JP2009068078A - Welded joint with excellent toughness and fatigue crack inhibiting property - Google Patents

Welded joint with excellent toughness and fatigue crack inhibiting property Download PDF

Info

Publication number
JP2009068078A
JP2009068078A JP2007238351A JP2007238351A JP2009068078A JP 2009068078 A JP2009068078 A JP 2009068078A JP 2007238351 A JP2007238351 A JP 2007238351A JP 2007238351 A JP2007238351 A JP 2007238351A JP 2009068078 A JP2009068078 A JP 2009068078A
Authority
JP
Japan
Prior art keywords
less
welded joint
toughness
content
haz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007238351A
Other languages
Japanese (ja)
Other versions
JP5096088B2 (en
Inventor
Naohiro Furukawa
直宏 古川
Seiichi Ogaki
誠一 大垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2007238351A priority Critical patent/JP5096088B2/en
Priority to CNA2008102134611A priority patent/CN101386956A/en
Priority to KR1020080089929A priority patent/KR101011625B1/en
Publication of JP2009068078A publication Critical patent/JP2009068078A/en
Application granted granted Critical
Publication of JP5096088B2 publication Critical patent/JP5096088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K33/00Specially-profiled edge portions of workpieces for making soldering or welding connections; Filling the seams formed thereby
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Arc Welding In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a welded joint in which the occurrence of fatigue cracks starting from microcracks in a boundary between a weld metal and a base material (steel plate), so far considered to be difficult to inhibit, can be inhibited and HAZ toughness can also be improved as much as possible. <P>SOLUTION: The welded joint is formed by joining high tensile strength steel plates with high yield ratio by welding. The structure of the weld heat-affected zone of the high tensile strength steel plates is characterized as follows: the average grain size of old austenite is ≤200 μm; the fraction of bainite is ≥90 area%; and, when a region surrounded by high angle grain boundaries having ≥15° orientation difference between two crystals is defined as a crystal grain, the average circle-equivalent diameter of the crystal grain is ≤9 μm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、土木、建築、橋梁、海洋構造物、パイプ、船舶、貯蔵、建築機械等の各種用途に用いられる高降伏比高張力鋼板を溶接によって接合した溶接継手に関するものであり、特に高張力鋼板の溶接熱影響部(以下、「HAZ」と呼ぶことがある)における疲労亀裂の発生を抑制して良好な疲労寿命を確保すると共に、HAZでの靭性にも優れた溶接継手に関するものである。   The present invention relates to a welded joint obtained by welding high-yield ratio high-tensile steel plates used for various applications such as civil engineering, architecture, bridges, offshore structures, pipes, ships, storage, and construction machinery, and particularly high tensile strength. The present invention relates to a welded joint that suppresses the occurrence of fatigue cracks in a weld heat-affected zone (hereinafter sometimes referred to as “HAZ”) of a steel sheet to ensure a good fatigue life and is excellent in HAZ toughness. .

上記各種用途に適用される構造材料では、繰り返し応力が加わるものが少なくないことから、構造材料の安全性を確保するためには、素材として用いられている鋼板には疲労特性が良好であることが設計上極めて重要である。   There are many structural materials that are applied to the above-mentioned various applications, and many stresses are repeatedly applied. Therefore, in order to ensure the safety of structural materials, the steel sheets used as raw materials must have good fatigue characteristics. Is extremely important in design.

鋼材の疲労特性を向上させる研究はこれまで広く行われており、その研究は大きく分けて、(1)応力集中部での疲労亀裂の発生の抑制と、(2)一旦発生した亀裂の進展の抑制という2つの技術に分類される。しかしながら、海洋構造物や造船等の実際の溶接構造物においては、定期的に点検が実施されており、疲労亀裂の発生が確認された時点で補修が実施される。こうしたことから、上記(1)の特性を改善する技術が強く求められることになる。   Researches to improve the fatigue properties of steel materials have been widely conducted so far, and the research can be broadly divided into (1) suppression of fatigue cracks at stress-concentrated parts and (2) progress of cracks once generated. It is classified into two technologies called suppression. However, actual welded structures such as offshore structures and shipbuilding are regularly inspected and repaired when fatigue cracks are confirmed. For these reasons, there is a strong demand for a technique for improving the characteristic (1).

溶接継手によって構築される溶接構造物の場合は、溶接時に導入される極めて微小な欠陥(マイクロクラック)が疲労亀裂の起点となるのであるが、ある大きさ以下のときには、閉口と呼ばれる現象によって亀裂は発生・進展しないことになる。しかしながら、マイクロクラックがある大きさよりも大きくなると、繰り返し荷重によって進展する亀裂(即ち、疲労亀裂)が発生し、進展していくことになる。   In the case of a welded structure constructed with a welded joint, extremely small defects (microcracks) introduced during welding are the starting points of fatigue cracks. Will not occur or progress. However, when the microcrack becomes larger than a certain size, a crack (that is, fatigue crack) that develops due to repeated load is generated and progresses.

こうしたことから、例えばすみ肉溶接における溶接止端部等のように、溶接金属と母材(鋼板)との境界であるHAZにおいて疲労亀裂の発生を抑制することが重要な事項となる。また、こうしたHAZでは、靭性の劣化が起こり易いことから、疲労亀裂の発生と共に良好な靭性を確保することも重要である。   For these reasons, it is an important matter to suppress the occurrence of fatigue cracks in the HAZ, which is the boundary between the weld metal and the base material (steel plate), such as a weld toe in fillet welding. Further, in such HAZ, since toughness is likely to deteriorate, it is also important to ensure good toughness together with the occurrence of fatigue cracks.

HAZにおける疲労亀裂の発生や靭性確保のための技術は、これまで様々なものが提案されており、例えば特許文献1には、鋼板の金属組織をフェライトとベイナイトの複合組織とし、(100)面からのX線回折強度の半価幅を0.13度以上とし、且つHAZと溶接金属の硬度を管理することによって、490〜590N/mm2級(50〜60kgf/mm2級)の溶接継手における長寿命域での溶接疲労特性を改善することが提案されている。 Various techniques for generating fatigue cracks and securing toughness in HAZ have been proposed so far. For example, in Patent Document 1, the metal structure of a steel sheet is a composite structure of ferrite and bainite, and the (100) plane is used. 490-590 N / mm 2 class (50-60 kgf / mm 2 class) welded joints by controlling the half-value width of X-ray diffraction intensity from the X-ray diffraction intensity to 0.13 degrees or more and controlling the hardness of HAZ and weld metal It has been proposed to improve the weld fatigue characteristics in the long life region.

この技術は、亀裂が発生した後の疲労亀裂進展抵抗性の向上を目的としており、特に長時間での疲労寿命向上の効果を向上させたものである。しかしながら、実際の溶接構造物では、定期的な検査によって疲労亀裂が発生した段階で補修がなされており、現実的にはあまり有効な効果が発揮されているとは言い難いものである。   This technique is intended to improve the resistance to fatigue crack growth after the occurrence of a crack, and particularly improves the effect of improving the fatigue life in a long time. However, in an actual welded structure, repairs are made at the stage where fatigue cracks are generated by periodic inspection, and it is difficult to say that a practically effective effect is exhibited.

また、特許文献2には、鋼板のSi含有量を0.3〜0.6%とすることによって、HAZ組織を上部ベイナイトのラス間に島状マルテンサイトを大量に生成させると共に、Cu含有量を0.5〜1.2%とすることによってフェライト地を固溶強化させることで、疲労強度を向上させ、ベイナイト素地による靭性の顕著な低下を防止する技術が提案されている。   Further, in Patent Document 2, by making the Si content of the steel sheet 0.3 to 0.6%, a large amount of island-like martensite is generated between the laths of the upper bainite, and the Cu content is set. A technique for improving the fatigue strength and preventing a remarkable decrease in toughness due to a bainite substrate has been proposed by strengthening the ferrite substrate by solid solution strengthening by adjusting the content of Al to 0.5 to 1.2%.

この技術では、大量の島状マルテンサイトを生成させることによって、亀裂に発生を抑制しようとするものであるが、島状マルテンサイトはHAZ靭性を大きく低下させることになるので、HAZ靭性の要求の厳しい海洋構造物や造船等の分野においては、靭性要求を満足させることは困難になる。   In this technique, a large amount of island-like martensite is generated to suppress the occurrence of cracks. However, island-like martensite greatly reduces the HAZ toughness, so that the HAZ toughness is required. In fields such as severe offshore structures and shipbuilding, it becomes difficult to satisfy toughness requirements.

一方、特許文献3では、溶接継手の組織を軟質フェライトとし、更に鋼板のSi含有量を0.6〜2%程度とすることによって、積層欠陥エネルギーを現象させて交差すべりを低減させ、繰り返し塑性変形時の変形の局所化を抑制して、塑性変形の可逆化を高める技術が提案されている。しかしながら、0.5%以上のSiを鋼板に含有させることは、溶接継手におけるHAZ靭性を低下させることになり、HAZ靭性の要求の厳しい海洋構造物や造船等の分野においては、靭性要求を満足させることは困難になる。   On the other hand, in Patent Document 3, the structure of the welded joint is made of soft ferrite, and the Si content of the steel sheet is set to about 0.6 to 2%, thereby causing the stacking fault energy to be reduced and reducing the cross slip. A technique has been proposed in which localization of deformation at the time of deformation is suppressed to increase reversibility of plastic deformation. However, inclusion of 0.5% or more of Si in the steel sheet reduces the HAZ toughness of the welded joint, and satisfies the toughness requirement in the fields of offshore structures and shipbuilding where HAZ toughness is severely demanded. It becomes difficult to let them.

更に、特許文献4には、炭素当量Ceqを0.4〜0.8%に制御し、HAZの組織がマルテンサイトを60%以上含む組織とし、マルテンサイトのラスとラスの界面の強度差を小さくすることによって、HAZの疲労亀裂の発生を抑制する技術が提案されている。   Further, in Patent Document 4, the carbon equivalent Ceq is controlled to 0.4 to 0.8%, and the HAZ structure contains 60% or more of martensite, and the difference in strength between the martensite lath and lath interface is described. There has been proposed a technique for suppressing the occurrence of HAZ fatigue cracks by reducing the size.

しかしながら、マルテンサイトは、疲労強度の向上に対しては有効なものの、脆性な組織であるので、HAZ靭性の要求の厳しい海洋構造物や造船等の分野においては、靭性要求を満足させることは依然として困難になる。
特開2006−169602号公報 特開平6−235044号公報 特許第2911725号公報 特開平8−209296号公報
However, martensite is effective in improving fatigue strength, but is a brittle structure. Therefore, in marine structures and shipbuilding where HAZ toughness is severely demanded, it still does not satisfy toughness requirements. It becomes difficult.
JP 2006-169602 A JP-A-6-235044 Japanese Patent No. 2911725 JP-A-8-209296

本発明は上記の様な事情に着目してなされたものであって、その目的は、これまで抑制が困難とされていた溶接金属と母材(鋼板)の境界におけるマイクロクラックを起点とした疲労亀裂の発生を抑制すると共に、HAZ靭性をも極力改善することのできる溶接継手を提供することにある。   The present invention has been made paying attention to the above-mentioned circumstances, and its purpose is fatigue starting from microcracks at the boundary between the weld metal and the base material (steel plate), which has been difficult to suppress so far. An object of the present invention is to provide a welded joint capable of suppressing the occurrence of cracks and improving the HAZ toughness as much as possible.

上記の目的を達成することのできた本発明の溶接継手とは、高張力鋼板を溶接によって接合した溶接継手であって、高張力鋼板の溶接熱影響部の組織は、旧オーステナイトの平均粒径が200μm以下であると共に、ベイナイトの分率が90面積%以上であり、且つ2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、当該結晶粒の平均円相当径が9μm以下である点に要旨を有するものである。尚、前記「平均円相当径」とは、方位差が15°以上である大角粒界に囲まれた結晶粒を、同一面積の円に換算したときの直径(円相当直径)の平均値である。   The welded joint of the present invention that has achieved the above object is a welded joint obtained by welding high-tensile steel plates, and the structure of the weld heat-affected zone of the high-tensile steel plate has an average grain size of prior austenite. When a region surrounded by a large-angle grain boundary having a bainite fraction of 90% by area or more and an orientation difference between two crystals of 15 ° or more is used as a crystal grain, the average of the crystal grains is 200 μm or less. It has a gist in that the equivalent circle diameter is 9 μm or less. The “average equivalent circle diameter” is an average value of diameters (equivalent circle diameters) when crystal grains surrounded by large-angle grain boundaries having an orientation difference of 15 ° or more are converted into circles of the same area. is there.

本発明の溶接継手で用いる高張力鋼板の鋼種については、高張力鋼板である限り特に限定するものではないが、例えばC:0.01〜0.06%(質量%の意味、以下同じ)、Si:0.01〜0.5%、Mn:0.5〜2.0%、Al:0.005〜0.10%、Nb:0.005〜0.05%、Ti:0.008〜0.03%、B:0.001〜0.005%およびN:0.0030〜0.0080%を夫々含有する他、Cr:0.3〜1.0%、Cu:0.1〜1.0%、Ni:0.1〜1.0%、Mo:0.03〜0.5%およびV:0.02〜0.05%よりなる群から選ばれる1種または2種以上を含有し、残部不可避不純物からなり、且つTiの含有量[Ti]とNの含有量[N]が下記(1)式の関係を満足すると共に、下記(2)式で規定されるA値が0.15%以下を満足するものであることが好ましい。   The steel type of the high-strength steel sheet used in the welded joint of the present invention is not particularly limited as long as it is a high-strength steel sheet. For example, C: 0.01 to 0.06% (meaning mass%, the same applies hereinafter), Si: 0.01-0.5%, Mn: 0.5-2.0%, Al: 0.005-0.10%, Nb: 0.005-0.05%, Ti: 0.008- 0.03%, B: 0.001 to 0.005% and N: 0.0030 to 0.0080%, Cr: 0.3 to 1.0%, Cu: 0.1 to 1 0.0%, Ni: 0.1 to 1.0%, Mo: 0.03 to 0.5% and V: 0.02 to 0.05% selected from the group consisting of one or more And the balance of Ti content [Ti] and N content [N] satisfy the following formula (1), (2) A value defined by the formula is preferably one which satisfies the following 0.15%.

[Ti]/[N]≦3.4…(1)
A値=[C]+[Si]/19+[Mn]/30+[Cu]/49+[Ni]/51+[Cr]/33+[Mo]/25+[V]/13 …(2)
但し、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo]および[V]は、夫々C,Si,Mn,Cu,Ni,Cr,MoおよびVの含有量(質量%)を示す。
[Ti] / [N] ≦ 3.4 (1)
A value = [C] + [Si] / 19 + [Mn] / 30 + [Cu] / 49 + [Ni] / 51 + [Cr] / 33 + [Mo] / 25 + [V] / 13 (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [V] are C, Si, Mn, Cu, Ni, Cr, Mo and The V content (% by mass) is shown.

また本発明で用いる高張力鋼板としては、上記の好ましい化学成分組成の他、不可避不純物中のPを0.025%以下(0%を含まない)、Sを0.02%以下(0%を含まない)に夫々抑制することや、Ca:0.005%以下(0%を含まない)および/または希土類元素:0.005%以下(0%を含まない)を含有させることも好ましく、抑制もしくは含有させる成分の種類に応じて、溶接継手の特性(鋼板の特性を反映した特性)が更に改善される。   Moreover, as a high-tensile steel plate used in the present invention, in addition to the above preferable chemical component composition, P in the inevitable impurities is 0.025% or less (not including 0%), S is 0.02% or less (0%) It is also preferable to contain and suppress Ca: 0.005% or less (not including 0%) and / or rare earth elements: 0.005% or less (not including 0%). Or according to the kind of component to contain, the characteristic (characteristic which reflected the characteristic of the steel plate) of a welded joint is further improved.

本発明の溶接継手において、前記高張力鋼板のHAZは、−40℃における平均シャルピー吸収エネルギーが50J以上の優れた靭性(低温靭性)が発揮されることになる。   In the welded joint of the present invention, the HAZ of the high-strength steel plate exhibits excellent toughness (low temperature toughness) having an average Charpy absorbed energy at −40 ° C. of 50 J or more.

本発明の溶接継手においては、溶接継手を構成する鋼板のHAZとして、ベイナイトを主体とする組織(面積率で90%以上)を有すると共に、ベイナイトの各結晶方位関係を適切に規定し、且つ旧オーステナイトのサイズを適切に規定することによって、疲労発生抑制に優れると共に、良好なHAZ靭性が確保できる溶接継手が実現でき、こうした溶接継手は、土木、建築、橋梁、海洋構造物、パイプ、船舶、貯蔵、建築機械等の各種溶接構造物への適用に有用である。   In the welded joint of the present invention, as HAZ of the steel sheet constituting the welded joint, it has a structure mainly composed of bainite (90% or more in area ratio), appropriately defines each crystal orientation relationship of bainite, and By appropriately defining the size of austenite, it is possible to realize a welded joint that is excellent in suppressing the occurrence of fatigue and that can secure good HAZ toughness. Such welded joints can be used in civil engineering, architecture, bridges, offshore structures, pipes, ships, It is useful for application to various welded structures such as storage and construction machinery.

本発明者らは、前記課題を解決するために、様々な角度から検討した。その結果、次のような知見が得られた。即ち、従来では抑制が困難とされていた溶接金属と母材(鋼板)の境界におけるマイクロクラックを起点とした疲労亀裂の発生を抑制するには、溶接継手を構成する母材において、微細で且つ均質なベイナイトの単一組織とすることによって、疲労亀裂進展の下限界特性を表すΔKth(後述する)を高い値に制御できることが可能となり、また旧オーステナイト粒径の微細化を図ることによって良好なHAZ靭性も確保でき、これによって上記目的が見事に達成されることを見出し、本発明を完成した。次に、本発明で規定する各要件の作用効果について説明する。   In order to solve the above problems, the present inventors have studied from various angles. As a result, the following knowledge was obtained. That is, in order to suppress the occurrence of fatigue cracks starting from microcracks at the boundary between the weld metal and the base metal (steel plate), which has conventionally been difficult to suppress, in the base metal constituting the weld joint, By using a single structure of homogeneous bainite, it becomes possible to control ΔKth (described later) representing the lower limit characteristic of fatigue crack growth to a high value, and it is favorable by refining the prior austenite grain size. The inventors have found that the HAZ toughness can be secured, and that the above-mentioned object can be achieved brilliantly, thereby completing the present invention. Next, the effect of each requirement prescribed | regulated by this invention is demonstrated.

ベイナイト相を主体とするような単相組織では、粒界が疲労亀裂発生の抵抗となるものと考えられる。但し、粒界を形成する両端の方位差が小さい(例えば、15°未満)小角粒界(小傾角境界)では、粒界エネルギーが小さくなってその効果が小さいので、前記方位差が15°以上の大角粒界(大傾角境界)を対象とする必要がある。つまり、前記方位差が15°以上である大角粒界に囲まれた結晶粒で、同一面積の円に換算したときの直径(円相当直径)の平均値で9μm以下とした結晶粒とすることによって、疲労亀裂発生抑制効果に優れた溶接継手が実現できたのである。この結晶粒は好ましくは8μm以下であり、より好ましくは7μm以下である。尚、前記「方位差」は、「ずれ角」若しくは「傾角」とも呼ばれているものであり、以下では「結晶方位差」と呼ぶことがある。またこうした結晶方位差を測定するには、EBSP法(Electron Backscattering Pattern法)を採用すれば良い。   In a single phase structure mainly composed of a bainite phase, it is considered that the grain boundary serves as a resistance to fatigue crack initiation. However, at a small-angle grain boundary (small tilt boundary) where the orientation difference between both ends forming a grain boundary is small (for example, a small tilt boundary), the grain boundary energy is small and the effect is small, so the orientation difference is 15 ° or more. It is necessary to target a large-angle grain boundary (large tilt boundary). That is, a crystal grain surrounded by a large-angle grain boundary having an orientation difference of 15 ° or more and having an average diameter (equivalent circle diameter) of 9 μm or less when converted to a circle of the same area. As a result, a welded joint excellent in the effect of suppressing the occurrence of fatigue cracks could be realized. This crystal grain is preferably 8 μm or less, more preferably 7 μm or less. The “orientation difference” is also referred to as “shift angle” or “inclination angle”, and may be hereinafter referred to as “crystal orientation difference”. In order to measure such a crystal orientation difference, an EBSP method (Electron Backscattering Pattern Method) may be employed.

また均質な組織として、溶接継手を構成する鋼板のベイナイトの分率は90面積%以上であることが必要である。こうした要件を満足させることによって、疲労亀裂発生抑制に優れたものとなる。このベイナイト分率は、好ましくは95面積%以上であり、より好ましくは97面積%以上である。尚、本発明におけるベイナイト組織とは、ポリゴナルフェライトおよびマルテンサイトを除いた組織であり、ベイニティックフェライト、アシィキュラーフェライト、ウィッドマンステッテンフェライト等のように中間速度域で生成される各種組織を含むものである。   Further, as a homogeneous structure, the bainite fraction of the steel sheet constituting the welded joint needs to be 90 area% or more. By satisfying these requirements, it is excellent in suppressing the occurrence of fatigue cracks. This bainite fraction is preferably 95 area% or more, more preferably 97 area% or more. Incidentally, the bainite structure in the present invention is a structure excluding polygonal ferrite and martensite, and various kinds of materials generated in an intermediate speed range such as bainitic ferrite, acicular ferrite, and Widmanstatten ferrite. Includes organizations.

一方、HAZ靭性を良好にするには、溶接継手を構成する鋼板における旧オーステナイト(旧γ)の平均粒径が200μm以下とする必要がある。こうした要件を満足させることによって、溶接継手のHAZにおける良好な靭性が確保できる。旧オーステナイトの平均粒径は、好ましくは190μm以下であり、より好ましくは175μm以下とするのが良い。尚、旧オーステナイトとは、HAZにおいて溶接時の入熱によりオーステナイト変態し、その後高温保持される過程で粒成長したオーステナイト組織を意味する。また、この旧オーステナイトは、溶接後の冷却により再び変態して所定のHAZ組織となるものの、その粒径は測定可能である。   On the other hand, in order to improve the HAZ toughness, the average grain size of prior austenite (old γ) in the steel sheet constituting the welded joint needs to be 200 μm or less. By satisfying these requirements, good toughness in the HAZ of the welded joint can be ensured. The average particle diameter of the prior austenite is preferably 190 μm or less, and more preferably 175 μm or less. The prior austenite means an austenite structure in which HAZ undergoes austenite transformation by heat input during welding and thereafter grows in the process of being maintained at a high temperature. Moreover, although this prior austenite is transformed again by cooling after welding and becomes a predetermined HAZ structure, its particle size can be measured.

本発明の溶接継手では、上記の要件を満足させることによって、溶接金属と母材(鋼板)の境界におけるマイクロクラックを起点とした疲労亀裂の発生を抑制すると共に、HAZにおける良好な靭性も確保できたものであり、本発明の溶接継手で用いる高張力鋼板の鋼種については、高張力鋼板である限り特に限定するものではないが、上記特性を満足させる上からしても、下記の化学成分組成を満足するものであることが好ましい。これらの成分の範囲設定理由は、次の通りである。   In the welded joint of the present invention, by satisfying the above-mentioned requirements, it is possible to suppress the occurrence of fatigue cracks starting from microcracks at the boundary between the weld metal and the base material (steel plate) and to ensure good toughness in HAZ. The steel type of the high-tensile steel plate used in the welded joint of the present invention is not particularly limited as long as it is a high-strength steel plate. Is preferably satisfied. The reasons for setting the ranges of these components are as follows.

[C:0.01〜0.06%]
Cは、鋼板の強度を確保するために必要な元素である。経済的に強度を確保する上では、大量に含有させることが好ましいが、過剰に含有されると溶接継手部のHAZにおいて島状マルテンサイト(M−A)が急増し、HAZの靭性に有害である。また、Cが0.06%を超えて過剰に含有されると、HAZ組織が、靭性が低くまた組織単位の大きなベイナイト組織を多く含むようになり、靭性と疲労発生特性が大きく低下する。従って、C含有量の上限は0.06%以下とするのが良い。一方、0.01%未満まで極低C化を進めると、溶接部のHAZにおいて、旧オーステナイト粒界より初析フェライトが生成しやすくなり、疲労発生特性が低下する。従って、C含有量は0.01%以上とするのが良い。尚、C含有量のより好ましい下限は0.015%であり、好ましい上限は0.055%である。
[C: 0.01 to 0.06%]
C is an element necessary for ensuring the strength of the steel sheet. In order to ensure the strength economically, it is preferable to contain a large amount, but if it is contained excessively, island-shaped martensite (MA) rapidly increases in the HAZ of the welded joint, which is harmful to the toughness of the HAZ. is there. On the other hand, if the C content exceeds 0.06%, the HAZ structure contains a large amount of bainite structure having low toughness and large structural units, and the toughness and fatigue generation characteristics are greatly reduced. Therefore, the upper limit of the C content is preferably 0.06% or less. On the other hand, when the extremely low C is reduced to less than 0.01%, pro-eutectoid ferrite is more likely to be generated than the prior austenite grain boundaries in the HAZ of the weld zone, and the fatigue generation characteristics are deteriorated. Therefore, the C content is preferably 0.01% or more. In addition, a more preferable lower limit of the C content is 0.015%, and a preferable upper limit is 0.055%.

[Si:0.01〜0.5%]
Siは脱酸と強度確保のために有効な元素であるが、過剰に含有させると鋼材(母材)に島状マルテンサイト相(M−A相)を多量に析出させて靭性を劣化させる。こうしたことから、その上限を0.5%とすることが好ましい。尚、Si含有量のより好ましい上限は0.35%である。
[Si: 0.01 to 0.5%]
Si is an effective element for deoxidation and ensuring strength. However, when it is excessively contained, a large amount of island martensite phase (MA phase) is precipitated on the steel material (base material) to deteriorate toughness. For these reasons, the upper limit is preferably set to 0.5%. In addition, the upper limit with more preferable Si content is 0.35%.

[Mn:0.5〜2.0%]
Mnは鋼板の強度および靭性確保のために有効な元素であり、こうした効果を発揮させるためには、Mnは0.5%以上含有させることが好ましい。しかしながら、Mnを過剰に含有させると、母材の靭性劣化を引き起こすので上限を2.0%とする。Mn含有量のより好ましい下限は0.9%であり、より好ましい上限は1.7%である。
[Mn: 0.5 to 2.0%]
Mn is an effective element for securing the strength and toughness of the steel sheet, and in order to exert such effects, it is preferable to contain Mn in an amount of 0.5% or more. However, if Mn is contained excessively, the toughness of the base material is deteriorated, so the upper limit is made 2.0%. A more preferable lower limit of the Mn content is 0.9%, and a more preferable upper limit is 1.7%.

[Al:0.005〜0.10%]
Alは脱酸剤として有効な元素であり、0.005%未満ではこうした効果が発揮されない。しかしながら、過剰に含有されると、Al酸化物や窒化物が多量に生成して溶接継手部の靭性を劣化させる。こうしたことから、その上限は0.10%とすることが好ましい。尚、Al含有量のより好ましい下限は0.015%であり、より好ましい上限は0.07%である。
[Al: 0.005 to 0.10%]
Al is an effective element as a deoxidizing agent, and if it is less than 0.005%, such an effect is not exhibited. However, if it is contained excessively, a large amount of Al oxide or nitride is generated and the toughness of the welded joint is deteriorated. For these reasons, the upper limit is preferably 0.10%. In addition, the more preferable minimum of Al content is 0.015%, and a more preferable upper limit is 0.07%.

[Nb:0.005〜0.05%]
Nbは、C含有量を低減させた状態でポリゴナルフェライトの変態を抑制しつつ、均質なベイナイト組織を確保するために有効な元素である。これらの効果を発揮させるためには、Nbは0.005%以上含有させることが好ましい。しかしながら、Nbの含有量が過剰になって0.05%を超えると、溶接継手部のHAZ靭性の確保が困難になる。尚、Nb含有量のより好ましい下限は0.01%(更に好ましくは0.015%)であり、より好ましい上限は0.03%である。
[Nb: 0.005 to 0.05%]
Nb is an effective element for ensuring a homogeneous bainite structure while suppressing the transformation of polygonal ferrite with the C content reduced. In order to exhibit these effects, it is preferable to contain Nb 0.005% or more. However, if the Nb content becomes excessive and exceeds 0.05%, it becomes difficult to ensure the HAZ toughness of the welded joint. A more preferable lower limit of the Nb content is 0.01% (more preferably 0.015%), and a more preferable upper limit is 0.03%.

[Ti:0.008〜0.03%]
Tiは窒化物(TiN)を均質分散させることによって、溶接入熱時の旧オーステナイト(旧γ)の粗大化を抑制し、HAZ靭性の向上と初析フェライト生成を抑制しHAZ組織の微細化および均質化を促進する上で有効な元素である。こうした効果を発揮させるためには、Ti含有量は0.008%以上とする必要がある。しかしながら、Tiを過剰に含有させると粗大な介在物を析出させ、却ってHAZ靭性を劣化させるので、その上限を0.03%とする。尚、Ti含有量のより好ましい下限は0.01%であり、より好ましい上限は0.02%である。
[Ti: 0.008 to 0.03%]
Ti uniformly disperses nitride (TiN), thereby suppressing coarsening of prior austenite (former γ) during welding heat input, improving HAZ toughness and suppressing proeutectoid ferrite formation, and reducing HAZ microstructure It is an effective element for promoting homogenization. In order to exert such effects, the Ti content needs to be 0.008% or more. However, if Ti is contained excessively, coarse inclusions are precipitated and the HAZ toughness is deteriorated on the contrary, so the upper limit is made 0.03%. A more preferable lower limit of the Ti content is 0.01%, and a more preferable upper limit is 0.02%.

[B:0.001〜0.005%]
Bは初析フェライトを抑制してHAZ組織の均質なベイナイト変態を促進するために有効な元素である。こうした効果を発揮させるためには、Bは0.001%以上含有させることが好ましい。しかしながら、Bを過剰に含有させるとその効果が飽和するばかりか、HAZ組織中での介在物(B窒化物)が増加してHAZ靭性は却って低下するので、B含有量の上限は0.005%とする必要がある。尚、B含有量のより好ましい下限は0.0015%であり、より好ましい上限は0.003%である。
[B: 0.001 to 0.005%]
B is an effective element for suppressing pro-eutectoid ferrite and promoting homogeneous bainite transformation of the HAZ structure. In order to exert such an effect, B is preferably contained in an amount of 0.001% or more. However, when B is excessively contained, not only the effect is saturated, but also inclusions (B nitride) in the HAZ structure increase and the HAZ toughness decreases, so the upper limit of the B content is 0.005. % Is required. A more preferable lower limit of the B content is 0.0015%, and a more preferable upper limit is 0.003%.

[N:0.003〜0.008%]
溶接継手のHAZにおいて靭性を高位に確保するためには、旧オーステナイト粒内にTiNを微細析出させて旧オーステナイト粒の粗大化を防止することが有効である。こうした効果を発揮させるためには、N含有量は0.003%以上とすることが好ましい。しかしながら、Nの含有量が過剰になって0.008%を超えると粗大なTiNが析出して破壊の起点となる。尚、N含有量のより好ましい下限は0.004%であり、より好ましい上限は0.0065%である。
[N: 0.003 to 0.008%]
In order to ensure high toughness in the HAZ of the welded joint, it is effective to finely precipitate TiN in the prior austenite grains and prevent coarsening of the prior austenite grains. In order to exert such effects, the N content is preferably set to 0.003% or more. However, if the N content becomes excessive and exceeds 0.008%, coarse TiN precipitates and becomes the starting point of fracture. A more preferable lower limit of the N content is 0.004%, and a more preferable upper limit is 0.0065%.

尚、TiNを生成させるという観点からすれば、Ti含有量とN含有量との関係では、下記(1)式の関係を満足させることが好ましい。
[Ti]/[N]≦3.4…(1)
From the viewpoint of generating TiN, it is preferable that the relationship of the following formula (1) is satisfied in the relationship between the Ti content and the N content.
[Ti] / [N] ≦ 3.4 (1)

[Cr:0.3〜1.0%、Cu:0.1〜1.0%、Ni:0.1〜1.0%、Mo:0.03〜0.5%およびV:0.02〜0.05%よりなる群から選ばれる1種または2種以上]
これらの元素は、変態を抑制し、ベイナイト変態開始温度Bsを低下させることによって、組織単位を細かくする作用を発揮する。またベイナイトは、変態の際にK−S関係(Kurdjiumov−Sachsの関係)を持って変態するが、低温で変態することで、単一のバリアント(いわゆる兄弟晶)からなる微細なブロックが生成するようになる。こうした効果を発揮させるためには、上記した各下限以上含有させることが好ましいが、多量に含有させると溶接性を損なうので上限値以下とするのが良い。
[Cr: 0.3-1.0%, Cu: 0.1-1.0%, Ni: 0.1-1.0%, Mo: 0.03-0.5% and V: 0.02 1 type or 2 types or more selected from the group consisting of ˜0.05%]
These elements exhibit an effect of making the texture unit fine by suppressing transformation and lowering the bainite transformation start temperature Bs. In addition, bainite transforms with a KS relationship (Kurdjimov-Sachs relationship) at the time of transformation, but by transforming at a low temperature, a fine block consisting of a single variant (so-called sibling) is generated. It becomes like this. In order to exhibit such an effect, it is preferable to make it contain more than each above-mentioned minimum, but since it will impair weldability when it contains abundantly, it is good to make it below an upper limit.

本発明で溶接継手を構成する鋼板は、上記のような化学成分組成を満足することが好ましいのであるが、下記(2)式で規定されるA値が0.15%以下であることも重要な要件である。即ち、ベイナイトを生成させるためには、C,Si,Mn,Cr,MoおよびV等の焼入れ性向上元素を含有させる必要があるが、微細なベイナイト生成のためにはこれらの元素の含有量はできるだけ低減することが好ましい。
A値=[C]+[Si]/19+[Mn]/30+[Cu]/49+[Ni]/51+[Cr]/33+[Mo]/25+[V]/13 …(2)
但し、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo]および[V]は、夫々C,Si,Mn,Cu,Ni,Cr,MoおよびVの含有量(質量%)を示す。
The steel plate constituting the welded joint in the present invention preferably satisfies the chemical composition as described above, but it is also important that the A value defined by the following formula (2) is 0.15% or less. It is a necessary requirement. That is, in order to produce bainite, it is necessary to contain elements for improving hardenability such as C, Si, Mn, Cr, Mo and V, but for the production of fine bainite, the content of these elements is It is preferable to reduce as much as possible.
A value = [C] + [Si] / 19 + [Mn] / 30 + [Cu] / 49 + [Ni] / 51 + [Cr] / 33 + [Mo] / 25 + [V] / 13 (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [V] are C, Si, Mn, Cu, Ni, Cr, Mo and The V content (% by mass) is shown.

本発明者らは、下記表1に化学成分組成を示す各種鋼板を用い、再現熱サイクル試験を行い、その試験片よりCT試験片を用いた疲労亀裂伝播試験によって、上記(2)式における各係数を求めたものである(鋼板の製造方法や疲労亀裂伝播試験の方法については、後記実施例と同一である)。   The inventors of the present invention conducted various reproducible thermal cycle tests using various steel sheets having the chemical composition shown in Table 1 below, and conducted fatigue crack propagation tests using CT test pieces from the test pieces. The coefficient was obtained (the steel plate manufacturing method and fatigue crack propagation test method are the same as those in Examples described later).

Figure 2009068078
Figure 2009068078

このとき算出されたΔKth(下限界応力拡大係数範囲:後記実施例参照)と各成分の関係は、下記(3)〜(10)式に示す通りであり、これらの関係を整理することによって、上記(2)式が求められたのである([C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo]および[V]の意味については、上記と同じ)。
In(ΔKth)=2.522−15.413[C] …(3)
In(ΔKth)=2.343−0.829[Si] …(4)
In(ΔKth)=2.003−0.507[Mn] …(5)
In(ΔKth)=1.876−0.312[Cu] …(6)
In(ΔKth)=1.887−0.305[Ni] …(7)
In(ΔKth)=1.531−0.461[Cr] …(8)
In(ΔKth)=1.964−0.621[Mo] …(9)
In(ΔKth)=2.381−1.159[V] …(10)
The relationship between ΔKth (lower limit stress intensity factor range: see Examples described later) and each component calculated at this time is as shown in the following formulas (3) to (10). By arranging these relationships, The above equation (2) was obtained (for the meanings of [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [V] the same).
In (ΔKth) = 2.522-15.413 [C] (3)
In (ΔKth) = 2.343-0.829 [Si] (4)
In (ΔKth) = 2.003−0.507 [Mn] (5)
In (ΔKth) = 1.766-0.312 [Cu] (6)
In (ΔKth) = 1.877−0.305 [Ni] (7)
In (ΔKth) = 1.531-0.461 [Cr] (8)
In (ΔKth) = 1.964-0.621 [Mo] (9)
In (ΔKth) = 2.381-1.159 [V] (10)

本発明で用いる高張力鋼板の好ましい化学成分組成は上記の通りであり、残部は鉄および不可避不純物(例えば、P,S,O等)からなるものであるが、この不可避不純物中のPやSが、下記の観点からP:0.025%以下(0%を含まない)およびS:0.02%以下(0%を含まない)に夫々抑制することが好ましい。   The preferable chemical composition of the high-strength steel sheet used in the present invention is as described above, and the balance is composed of iron and inevitable impurities (for example, P, S, O, etc.). However, it is preferable to suppress to P: 0.025% or less (not including 0%) and S: 0.02% or less (not including 0%) from the following viewpoints.

[P:0.025%以下(0%を含まない)およびS:0.02%以下(0%を含まない)]
Pは結晶粒に偏析し、延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが、不可避的に鋼材に混入することを考慮して0.025%以下(より好ましくは0.020%以下)に抑制するのが良い。またSは、鋼材中の合金元素と反応して種々の介在物を形成し、鋼材の延性や靭性に有害に作用する不純物であるので、できるだけ少ない方が好ましいのであるが、不可避的に混入することを考慮して0.02%以下(より好ましくは0.015%以下)に抑制するのが良い。
[P: 0.025% or less (not including 0%) and S: 0.02% or less (not including 0%)]
P is an impurity that segregates in crystal grains and adversely affects ductility and toughness, so it is preferable that it be as small as possible, but 0.025% or less (more preferably) considering that it is inevitably mixed into the steel material. Is preferably 0.020% or less). Further, S is an impurity that reacts with alloy elements in the steel material to form various inclusions and adversely affects the ductility and toughness of the steel material. Therefore, it is preferably as small as possible, but inevitably mixed in. In consideration of this, it is good to suppress to 0.02% or less (more preferably 0.015% or less).

また、本発明で用いる鋼板には、上記成分の他、必要によって、Ca:0.005%以下(0%を含まない)および/または希土類元素:0.005%以下(0%を含まない)を含有させることも有効であり、これらの元素を含有させることによって、鋼板の特性(即ち、溶接継手の特性)が更に改善させることになる。   Further, in the steel sheet used in the present invention, in addition to the above components, if necessary, Ca: 0.005% or less (not including 0%) and / or rare earth elements: 0.005% or less (not including 0%) It is also effective to contain these elements, and the inclusion of these elements further improves the properties of the steel sheet (that is, the properties of the welded joint).

[Ca:0.005%以下(0%を含まない)および/または希土類元素:0.005%以下(0%を含まない)]
Caおよび希土類元素(REM)は、介在物形状の異方性を低減してHAZ靭性を向上するのに有効な元素である。こうした効果はその含有量が増加するにつれて増大するのであるが、過剰に含有させると、介在物が粗大化してHAZ靭性が却って低下することになる。こうしたことから、これらを含有させるときには、いずれも0.005%以下(1種または2種の合計)とすることが好ましい。尚、上記効果を有効に発揮させるための好ましい下限は、いずれも0.0005%である。
[Ca: 0.005% or less (not including 0%) and / or rare earth element: 0.005% or less (not including 0%)]
Ca and rare earth elements (REM) are effective elements for reducing the inclusion shape anisotropy and improving the HAZ toughness. Such an effect increases as the content thereof increases, but if it is excessively contained, inclusions become coarse and the HAZ toughness decreases. For these reasons, when these are contained, the content is preferably 0.005% or less (total of one or two types). In addition, the preferable minimum for exhibiting the said effect effectively is all 0.0005%.

上記のような鋼板を用いて、溶接によって溶接継手を構成することによって、溶接継手における前記高張力鋼板のHAZは、後記実施例に示すように、−40℃における平均シャルピー吸収エネルギーが50J以上の優れた靭性(低温靭性)が発揮されるものとなる。尚、このときの溶接方法については、特に限定するものではなく、炭酸ガスアーク溶接法、サブマージアーク溶接法、エレクトロガスアーク溶接法、その他の方法を適用することができ、いずれの溶接方法を適用しても、疲労亀裂発生抑制特性および靭性に優れた溶接継手が実現できる。   By using the steel plate as described above to form a welded joint by welding, the HAZ of the high-tensile steel plate in the welded joint has an average Charpy absorbed energy at −40 ° C. of 50 J or more, as shown in Examples below. Excellent toughness (low temperature toughness) will be exhibited. The welding method at this time is not particularly limited, and a carbon dioxide arc welding method, a submerged arc welding method, an electrogas arc welding method, and other methods can be applied, and any welding method is applied. In addition, it is possible to realize a welded joint having excellent fatigue crack generation suppression characteristics and toughness.

本発明の溶接継手は、溶接継手を構成した段階でのHAZの組織がベイナイトを主体とする組織からなるものであるが、HAZは溶接時の入熱によりAc3以上の温度(通常は1300〜1450℃)に達して完全にオーステナイト変態するため、母材の金属組織の影響を受けることなく、母材の成分によりその特性は規定される。従って、溶接継手において良好な特性を満足させるためには、上記のような化学成分組成を満足させることが好ましい。 In the welded joint of the present invention, the HAZ structure at the stage of forming the welded joint is composed mainly of bainite, but HAZ has a temperature of Ac 3 or higher (usually 1300 to 1) due to heat input during welding. 1450 ° C.) and complete austenite transformation, the characteristics of the base material are determined without being affected by the metal structure of the base material. Therefore, in order to satisfy good characteristics in the welded joint, it is preferable to satisfy the chemical component composition as described above.

このため、本発明で用いる高張力鋼板は、製造法に対しては何ら制約を設けるものではい。   For this reason, the high-tensile steel plate used in the present invention does not impose any restrictions on the manufacturing method.

例えば、具体的な製造条件の一例としては、950〜1250℃の温度範囲に加熱し、Ar3変態点〜900℃の温度範囲で圧延を終了した後、空冷または冷却速度を5℃/秒以上となるような水冷により製造する方法が挙げられる。また、950〜1250℃の温度範囲に加熱し、Ar3変態点〜900℃の温度範囲で圧延を終了した後、オンラインまたはオフラインで焼入れ処理を行った後に、500〜700℃の温度域で焼戻し処理を行い製造する方法も挙げられる。 For example, as an example of specific production conditions, after heating in the temperature range of 950 to 1250 ° C. and finishing rolling in the temperature range of Ar 3 transformation point to 900 ° C., the air cooling or cooling rate is 5 ° C./second or more. The method of manufacturing by water cooling which becomes becomes. In addition, after heating in the temperature range of 950 to 1250 ° C. and finishing the rolling in the temperature range of Ar 3 transformation point to 900 ° C., after performing online or offline quenching treatment, tempering in the temperature range of 500 to 700 ° C. The method of processing and manufacturing is also mentioned.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含されるものである。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

[実施例1]
下記表2に示す化学成分組成の鋼(実験No.1〜22)を用い、150kgの真空溶解炉を用いて溶製し、インゴットを製造した。尚、表2には、A値[(2)式の値]および[Ti]/[N]比[(1)式の左辺の値]についても示した。尚、表2における実験No.1〜11は、本発明の好ましい化学成分組成を満足するものであり、実験No.12〜22は本発明の好ましい要件(化学成分組成、[Ti]/[N]、A値)のいずれかが外れたものである。
[Example 1]
Steels (experiment Nos. 1 to 22) having chemical composition shown in Table 2 below were melted using a 150 kg vacuum melting furnace to produce ingots. Table 2 also shows the A value [value of equation (2)] and the [Ti] / [N] ratio [value on the left side of equation (1)]. In addition, experiment No. in Table 2 Nos. 1 to 11 satisfy the preferred chemical component composition of the present invention. Nos. 12 to 22 are those in which any of the preferable requirements (chemical component composition, [Ti] / [N], A value) of the present invention is not satisfied.

Figure 2009068078
Figure 2009068078

上記インゴットに関して、1200℃(±50℃)に再加熱を行って、熱間鍛造を行い、スラブとした(スラブ厚さ:135mm、スラブ幅:180mm)。このスラブを加熱温度:1100℃(±30℃)まで再加熱し、小型圧延機を用いて熱間終了温度が900℃(±20℃)となるように熱間圧延を行い、その後空冷することによって、供試鋼板を作製した。尚、このときの圧延条件は、溶接時に1200℃以上に再加熱されることから、HAZに影響を与えず、化学成分のみが影響を与えることになる。   The ingot was reheated to 1200 ° C. (± 50 ° C.) and hot forged to obtain a slab (slab thickness: 135 mm, slab width: 180 mm). This slab is reheated to a heating temperature of 1100 ° C (± 30 ° C), hot-rolled to a hot end temperature of 900 ° C (± 20 ° C) using a small rolling mill, and then air-cooled. Thus, a test steel plate was produced. In addition, since the rolling conditions at this time are reheated to 1200 ° C. or higher at the time of welding, only the chemical components have an influence without affecting the HAZ.

上記各供試鋼板を用い、下記表3に示す条件によって、溶接条件(I〜III)によって突き合わせ溶接を行い、溶接継手を作製した。この溶接継手から、下記のようにして疲労亀裂進展試験片およびシャルピー衝撃試験片を採取し、下記の特性評価に供した。尚、試験片の採取に当たっては、溶接条件I,IIで行ったときのHAZについては、レ型開先の垂直側を採取部位とした(溶接条件IIIの場合は任意)。   Using each of the test steel plates, butt welding was performed under the welding conditions (I to III) under the conditions shown in Table 3 below, and weld joints were produced. From this welded joint, a fatigue crack growth specimen and a Charpy impact specimen were collected as described below and subjected to the following characteristic evaluation. In collecting the test pieces, the HAZ when the welding conditions I and II were performed was set to the sampling site on the vertical side of the lathe groove (optional in the case of welding conditions III).

Figure 2009068078
Figure 2009068078

[疲労亀裂進展試験片の採取および疲労亀裂進展速度試験]
(1)溶接継手から、鋼板のt/4(tは板厚)が中心となるように、12.5mmまで切削加工を行い、表面のマイクロエッチングを行い、マイクロエッチングにより確認された溶接熱影響部(HAZ)の中央を亀裂進展方向となるように、コンパクト型試験片(CT試験片)を採取した。このとき得られたCT試験片の形状を図1に示す。
(2)上記CT試験片を用い、ASTM E647に準拠し、疲労亀裂進展試験を実施することによって、ΔKth(下限界応力拡大係数範囲)を測定した。尚、ΔKthは、漸減法によりΔKを下げていった際の疲労亀裂が速度の低下を測定し、1×10−7(mm/cycle)以下となったときのΔK(N/mm1.5)の値である(一般的な定義)。このときの他の試験条件は、下記の通りである。
[Fatigue crack growth specimen collection and fatigue crack growth rate test]
(1) From the welded joint, cutting to 12.5 mm is performed so that t / 4 (t is the plate thickness) of the steel plate is the center, surface microetching is performed, and the welding heat effect confirmed by microetching A compact test piece (CT test piece) was sampled so that the center of the part (HAZ) was in the crack propagation direction. The shape of the CT test piece obtained at this time is shown in FIG.
(2) Using the CT test piece, ΔKth (lower limit stress intensity factor range) was measured by conducting a fatigue crack growth test in accordance with ASTM E647. Note that ΔKth is the value of ΔK (N / mm 1.5 ) when the fatigue crack when the ΔK is lowered by the gradual reduction method is measured and the drop is 1 × 10 −7 (mm / cycle) or less. Value (general definition). Other test conditions at this time are as follows.

試験方法:電気油圧サーボ式±10トン疲労試験機を使用し、亀裂長さの測定はコンピュータ制御によるコンプライアンス法による荷重漸減法K値減少法(亀裂の進展と共に荷重を自動的に減少させていく方法)によりΔKthを計測
試験環境:室温、大気中
制御方法:荷重制御
応力比:R=0.1
試験速度:600〜1200cpm
Test method: Electrohydraulic servo type ± 10 ton fatigue tester is used. Crack length is measured by a computer-controlled compliance method using a load gradual reduction method K value reduction method (the load is automatically reduced as the crack progresses). ΔKth is measured by the method) Test environment: room temperature, atmospheric control method: load control stress ratio: R = 0.1
Test speed: 600-1200 cpm

このとき、ΔKthに対する溶接残留応力の影響を除去するために、下記の応力除去焼鈍を実施した。このようにして計測した値が、5N/mm1.5以上であるときを、疲労亀裂発生抑制特性に優れると評価した。
(焼鈍条件)
加熱温度:630℃
保持時間:13時間
加熱速度:30℃/時(±5℃)
冷却速度:30℃/時(±5℃)[但し、200℃以下は空冷]
At this time, in order to remove the influence of welding residual stress on ΔKth, the following stress removal annealing was performed. When the value measured in this way was 5 N / mm 1.5 or more, it was evaluated that the fatigue crack generation suppressing property was excellent.
(Annealing conditions)
Heating temperature: 630 ° C
Holding time: 13 hours Heating rate: 30 ° C / hour (± 5 ° C)
Cooling rate: 30 ° C / hour (± 5 ° C) [However, 200 ° C or less is air-cooled]

[シャルピー衝撃試験片の採取およびシャルピー衝撃試験(HAZ靭性)]
溶接継手において断面マイクロエッチングを行い、鋼板のt/4(tは板厚)部でボンド部から3mmの位置を中心にノッチを入れた試験片3本を採取した。このときの試験片の形状は、JIS Z 2201 4号vノッチ試験片とした。この試験片を用い、JIS Z 2242に準拠してシャルピー衝撃試験を行ない、−40℃における平均吸収エネルギーvE-40を求めた。このときの平均吸収エネルギーvE-40(3本の平均値)が50J以上を合格とした。
[Collecting Charpy Impact Test Piece and Charpy Impact Test (HAZ Toughness)]
Cross-sectional micro-etching was performed on the welded joint, and three test pieces with notches centered at a position 3 mm from the bond portion at the t / 4 (t is the plate thickness) portion of the steel plate were collected. The shape of the test piece at this time was a JIS Z 2201 No. 4 v-notch test piece. Using this test piece, a Charpy impact test was performed in accordance with JIS Z 2242 to determine an average absorbed energy vE- 40 at -40 ° C. At this time, the average absorbed energy vE -40 (average value of three) was 50 J or more.

また得られた各溶接継手から、HAZにおけるベイナイト分率、旧オーステナイト粒径、大角粒界で囲まれた結晶粒の粒径(大角粒径:平均円相当径)等を下記の方法によって測定した。これらの結果を、疲労試験結果、HAZ靭性試験結果と共に、一括して下記表4に示す。   Further, from each of the obtained welded joints, the bainite fraction in HAZ, the prior austenite grain size, the grain size of the crystal grains surrounded by the large angle grain boundary (large angle grain size: average equivalent circle diameter), and the like were measured by the following methods. . These results are shown in Table 4 below together with the fatigue test results and the HAZ toughness test results.

[ベイナイト分率(面積率)]
鋼板のt/4(tは板厚)に相当する位置から試験片を採取し、圧延方向断面を鏡面研磨し、これを2%硝酸−エタノール溶液(ナイタール溶液)でエッチングした後、5視野において光学顕微鏡を用いて400倍で観察を行ない、画像解析によって鋼組織中のベイナイト分率(面積%)を測定した。この際、フェライト(ポリゴナルフェライト・擬ポリゴナルフェライトを含む)および島状マルテンサイト以外のラス状組織は全てベイナイトとみなした。
[Bainite fraction (area ratio)]
A test piece was taken from a position corresponding to t / 4 (t is the plate thickness) of the steel sheet, the cross section in the rolling direction was mirror-polished, and this was etched with a 2% nitric acid-ethanol solution (a nital solution). Observation was performed at 400 times using an optical microscope, and the bainite fraction (area%) in the steel structure was measured by image analysis. At this time, all lath structures other than ferrite (including polygonal ferrite and pseudopolygonal ferrite) and island martensite were regarded as bainite.

[旧オーステナイト粒径の測定]
鋼板のt/4(tは板厚)に相当する位置から試験片を採取し、圧延方向断面を鏡面研磨し、これをピクリン酸でエッチングした後、10視野において光学顕微鏡を用いて100倍で観察を行ない、画像解析によって組織中の旧オーステナイト(旧γ)粒径を測定した。
[Measurement of prior austenite grain size]
A test piece was taken from a position corresponding to t / 4 (t is the plate thickness) of the steel plate, the cross section in the rolling direction was mirror-polished, and this was etched with picric acid, and then 100 times using an optical microscope in 10 fields of view. Observation was performed, and the prior austenite (old γ) particle size in the structure was measured by image analysis.

[大角粒界径(平均円相当径)]
鋼板の圧延方向に平行な断面に相当する位置において、FE−SEM−EBSP(電子放出型走査電子顕微鏡を用いた電子後方散乱回折像法)によって測定した。具体的には、Tex SEM Laboratries社のEBSP装置(商品名:「OIM」)を、EF−SEMと組み合わせて用い、傾角(結晶方位差)が15°以上の境界を結晶粒界として、結晶粒径を測定した。このときの測定条件は、測定領域:200μm、測定ステップ:0.5μm間隔とし、測定方位の信頼性を示すコンフィデンス・インデックス(Confidence Index)が0.1よりも小さい測定点は解析対象から除外した。このようにして求められる結晶粒径の平均値を算出して、本発明における平均結晶粒径(大角粒径)とした。尚、結晶粒径が2.0μm以下のものについては、測定ノイズと判断し、結晶粒径の平均値計算の対象から除外した。
[Large-angle grain boundary diameter (average equivalent circle diameter)]
Measurement was performed by FE-SEM-EBSP (electron backscattering diffraction image method using an electron emission scanning electron microscope) at a position corresponding to a cross section parallel to the rolling direction of the steel sheet. Specifically, an EBSP apparatus (trade name: “OIM”) manufactured by Tex SEM Laboratories is used in combination with EF-SEM, and a grain having a tilt angle (crystal orientation difference) of 15 ° or more is used as a crystal grain boundary. The diameter was measured. The measurement conditions at this time were a measurement area: 200 μm, a measurement step: 0.5 μm interval, and measurement points having a confidence index (Confidence Index) indicating reliability of the measurement direction smaller than 0.1 were excluded from the analysis target. . Thus, the average value of the crystal grain diameter calculated | required was computed, and it was set as the average crystal grain diameter (large angle particle diameter) in this invention. Incidentally, those having a crystal grain size of 2.0 μm or less were judged as measurement noise and excluded from the target of calculating the average value of the crystal grain size.

これらの結果を、疲労試験結果、HAZ靭性試験結果と共に、一括して下記表4に示すが、本発明の要件を満足するものでは(実験No.1〜11)、疲労亀裂発生抑制特性および靭性に優れていることが分かる。これに対して本発明で規定する要件のいずれかが外れるものでは(実験No.12〜22)、いずれかの特性が劣化していることが分かる。   These results are shown together with fatigue test results and HAZ toughness test results in Table 4 below, but satisfy the requirements of the present invention (Experiment Nos. 1 to 11). It turns out that it is excellent in. On the other hand, if any of the requirements defined in the present invention deviates (Experiment Nos. 12 to 22), it can be seen that any of the characteristics is deteriorated.

Figure 2009068078
Figure 2009068078

上記表4の結果に基づき、ベイナイト分率が大角粒径とΔKthに与える影響を図2に、旧γ粒径とHAZ靭性(vE-40)の関係を図3に、A値と大角粒径の関係を図4に夫々示す。これらの結果から明らかなように、(1)ベイナイト分率を適切な範囲に制御することによって、大角粒径やΔKthが適切な範囲となって、疲労亀裂発生抑制特性が良好になること、(2)旧γ粒径を適切に制御することによって良好なHAZ靭性が発揮されていること、(3)A値を制御することは大角粒径を小さくする上で有効であることが分かる。 Based on the results of Table 4 above, FIG. 2 shows the effect of the bainite fraction on the large-angle particle size and ΔKth, FIG. 3 shows the relationship between the prior γ particle size and the HAZ toughness (vE -40 ), and the A value and the large-angle particle size. These relationships are shown in FIG. As is clear from these results, (1) By controlling the bainite fraction to an appropriate range, the large-angle particle size and ΔKth are in an appropriate range, and fatigue crack generation suppression characteristics are improved. 2) It can be seen that good HAZ toughness is exhibited by appropriately controlling the prior γ grain size, and (3) controlling the A value is effective in reducing the large-angle grain size.

疲労亀裂進展試験片の形状を示す説明図である。It is explanatory drawing which shows the shape of a fatigue crack growth test piece. ベイナイト分率が大角粒径とΔKthに与える影響を示すグラフである。It is a graph which shows the influence which a bainite fraction has on a large angle particle size and (DELTA) Kth. 旧γ粒径とHAZ靭性(vE-40)の関係を示すグラフである。It is a graph which shows the relationship between an old gamma particle size and HAZ toughness (vE- 40 ). A値と大角粒径の関係を示すグラフである。It is a graph which shows the relationship between A value and a large angle particle size.

Claims (5)

高張力鋼板を溶接によって接合した溶接継手であって、高張力鋼板の溶接熱影響部の組織は、旧オーステナイトの平均粒径が200μm以下であると共に、ベイナイトの分率が90面積%以上であり、且つ2つの結晶の方位差が15°以上の大角粒界で囲まれた領域を結晶粒としたとき、当該結晶粒の平均円相当径が9μm以下であることを特徴とする靭性および疲労亀裂発生抑制特性に優れた溶接継手。   It is a welded joint in which high-tensile steel plates are joined by welding, and the structure of the heat-affected zone of the high-tensile steel plate has an average grain size of prior austenite of 200 μm or less and a fraction of bainite of 90 area% or more. And when a region surrounded by a large-angle grain boundary having an orientation difference of 15 ° or more between two crystals is used as a crystal grain, an average equivalent circle diameter of the crystal grain is 9 μm or less, and toughness and fatigue crack A welded joint with excellent generation suppression characteristics. 前記高張力鋼板は、C:0.01〜0.06%(質量%の意味、以下同じ)、Si:0.01〜0.5%、Mn:0.5〜2.0%、Al:0.005〜0.10%、Nb:0.005〜0.05%、Ti:0.008〜0.03%、B:0.001〜0.005%およびN:0.003〜0.008%を夫々含有する他、Cr:0.3〜1.0%、Cu:0.1〜1.0%、Ni:0.1〜1.0%、Mo:0.03〜0.5%およびV:0.02〜0.05%よりなる群から選ばれる1種または2種以上を含有し、残部不可避不純物からなり、且つTiの含有量[Ti]とNの含有量[N]が下記(1)式の関係を満足すると共に、下記(2)式で規定されるA値が0.15%以下を満足するものである請求項1に記載の溶接継手。
[Ti]/[N]≦3.4…(1)
A値=[C]+[Si]/19+[Mn]/30+[Cu]/49+[Ni]/51+[Cr]/33+[Mo]/25+[V]/13 …(2)
但し、[C],[Si],[Mn],[Cu],[Ni],[Cr],[Mo]および[V]は、夫々C,Si,Mn,Cu,Ni,Cr,MoおよびVの含有量(質量%)を示す。
The high-tensile steel plate is C: 0.01 to 0.06% (meaning mass%, hereinafter the same), Si: 0.01 to 0.5%, Mn: 0.5 to 2.0%, Al: 0.005-0.10%, Nb: 0.005-0.05%, Ti: 0.008-0.03%, B: 0.001-0.005% and N: 0.003-0. In addition to containing 008%, Cr: 0.3-1.0%, Cu: 0.1-1.0%, Ni: 0.1-1.0%, Mo: 0.03-0.5 % And V: one or more selected from the group consisting of 0.02 to 0.05%, the balance consists of inevitable impurities, and Ti content [Ti] and N content [N] The welded joint according to claim 1, wherein A satisfies the relationship of the following formula (1) and the A value defined by the following formula (2) satisfies 0.15% or less.
[Ti] / [N] ≦ 3.4 (1)
A value = [C] + [Si] / 19 + [Mn] / 30 + [Cu] / 49 + [Ni] / 51 + [Cr] / 33 + [Mo] / 25 + [V] / 13 (2)
However, [C], [Si], [Mn], [Cu], [Ni], [Cr], [Mo] and [V] are C, Si, Mn, Cu, Ni, Cr, Mo and The V content (% by mass) is shown.
前記高張力鋼板は、不可避不純物中のPを0.025%以下(0%を含まない)、Sを0.02%以下(0%を含まない)に夫々抑制したものである請求項2に記載の溶接継手。   The high-strength steel sheet is obtained by suppressing P in the inevitable impurities to 0.025% or less (not including 0%) and S to 0.02% or less (not including 0%), respectively. The weld joint described. 前記高張力鋼板は、Ca:0.005%以下(0%を含まない)および/または希土類元素:0.005%以下(0%を含まない)を含有するものである請求項2または3に記載の溶接継手。   The high-strength steel sheet contains Ca: 0.005% or less (not including 0%) and / or rare earth elements: 0.005% or less (not including 0%). The weld joint described. 前記高張力鋼板の溶接熱影響部は、−40℃における平均シャルピー吸収エネルギーが50J以上である請求項1〜4のいずれかに記載の溶接継手。   The weld joint according to any one of claims 1 to 4, wherein the weld heat-affected zone of the high-tensile steel sheet has an average Charpy absorbed energy at -40 ° C of 50 J or more.
JP2007238351A 2007-09-13 2007-09-13 Welded joints with excellent toughness and fatigue cracking suppression properties Expired - Fee Related JP5096088B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007238351A JP5096088B2 (en) 2007-09-13 2007-09-13 Welded joints with excellent toughness and fatigue cracking suppression properties
CNA2008102134611A CN101386956A (en) 2007-09-13 2008-09-04 Toughness and welded joint with good inhibition of fatigue cracking
KR1020080089929A KR101011625B1 (en) 2007-09-13 2008-09-11 Welding joint exellent in toughness and control of fatigue crack initiation property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007238351A JP5096088B2 (en) 2007-09-13 2007-09-13 Welded joints with excellent toughness and fatigue cracking suppression properties

Publications (2)

Publication Number Publication Date
JP2009068078A true JP2009068078A (en) 2009-04-02
JP5096088B2 JP5096088B2 (en) 2012-12-12

Family

ID=40476622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007238351A Expired - Fee Related JP5096088B2 (en) 2007-09-13 2007-09-13 Welded joints with excellent toughness and fatigue cracking suppression properties

Country Status (3)

Country Link
JP (1) JP5096088B2 (en)
KR (1) KR101011625B1 (en)
CN (1) CN101386956A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202209A (en) * 2010-03-24 2011-10-13 Nippon Steel Corp Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same
JP2011202210A (en) * 2010-03-24 2011-10-13 Nippon Steel Corp Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same
JP2012219351A (en) * 2011-04-12 2012-11-12 Kobe Steel Ltd High-strength thick steel plate with excellent toughness
JP2013057646A (en) * 2011-09-09 2013-03-28 Kobe Steel Ltd Fatigue characteristic evaluation method of t joint part in t-shaped welded joint structure
JP2013224462A (en) * 2012-04-20 2013-10-31 Kobe Steel Ltd Welded joint having excellent fatigue property
CN106514037A (en) * 2015-09-14 2017-03-22 江苏立新焊接材料有限公司 Gas-shielded wire for submarine pipeline welding and production method of gas-shielded wire
CN106514038A (en) * 2015-09-14 2017-03-22 江苏立新焊接材料有限公司 Gas shielded welding wire for submarine pipeline welding and production method of gas shielded welding wire
WO2020136776A1 (en) * 2018-12-26 2020-07-02 日本製鉄株式会社 Weld structure body

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102162061B (en) * 2010-02-23 2013-09-04 宝山钢铁股份有限公司 Low-carbon bainite thick steel plate with high strength and toughness and manufacturing method thereof
CN101787489B (en) * 2010-03-11 2012-07-25 燕山大学 Easy-welding low-carbon bainitic steel and manufacturing method thereof
CN105598576A (en) * 2016-03-29 2016-05-25 常熟理工学院 Tough and well-matched great heat input electroslag welding connector
KR101804221B1 (en) 2016-10-27 2017-12-06 한국생산기술연구원 Metal Structures Having Weld Zone Improved Fracture Toughness And Method for Manufacturing the Same
KR20180074415A (en) * 2016-12-23 2018-07-03 주식회사 포스코 High heat input welded joint having excellent impact toughtness

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762489A (en) * 1993-08-30 1995-03-07 Nippon Steel Corp High tensile strength steel excellent in fatigue property of arc welded part
WO2000075388A1 (en) * 1999-06-04 2000-12-14 Kawasaki Steel Corporation High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof
JP2005320624A (en) * 2004-04-07 2005-11-17 Nippon Steel Corp Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding
JP2007177327A (en) * 2005-11-30 2007-07-12 Kobe Steel Ltd Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4778779B2 (en) 2005-11-04 2011-09-21 株式会社神戸製鋼所 High-tensile steel plate with excellent low-temperature toughness in heat affected zone

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0762489A (en) * 1993-08-30 1995-03-07 Nippon Steel Corp High tensile strength steel excellent in fatigue property of arc welded part
WO2000075388A1 (en) * 1999-06-04 2000-12-14 Kawasaki Steel Corporation High-tension steel material with excellent suitability for welding with high-energy-density heat source and welded structure thereof
JP2005320624A (en) * 2004-04-07 2005-11-17 Nippon Steel Corp Thick high-strength steel plate having excellent low-temperature toughness in weld heat-affected zone effected by large heat input welding
JP2007177327A (en) * 2005-11-30 2007-07-12 Kobe Steel Ltd Thick steel plate having excellent toughness and reduced softening in weld heat-affected zone

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202209A (en) * 2010-03-24 2011-10-13 Nippon Steel Corp Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same
JP2011202210A (en) * 2010-03-24 2011-10-13 Nippon Steel Corp Refractory steel having excellent reheat embrittlement resistance and low temperature toughness and method for producing the same
JP2012219351A (en) * 2011-04-12 2012-11-12 Kobe Steel Ltd High-strength thick steel plate with excellent toughness
JP2013057646A (en) * 2011-09-09 2013-03-28 Kobe Steel Ltd Fatigue characteristic evaluation method of t joint part in t-shaped welded joint structure
JP2013224462A (en) * 2012-04-20 2013-10-31 Kobe Steel Ltd Welded joint having excellent fatigue property
CN106514037A (en) * 2015-09-14 2017-03-22 江苏立新焊接材料有限公司 Gas-shielded wire for submarine pipeline welding and production method of gas-shielded wire
CN106514038A (en) * 2015-09-14 2017-03-22 江苏立新焊接材料有限公司 Gas shielded welding wire for submarine pipeline welding and production method of gas shielded welding wire
WO2020136776A1 (en) * 2018-12-26 2020-07-02 日本製鉄株式会社 Weld structure body
CN113226614A (en) * 2018-12-26 2021-08-06 日本制铁株式会社 Welded structure
KR20210103548A (en) * 2018-12-26 2021-08-23 닛폰세이테츠 가부시키가이샤 welded structure
JPWO2020136776A1 (en) * 2018-12-26 2021-10-21 日本製鉄株式会社 Welded structure
JP7173163B2 (en) 2018-12-26 2022-11-16 日本製鉄株式会社 Welded structure
KR102506231B1 (en) * 2018-12-26 2023-03-06 닛폰세이테츠 가부시키가이샤 welded structure

Also Published As

Publication number Publication date
KR20090028449A (en) 2009-03-18
JP5096088B2 (en) 2012-12-12
KR101011625B1 (en) 2011-01-28
CN101386956A (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP4721956B2 (en) Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics
JP5096087B2 (en) High tensile strength steel plate for high heat input welding with excellent base metal low temperature toughness
JP6354572B2 (en) Low-temperature H-section steel and its manufacturing method
JPWO2015064077A1 (en) Ferritic-martensitic duplex stainless steel and method for producing the same
JP2006089789A (en) Low yield ratio high tensile steel sheet having low acoustic anisotropy and having excellent weldability and its production method
JP6036616B2 (en) Steel sheet for welded structure excellent in fatigue crack resistance and method for producing the same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2011174154A (en) METHOD FOR MANUFACTURING HIGH-TENSILE STEEL FOR LASER BEAM WELDING OR LASER BEAM ARC HYBRID WELDING HAVING TENSILE STRENGTH OF &gt;=1,100 MPa
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
JP2018053281A (en) Rectangular steel tube
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
WO2012141220A1 (en) High-strength steel plate and high-strength steel pipe having excellent deformability and low-temperature toughness, and manufacturing methods therefor
WO2014175122A1 (en) H-shaped steel and method for producing same
JP4437972B2 (en) Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
JP2015183279A (en) Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property
JP5139015B2 (en) Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP2016216819A (en) Thick steel plate and welded joint
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP2020019995A (en) Thick steel sheet, manufacturing method therefor, and weldment structure
JP6662156B2 (en) H-shaped steel for low temperature and method for producing the same
KR20130126715A (en) Thick steel sheet having superior fatigue resistance properties in sheet thickness direction, method for producing same, and fillet welded joint using said thick steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120920

R150 Certificate of patent or registration of utility model

Ref document number: 5096088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees