JP4778779B2 - High-tensile steel plate with excellent low-temperature toughness in heat affected zone - Google Patents

High-tensile steel plate with excellent low-temperature toughness in heat affected zone Download PDF

Info

Publication number
JP4778779B2
JP4778779B2 JP2005321403A JP2005321403A JP4778779B2 JP 4778779 B2 JP4778779 B2 JP 4778779B2 JP 2005321403 A JP2005321403 A JP 2005321403A JP 2005321403 A JP2005321403 A JP 2005321403A JP 4778779 B2 JP4778779 B2 JP 4778779B2
Authority
JP
Japan
Prior art keywords
less
toughness
haz
amount
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005321403A
Other languages
Japanese (ja)
Other versions
JP2007126724A (en
Inventor
誠 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005321403A priority Critical patent/JP4778779B2/en
Priority to CNA2006101432385A priority patent/CN1958827A/en
Priority to KR1020060107777A priority patent/KR100847174B1/en
Publication of JP2007126724A publication Critical patent/JP2007126724A/en
Application granted granted Critical
Publication of JP4778779B2 publication Critical patent/JP4778779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、溶接熱影響部の低温靭性に優れた高張力鋼板に関するものであり、特に低温に曝される用途に使用される場合でも、溶接熱影響部の靭性および母材の靭性に優れている高張力鋼板に関するものである。尚、本発明は、上記高張力鋼板の溶接方法まで限定するものではなく、サブマージアーク溶接、エレクトロガスアーク溶接等に適用できるが、以下では、溶接熱影響部の靭性確保が特に困難であるといわれている大入熱の片面サブマージアーク溶接を施す場合を例に説明する。   The present invention relates to a high-tensile steel sheet having excellent low-temperature toughness in the heat-affected zone of the weld, and particularly excellent in toughness of the weld-heat-affected zone and the toughness of the base metal even when used in applications exposed to low temperatures. The present invention relates to a high-strength steel sheet. The present invention is not limited to the above-described high-strength steel plate welding method, and can be applied to submerged arc welding, electrogas arc welding, etc., but in the following, it is said that securing the toughness of the weld heat affected zone is particularly difficult. The case where the single-sided submerged arc welding with large heat input is applied will be described as an example.

近年では、海洋構造物やLPG等の液化ガスを貯蔵する低温用タンク等を短期間で製造すべく、例えば入熱量が50〜200kJ/cmにも及ぶ大入熱の片面サブマージアーク溶接施工が広く採用されている。しかし、該溶接は、施工の高能率化を実現できる反面、溶接により形成される溶接熱影響部(以下、「HAZ」と示す)の靭性を安定して確保することが難しく、低入熱による多層溶接を適用して製造しなければならないことも多々ある。従って、上記低温用タンク等の製造に、高能率施工が可能な上記大入熱溶接法が採用され、かつ−60℃程度の低温であっても、HAZの靭性に優れている鋼板が求められている。   In recent years, single-sided submerged arc welding with large heat input, for example, with a heat input of 50 to 200 kJ / cm, has been widely used to produce marine structures and low-temperature tanks for storing liquefied gas such as LPG in a short period of time. It has been adopted. However, while the welding can realize high efficiency of construction, it is difficult to stably secure the toughness of the weld heat affected zone (hereinafter referred to as “HAZ”) formed by welding, and it is due to low heat input. In many cases, it is necessary to apply multilayer welding. Accordingly, a steel sheet having high HAZ toughness is required for manufacturing the low-temperature tank or the like, in which the high heat input welding method capable of high-efficiency construction is employed and even at a low temperature of about −60 ° C. ing.

これまでにも、上記HAZの低温靭性を改善すべく種々の方法が提案されている。例えば特許文献1、特許文献2には、TiN、Alオキサイド等のピン止め粒子によりオーステナイト粒の粗大化を抑制することでHAZ靭性を改善する方法が提案されている。また、特許文献3、特許文献4には、オーステナイト粒内にフェライト変態核を多数存在させることにより結晶粒の微細化を図る技術が示されている。具体的には、TiN、MnS、BN、Tiオキサイド等をフェライト変態核として利用することにより結晶粒の微細化を達成し、HAZの低温靭性の改善を図っている。   Until now, various methods have been proposed to improve the low temperature toughness of the HAZ. For example, Patent Document 1 and Patent Document 2 propose a method for improving HAZ toughness by suppressing the austenite grain coarsening by pinning particles such as TiN and Al oxide. Patent Document 3 and Patent Document 4 disclose a technique for miniaturizing crystal grains by making many ferrite transformation nuclei exist in austenite grains. Specifically, the use of TiN, MnS, BN, Ti oxide or the like as ferrite transformation nuclei achieves refinement of crystal grains and improves the low temperature toughness of HAZ.

しかし上記いずれの方法においても、大入熱の片面サブマージアーク溶接を行った場合には、TiN等の析出物がかなり固溶し、その後の結晶粒粗大化等を抑制することが難しいことから、−60℃程度での低温で優れたHAZの靭性(以下、「HAZの低温靭性」、または単に「HAZ靭性」ということがある)を確保するには、更なる改善が必要であると思われる。
特公昭55−026164号公報 特許第2950076号公報 特公平07−068577号公報 特公平05−017300号公報
However, in any of the above methods, when performing single-sided submerged arc welding with high heat input, precipitates such as TiN are considerably dissolved, and it is difficult to suppress subsequent grain coarsening, In order to secure excellent HAZ toughness (hereinafter sometimes referred to as “HAZ toughness” or simply “HAZ toughness”) at a low temperature of about −60 ° C., further improvement is considered necessary. .
Japanese Patent Publication No. 55-026164 Japanese Patent No. 2950076 Japanese Patent Publication No. 07-068577 Japanese Patent Publication No. 05-017300

本発明はこの様な事情に鑑みてなされたものであって、その目的は、大入熱で溶接を行った場合にもHAZの低温靭性に優れると共に、母材の低温靭性にも優れた高張力鋼板を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide high HAZ low-temperature toughness and excellent low-temperature toughness of the base metal even when welding is performed with high heat input. It is to provide a tension steel sheet.

本発明に係る溶接熱影響部の低温靭性に優れた高張力鋼板とは、
質量%で(以下同じ)、
C :0.03〜0.07%、
Si:0.01〜0.25%、
Mn:1.20〜1.60%、
P :0.010%以下(0%を含まない)、
S :0.003%以下(0%を含まない)、
Al:0.02〜0.04%、
Nb:0.005〜0.016%、
B :0.0006〜0.0020%、
N :0.0045〜0.0090%、
Ti:0.008〜0.020%
を満たすと共に、下記式(1)を満たし、残部鉄および不可避不純物であるところに特徴を有している。
−20≦(B−NT/1.3)≦10 …(1)
{式中、BはB含有量(質量ppm)を示す。
またNTは、
N(N含有量、単位:質量ppm)とTi(Ti含有量、単位:質量ppm)の関係が、
(N−Ti/3.4)≧0である場合には、NT=(N−Ti/3.4)、
(N−Ti/3.4)<0である場合には、NT=0を示す}
The high-tensile steel plate excellent in low temperature toughness of the weld heat affected zone according to the present invention is
% By mass (the same applies below)
C: 0.03-0.07%,
Si: 0.01 to 0.25%,
Mn: 1.20 to 1.60%,
P: 0.010% or less (excluding 0%),
S: 0.003% or less (excluding 0%),
Al: 0.02 to 0.04%,
Nb: 0.005 to 0.016%,
B: 0.0006 to 0.0020%,
N: 0.0045 to 0.0090%,
Ti: 0.008 to 0.020%
And the following formula (1) is satisfied, and the remaining iron and inevitable impurities are characteristic.
−20 ≦ (B-NT / 1.3) ≦ 10 (1)
{In formula, B shows B content (mass ppm).
NT is
The relationship between N (N content, unit: mass ppm) and Ti (Ti content, unit: mass ppm) is
When (N-Ti / 3.4) ≧ 0, NT = (N-Ti / 3.4),
(N-Ti / 3.4) <0 indicates NT = 0}

上記高張力鋼板は、更に、
Cu:0.5%以下、
Ni:0.8%以下、および
V :0.05%以下
よりなる群から選択される1種以上を下記式(2)を満たすように含んでいてもよく、更にはCa:0.003%以下(0%を含まない)を含んでいてもよい。
(Cu+Ni+60Nb+20V)≦1.4 …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}
The high-tensile steel plate is further
Cu: 0.5% or less,
One or more selected from the group consisting of Ni: 0.8% or less and V: 0.05% or less may be included so as to satisfy the following formula (2), and further Ca: 0.003% The following (not including 0%) may be included.
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (2)
{Wherein Cu, Ni, Nb, and V represent the content (% by mass) of each element}

本発明によれば、鋼板に大入熱の溶接を施した場合でも、HAZは約−60℃で優れた靭性を示すことから、海洋構造物やLPG等の液化ガスを貯蔵する低温用タンク等の製造に、例えば大入熱の片面サブマージアーク溶接法を採用でき、上記海洋構造物等をより短期間で製造することができる。   According to the present invention, even when high heat input welding is performed on a steel plate, HAZ exhibits excellent toughness at about −60 ° C., and therefore, a low temperature tank for storing liquefied gas such as offshore structures and LPG, etc. For example, a large-heat-input single-sided submerged arc welding method can be employed to manufacture the marine structure and the like in a shorter period of time.

本発明者は、大入熱の溶接を施した場合に、特にHAZの低温靭性に優れる高張力鋼板を得るべく鋭意研究を行った。   The present inventor has intensively studied to obtain a high-strength steel sheet that is particularly excellent in low temperature toughness of HAZ when welding with high heat input is performed.

その結果、
(a)Cを0.07%以下、Siを0.25%以下と比較的低めに設定した上で、規定量のB、NおよびTiのバランスを最適化し、かつ一定量のNbを添加すれば、オーステナイト粒界からの粗大なフェライト(以下、単に「粒界フェライト」ということがある)の生成が十分に抑制され、オーステナイト粒内の結晶粒微細化を達成できる、
(b)更には、強度をより高めるべくCu、Ni、Vを添加する場合に、このCu、Ni、VとNbの含有量を総合的に制御すれば、HAZ靭性の劣化を抑制できる、
との着想のもとでその具体的方法を見出した。
as a result,
(A) After setting C to be 0.07% or less and Si to be 0.25% or less, the balance between the prescribed amounts of B, N and Ti is optimized, and a certain amount of Nb is added. For example, the generation of coarse ferrite from the austenite grain boundary (hereinafter sometimes simply referred to as “grain boundary ferrite”) is sufficiently suppressed, and the grain refinement within the austenite grain can be achieved.
(B) Furthermore, when Cu, Ni, and V are added to further increase the strength, if the contents of Cu, Ni, V, and Nb are comprehensively controlled, deterioration of the HAZ toughness can be suppressed.
The specific method was found based on the idea.

まず本発明では、個々の規定量のB、NおよびTiのバランスを最適化して固溶B量の最適化を厳密に図ることにより、オーステナイト粒内の結晶粒を微細化でき、その結果としてHAZの低温靭性を格段に高めることができた点に特徴がある。   First, in the present invention, by optimizing the balance of individual prescribed amounts of B, N, and Ti and rigorously optimizing the amount of dissolved B, the crystal grains in the austenite grains can be refined, and as a result, HAZ It is characterized in that the low-temperature toughness of can be greatly improved.

図1は、0.06%C−0.20%Si−1.4%Mn−0.03%Al−0.010%Nbを基本成分とし、B、NおよびTiをそれぞれ後述する規定範囲内で変化させ、(B−NT/1.3){BはB含有量(質量ppm)、NTは、N(N含有量、単位:質量ppm)とTi(Ti含有量、単位:質量ppm)の関係が、
(N−Ti/3.4)≧0である場合には、NT=(N−Ti/3.4)、
(N−Ti/3.4)<0である場合には、NT=0を示す。
以下、式(1)についても同じ}
を種々の値とした鋼板を用いて、熱サイクル試験を行い、HAZの低温靭性(vE−60)を後述する実施例の通り測定し、これらの結果を整理したものである。尚、熱サイクル試験は、溶接入熱:60kJ/cm(板厚12mm)を想定して、1400℃×5secに加熱保持後、800℃から500℃までを150secで冷却した。
FIG. 1 shows that 0.06% C-0.20% Si-1.4% Mn-0.03% Al-0.010% Nb is a basic component, and B, N, and Ti are within the specified ranges described later. (B-NT / 1.3) {B is B content (mass ppm), NT is N (N content, unit: mass ppm) and Ti (Ti content, unit: mass ppm) Relationship
When (N-Ti / 3.4) ≧ 0, NT = (N-Ti / 3.4),
When (N-Ti / 3.4) <0, NT = 0 is indicated.
The same applies to equation (1) below}
A heat cycle test was performed using steel sheets having various values of and the low temperature toughness (vE- 60 ) of HAZ was measured as described in the examples described later, and these results were arranged. In the thermal cycle test, welding heat input: 60 kJ / cm (plate thickness 12 mm) was assumed, and after heating and holding at 1400 ° C. × 5 sec, cooling from 800 ° C. to 500 ° C. was performed in 150 sec.

この図1より、HAZの低温靭性として、vE−60:100J以上を達成させるには、下記式(1)に示す通り、(B−NT/1.3)の値が−20ppm以上10ppm以下の範囲に収まるようにする必要があることが分かる。
−20≦(B−NT/1.3)≦10 …(1)
From FIG. 1, in order to achieve vE −60 : 100 J or more as the low temperature toughness of HAZ, as shown in the following formula (1), the value of (B-NT / 1.3) is −20 ppm or more and 10 ppm or less. It turns out that it needs to be within the range.
−20 ≦ (B-NT / 1.3) ≦ 10 (1)

上記式(1)の通り、B、NおよびTiのバランスを最適化することで、オーステナイト粒内の粒界に存在する固溶Bによる、粒界フェライトの粗大化を抑制し、かつ粒界からのフェライトサイドプレートの生成も抑制するといった効果、およびBNのフェライト変態核としての効果を最大限に発揮し得たものと考えられる。   By optimizing the balance of B, N and Ti as in the above formula (1), the coarsening of the grain boundary ferrite due to the solid solution B existing at the grain boundary in the austenite grain is suppressed, and from the grain boundary. It is considered that the effect of suppressing the formation of the ferrite side plate and the effect of BN as the ferrite transformation nucleus could be maximized.

上記の通りB、NおよびTiのバランスを最適化してHAZの低温靭性を確実に高めると共に、母材の強度等を確保するには、上記B、N、Tiの含有量をそれぞれ下記範囲内とする必要がある。   As described above, to optimize the balance of B, N and Ti to reliably increase the low temperature toughness of HAZ and to ensure the strength of the base material, the contents of B, N and Ti are within the following ranges, respectively. There is a need to.

〈B:0.0006〜0.0020%〉
Bは、BNを生成することによりHAZ靭性に有害な固溶Nを固定する上、粒内フェライトの生成を促進する作用を有する。また固溶Bは、粒界フェライトの粗大化およびフェライトサイドプレートの生成を抑制し、オーステナイト粒内の結晶粒を微細化する効果も有する。該作用効果を十分発揮させるには、Bを0.0006%以上含有させる必要がある。一方、Bが多過ぎると、過剰の固溶Bの作用により結晶が一定方向に形成され、HAZ靭性が却って劣化する。よってB量は、0.0020%以下に抑える。
<B: 0.0006 to 0.0020%>
B fixes solute N which is harmful to HAZ toughness by generating BN, and also has an effect of promoting the formation of intragranular ferrite. Solid solution B also has the effect of suppressing the coarsening of grain boundary ferrite and the formation of ferrite side plates, and making the crystal grains in the austenite grains finer. In order to fully exhibit this effect, it is necessary to contain B 0.0006% or more. On the other hand, when there is too much B, a crystal | crystallization is formed in a fixed direction by the effect | action of excess solute B, and HAZ toughness deteriorates on the contrary. Therefore, the amount of B is suppressed to 0.0020% or less.

〈N:0.0045〜0.0090%〉
Nは、TiやAl等の元素と窒化物を形成してHAZ靭性を向上させる元素であるため、0.0045%以上、好ましくは0.0060%以上含んでいてもよい。尚、固溶Nは、HAZの靭性を劣化させる原因となる。全窒素量の増加により、先述の窒化物は増加するが固溶Nも過剰となるため、本発明ではN量を0.0090%以下に抑える。
<N: 0.0045 to 0.0090%>
N is an element that forms a nitride with an element such as Ti or Al to improve the HAZ toughness, and therefore may be contained in an amount of 0.0045% or more, preferably 0.0060% or more. In addition, the solid solution N causes the HAZ toughness to deteriorate. By increasing the total nitrogen amount, the above-mentioned nitride increases, but the solid solution N also becomes excessive. Therefore, in the present invention, the N amount is suppressed to 0.0090% or less.

〈Ti:0.008〜0.020%〉
Tiは、TiN系析出物を生成して粒内フェライトの生成を促進すると共に、オーステナイト粒の粗大化抑制にも有効な元素である。また、高降伏強度化に寄与する元素でもある。こうした作用を有効に発揮させるには、Tiを0.008%以上含有させる必要があり、好ましくは0.012%以上である。しかし、Tiを過剰に含有させると、却ってHAZ靭性の低下を招くため0.020%以下とする。
<Ti: 0.008 to 0.020%>
Ti is an element that generates TiN-based precipitates and promotes the formation of intragranular ferrite, and is also effective in suppressing austenite grain coarsening. It is also an element that contributes to high yield strength. In order to exert such an action effectively, it is necessary to contain Ti by 0.008% or more, and preferably 0.012% or more. However, if Ti is excessively contained, the HAZ toughness is reduced instead, so the content is made 0.020% or less.

本発明では、上記の通り、個々の規定量のB、Ti、Nのバランスを最適化すると共に、一定量のNbを添加する。Nbは、粗大な粒界フェライトの生成を十分に抑制し、オーステナイト粒内の結晶粒微細化を達成させるのに有用な元素である。本発明では、この様な効果を十分発揮させるべくNbを0.005%以上含有させる。しかし過剰に含まれていると、硬質相のMA(Martensite-Austenite constituent)が生成し易く、また結晶が一定方向に形成され、HAZ靭性の劣化を招くので、0.016%以下に抑える。   In the present invention, as described above, the balance of individual prescribed amounts of B, Ti, and N is optimized, and a certain amount of Nb is added. Nb is an element useful for sufficiently suppressing the formation of coarse grain boundary ferrite and achieving crystal grain refinement in the austenite grains. In the present invention, Nb is contained in an amount of 0.005% or more in order to sufficiently exhibit such an effect. However, if it is contained excessively, hard phase MA (Martensite-Austenite constituent) is likely to be formed, and crystals are formed in a certain direction, leading to deterioration of HAZ toughness.

HAZの低温靭性をより確実に高めるには、更にC、Siを低減させることが有効である。本発明では、硬質相であるMAの生成を抑制し、約−60℃でのHAZ靭性を確保すべく、C量を0.07%以下に抑える。一方、Cは、鋼板の強度確保に必須の元素でもあることから、0.03%以上含有させる。   In order to increase the low temperature toughness of HAZ more reliably, it is effective to further reduce C and Si. In the present invention, the amount of C is suppressed to 0.07% or less in order to suppress the formation of MA, which is a hard phase, and to ensure the HAZ toughness at about −60 ° C. On the other hand, C is an element essential for securing the strength of the steel sheet, so 0.03% or more is contained.

更に、Siも0.25%以下に低減することにより、MAの生成を十分に抑制でき、HAZの低温靭性を容易に確保することができる。一方、Siは、溶鋼の脱酸に使用されると共に強度向上に有効に作用する元素であるため、0.01%以上含まれていてもよく、好ましくは0.05%以上含有させる。   Furthermore, by reducing Si to 0.25% or less, the formation of MA can be sufficiently suppressed, and the low temperature toughness of HAZ can be easily ensured. On the other hand, since Si is an element that is used for deoxidation of molten steel and effectively acts to improve the strength, it may be contained in an amount of 0.01% or more, preferably 0.05% or more.

尚、上記の通りHAZ靭性を確実に高めると共に、鋼板(母材)の強度や靭性等その他の特性を具備させるには、上記以外の成分の含有量を下記範囲内とする必要がある。   In addition, as described above, in order to reliably increase the HAZ toughness and to provide other characteristics such as strength and toughness of the steel plate (base material), it is necessary to set the content of components other than the above within the following ranges.

〈Mn:1.20〜1.60%〉
Mnは、SをMnSとして捕捉し、SによるHAZ靭性の劣化を抑制するのに有用な元素である。また、焼入れ性を高めて鋼板の高強度化(高TS化と高YS化)に寄与する元素でもある。こうした作用を有効に発揮させるには、Mnを1.20%以上含有させる必要がある。しかし、Mn量が過剰になるとHAZ靭性が却って劣化するため、1.60%以下に抑える。
<Mn: 1.20 to 1.60%>
Mn is an element useful for capturing S as MnS and suppressing degradation of HAZ toughness due to S. It is also an element that contributes to increasing the strength (higher TS and higher YS) of the steel sheet by increasing the hardenability. In order to exhibit such an action effectively, it is necessary to contain 1.20% or more of Mn. However, if the amount of Mn becomes excessive, the HAZ toughness deteriorates on the contrary, so it is suppressed to 1.60% or less.

〈P:0.010%以下(0%を含まない)〉
Pは、HAZ靭性を劣化させる元素であるため極力低減する必要があり、本発明では0.010%以下に抑える。
<P: 0.010% or less (excluding 0%)>
P is an element that deteriorates the HAZ toughness, so it is necessary to reduce it as much as possible. In the present invention, P is suppressed to 0.010% or less.

〈S:0.003%以下(0%を含まない)〉
Sは、粗大な硫化物を生成してHAZ靭性を劣化させる元素である。よって極力低減する必要があり、本発明では0.003%以下に抑える。
<S: 0.003% or less (excluding 0%)>
S is an element that generates coarse sulfides and degrades the HAZ toughness. Therefore, it is necessary to reduce as much as possible, and in the present invention, it is suppressed to 0.003% or less.

〈Al:0.02〜0.04%〉
Alは、脱酸剤として使用されると共に、AlN系析出物を生成して大入熱溶接時のHAZ靭性を向上させる元素であり、本発明では0.02%以上含有させる。しかしAl量が過剰になると、アルミナ等の酸化物系介在物が増大すると共に、MAの生成が促進されHAZ靭性が劣化するので、0.04%以下に抑える。
<Al: 0.02-0.04%>
Al is an element that is used as a deoxidizer and that also generates AlN-based precipitates to improve the HAZ toughness during high heat input welding. In the present invention, Al is contained in an amount of 0.02% or more. However, when the amount of Al becomes excessive, oxide inclusions such as alumina increase, and the formation of MA is promoted and the HAZ toughness is deteriorated.

本発明で規定する含有元素は上記の通りであって、残部は鉄及び不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。また、更に下記元素を積極的に含有させることも可能である。   The contained elements defined in the present invention are as described above, and the balance is iron and unavoidable impurities. As the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. Further, it is possible to further contain the following elements.

〈Cu:0.5%以下、
Ni:0.8%以下、および
V :0.05%以下
よりなる群から選択される1種以上(但し、下記式(2)の範囲内とする)。
(Cu+Ni+60Nb+20V)≦1.4 …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}〉
Cu、Ni、Vは、いずれも強度確保に有用な元素である。Cuは、固溶強化および析出強化により強度(TSとYS)を高めるのに有効な元素である。しかし過剰に含有させると、熱間加工性を阻害させるため0.5%以下に抑える。
<Cu: 0.5% or less,
One or more selected from the group consisting of Ni: 0.8% or less and V: 0.05% or less (however, within the range of the following formula (2)).
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (2)
{Wherein Cu, Ni, Nb, and V represent the content (mass%) of each element} >>
Cu, Ni, and V are all elements useful for ensuring strength. Cu is an element effective for increasing the strength (TS and YS) by solid solution strengthening and precipitation strengthening. However, if excessively contained, the hot workability is inhibited, so the content is suppressed to 0.5% or less.

Niは、母材の強度と靭性を同時に向上させる元素である。こうした作用を有効に発揮させるには、0.2%以上含有させることが好ましい。しかし、過剰な添加はコストアップとなるため0.8%以下に抑える。   Ni is an element that simultaneously improves the strength and toughness of the base material. In order to exhibit such an action effectively, it is preferable to contain 0.2% or more. However, excessive addition increases the cost, so it is suppressed to 0.8% or less.

Vは、焼入れ性を高めて高強度を確保すると共に、焼戻し軟化抵抗を高めるのに有用な元素である。しかし過剰に含まれると、HAZ靭性が劣化するため0.05%以下に抑える。   V is an element useful for increasing the hardenability and ensuring high strength, and for increasing the temper softening resistance. However, if excessively contained, the HAZ toughness deteriorates, so the content is suppressed to 0.05% or less.

また本発明では、前述の通りNbを0.016%以下に抑制すると共に、Cu、Ni、Nb、Vの含有量を下記式(2)の通り制限することにより、Cu、NiおよびVよりなる群から選択される1種以上を含有させる場合であっても、優れたHAZ靭性を確保することができる。   In the present invention, as described above, Nb is suppressed to 0.016% or less, and the contents of Cu, Ni, Nb, and V are limited as shown in the following formula (2), thereby comprising Cu, Ni, and V. Even when one or more selected from the group is contained, excellent HAZ toughness can be ensured.

図2は、0.06%C−0.20%Si−1.4%Mn−0.03%Al−0.014Ti−0.0014%B−0.0065%Nを基本成分とし、Cu:0.5%以下、Ni:0.8%以下、およびV:0.05%以下よりなる群から選択される1種以上と規定量のNbを、(Cu+Ni+60Nb+20V)が種々の値となるよう含んだ鋼板を用いて、熱サイクル試験を行い、HAZの低温靭性(vE−60)を後述する実施例の通り測定し、これらの結果を整理したものである。尚、熱サイクル試験は、溶接入熱:60kJ/cm(板厚12mm)を想定して、1400℃×5secに加熱保持後、800℃から500℃までを150secで冷却した。 FIG. 2 shows that 0.06% C-0.20% Si-1.4% Mn-0.03% Al-0.014Ti-0.0014% B-0.0065% N as a basic component, Cu: One or more selected from the group consisting of 0.5% or less, Ni: 0.8% or less, and V: 0.05% or less, and a specified amount of Nb, including (Cu + Ni + 60Nb + 20V) having various values. A heat cycle test was conducted using a steel plate, and the low temperature toughness (vE- 60 ) of HAZ was measured as in the examples described later, and these results were organized. In the thermal cycle test, welding heat input: 60 kJ / cm (plate thickness 12 mm) was assumed, and after heating and holding at 1400 ° C. × 5 sec, cooling from 800 ° C. to 500 ° C. was performed in 150 sec.

この図2より、Cu:0.5%以下、Ni:0.8%以下およびV:0.05%以下よりなる群から選択される1種以上を含有させる場合、HAZの低温靭性としてvE−60:100J以上を達成させるには、下記式(2)に示す通り、(Cu+Ni+60Nb+20V)の値が1.4%以下となるようにする必要があることが分かる。Nbを0.016%以下に抑制すると共に、上記の通りCu、Ni、Nb、Vの含有量を総合的に制限することにより、硬質相であるMAの生成を抑制して、優れたHAZ靭性を確保することができる。
(Cu+Ni+60Nb+20V)≦1.4(%) …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}
From FIG. 2, when one or more selected from the group consisting of Cu: 0.5% or less, Ni: 0.8% or less, and V: 0.05% or less is contained, vE as the low temperature toughness of HAZ It can be seen that in order to achieve 60 : 100 J or more, the value of (Cu + Ni + 60Nb + 20V) needs to be 1.4% or less as shown in the following formula (2). While suppressing Nb to 0.016% or less and comprehensively limiting the contents of Cu, Ni, Nb, and V as described above, the formation of MA, which is a hard phase, is suppressed and excellent HAZ toughness is achieved. Can be secured.
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (%) (2)
{Wherein Cu, Ni, Nb, and V represent the content (% by mass) of each element}

〈Ca:0.003%以下(0%を含まない)〉
Caは、HAZ靭性に悪影響を及ぼすSをCaSとして固定すると共に、非金属介在物を粒状に形態制御して靭性を向上させるのに有効な元素である。この様な効果を十分発揮させるには、Caを0.0010%以上含有させることが好ましいが、過剰に含有させても、これらの効果は飽和しHAZ靭性が却って劣化する。よってCa含有量は、0.003%以下とすることが好ましい。
<Ca: 0.003% or less (excluding 0%)>
Ca is an element effective for fixing S, which adversely affects HAZ toughness, as CaS, and for improving the toughness by controlling the form of nonmetallic inclusions in a granular form. In order to exert such effects sufficiently, it is preferable to contain 0.0010% or more of Ca, but even if Ca is contained excessively, these effects are saturated and the HAZ toughness deteriorates. Therefore, the Ca content is preferably 0.003% or less.

本発明は、いわゆる厚板に有利に適用できる。板厚は、約7mm以上であり上限は特に限定されないが、通常40mm以下程度である。   The present invention can be advantageously applied to so-called thick plates. The plate thickness is about 7 mm or more and the upper limit is not particularly limited, but is usually about 40 mm or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1,2に示す成分組成の鋼片を1100℃に加熱し、所定の板厚(12mmまたは30mm)まで圧延(圧延終了温度:700〜780℃)し、冷却速度:3〜8℃/秒で550℃まで冷却し、その後空冷した。尚、製造条件は、公知の直接焼入れ・焼戻し等の技術を適用してもHAZの特性に悪影響を及ぼすものでなく、上記条件に限定されない。   Steel slabs having the composition shown in Tables 1 and 2 are heated to 1100 ° C. and rolled to a predetermined thickness (12 mm or 30 mm) (rolling end temperature: 700 to 780 ° C.), cooling rate: 3 to 8 ° C./second. To 550 ° C. and then air cooled. The manufacturing conditions are not limited to the above conditions because they do not adversely affect the characteristics of the HAZ even if known direct quenching / tempering techniques are applied.

得られた鋼板について、下記の通り母材特性とHAZ靭性の評価を行った。   About the obtained steel plate, a base material characteristic and HAZ toughness were evaluated as follows.

[母材特性の評価]
各鋼板の全厚から、圧延方向に対して直角の方向にJIS Z 2201の1B試験片を採取して、JISZ 2241の要領で引張試験を行ない、降伏強度(YS)及び引張強度(TS)を測定した。そして、引張強度が440MPa以上のものを高張力であると評価した。
[Evaluation of base material properties]
From the total thickness of each steel plate, take a JIS Z 2201 1B test piece in a direction perpendicular to the rolling direction, conduct a tensile test in accordance with JIS Z 2241, and determine the yield strength (YS) and tensile strength (TS). It was measured. And the thing whose tensile strength is 440 Mpa or more was evaluated as high tension.

また各鋼板の表面側から1mm削った部位から、圧延方向にJISZ 2202のVノッチ試験片を採取して、JISZ 2242の要領でシャルピー衝撃試験を行い、試験温度:−60℃での吸収エネルギー(vE−60)を測定した。そして、該吸収エネルギー(vE−60)が100J以上のものを優れた母材靭性を具備していると評価した。 In addition, a V-notch test piece of JISZ 2202 was taken in the rolling direction from a portion cut by 1 mm from the surface side of each steel plate, and subjected to a Charpy impact test according to the procedure of JISZ 2242. vE- 60 ) was measured. And the thing with this absorbed energy (vE- 60 ) of 100J or more was evaluated as having excellent base material toughness.

[HAZ靭性の評価]
上記鋼板を用いた片面サブマージアーク溶接をFCB法で実施した。FCB法は銅板の上に裏当てフラックスを敷き、開先裏面に押し当て、表面片側から裏ビードを形成しながら溶接を完了させる方法であり、造船等の板継ぎ溶接で一般的に適用されている。開先形状を図3[(a)は板厚12mmの場合、(b)は板厚30mmの場合]に示す。溶接材料は、下記の低温用鋼溶接材料(神戸製鋼所製)を使用し、図4および表3の溶接条件で溶接継手を作製した。
〈溶接材料〉
・ワイヤ;US−255
・表フラックス;PFI−50LT
・裏当てフラックス;MF−1R
[Evaluation of HAZ toughness]
Single-sided submerged arc welding using the steel plate was performed by the FCB method. The FCB method is a method of laying a backing flux on a copper plate, pressing it against the back of the groove, and completing the welding while forming a back bead from one side of the surface. Yes. The groove shape is shown in FIG. 3 [(a) when the plate thickness is 12 mm, (b) when the plate thickness is 30 mm]. As the welding material, the following low-temperature steel welding material (manufactured by Kobe Steel) was used, and welded joints were produced under the welding conditions shown in FIG. 4 and Table 3.
<Welding material>
・ Wire; US-255
・ Front flux; PFI-50LT
・ Backing flux; MF-1R

そして、表面側から1mm削り、HAZ(ボンド部、ボンド部+1mm[HAZ1mm])の位置に板表面に垂直に切欠きを入れたJISZ 2202のVノッチ試験片を、それぞれ3個採取し、JISZ 2242の要領でシャルピー衝撃試験を行った。そして、吸収エネルギーの平均値が100J以上のものを、HAZの低温靭性に優れると評価した。これらの結果を表4,5に示す。   Then, three V-notch test pieces of JISZ 2202 each cut by 1 mm from the surface side and notched perpendicularly to the plate surface at the position of HAZ (bond part, bond part + 1 mm [HAZ1 mm]) were collected, respectively. The Charpy impact test was conducted as described above. And the thing whose average value of absorbed energy is 100J or more was evaluated as being excellent in low temperature toughness of HAZ. These results are shown in Tables 4 and 5.

Figure 0004778779
Figure 0004778779

Figure 0004778779
Figure 0004778779

Figure 0004778779
Figure 0004778779

Figure 0004778779
Figure 0004778779

Figure 0004778779
Figure 0004778779

表1,2,4,5から次の様に考察することができる(尚、下記No.は、表中の実験No.を示す)。   The following can be considered from Tables 1, 2, 4 and 5 (note that the following No. indicates the experiment No. in the table).

本発明で規定する要件を満たすNo.4、7、15〜17の鋼板は、HAZの低温靭性に優れていると共に、母材特性にも優れた高張力鋼板であり、該鋼板を、大入熱片面サブマージアーク溶接法で溶接し、低温条件の用途に用いる場合にも優れた特性を発揮する。   No. satisfying the requirements defined in the present invention. Steel plates 4, 7, and 15 to 17 are high-tensile steel plates that are excellent in low-temperature toughness of HAZ and excellent in base material properties, and are welded by a high heat input single-sided submerged arc welding method. Excellent characteristics when used in low temperature applications.

これに対し、本発明の規定を満足しないNo.19〜38は、夫々、以下の不具合を有している。   On the other hand, No. which does not satisfy the provisions of the present invention. Each of 19 to 38 has the following problems.

即ち、No.19は、C量が上限を超えており、またNo.20は、Si量が上限を超えているため、HAZ靭性に劣っている。   That is, no. No. 19 has a C amount exceeding the upper limit, and No. 20 is inferior in HAZ toughness because the Si amount exceeds the upper limit.

No.21は、Mn量が不足しているためHAZ靭性が劣っている。一方、No.22は、Mn量が過剰であるため、優れたHAZ靭性を確保できていない。   No. No. 21 is inferior in HAZ toughness because the amount of Mn is insufficient. On the other hand, no. No. 22 cannot secure excellent HAZ toughness because the amount of Mn is excessive.

No.23はP量が過剰であり、またNo.24はS量が過剰であるため、いずれもHAZ靭性に劣っている。   No. No. 23 has an excessive amount of P. No. 24 is inferior in HAZ toughness because the amount of S is excessive.

No.25はAl量が不足しており、No.26はAl量が過剰であるため、HAZ靭性に劣っている。また、No.27はNb量が不足しており、No.28はNb量が過剰であるため、いずれもHAZ靭性に劣っている。   No. No. 25 lacks the amount of Al. No. 26 is inferior in HAZ toughness because the amount of Al is excessive. No. No. 27 has an insufficient amount of Nb. No. 28 is inferior in HAZ toughness because the amount of Nb is excessive.

No.29はTi量が不足しており、No.30はTi量が過剰であるため、HAZ靭性に劣っている。No.31はB量が不足しており、No.32はB量が過剰であるため、いずれもHAZ靭性に劣っている。またNo.33はN量が不足しており、一方、No.34はN量が過剰であるため、いずれもHAZ靭性に劣っている。   No. No. 29 has insufficient Ti amount. No. 30 is inferior in HAZ toughness because the Ti amount is excessive. No. No. 31 has insufficient B amount. No. 32 is inferior in HAZ toughness because the amount of B is excessive. No. No. 33 has an insufficient amount of N. No. 34 is inferior in HAZ toughness because the amount of N is excessive.

No.35は、(B−NT/1.3)が式(1)の下限を下回っており、またNo.36は、(B−NT/1.3)が式(1)の上限を上回っているため、いずれもHAZ靭性に劣っている。   No. No. 35 (B-NT / 1.3) is below the lower limit of formula (1). No. 36 is inferior in HAZ toughness because (B-NT / 1.3) exceeds the upper limit of formula (1).

No.37、38は、Cu、NiおよびVよりなる群から選択される1種以上を含むものであるが、式(2)の上限を上回っているため、HAZ靭性に劣っている。   No. Although 37 and 38 contain 1 or more types selected from the group which consists of Cu, Ni, and V, since it exceeds the upper limit of Formula (2), it is inferior to HAZ toughness.

(B−NT/1.3)とHAZのvE−60との関係を示すグラフである。It is a graph which shows the relationship between (B-NT / 1.3) and vE- 60 of HAZ. (Cu+Ni+60Nb+20V)とHAZのvE−60との関係を示すグラフである。It is a graph which shows the relationship between (Cu + Ni + 60Nb + 20V) and vE- 60 of HAZ. 実施例での溶接における開先形状の断面図を示す。Sectional drawing of the groove shape in the welding in an Example is shown. FCB溶接時の電極配置の模式図を示す。The schematic diagram of the electrode arrangement | positioning at the time of FCB welding is shown.

Claims (2)

質量%で(以下同じ)、
C :0.03〜0.06%、
Si:0.01〜0.25%、
Mn:1.20〜1.60%、
P :0.010%以下(0%を含まない)、
S :0.003%以下(0%を含まない)、
Al:0.02〜0.04%、
Nb:0.005〜0.008%、
B :0.0006〜0.0020%、
N :0.0045〜0.0090%、
Ti:0.008〜0.020%
Ca:0.003%以下(0%を含まない)
を満たすと共に、下記式(1)を満たし、残部鉄および不可避不純物であることを特徴とする溶接熱影響部の低温靭性に優れた高張力鋼板。
−20≦(B−NT/1.3)≦10 …(1)
{式中、BはB含有量(質量ppm)を示す。
またNTは、
N(N含有量、単位:質量ppm)とTi(Ti含有量、単位:質量ppm)の関係が、(N−Ti/3.4)≧0である場合には、NT=(N−Ti/3.4)、
(N−Ti/3.4)<0である場合には、NT=0を示す}
% By mass (the same applies below)
C: 0.03-0.06%,
Si: 0.01 to 0.25%,
Mn: 1.20 to 1.60%,
P: 0.010% or less (excluding 0%),
S: 0.003% or less (excluding 0%),
Al: 0.02 to 0.04%,
Nb: 0.005~0.0 08%,
B: 0.0006 to 0.0020%,
N: 0.0045 to 0.0090%,
Ti: 0.008 to 0.020% ,
Ca: 0.003% or less (excluding 0%)
A high-tensile steel sheet that satisfies the following formula (1) and is excellent in low-temperature toughness of the weld heat-affected zone, characterized by being the remaining iron and inevitable impurities.
−20 ≦ (B-NT / 1.3) ≦ 10 (1)
{In formula, B shows B content (mass ppm).
NT is
When the relationship between N (N content, unit: mass ppm) and Ti (Ti content, unit: mass ppm) is (N—Ti / 3.4) ≧ 0, NT = (N—Ti /3.4),
(N-Ti / 3.4) <0 indicates NT = 0}
更に、
Cu:0.5%以下、
Ni:0.8%以下、および
V :0.05%以下
よりなる群から選択される1種以上を下記式(2)を満たすように含む請求項1に記載の鋼板。
(Cu+Ni+60Nb+20V)≦1.4 …(2)
{式中、Cu、Ni、Nb、Vは、それぞれの元素の含有量(質量%)を示す}
Furthermore,
Cu: 0.5% or less,
The steel plate according to claim 1, comprising at least one selected from the group consisting of Ni: 0.8% or less and V: 0.05% or less so as to satisfy the following formula (2).
(Cu + Ni + 60Nb + 20V) ≦ 1.4 (2)
{Wherein Cu, Ni, Nb, and V represent the content (% by mass) of each element}
JP2005321403A 2005-11-04 2005-11-04 High-tensile steel plate with excellent low-temperature toughness in heat affected zone Active JP4778779B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005321403A JP4778779B2 (en) 2005-11-04 2005-11-04 High-tensile steel plate with excellent low-temperature toughness in heat affected zone
CNA2006101432385A CN1958827A (en) 2005-11-04 2006-11-01 High-tension steel plate with excellent toughness at low temperature for welding heat influence part
KR1020060107777A KR100847174B1 (en) 2005-11-04 2006-11-02 High tension steel sheet having superior low temperature toughness in weld heat-affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321403A JP4778779B2 (en) 2005-11-04 2005-11-04 High-tensile steel plate with excellent low-temperature toughness in heat affected zone

Publications (2)

Publication Number Publication Date
JP2007126724A JP2007126724A (en) 2007-05-24
JP4778779B2 true JP4778779B2 (en) 2011-09-21

Family

ID=38070682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321403A Active JP4778779B2 (en) 2005-11-04 2005-11-04 High-tensile steel plate with excellent low-temperature toughness in heat affected zone

Country Status (3)

Country Link
JP (1) JP4778779B2 (en)
KR (1) KR100847174B1 (en)
CN (1) CN1958827A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4881773B2 (en) * 2007-03-23 2012-02-22 株式会社神戸製鋼所 Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone
JP5096088B2 (en) 2007-09-13 2012-12-12 株式会社神戸製鋼所 Welded joints with excellent toughness and fatigue cracking suppression properties
JP5139015B2 (en) * 2007-09-18 2013-02-06 株式会社神戸製鋼所 Thick high-strength steel sheet for large heat input welding with low base metal low-temperature toughness variation and excellent heat-affected zone toughness, and method for producing the same
JP4490472B2 (en) * 2007-11-12 2010-06-23 株式会社神戸製鋼所 Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158006A (en) * 1994-12-06 1996-06-18 Kobe Steel Ltd High strength steel excellent in toughness in weld heat-affected zone
JP2002235114A (en) * 2001-02-05 2002-08-23 Kawasaki Steel Corp Method for producing thick high tensile strength steel excellent in toughness of high heat input weld zone
JP3968011B2 (en) * 2002-05-27 2007-08-29 新日本製鐵株式会社 High strength steel excellent in low temperature toughness and weld heat affected zone toughness, method for producing the same and method for producing high strength steel pipe
JP3854543B2 (en) * 2002-06-11 2006-12-06 新日本製鐵株式会社 Steel and structures with excellent weld toughness
JP4044470B2 (en) * 2003-03-25 2008-02-06 株式会社神戸製鋼所 High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP4299754B2 (en) * 2004-02-13 2009-07-22 新日本製鐵株式会社 Thick, high-strength Ni-containing steel with excellent low-temperature toughness in the heat affected zone of large heat input welding

Also Published As

Publication number Publication date
JP2007126724A (en) 2007-05-24
KR100847174B1 (en) 2008-07-17
CN1958827A (en) 2007-05-09
KR20070048611A (en) 2007-05-09

Similar Documents

Publication Publication Date Title
JP4972451B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP4881773B2 (en) Low yield ratio high strength steel plate with excellent low temperature toughness of weld heat affected zone
JP4252974B2 (en) Clad steel base material and method for producing clad steel using the clad steel base material
JP4490472B2 (en) Low yield ratio high strength steel sheet with excellent low temperature toughness of weld heat affected zone and base metal and method for producing the same
JP7236540B2 (en) Steel material excellent in toughness of welded heat affected zone and method for producing the same
JP4295315B2 (en) Steel sheet with excellent toughness of weld heat affected zone in super large heat input welding
US20190352749A1 (en) Steel material for high heat input welding
JP4891836B2 (en) Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JP4787141B2 (en) Thick steel plate with excellent toughness of weld heat-affected zone and low softening
JP4878219B2 (en) Steel sheet with excellent HAZ toughness and small reduction in strength due to heat treatment after welding
JP2009045671A (en) Wire for high-heat input electroslag welding
JP4778779B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP4969282B2 (en) High-strength, low-yield ratio steel with excellent weld heat affected zone toughness
JP5147276B2 (en) High-tensile steel plate with excellent brittle cracking suppression / stop properties and low temperature toughness of weld heat affected zone
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
JP2009127119A (en) Resistance-welded steel plate
JP5509945B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5157657B2 (en) High-strength steel plate with excellent toughness in heat-affected zone of large heat input welding
JP5147275B2 (en) Steel material with excellent fatigue crack growth resistance and low temperature toughness of weld heat affected zone
JP5509946B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5720447B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JP2005200716A (en) Steel material superior in toughness of weld heat-affected zone
JP4259374B2 (en) High strength steel sheet with excellent low temperature toughness and weld heat affected zone toughness and method for producing the same
JP7281314B2 (en) Base material for clad steel, clad steel and method for producing clad steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

R150 Certificate of patent or registration of utility model

Ref document number: 4778779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140708

Year of fee payment: 3