してやれば、粗大化した結晶粒を存在による特性のばらつきを生じさせることなく、良好な母材の低温靭性が実現できたのである。   In the bainite structure, it forms with some orientation relation to austenite, but the orientation of each crystal lattice selected by the chemical composition of the steel sheet, the formation temperature of the structure, other conditions, etc. The relationship has changed, and it has been found that the low temperature toughness of the base material is good at the grain boundaries having a certain crystal orientation difference. If the maximum crystal grain is properly defined, good low temperature toughness of the base material can be realized without causing variation in characteristics due to the presence of coarse crystal grains.

ベイナイト相を主体とするような単相組織では、粒界が亀裂進展の抵抗となるものと考えられるが、亀裂進展の際に粒界と亀裂が衝突する頻度を高めれば、亀裂の進展が抑制でき、これによって母材の靭性が向上するものと考えられる。但し、粒界を形成する両端の方位差が小さい(例えば、15°未満の)小角粒界(小傾角境界)では、粒界エネルギーが小さくなってその効果が小さいので、前記方位差が15°以上の大角粒界(大傾角境界)を対象とする必要がある。   In a single-phase structure mainly composed of bainite phase, it is considered that the grain boundary acts as a resistance to crack growth, but if the frequency of the collision between the grain boundary and the crack is increased during crack growth, the crack growth is suppressed. This is considered to improve the toughness of the base material. However, in a small-angle grain boundary (small tilt boundary) where the orientation difference between both ends forming the grain boundary is small (for example, less than 15 °), the grain boundary energy is small and the effect is small, so the orientation difference is 15 °. It is necessary to target the above large-angle grain boundaries (large tilt boundaries).

つまり表面から深さt/4の位置において、前記方位差が15°以上である大角粒界に囲まれた結晶粒で、同一面積の円に換算したときの直径(円相当直径)の最大値(最大粒界径)を20μm以下とすることによって、上記目的に適う厚肉高強度鋼板が実現できたのである。尚、本発明の鋼板において、母材特性を改善するに当たって、結晶粒の方位関係を、表面から深さt/4の位置で評価したのは、板厚全体の代表位置であり、低温靭性は全厚で抑制される必要があるからである。   In other words, the maximum value of the diameter (equivalent circle diameter) when converted to a circle of the same area with a crystal grain surrounded by a large-angle grain boundary having a misorientation of 15 ° or more at a depth t / 4 from the surface. By setting the (maximum grain boundary diameter) to 20 μm or less, a thick high-strength steel sheet suitable for the above purpose could be realized. In the steel sheet of the present invention, in order to improve the base material characteristics, the crystal grain orientation relationship was evaluated at the position of the depth t / 4 from the surface, which is a representative position of the entire plate thickness, and the low temperature toughness is This is because it needs to be suppressed at the full thickness.

尚、前記「方位差」は、「ずれ角」若しくは「傾角」とも呼ばれているものであり、以下では「結晶方位差」と呼ぶことがある。またこうした結晶方位差の測定は、上記した電子後方散乱回折像法(Electron Backscattering Pattern法:以下、「EBSP法」と呼ぶことがある)を採用することによって実現できる。   The “orientation difference” is also referred to as “shift angle” or “inclination angle”, and may be hereinafter referred to as “crystal orientation difference”. In addition, the measurement of the crystal orientation difference can be realized by employing the above-described electron backscattering diffraction image method (Electron Backscattering Pattern method: hereinafter referred to as “EBSP method”).

また厚肉高強度鋼板では、ベイナイトを主体とする組織とすることによって、高強度(例えば、引張強さTS:490MPa以上)を実現できることになる。   Moreover, in a thick high-strength steel sheet, high strength (for example, tensile strength TS: 490 MPa or more) can be realized by using a structure mainly composed of bainite.

本発明の鋼板は、化学成分組成が適正に調整されていることも特徴の1つとする。以下では、化学成分の範囲限定理由を説明する。   One feature of the steel sheet of the present invention is that the chemical composition is appropriately adjusted. Below, the reason for limiting the range of chemical components will be described.

[C:0.03〜0.08%]
Cは、鋼板の強度確保のために必要な元素である。高強度、即ち引張強さTSで490MPa程度(使用する鋼板の肉厚にもよるが)を得るためには、0.03%以上含有させることが必要である。しかし、0.08%を超えて過剰に含有させると溶接性が劣化する。こうしたことから、C含有量は0.03〜0.08%とした。尚、C含有量の好ましい下限は0.04%であり、好ましい上限は0.06%である。
[C: 0.03-0.08%]
C is an element necessary for ensuring the strength of the steel sheet. In order to obtain a high strength, that is, a tensile strength TS of about 490 MPa (depending on the thickness of the steel sheet used), it is necessary to contain 0.03% or more. However, if the content exceeds 0.08%, weldability deteriorates. For these reasons, the C content is set to 0.03 to 0.08%. In addition, the preferable minimum of C content is 0.04%, and a preferable upper limit is 0.06%.

[Si:0.05%以下(0%を含む)]
Siは、大入熱溶接のHAZにおいてオーステナイト化を促進する元素であるため、0.05%以下にする必要がある。好ましくは0.03%以下にするのが良い。
[Si: 0.05% or less (including 0%)]
Since Si is an element that promotes austenitization in HAZ of high heat input welding, it is necessary to make it 0.05% or less. Preferably it is 0.03% or less.

[Mn:1.4〜1.7%]
Mnは鋼板の強度および靭性確保のために有効な元素であり、こうした効果を発揮させるためには1.4%以上含有させる必要がある。しかしながら、過剰に含有させると溶接性、割れ感受性が劣化するので1.7%以下とする必要がある。尚、Mn含有量の好ましい下限は1.5%であり、好ましい上限は1.6%である。
[Mn: 1.4 to 1.7%]
Mn is an effective element for securing the strength and toughness of the steel sheet, and in order to exert such effects, it is necessary to contain 1.4% or more. However, if it is contained excessively, weldability and cracking susceptibility deteriorate, so it is necessary to make it 1.7% or less. In addition, the minimum with preferable Mn content is 1.5%, and a preferable upper limit is 1.6%.

[Al:0.01〜0.06%]
Alは脱酸のために有用な元素であり、0.01%に満たないと脱酸効果がない。しかしながら、過剰に含有させると溶接部の靭性を劣化させるので0.06%以下とする必要がある。
[Al: 0.01 to 0.06%]
Al is an element useful for deoxidation, and if less than 0.01%, there is no deoxidation effect. However, if it is contained excessively, the toughness of the welded portion is deteriorated, so it is necessary to make it 0.06% or less.

[P:0.05%以下(0%を含まない)]
Pは結晶粒に偏析し、延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが、実用鋼の清浄度の程度を考慮して0.05%以下に抑制するのが良い。尚、Pは鋼に不可避的に含まれる不純物であり、その量を0%とすることは、工業生産上、困難である。
[P: 0.05% or less (excluding 0%)]
P is an impurity that segregates in crystal grains and adversely affects ductility and toughness. Therefore, it is preferable that P be as small as possible, but it should be suppressed to 0.05% or less in consideration of the degree of cleanliness of practical steel. Is good. In addition, P is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.

[S:0.01%以下(0%を含まない)]
Sは、鋼板中の合金元素と化合して種々の介在物を形成し、鋼板の延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが、実用鋼の清浄度の程度を考慮して0.01%以下に抑制するのが良い。尚、Sは鋼に不可避的に含まれる不純物であり、その量を0%とすることは、工業生産上、困難である。
[S: 0.01% or less (excluding 0%)]
S is an impurity that combines with alloy elements in the steel sheet to form various inclusions and adversely affects the ductility and toughness of the steel sheet, so it is preferable that it be as small as possible. Considering the degree, it is preferable to suppress it to 0.01% or less. In addition, S is an impurity inevitably contained in steel, and it is difficult to make the amount 0% in industrial production.

[Cu:0.20〜0.40%]
Cuは、変態を抑制してベイナイト変態点Bsを低下させることで、微細なブロック形成に有効である。こうした効果を発揮させるためには、Cuは0.20%以上含有させる必要がある。しかしその量が過剰になると溶接性が損なわれるので、その上限は0.40%とする必要がある。尚、Cu含有量の好ましい下限は0.25%であり、好ましい上限は0.35%である。
[Cu: 0.20 to 0.40%]
Cu is effective in forming fine blocks by suppressing transformation and lowering the bainite transformation point Bs. In order to exhibit such an effect, it is necessary to contain Cu 0.20% or more. However, since the weldability is impaired when the amount is excessive, the upper limit needs to be 0.40%. In addition, the minimum with preferable Cu content is 0.25%, and a preferable upper limit is 0.35%.

[Ni:0.20〜0.60%]
Niは、Cuと同様に、変態を抑制してベイナイト変態点Bsを低下させることで、微細なブロック形成に有効である。こうした効果を発揮させるためには、Niは0.20%以上含有させる必要がある。しかしその量が過剰になると溶接性が損なわれるので、その上限は0.60%とする必要がある。尚、Ni含有量の好ましい下限は0.30%であり、好ましい上限は0.40%である。
[Ni: 0.20 to 0.60%]
Ni, like Cu, is effective in forming fine blocks by suppressing transformation and lowering the bainite transformation point Bs. In order to exert such effects, Ni needs to be contained by 0.20% or more. However, since the weldability is impaired when the amount is excessive, the upper limit needs to be 0.60%. In addition, the minimum with preferable Ni content is 0.30%, and a preferable upper limit is 0.40%.

[Nb:0.005〜0.015%]
Nbは、圧延時のオーステナイトの再結晶を抑制する効果があるため、オーステナイト粒を微細化し、変態後の組織を微細化することができる。こうした効果を発揮させるためには、Nbを0.005%以上(好ましくは0.006%以上)の量で含有させる必要がある。しかしながら、過剰に含有させると溶接性を損なうので、Nb含有量は0.015%以下(好ましくは0.012%以下)とするのが良い。
[Nb: 0.005 to 0.015%]
Since Nb has the effect of suppressing recrystallization of austenite during rolling, the austenite grains can be refined and the structure after transformation can be refined. In order to exert such effects, it is necessary to contain Nb in an amount of 0.005% or more (preferably 0.006% or more). However, since an excessive content impairs weldability, the Nb content is preferably 0.015% or less (preferably 0.012% or less).

[Ti:0.005〜0.03%]
Tiは、大入熱溶接時に析出してHAZのオーステナイト粒粗大化を抑制するピンニングの効果を発揮する。こうした効果を発揮させるためには、Tiを0.005%以上(好ましくは0.007%以上)の量で含有させる必要がある。しかしながら、Tiの含有量が過剰になると溶接性が損なわれるので、0.03%以下(好ましくは0.025%以下)とした。
[Ti: 0.005 to 0.03%]
Ti precipitates during high heat input welding and exhibits a pinning effect that suppresses austenite grain coarsening of HAZ. In order to exert such effects, it is necessary to contain Ti in an amount of 0.005% or more (preferably 0.007% or more). However, if the Ti content is excessive, weldability is impaired, so the content was made 0.03% or less (preferably 0.025% or less).

[B:0.0005〜0.0030%]
Bは、変態を抑制してBsを低下させることで、微細なブロック形成に有効である。こうした効果を発揮させるためには、0.0005%以上含有させる必要がある。しかしながら、B含有量が過剰になると溶接性が損なわれるので、0.0030%以下とした。
[B: 0.0005 to 0.0030%]
B is effective for forming fine blocks by suppressing transformation and reducing Bs. In order to exert such effects, it is necessary to contain 0.0005% or more. However, if the B content is excessive, weldability is impaired, so the content was made 0.0030% or less.

[N:0.0030〜0.0090%]
Nは、TiやAl等の元素と窒化物を形成してHAZ靭性を向上させる元素である。こうした効果を発揮させるためには、Nは0.0030%以上(好ましくは0.0040%以上)含有させる必要がある。尚、固溶Nは、HAZの靭性を劣化させる原因となる。全窒素量の増加により、前述の窒化物は増加するが固溶Nも過剰となるため、本発明では0.0090%以下に抑える。
[N: 0.0030 to 0.0090%]
N is an element that improves the HAZ toughness by forming a nitride with an element such as Ti or Al. In order to exert such an effect, N needs to be contained in an amount of 0.0030% or more (preferably 0.0040% or more). In addition, the solid solution N causes the HAZ toughness to deteriorate. With the increase in the total nitrogen amount, the aforementioned nitride increases, but the solid solution N also becomes excessive. Therefore, in the present invention, it is suppressed to 0.0090% or less.

本発明の鋼板における基本成分は前記の通りであり、残部は鉄および不可避不純物(例えばO等)からなるものである。また本発明の鋼板には、前記成分のほか必要に応じて、下記の成分を含有させることも有効である。   The basic components in the steel sheet of the present invention are as described above, and the balance consists of iron and inevitable impurities (for example, O). In addition to the above components, it is also effective to add the following components to the steel sheet of the present invention as necessary.

[Cr:0.20%以下(0%を含まない)、Mo:0.10%以下(0%を含まない)およびV:0.040%以下(0%を含まない)よりなる群から選択される1種以上]
これらの元素は、上記CuやNiと同様に、変態を抑制してBsを低下させることで、微細なブロック形成に有効であり、必要により含有される。これら元素を含有させる場合、その効果は含有量が増加するにつれて増大するが、その量が過剰になると溶接性が損なわれる。そこでこれらの元素を含有させる場合の上限を、前記のように定めた。
[Selected from the group consisting of Cr: 0.20% or less (not including 0%), Mo: 0.10% or less (not including 0%), and V: 0.040% or less (not including 0%) One or more types]
Like these Cu and Ni, these elements are effective for forming fine blocks by suppressing transformation and reducing Bs, and are contained as necessary. When these elements are contained, the effect increases as the content increases, but when the amount is excessive, weldability is impaired. Therefore, the upper limit in the case of containing these elements is determined as described above.

[Ca:0.004%以下(0%を含まない)]
Caは、Sの固定による靭性の向上に有効な元素であり、その効果を発揮させるためには、0.001%以上含有させることが好ましい。しかしながら、過剰に含有させてもその効果が飽和するので、0.004%以下とすることが好ましい。
[Ca: 0.004% or less (excluding 0%)]
Ca is an element effective for improving the toughness by the fixation of S, and in order to exert the effect, it is preferable to contain 0.001% or more. However, since the effect is saturated even if it contains excessively, it is preferable to make it 0.004% or less.

本発明の高強度鋼板は、その化学成分組成を適切に制御すると共に、その組織および結晶粒(最大結晶粒径)を規定することによって、上記のような効果が得られるものであるが、こうした高強度鋼板を実現するには、下記の方法に従って製造すれば良い。   The high-strength steel sheet of the present invention can achieve the above effects by appropriately controlling its chemical composition and defining its structure and crystal grains (maximum crystal grain diameter). What is necessary is just to manufacture according to the following method in order to implement | achieve a high strength steel plate.

まず前記の化学成分組成の要件を満たす鋼片を、950〜1200℃の温度範囲(基準位置は鋼片表面から深さt/4の位置)に加熱した後、熱間圧延を行う。後述する770℃以上、810℃未満の温度範囲での圧延を行うに際して、所定の圧下率を確保するためには、950〜1200℃の温度範囲に加熱する必要がある。また、加熱温度が950℃未満であると、鋼片に含有しているNbが固溶せず、1200℃を超えると、オーステナイト粒が粗大化するため、効果的な圧延を行っても、組織の微細化が達成できず、安定した高靭性が達成できない。   First, a steel slab that satisfies the above-mentioned chemical composition composition is heated to a temperature range of 950 to 1200 ° C. (the reference position is a position at a depth t / 4 from the steel slab surface), and then hot-rolled. When performing rolling in a temperature range of 770 ° C. or higher and lower than 810 ° C., which will be described later, it is necessary to heat to a temperature range of 950 to 1200 ° C. in order to ensure a predetermined rolling reduction. Further, if the heating temperature is less than 950 ° C., Nb contained in the steel slab does not dissolve, and if it exceeds 1200 ° C., the austenite grains become coarse, so even if effective rolling is performed, the structure Therefore, it is impossible to achieve finer toughness and stable high toughness.

熱間圧延の具体的な条件として、下記の3段階の圧延を行うのが良い。まず鋼片表面(鋼板表面)から深さt/4の位置(以下、単に「t/4部」と呼ぶことがある)の温度が830℃以上、860℃以下である範囲で、圧下率:5%以上の圧延を行う必要がある。上記した成分系のオーステナイト粒微細化に有効な再結晶域は、830〜860℃であり、この温度域で圧下率(累積圧下率)が5%以上の圧延を実施することによって、微細なオーステナイト組織とすることができ最終的に(変態後に)微細な変態組織とすることができる。   As specific conditions for hot rolling, the following three stages of rolling may be performed. First, in the range where the temperature from the steel piece surface (steel plate surface) to a position at a depth t / 4 (hereinafter sometimes simply referred to as “t / 4 part”) is 830 ° C. or higher and 860 ° C. or lower, the rolling reduction ratio: It is necessary to perform rolling of 5% or more. The effective recrystallization region for the above-mentioned austenite grain refinement of the component system is 830 to 860 ° C. By carrying out rolling at a reduction rate (cumulative reduction rate) of 5% or more in this temperature range, fine austenite is obtained. It can be made into a structure, and can finally be made into a fine transformed structure (after transformation).

これに対して、上記温度範囲での圧下率が5%未満であると、t/4部における再結晶域での圧下が不十分となり、圧延時に粗大なオーステナイト粒が混在することになる。この様な状態の組織になると、粗大な組織に起因する低温靭性のばらつきが発生しやすくなる。   On the other hand, if the reduction ratio in the above temperature range is less than 5%, the reduction in the recrystallization region at the t / 4 part becomes insufficient, and coarse austenite grains are mixed during rolling. When the structure is in such a state, variations in low-temperature toughness due to a coarse structure tend to occur.

尚、上記圧下率とは、下記式(1)から計算される値(累積圧下率)である(後述する圧延における圧下率においても同じ)。
圧下率=(t0−t1)/t2×100 ・・・ (1)
〔式(1)中、t0は鋼片のt/4部の温度が圧延温度範囲内にあるときの鋼片の圧延開始厚み(mm)、t1は鋼片のt/4位置の温度が圧延温度範囲内にあるときの鋼片の圧延終了厚み(mm)、t2は圧延前のスラブの厚みを、夫々表す。〕
The rolling reduction is a value (cumulative rolling reduction) calculated from the following formula (1) (the same applies to rolling reduction in rolling described later).
Reduction ratio = (t 0 −t 1 ) / t 2 × 100 (1)
[In formula (1), t 0 is the rolling start thickness (mm) of the steel slab when the temperature of the t / 4 part of the steel slab is within the rolling temperature range, and t 1 is the temperature at the t / 4 position of the steel slab. there completion of rolling the thickness of the steel strip when in the rolling temperature range (mm), t 2 is the thickness of the pre-rolling the slab, representing respectively. ]

上記の圧延を行った後は、鋼片のt/4部の温度が810℃以上、830℃未満での圧下率を2%以下(0%を含む)として圧延を行う。本発明の鋼板では、上記の再結晶域および後述する未再結晶域での圧下によって均一な微細組織を達成するものであり、これによって−40℃でのシャルピー吸収エネルギーが150J以上であるような、優れた低温靭性を安定して達成するものである。しかしながら、810℃以上、830℃未満の温度範囲は、再結晶部分と未再結晶部分とが混在する温度範囲(オーステナイトの部分的未再結晶温度域)であり、この温度範囲で圧延を行うと、再結晶粒が未再結晶粒の歪みを低下させるために、未再結晶粒を取り込み、巨大な粒へと成長する場合がある。そのため、この温度域では、できるだけ圧延を行わないようにすることが必要である。但し、靭性評価の対象となる、t/4部における圧延の歪みが実質的に影響しない程度の圧延(圧下率で2%以下程度)を行うことは許容できる。   After performing the above rolling, rolling is performed at a rolling reduction of 2% or less (including 0%) when the temperature of the t / 4 part of the steel slab is 810 ° C. or more and less than 830 ° C. In the steel sheet of the present invention, a uniform fine structure is achieved by the reduction in the above-mentioned recrystallization region and the non-recrystallization region described later, whereby the Charpy absorbed energy at −40 ° C. is 150 J or more. , To achieve excellent low temperature toughness stably. However, the temperature range of 810 ° C. or more and less than 830 ° C. is a temperature range in which a recrystallized portion and an unrecrystallized portion are mixed (austenite partially non-recrystallized temperature range). In some cases, recrystallized grains take in unrecrystallized grains and grow into huge grains in order to reduce distortion of the unrecrystallized grains. Therefore, it is necessary to avoid rolling as much as possible in this temperature range. However, it is permissible to perform rolling to the extent that the distortion of rolling at the t / 4 portion, which is the object of toughness evaluation, is not substantially affected (the rolling reduction is about 2% or less).

最終的な圧延条件として、770℃以上、810℃未満である温度範囲で、圧下率:5%以上の圧延を行う必要がある。本発明の鋼板では、上記の成分系でのオーステナイト粒への歪み導入に有効な未再結晶域は、770℃以上、810℃未満の温度範囲である。この温度範囲で、圧下率(累積圧下率)が5%以上となるような圧延を実施することによって、圧延により導入された歪みにより微細にされたオーステナイト粒を変態後に更に微細な組織とすることができる。このときの圧下率が5%未満であれば、t/4部における変態後の微細化に必要な十分な歪み導入が実現できない。また、このときの圧延温度が770℃未満になると、圧延後の冷却時に部分的にフェライトが析出しはじめるので、変態による強度向上効果が低下し、強度不足となって高強度が達成されにくくなる。   As final rolling conditions, it is necessary to perform rolling with a reduction ratio of 5% or more in a temperature range of 770 ° C. or higher and lower than 810 ° C. In the steel sheet of the present invention, the non-recrystallized region effective for introducing strain into austenite grains in the above component system is a temperature range of 770 ° C. or more and less than 810 ° C. By carrying out rolling such that the rolling reduction (cumulative rolling reduction) is 5% or more in this temperature range, the austenite grains refined by the strain introduced by rolling are made a finer structure after transformation. Can do. If the rolling reduction at this time is less than 5%, sufficient strain introduction necessary for miniaturization after transformation at the t / 4 portion cannot be realized. Also, if the rolling temperature at this time is less than 770 ° C., ferrite begins to precipitate partially during cooling after rolling, so the strength improvement effect due to transformation is reduced, and the strength becomes insufficient and high strength is difficult to be achieved. .

上記のような圧延を行った後は、鋼板の強度を確保するために、t/4部が確実にベイナイト組織(ベイナイト相主体の組織)となるようにするため、少なくとも750℃以上で冷却を開始し、且つ冷却速度を2℃/秒以上(例えば、水冷)として冷却する必要がある。尚、このときの冷却停止温度は、ベイナイト相を主体とする組織とするために、450℃以下とする必要がある。   After rolling as described above, in order to ensure the strength of the steel sheet, it is necessary to cool at least at 750 ° C. or more in order to ensure that the t / 4 part has a bainite structure (structure mainly composed of bainite phase). It is necessary to start and cool at a cooling rate of 2 ° C./second or more (for example, water cooling). Note that the cooling stop temperature at this time needs to be 450 ° C. or lower in order to obtain a structure mainly composed of a bainite phase.

上記のような製造方法によって、本発明の化学成分組成の要件および組織要件を満たし、且つ低温靭性のばらつきのすくない厚肉高強度鋼板を製造することができる、尚、こうして得られる鋼板の板厚さは、60〜80mm程度であることが好ましい。   By the manufacturing method as described above, it is possible to manufacture a thick high-strength steel sheet that satisfies the requirements of the chemical component composition and the structural requirements of the present invention and does not vary in low-temperature toughness. The thickness is preferably about 60 to 80 mm.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、上・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the above and the following purposes. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例1
下記表1に示す化学成分組成の鋼(鋼種A〜U)を転炉で溶製し、下記表2に示す条件で熱間圧延を行い、種々の鋼板を製造した。尚、鋼片のt/4部の温度は、差分法を用いたプロセスコンピュータによって算出した。具体的な温度管理の手順は下記の通りである。また、下記表1に示したAr3変態点は、下記(2)式によって求められる値を採用したものである。
Example 1
Steels (steel types A to U) having the chemical composition shown in Table 1 below were melted in a converter and hot-rolled under the conditions shown in Table 2 below to produce various steel plates. The temperature at t / 4 part of the steel slab was calculated by a process computer using a difference method. The specific temperature management procedure is as follows. Further, the Ar 3 transformation point shown in the following Table 1 adopts a value obtained by the following equation (2).

Ar3変態点(℃)=868−369・[C]+24.6・[Si]−68.1・[Mn]−36.1・[Ni]−20.7・[Cu]−24.8・[Cr]+29.6・[Mo] …(2)
但し、[C],[Si],[Mn],[Ni],[Cu],[Cr]および[Mo]は、夫々C,Si,Mn,Ni,Cu,CrおよびMoの含有量(質量%)を示す。
Ar 3 transformation point (° C.) = 868-369. [C] +24.6. [Si] -68.1. [Mn] -36.1. [Ni] -20.7. [Cu] -24.8 [Cr] +29.6 [Mo] (2)
However, [C], [Si], [Mn], [Ni], [Cu], [Cr] and [Mo] are the contents (mass of C, Si, Mn, Ni, Cu, Cr and Mo, respectively). %).

[圧延中の温度測定方法]
1.プロセスコンピュータにおいて、加熱開始から抽出までの雰囲気温度や在炉時間に基づいて鋼片の所定の位置(表面からt/4部)加熱温度を算出する。
2.算出した加熱温度を用い、圧延中の圧延パススケジュールやパス間の冷却方法(水冷あるいは空冷)のデータに基づいて、板厚方向の任意の位置における圧延温度を差分法など計算に適した方法を用いて計算しつつ圧延を実施する。
3.鋼板の表面温度は圧延ライン上に設置された放射型温度計を用いて実測する。但し、プロセスコンピュータでも理論値を計算しておく。
4.粗圧延開始時、粗圧延終了時、仕上げ圧延開始時にそれぞれ実測した鋼板の表面温度を、プロセスコンピュータから算出される計算温度と照合する。
5.計算温度と実測温度の差が±30℃以上の場合は、計算表面温度が実測温度と一致するように再計算してプロセスコンピュータ上の計算温度とし、±30℃未満の場合は、プロセスコンピュータから算出された計算温度をそのまま用いる。
6.上記算出された計算温度を用い、制御対象としている領域の圧延温度を管理する。
[Temperature measurement method during rolling]
1. In the process computer, the heating temperature at a predetermined position (t / 4 part from the surface) of the billet is calculated based on the atmospheric temperature from the start of heating to extraction and the in-furnace time.
2. Using the calculated heating temperature, based on the rolling pass schedule during rolling and the data of the cooling method (water cooling or air cooling) between passes, a method suitable for calculation such as the difference method is used to calculate the rolling temperature at any position in the plate thickness direction. The rolling is carried out while using the calculation.
3. The surface temperature of the steel sheet is measured using a radiation type thermometer installed on the rolling line. However, the theoretical value is also calculated in the process computer.
4). The surface temperature of the steel sheet measured at the start of rough rolling, at the end of rough rolling, and at the start of finish rolling is collated with a calculated temperature calculated from a process computer.
5. If the difference between the calculated temperature and the measured temperature is ± 30 ° C or more, recalculate the calculated surface temperature so that it matches the measured temperature to obtain the calculated temperature on the process computer. The calculated temperature is used as it is.
6). Using the calculated temperature calculated above, the rolling temperature in the region to be controlled is managed.

Figure 0005139015
Figure 0005139015

Figure 0005139015
Figure 0005139015

得られた各鋼板について、ベイナイト分率、大角粒界径(最大円相当直径)、母材引張特性、母材靭性(母材衝撃特性)、HAZ靭性(大入熱特性)を下記の方法によって測定した(いずれもt/4部)。   About each obtained steel plate, a bainite fraction, a large angle grain boundary diameter (maximum equivalent circle diameter), a base material tensile characteristic, a base material toughness (base metal impact characteristic), and HAZ toughness (large heat input characteristic) are as follows. Measured (both t / 4 parts).

[ベイナイト分率の測定]
鋼板の深さt/4部から、鋼板の圧延方向に平行で且つ鋼板の表面に対して垂直な面が露出するようにサンプルを切り出し、これを、♯150〜♯1000までの湿式エメリー研磨紙を用いて研磨し、その後に研磨剤としてダイヤモンドスラリーを用いて鏡面仕上げした。この鏡面研磨片を、2%硝酸−エタノール溶液(ナイタール溶液)でエッチングした後、150μm×200μmの視野を観察倍率400倍で観察し、画像解析にてベイナイト分率を測定した。尚、フェライト以外のラス状組織は全てベイナイトとみなした。合計で5視野のフェライト分率を求め、その平均値を採用した。
[Measurement of bainite fraction]
A sample was cut out from a depth t / 4 part of the steel plate so that a plane parallel to the rolling direction of the steel plate and perpendicular to the surface of the steel plate was exposed, and this was used as wet emery polishing paper from # 150 to # 1000 And then mirror finished using a diamond slurry as an abrasive. After this mirror-polished piece was etched with a 2% nitric acid-ethanol solution (a nital solution), a 150 μm × 200 μm field of view was observed at an observation magnification of 400 times, and the bainite fraction was measured by image analysis. All lath structures other than ferrite were regarded as bainite. The ferrite fraction of 5 fields of view was calculated in total and the average value was adopted.

[大角粒界径(最大円相当直径)の測定]
鋼板の圧延に平行な断面において、FE−SEM−EBSP(電子放出型走査電子顕微鏡を用いた電子後方散乱回折像法)によって大角粒界径を測定した。具体的には、Tex SEM Laboratries社のEBSP装置(商品名:「OIM」)を、FE−SEMと組み合わせて用い、傾角(結晶方位差)が15°以上の境界を結晶粒界として、大角粒界径を測定した。このときの測定条件は、測定領域:200μm×200μm、測定ステップ:0.5μm間隔とし、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1よりも小さい測定点は解析対象から除外した。このようにして求められる大角粒界径の最大値を算出して、本発明における大角粒界径(最大円相当直径)とした。尚、結晶粒径が2.0μm以下のものについては、測定ノイズと判断し、計算の対象から除外した。
[Measurement of large-angle grain boundary diameter (maximum equivalent circle diameter)]
In a cross section parallel to the rolling of the steel plate, the large-angle grain boundary diameter was measured by FE-SEM-EBSP (electron backscatter diffraction image method using an electron emission scanning electron microscope). Specifically, an EBSP apparatus (trade name: “OIM”) manufactured by Tex SEM Laboratories is used in combination with an FE-SEM, and a boundary having an inclination (crystal orientation difference) of 15 ° or more is used as a grain boundary. The field diameter was measured. The measurement conditions at this time are: measurement area: 200 μm × 200 μm, measurement step: 0.5 μm interval, and measurement points whose confidence index (Confidence Index) indicating the reliability of the measurement direction is smaller than 0.1 are analyzed. Excluded. The maximum value of the large-angle grain boundary diameter thus obtained was calculated and used as the large-angle grain boundary diameter (maximum equivalent circle diameter) in the present invention. In addition, about the thing with a crystal grain diameter of 2.0 micrometers or less, it was judged as measurement noise and was excluded from the object of calculation.

[母材の引張特性]
各鋼板のt/4部から圧延方向に垂直な方向に、JIS Z 2201 4号試験片を採取し、JIS Z 2241に従って引張試験を行うことによって、引張強さTSを測定した。引張強さTSの基準は、490MPa以上とした。
[Tensile properties of base material]
JIS Z 2201 No. 4 test piece was taken from t / 4 part of each steel plate in the direction perpendicular to the rolling direction, and the tensile strength TS was measured by conducting a tensile test according to JIS Z 2241. The standard of the tensile strength TS was 490 MPa or more.

[母材の低温靭性の評価]
鋼板のt/4部から圧延方向に平行な方向にJIS Z 2242試験片を採取してJIS Z 2242に従ってシャルピー衝撃試験を行なった。試験温度:−40℃において、各3本の衝撃試験を行い、最低の吸収エネルギーvE-40が150J以上を合格とした。
[Evaluation of low temperature toughness of base metal]
A JIS Z 2242 test piece was taken from the t / 4 part of the steel plate in a direction parallel to the rolling direction, and a Charpy impact test was performed according to JIS Z 2242. Test temperature: Three impact tests were conducted at -40 ° C, and the minimum absorbed energy vE- 40 was determined to be 150 J or more.

[大入熱HAZ靭性の評価]
突き合わせ開先をエレクトロガス溶接(EGW)による溶接を行い(入熱量は下記表4)、ルート側(裏面側)よりJIS Z 2242試験片を採取し、ボンド部または(ボンド部+1mm)の位置にノッチを入れて、JIS Z 2242に従って試験を実施した。試験温度:−20℃において、各3本の衝撃試験を行い、すべてにおいて吸収エネルギーvE-20が100J以上を合格とした。
[Evaluation of high heat input HAZ toughness]
The butt groove is welded by electrogas welding (EGW) (the amount of heat input is shown in Table 4 below), and a JIS Z 2242 test piece is taken from the root side (back side) and placed at the bond part or (bond part + 1 mm) position. The test was carried out according to JIS Z 2242 with notches. Test temperature: Three impact tests were conducted at −20 ° C., and the absorbed energy vE- 20 was 100 J or more in all cases.

これらの結果を、下記表3、4(表3は母材特性、表4はHAZ靭性および溶接条件)に示すが、これらの結果から次のように考察できる。まず実験No.2〜4、6〜10、12〜14、18、19のものは、本発明で規定する要件を満足するものであり、母材の強度が高い状態で良好な低温靭性がばらつきなく安定して得られ、しかもHAZ靭性も良好であることがわかる。これに対して、本発明で規定する要件のいずれかを欠くものは(実験No.5、15〜17、20〜26)、いずれかの特性が劣化していることが分かる。特に、最大円相当直径が大きくなっているものでは、母材の低温靭性にばらつきが生じていることが分かる。 These results are shown in the following Tables 3 and 4 (Table 3 is base material characteristics, Table 4 is HAZ toughness and welding conditions), and these results can be considered as follows. First, experiment no . Those of 2 to 4 , 6 to 10 , 12 to 14 , 18 , and 19 satisfy the requirements specified in the present invention, and good low temperature toughness is stable without variation in a state where the strength of the base material is high. It can be seen that the HAZ toughness is also good. On the other hand, those lacking any of the requirements defined in the present invention (Experiment No. 5 , 15-17 , 20-26 ) show that any of the characteristics is deteriorated. In particular, it can be seen that when the maximum equivalent circle diameter is large, the low temperature toughness of the base material varies.

Figure 0005139015
Figure 0005139015

Figure 0005139015
Figure 0005139015

Claims (4)

C:0.03〜0.08%(質量%の意味、以下同じ)、Si:0.05%以下(0%を含む)、Mn:1.4〜1.7%、Al:0.01〜0.06%、P:0.05%以下(0%を含まない)、S:0.01%以下(0%を含まない)、Cu:0.20〜0.40%、Ni:0.20〜0.60%、Nb:0.005〜0.015%、Ti:0.005〜0.03%、B:0.0005〜0.0030%、Ca:0.004%以下(0%を含まない)およびN:0.0030〜0.0090%を夫々含有し、残部が鉄および不可避不純物からなり、且つベイナイト相を主体とする組織からなり、
表面から深さt/4(tは板厚を表す、以下同じ)の位置において、隣り合う結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、その最大結晶粒径が円相当直径で20μm以下であることを特徴とする母材低温靭性のばらつきが少なく熱影響部の靭性に優れた大入熱溶接用厚肉高強度鋼板。
C: 0.03 to 0.08% (meaning mass%, the same shall apply hereinafter), Si: 0.05% or less (including 0%), Mn: 1.4 to 1.7%, Al: 0.01 -0.06%, P: 0.05% or less (not including 0%), S: 0.01% or less (not including 0%), Cu: 0.20 to 0.40%, Ni: 0 20 to 0.60%, Nb: 0.005 to 0.015%, Ti: 0.005 to 0.03%, B: 0.0005 to 0.0030%, Ca: 0.004% or less (0 %) And N: 0.0030 to 0.0090%, respectively, the balance consisting of iron and inevitable impurities, and consisting of a structure mainly composed of bainite phase,
When a region surrounded by a large-angle grain boundary where the orientation difference between adjacent crystals is 15 ° or more is defined as a crystal grain at a position of depth t / 4 from the surface (t represents a plate thickness, the same applies hereinafter), the maximum A thick high-strength steel sheet for large heat input welding with less variation in the base metal low-temperature toughness and excellent toughness in the heat-affected zone, wherein the crystal grain size is 20 μm or less in terms of the equivalent circle diameter.
更に、Cr:0.20%以下(0%を含まない)、Mo:0.10%以下(0%を含まない)およびV:0.040%以下(0%を含まない)よりなる群から選択される1種以上を含有するものである請求項1に記載の大入熱溶接用厚肉高強度鋼板。   Furthermore, from the group consisting of Cr: 0.20% or less (not including 0%), Mo: 0.10% or less (not including 0%), and V: 0.040% or less (not including 0%) The thick high-strength steel sheet for high heat input welding according to claim 1, which contains one or more selected. −40℃におけるシャルピー吸収エネルギーvE-40の最小値が150J以上である請求項1または2に記載の大入熱溶接用厚肉高強度鋼板。 The thick high-strength steel sheet for high heat input welding according to claim 1 or 2 , wherein the minimum value of Charpy absorbed energy vE- 40 at -40 ° C is 150 J or more. 請求項1〜3のいずれかに記載の大入熱溶接用厚肉高強度鋼板を製造するに当り、鋼スラブを、950〜1200℃の温度に加熱して熱間圧延を施す際に、鋼板表面から深さt/4の位置の温度が830℃以上、860℃以下である範囲で、圧下率:5%以上の圧延を行うと共に、前記温度が770℃以上、810℃未満である範囲で、圧下率:5%以上の圧延を行い、且つ前記温度が810℃以上、830℃未満での圧下率を2%以下(0%を含む)として圧延を行い、その後750℃以上から冷却を開始し、且つ冷却速度を2℃/秒以上として450℃以下で冷却を停止することを特徴とする母材低温靭性のばらつきが少なく熱影響部の靭性に優れた大入熱溶接用厚肉高強度鋼板の製造方法。 In manufacturing the thick high-strength steel sheet for high heat input welding according to any one of claims 1 to 3 , the steel slab is heated to a temperature of 950 to 1200 ° C and subjected to hot rolling. In the range where the temperature at the position of the depth t / 4 from the surface is 830 ° C. or more and 860 ° C. or less, the rolling ratio is 5% or more, and the temperature is 770 ° C. or more and less than 810 ° C. , reduction ratio: for 5% or more of the rolling, and the temperature is 810 ° C. or higher, have rows rolling reduction ratio of less than 830 ° C. as a 2% or less (including 0%), then cooled from 750 ° C. or higher Starts and stops cooling at 450 ° C. or less with a cooling rate of 2 ° C./s or more, with low variation in the low temperature toughness of the base metal and high heat-affected zone toughness for high heat input welding A method for producing a strength steel plate.
JP2007241503A 2007-09-18 2007-09-18 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same Expired - Fee Related JP5139015B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007241503A JP5139015B2 (en) 2007-09-18 2007-09-18 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
CN2008101448931A CN101392352B (en) 2007-09-18 2008-07-31 Thick high tension steel plate for high heat energy input welding and production method thereof
KR1020080091062A KR20090029656A (en) 2007-09-18 2008-09-17 Thick high strength steel sheet for high heat input welding having small deviation in low temperature toughness of parent material and excellent toughness in heat affected zone, and manufacturing method therefor
KR1020120027772A KR20120034094A (en) 2007-09-18 2012-03-19 Manufacturing method for thick high strength steel sheet for high heat input welding having small deviation in low temperature toughness of parent material and excellent toughness in heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007241503A JP5139015B2 (en) 2007-09-18 2007-09-18 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same

Publications (2)

Publication Number Publication Date
JP2009074111A JP2009074111A (en) 2009-04-09
JP5139015B2 true JP5139015B2 (en) 2013-02-06

Family

ID=40492860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007241503A Expired - Fee Related JP5139015B2 (en) 2007-09-18 2007-09-18 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same

Country Status (3)

Country Link
JP (1) JP5139015B2 (en)
KR (2) KR20090029656A (en)
CN (1) CN101392352B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278188B2 (en) * 2009-06-19 2013-09-04 新日鐵住金株式会社 Thick steel plate with excellent resistance to hydrogen-induced cracking and brittle crack propagation
JP5493659B2 (en) * 2009-09-30 2014-05-14 Jfeスチール株式会社 High strength steel with excellent toughness of heat affected zone
CN102286692B (en) * 2010-06-21 2013-09-04 宝山钢铁股份有限公司 Hardened and tempered low-temperature steel and manufacture method thereof
RU2551726C1 (en) * 2011-04-13 2015-05-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн High-strength cold-rolled steel plate with improved ability for local deformation, and its manufacturing method
JP5910792B2 (en) 2013-02-28 2016-04-27 Jfeスチール株式会社 Thick steel plate and method for manufacturing thick steel plate
JP6280824B2 (en) * 2014-06-20 2018-02-14 株式会社神戸製鋼所 High strength steel plate and manufacturing method thereof
JP7206701B2 (en) * 2018-08-28 2023-01-18 日本製鉄株式会社 steel plate

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212344B2 (en) * 1992-03-23 2001-09-25 新日本製鐵株式会社 Manufacturing method of structural steel plate for welding with excellent toughness at low temperature
AU680590B2 (en) * 1995-01-26 1997-07-31 Nippon Steel Corporation Weldable high-tensile steel excellent in low-temperature toughness
JP2002235114A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
JP4044470B2 (en) * 2003-03-25 2008-02-06 株式会社神戸製鋼所 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP4193757B2 (en) * 2004-06-08 2008-12-10 住友金属工業株式会社 Steel sheet for ultra-high-strength line pipe, manufacturing method thereof and welded steel pipe
JP4778779B2 (en) * 2005-11-04 2011-09-21 株式会社神戸製鋼所 High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP4787141B2 (en) * 2005-11-30 2011-10-05 株式会社神戸製鋼所 Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP4676871B2 (en) * 2005-12-19 2011-04-27 株式会社神戸製鋼所 Steel sheet with excellent fatigue crack growth control
JP4825025B2 (en) * 2006-03-09 2011-11-30 株式会社神戸製鋼所 High-yield ratio high-tensile steel sheet with excellent fatigue crack growth suppression and weld heat-affected zone toughness

Also Published As

Publication number Publication date
JP2009074111A (en) 2009-04-09
CN101392352A (en) 2009-03-25
KR20120034094A (en) 2012-04-09
KR20090029656A (en) 2009-03-23
CN101392352B (en) 2012-11-14

Similar Documents

Publication Publication Date Title
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP5337412B2 (en) Thick steel plate excellent in brittle crack propagation stopping characteristics and method for producing the same
JP5110989B2 (en) Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics
JP5096087B2 (en) High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP6682785B2 (en) Steel plate having excellent sour resistance and method of manufacturing the same
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP4283757B2 (en) Thick steel plate and manufacturing method thereof
JP2008240004A (en) Low yield ratio high tensile strength steel plate having excellent low temperature toughness in weld heat-affected zone
JP2009068078A (en) Welded joint with excellent toughness and fatigue crack inhibiting property
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP2021507989A (en) High-strength steel for polar environment with excellent fracture resistance at low temperature and its manufacturing method
JP4934505B2 (en) Steel sheet with excellent fatigue crack growth suppression characteristics and brittle fracture suppression characteristics
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP4354754B2 (en) High-tensile steel plate with excellent base metal toughness and HAZ toughness
JP4284258B2 (en) Steel sheet with low yield ratio and excellent toughness and welded joint toughness and its manufacturing method
JP3894148B2 (en) Low yield ratio low temperature steel and method for producing the same
JP7338811B1 (en) Steel plate and its manufacturing method
WO2021200572A1 (en) High-strength low-alloy steel sheet having exceptional parent-material toughness and welded-joint toughness, and method for manufacturing said steel sheet
JP2008174809A (en) Thin-wall high tensile strength steel sheet with excellent toughness and crack-arrest property, and its manufacturing method
JP2003321729A (en) High strength steel sheet having excellent weld heat affected zone toughness and production method thereof
JP4234671B2 (en) High-strength steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121115

R150 Certificate of patent or registration of utility model

Ref document number: 5139015

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees