JP4652952B2 - High-tensile steel plate with excellent toughness of heat affected zone - Google Patents

High-tensile steel plate with excellent toughness of heat affected zone Download PDF

Info

Publication number
JP4652952B2
JP4652952B2 JP2005321404A JP2005321404A JP4652952B2 JP 4652952 B2 JP4652952 B2 JP 4652952B2 JP 2005321404 A JP2005321404 A JP 2005321404A JP 2005321404 A JP2005321404 A JP 2005321404A JP 4652952 B2 JP4652952 B2 JP 4652952B2
Authority
JP
Japan
Prior art keywords
less
toughness
haz
haz toughness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005321404A
Other languages
Japanese (ja)
Other versions
JP2007126725A (en
Inventor
誠 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005321404A priority Critical patent/JP4652952B2/en
Priority to KR1020060094028A priority patent/KR100867139B1/en
Priority to CNB2006101432506A priority patent/CN100523264C/en
Publication of JP2007126725A publication Critical patent/JP2007126725A/en
Application granted granted Critical
Publication of JP4652952B2 publication Critical patent/JP4652952B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

本発明は、大入熱溶接熱影響部の靭性に優れた高張力鋼板に関するものであり、特に500kJ/cmを超える大入熱溶接を施した場合に、溶接熱影響部の靭性に優れた引張強度が590MPa以上の高張力鋼板に関するものである。   The present invention relates to a high-tensile steel plate excellent in toughness of a heat input zone affected by high heat input, and in particular, tensile strength excellent in toughness of the heat affected zone when subjected to high heat input exceeding 500 kJ / cm. The present invention relates to a high-tensile steel plate having a strength of 590 MPa or more.

例えば建築構造物のボックス柱組立てに適用されるサブマージアーク溶接やエレクトロスラグ溶接等では、施工のより一層の高能率化を図るべく、500kJ/cmを超える大入熱溶接が施される場合がある。しかし一般に、溶接入熱量が大きくなると、溶接熱影響部(HAZ)の組織が粗大化し、靭性が低下し易いことが知られており、これまでにも、建築構造物等の安全性をより高める観点から、上記HAZの靭性を改善すべく種々の方法が提案されている。   For example, in submerged arc welding, electroslag welding, etc. applied to box column assembly of building structures, large heat input welding exceeding 500 kJ / cm may be performed in order to further improve the efficiency of construction. . However, in general, it is known that when the heat input of welding increases, the structure of the heat affected zone (HAZ) becomes coarse and the toughness tends to decrease, and so far, the safety of building structures and the like is further improved. From the viewpoint, various methods have been proposed to improve the toughness of the HAZ.

上記方法として、例えばTiNや複合酸化物(例えば特許文献1では、Ti含有酸化物とMnSからなる複合体)の微細分散によるピン止め効果を利用して、オーステナイト粒の粗大化を抑制することでHAZの靭性を改善する方法が提案されている。   As the above-mentioned method, for example, by using the pinning effect due to fine dispersion of TiN or composite oxide (for example, a composite made of Ti-containing oxide and MnS in Patent Document 1), the austenite grains are prevented from coarsening. Methods for improving the toughness of HAZ have been proposed.

しかし大入熱溶接施工において、溶接金属近傍の熱影響部が高温に長時間曝されると、TiNは多くが溶解してピン止め効果が十分発揮されない、といった問題がある。また後者の複合酸化物は、均一に微細分散させることが困難であることから、検討は多くなされているものの効果が十分でない、といった問題がある。   However, in high heat input welding construction, if the heat affected zone near the weld metal is exposed to a high temperature for a long time, there is a problem that much of TiN is dissolved and the pinning effect is not sufficiently exhibited. In addition, since the latter complex oxide is difficult to uniformly finely disperse, there is a problem that the effect is not sufficient although many studies have been made.

またHAZの靭性を改善すべく、γ粒内の変態組織の微細化を図る技術も提案されており、例えば、TiNやBN(特許文献2参照)をフェライト変態核として利用する技術が提案されている。しかしこの場合も、高温に長時間曝される熱影響部では、上記析出物の多くが溶解してしまい十分な効果が得られない、といった問題がある。また、Ti酸化物を分散させた粒内フェライト生成促進技術も開発されている(例えば特許文献3参照)が、上記複合酸化物の場合と同様に、均一に微細分散させることが難しいといった問題がある。   In addition, in order to improve the toughness of HAZ, a technique for refining the transformation structure in γ grains has also been proposed. For example, a technique using TiN or BN (see Patent Document 2) as a ferrite transformation nucleus has been proposed. Yes. However, even in this case, in the heat-affected zone exposed to a high temperature for a long time, there is a problem that many of the precipitates are dissolved and a sufficient effect cannot be obtained. Further, a technique for promoting intragranular ferrite formation in which Ti oxide is dispersed has been developed (see, for example, Patent Document 3). However, as in the case of the composite oxide, there is a problem that it is difficult to finely disperse uniformly. is there.

更に、破壊起点となるMA(Martensite-Austenite constituent)発生の抑制とγ粒内の組織微細化の観点から、Cを極低Cとした上で、焼入性向上元素であるMn、Crなどを積極的に添加すると共に、Bを添加することにより、ベイナイトブロックサイズを微細化させる技術(例えば特許文献4)も提案されている。しかし該技術では、大入熱溶接条件下でブロックサイズの微細化が十分とは言い難い。
特許第3256118号公報 特許第1824290号公報 特公平05−017300号公報 特許第3602471号公報
Furthermore, from the viewpoint of suppressing the occurrence of MA (Martensite-Austenite constituent), which is the starting point of fracture, and refining the structure in the γ grains, C is made extremely low C, and the hardenability improving elements such as Mn and Cr are added. A technique for reducing the bainite block size by adding B and adding B (for example, Patent Document 4) has also been proposed. However, in this technique, it is difficult to say that the block size is sufficiently reduced under high heat input welding conditions.
Japanese Patent No. 3256118 Japanese Patent No. 1824290 Japanese Patent Publication No. 05-017300 Japanese Patent No. 3606021

本発明はこの様な事情に鑑みてなされたものであって、その目的は、建築構造物等の大型化と並行して高い安全性が要求される中で、500kJ/cmを超える大入熱のサブマージアーク溶接やエレクトロスラグ溶接を施した場合に、優れたHAZ靭性を確保することのできる590MPa以上の高張力鋼板を提供することにある。   The present invention has been made in view of such circumstances, and its purpose is to provide a large heat input exceeding 500 kJ / cm while high safety is required in parallel with the increase in size of building structures and the like. An object of the present invention is to provide a high-tensile steel plate of 590 MPa or more that can ensure excellent HAZ toughness when submerged arc welding or electroslag welding is performed.

本発明に係る大入熱溶接熱影響部の靭性に優れた高張力鋼板とは、
質量%で(以下同じ)、
C :0.02〜0.05%、
Si:0.05〜0.20%、
Mn:1.0〜2.5%、
P :0.02%以下(0%を含まない)、
S :0.005%以下(0%を含まない)、
Al:0.01〜0.05%、
Ni:0.2〜2.0%、
Cr:0.5〜2.0%、
Ti:0.005〜0.025%、
N :0.004〜0.010%
を満たすと共に、下記式(1)および式(2)を満たし、残部鉄および不可避不純物からなるところに特徴を有する。
2.3≦(Mn+0.7×Ni+Cr)≦3.7 …(1)
[Cr/(Mn+0.7×Ni)]≧0.3 …(2)
{式中、Mn、Ni、Crは、それぞれの元素の含有量(質量%)を示す}
The high-tensile steel plate excellent in the toughness of the high heat input welding heat-affected zone according to the present invention,
% By mass (the same applies below)
C: 0.02 to 0.05%,
Si: 0.05-0.20%,
Mn: 1.0 to 2.5%
P: 0.02% or less (excluding 0%),
S: 0.005% or less (excluding 0%),
Al: 0.01 to 0.05%,
Ni: 0.2 to 2.0%,
Cr: 0.5 to 2.0%,
Ti: 0.005 to 0.025%,
N: 0.004 to 0.010%
And satisfies the following formulas (1) and (2), and is characterized in that it consists of the remaining iron and inevitable impurities.
2.3 ≦ (Mn + 0.7 × Ni + Cr) ≦ 3.7 (1)
[Cr / (Mn + 0.7 × Ni)] ≧ 0.3 (2)
{Wherein Mn, Ni, and Cr indicate the content (% by mass) of each element}

上記鋼板は、更に、
(a)Mo:0.2%以下(0%を含まない)、
(b)V:0.05%以下、Nb:0.01%以下、およびB:0.0020%以下よりなる群から選択される1種以上[但し、下記式(3)を満たすことを条件とする]、
(V+2Nb+10B)≦0.03 …(3)
{式中、V、Nb、Bは、それぞれの元素の含有量(質量%)を示す}
を含んでいてもよい。
The steel sheet is further
(A) Mo: 0.2% or less (excluding 0%),
(B) one or more selected from the group consisting of V: 0.05% or less, Nb: 0.01% or less, and B: 0.0020% or less [provided that the following formula (3) is satisfied) And]
(V + 2Nb + 10B) ≦ 0.03 (3)
{Wherein V, Nb, and B represent the content (% by mass) of each element}
May be included.

本発明によれば、500kJ/cmを超える大入熱のサブマージアーク溶接やエレクトロスラグ溶接等を施した場合にも、優れたHAZ靭性を確保できることから、安全性の高い建築構造物等をより短期間で製造することができる。   According to the present invention, even when submerged arc welding or electroslag welding with a large heat input exceeding 500 kJ / cm is performed, excellent HAZ toughness can be ensured. Can be manufactured between.

本発明者は、500kJ/cmを超える大入熱溶接を施した場合のHAZの靭性(以下、単に「HAZ靭性」ということがある)に優れる高張力鋼板を得るべく鋭意研究を行った。その結果、
(i)熱影響部の高靭性を安定して確保するには、
・極低C化によるMA抑制のみならず、MAの形態を制御すること(具体的には針状MAの生成を抑制すること)、
・γ粒界に成長する粗大な組織[粒界フェライト(GBF)+フェライトサイドプレート(FSP)]を抑制すること、
・γ粒内における変態組織のブロックサイズ微細化を図ること、
が必要であり、本発明では、焼入性向上元素であるMn、NiおよびCrを適正に含有させることによってこれを実現し得ること、
(ii)更に、焼入性向上元素であるNb、VおよびBよりなる群から選択される1種以上を添加する場合には、これらの元素の含有量を総合的に制限して、MAおよび粗大なラス状組織の生成を抑制すれば、HAZ靭性の劣化を抑制できること、
を見出し、本発明に想到した。
The present inventor conducted intensive research to obtain a high-tensile steel sheet having excellent HAZ toughness (hereinafter sometimes simply referred to as “HAZ toughness”) when high heat input welding exceeding 500 kJ / cm is performed. as a result,
(I) To stably secure the high toughness of the heat affected zone,
-Control of the form of MA as well as MA suppression by extremely low C (specifically, suppression of the formation of acicular MA),
-Suppressing a coarse structure [grain boundary ferrite (GBF) + ferrite side plate (FSP)] that grows at the γ grain boundary,
・ Reducing the block size of the transformation structure in the γ grains,
In the present invention, this can be realized by properly containing hardenability improving elements Mn, Ni and Cr,
(Ii) Furthermore, when adding one or more selected from the group consisting of Nb, V and B which are hardenability improving elements, the contents of these elements are comprehensively limited, and MA and If the generation of a coarse lath structure is suppressed, the degradation of HAZ toughness can be suppressed,
As a result, the present invention has been conceived.

まず上記(i)について説明する。本発明者は、(Mn+0.7×Ni+Cr)と、HAZにおけるγ粒界に成長する粗大な組織[粒界フェライト(GBF)+フェライトサイドプレート(FSP)]の量(面積%)およびブロックサイズとの間に相関があることを見出し、これらの関係を整理した。その結果を図1に示す。   First, the above (i) will be described. The inventor has (Mn + 0.7 × Ni + Cr), the amount (area%) of a coarse structure [grain boundary ferrite (GBF) + ferrite side plate (FSP)] that grows at the γ grain boundary in HAZ, and the block size. I found out that there is a correlation between them, and arranged these relationships. The result is shown in FIG.

図1より、上記(GBF+FSP)量を50面積%以下に抑えるには、下記式(1)に示す通り、(Mn+0.7×Ni+Cr)を2.3%以上とする必要があり、一方、ブロックサイズを40μm以下と微細化を図るには、下記式(1)に示す通り、(Mn+0.7×Ni+Cr)を3.7%以下とする必要があることがわかる。ブロックサイズを20μm以下とより微細化するには、(Mn+0.7×Ni+Cr)を3.3%以下とすればよい。
2.3≦(Mn+0.7×Ni+Cr)≦3.7 …(1)
{式中、Mn、Ni、Crは、それぞれの元素の含有量(質量%)を示す}
From FIG. 1, in order to suppress the amount of (GBF + FSP) to 50 area% or less, it is necessary to set (Mn + 0.7 × Ni + Cr) to 2.3% or more as shown in the following formula (1), In order to reduce the size to 40 μm or less, it is found that (Mn + 0.7 × Ni + Cr) needs to be 3.7% or less as shown in the following formula (1). In order to further reduce the block size to 20 μm or less, (Mn + 0.7 × Ni + Cr) may be set to 3.3% or less.
2.3 ≦ (Mn + 0.7 × Ni + Cr) ≦ 3.7 (1)
{Wherein Mn, Ni, and Cr indicate the content (% by mass) of each element}

また図2は、(Mn+0.7×Ni+Cr)とHAZ靭性(後述する実施例に示す方法で測定したvE)の関係を示したものであるが、(Mn+0.7×Ni+Cr)を2.3〜3.7%の範囲内にして、上記(GBF+FSP)量を抑えると共にブロックサイズの微細化を図れば、大入熱溶接を施した場合でもvE:100J以上と優れたHAZ靭性を確保できることがわかる。 FIG. 2 shows the relationship between (Mn + 0.7 × Ni + Cr) and HAZ toughness (vE 0 measured by the method shown in the examples described later), and (Mn + 0.7 × Ni + Cr) is 2.3. If the amount of (GBF + FSP) is suppressed within the range of ~ 3.7% and the block size is miniaturized, even if high heat input welding is performed, excellent HAZ toughness of vE 0 : 100 J or more can be secured. I understand.

また本発明者は、[Cr/(Mn+0.7×Ni)]と、MAの形態[具体的にはアスペクト比(長径/短径)が2.5以上である針状MAの面積率]との間に相関があることを見出し、これらの関係を整理した。その結果を図3に示す。   In addition, the present inventor has [Cr / (Mn + 0.7 × Ni)] and the form of MA [specifically, the area ratio of acicular MA having an aspect ratio (major axis / minor axis) of 2.5 or more] I found out that there is a correlation between them, and arranged these relationships. The result is shown in FIG.

図3より、針状MAの面積率を4%以下に抑えるには、下記式(2)に示す通り、[Cr/(Mn+0.7×Ni)]を0.3以上とする必要があることがわかった。
[Cr/(Mn+0.7×Ni)]≧0.3 …(2)
{式中、Mn、Ni、Crは、それぞれの元素の含有量(質量%)を示す}
From FIG. 3, it is necessary to set [Cr / (Mn + 0.7 × Ni)] to 0.3 or more as shown in the following formula (2) in order to suppress the area ratio of the needle-like MA to 4% or less. I understood.
[Cr / (Mn + 0.7 × Ni)] ≧ 0.3 (2)
{Wherein Mn, Ni, and Cr indicate the content (% by mass) of each element}

また図4は、[Cr/(Mn+0.7×Ni)]と、HAZ靭性(後述する実施例に示す方法で測定したvE)の関係を示したものであるが、[Cr/(Mn+0.7×Ni)]を0.3以上として針状MAの生成を抑制すれば、大入熱溶接を施した場合にも、vE:100J以上と優れたHAZ靭性を確保できることがわかる。 FIG. 4 shows the relationship between [Cr / (Mn + 0.7 × Ni)] and HAZ toughness (vE 0 measured by the method shown in Examples described later). 7 × Ni)] is set to 0.3 or more to suppress the formation of acicular MA, it can be seen that excellent HAZ toughness of vE 0 : 100 J or more can be secured even when high heat input welding is performed.

上記の通りMn、NiおよびCrのバランスを最適化してHAZ靭性を確実に高めると共に、母材の強度や靭性等を確保するには、上記Mn、Ni、Crの含有量をそれぞれ下記範囲内とする必要がある。   As described above, in order to optimize the balance of Mn, Ni and Cr to reliably increase the HAZ toughness, and to ensure the strength and toughness of the base material, the contents of Mn, Ni and Cr are within the following ranges, respectively. There is a need to.

〈Mn:1.0〜2.5%〉
Mnは、焼入れ性を向上させて母材の強度や靭性を確保するのに有用な元素である。また、HAZのブロックサイズ微細化にも有用な元素である。これらの効果を発揮させるには、1.0%以上含有させる。しかしMnが過剰になると、MAが増大してHAZ靭性が劣化する。よってMn量は、2.5%以下に抑える。
<Mn: 1.0 to 2.5%>
Mn is an element useful for improving the hardenability and ensuring the strength and toughness of the base material. It is also an element useful for reducing the block size of HAZ. In order to exhibit these effects, 1.0% or more is contained. However, when Mn becomes excessive, MA increases and HAZ toughness deteriorates. Therefore, the amount of Mn is suppressed to 2.5% or less.

〈Ni:0.2〜2.0%〉
Niは、焼入れ性を向上させて母材の強度・靭性を確保すると共に、熱間割れの防止に効果のある元素である。また、HAZのブロックサイズ微細化にも有用な元素であり、これらの効果を発揮させるには、0.2%以上含有させる。一方、Niが過剰になるとスケール疵が発生し易くなるので、2.0%以下に抑える。
<Ni: 0.2-2.0%>
Ni is an element that improves the hardenability to ensure the strength and toughness of the base material and is effective in preventing hot cracking. Further, it is an element useful for reducing the block size of HAZ, and in order to exert these effects, it is contained in an amount of 0.2% or more. On the other hand, when Ni is excessive, scale wrinkles are likely to occur, so the amount is suppressed to 2.0% or less.

〈Cr:0.5〜2.0%〉
Crは、焼入れ性を向上させて母材の強度や靭性を確保するのに有用な元素である。また、HAZのブロックサイズ微細化にも有用な元素である。これらの効果を発揮させるには、0.5%以上含有させる。しかし、Crが過剰に存在すると、MAが増大してHAZ靭性が劣化する。よってCrは2.0%以下に抑える。
<Cr: 0.5 to 2.0%>
Cr is an element useful for improving the hardenability and ensuring the strength and toughness of the base material. It is also an element useful for reducing the block size of HAZ. In order to exhibit these effects, 0.5% or more is contained. However, if Cr is present in excess, MA increases and HAZ toughness deteriorates. Therefore, Cr is suppressed to 2.0% or less.

図5は、Cr量と(Mn+0.7×Ni)の関係を示したグラフにおいて、前述した式(1)および式(2)と、上記Cr量の上限および(Mn+0.7×Ni)の下限で囲まれた範囲(斜線部分)を示したものであるが、この図5に示す様に、Cr、MnおよびNiの関係が斜線部分の範囲内となるようにすれば、大入熱溶接を施した場合のHAZ靭性を、従来技術よりも確実に高めることができる。   FIG. 5 is a graph showing the relationship between the Cr amount and (Mn + 0.7 × Ni). In the graphs (1) and (2), the upper limit of the Cr amount and the lower limit of (Mn + 0.7 × Ni). The range surrounded by (hatched portion) is shown, but as shown in FIG. 5, if the relationship between Cr, Mn and Ni is within the range of the shaded portion, large heat input welding is performed. The HAZ toughness when applied can be reliably increased as compared with the prior art.

上記の通りHAZ靭性を確実に高めると共に、鋼板(母材)の強度や靭性等その他の特性を確実に具備させるには、上記以外の成分の含有量を下記範囲内とする必要がある。   As described above, in order to reliably increase the HAZ toughness and to ensure that other properties such as strength and toughness of the steel plate (base material) are provided, it is necessary to set the content of components other than the above within the following ranges.

〈C:0.02〜0.05%〉
Cは、母材強度の確保、およびγ粒の粗大化を抑制してHAZ靭性を確保するのに必要な元素であり、該効果を発揮させるには、0.02%以上含有させる必要がある。一方、C量が過剰になるとMAが増大することに加え、鋳造時に形成するTiNの高温安定性が減じるため、HAZ靭性は却って劣化する。また、低温割れ性劣化の原因ともなる。従って、C量は0.05%以下に抑える。
<C: 0.02 to 0.05%>
C is an element necessary for ensuring the strength of the base material and suppressing the coarsening of the γ grains to ensure the HAZ toughness. In order to exert the effect, it is necessary to contain 0.02% or more. . On the other hand, if the amount of C is excessive, MA increases and the high-temperature stability of TiN formed during casting decreases, so the HAZ toughness deteriorates. Moreover, it becomes a cause of cold cracking deterioration. Therefore, the C content is limited to 0.05% or less.

〈Si:0.05〜0.20%〉
Siは、製鋼時の脱酸に必要な元素であり、0.05%以上含有させる。しかし、Si量が過剰になると、MAが増大してHAZ靭性が劣化するため0.20%以下に抑える。
<Si: 0.05-0.20%>
Si is an element necessary for deoxidation at the time of steel making, and is contained at 0.05% or more. However, if the amount of Si becomes excessive, MA increases and the HAZ toughness deteriorates, so it is suppressed to 0.20% or less.

〈P:0.02%以下(0%を含まない)〉
Pは、母材靭性の劣化やPの偏析によるγ粒界の破壊を招くため、0.02%以下に抑える。
<P: 0.02% or less (excluding 0%)>
P causes the deterioration of the base material toughness and the destruction of the γ grain boundary due to the segregation of P, so is suppressed to 0.02% or less.

〈S:0.005%以下(0%を含まない)〉
Sも、上記Pと同様に、母材靭性の劣化やMnSの偏析によるγ粒界の破壊を招くため、0.005%以下に抑える。
<S: 0.005% or less (excluding 0%)>
Similarly to P, S is also suppressed to 0.005% or less because it causes deterioration of the base material toughness and breakage of the γ grain boundary due to segregation of MnS.

〈Al:0.01〜0.05%〉
Alは、製鋼時の脱酸に必要な元素であり、0.01%以上含有させる。しかしAlが過剰になると、アルミナ等の粗大介在物が増加し、母材靭性が劣化する。加えてMAが増加し、HAZ靭性も劣化するため、0.05%以下に抑える。
<Al: 0.01 to 0.05%>
Al is an element necessary for deoxidation during steel making, and is contained in an amount of 0.01% or more. However, when Al is excessive, coarse inclusions such as alumina increase and the base material toughness deteriorates. In addition, since MA increases and HAZ toughness deteriorates, it is suppressed to 0.05% or less.

〈Ti:0.005〜0.025%〉
Tiは、Nと結合しTiNを形成する元素であり、該TiNは、低C化された本発明の鋼において高温安定性が高まり、HAZのγ粒を微細化し、HAZ靭性の向上に有効に寄与する。この様な効果を発揮させるには、Tiを0.005%以上(好ましくは0.010%以上)含有させる。一方、Tiが過剰になるとTiNが粗大化し、母材靭性、HAZ靭性が共に劣化するので、0.025%以下に抑える。
<Ti: 0.005-0.025%>
Ti is an element that combines with N to form TiN, and this TiN is effective for improving HAZ toughness by increasing the high-temperature stability in the steel of the present invention, which has been reduced in C, making HAZ γ grains finer. Contribute. In order to exert such an effect, 0.005% or more (preferably 0.010% or more) Ti is contained. On the other hand, when Ti becomes excessive, TiN becomes coarse, and both the base metal toughness and the HAZ toughness deteriorate, so it is suppressed to 0.025% or less.

〈N:0.004〜0.010%〉
Nは、上記Tiと結合してTiNを形成し、該TiNによりHAZのγ粒を微細化して靭性の向上に寄与する元素である。該効果を発揮させるには、N量を0.004%以上とする。一方、Nが過剰に存在すると、固溶Nが増大して、母材靭性とHAZ靭性が共に劣化する。よって、N量は0.010%以下に抑える。
<N: 0.004 to 0.010%>
N is an element that combines with the Ti to form TiN, refines HAZ γ grains by the TiN, and contributes to improvement of toughness. In order to exert this effect, the N content is made 0.004% or more. On the other hand, if N is present excessively, solid solution N increases, and both the base metal toughness and the HAZ toughness deteriorate. Therefore, the N content is suppressed to 0.010% or less.

本発明で規定する含有元素は上記の通りであって、残部は鉄及び不可避不純物であり、該不可避不純物として、原料、資材、製造設備等の状況によって持ち込まれる元素の混入が許容され得る。また、更に下記元素を積極的に含有させることも可能である。   The contained elements defined in the present invention are as described above, and the balance is iron and unavoidable impurities. As the unavoidable impurities, mixing of elements brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. can be allowed. Further, it is possible to further contain the following elements.

〈Mo:0.2%以下(0%を含まない)〉
Moは、焼入れ性・焼戻し軟化抵抗を高め、母材の強度・靭性を確保するのに有効な元素であり、該効果を発揮させるには、Moを0.05%以上含有させることが好ましい。しかしMoが過剰になると、再結晶抑制作用により圧延後、γ粒が粗大となり、変態組織のブロックサイズも粗大化する。よって、本発明ではMo量を0.2%以下に抑える。
<Mo: 0.2% or less (excluding 0%)>
Mo is an element effective for increasing the hardenability and temper softening resistance and ensuring the strength and toughness of the base material. In order to exert the effects, it is preferable to contain Mo by 0.05% or more. However, if Mo is excessive, the γ grains become coarse after rolling due to the recrystallization inhibiting action, and the block size of the transformation structure becomes coarse. Therefore, in the present invention, the Mo amount is suppressed to 0.2% or less.

〈V :0.05%以下、
Nb:0.01%以下、および
B :0.0020%以下よりなる群から選択される1種以上
[但し、下記式(3)の範囲内とする]
(V+2Nb+10B)≦0.03 …(3)
{式中、V、Nb、Bは、それぞれの元素の含有量(質量%)を示す}〉
これらV、Nb、Bは、母材の強度・靭性の確保に有効な元素である。Vは、焼入れ性・焼戻し軟化抵抗を向上させて母材の強度・靭性を確保するのに有用な元素である。しかし、Vが過剰に含まれているとHAZ靭性が劣化するため、V量は0.05%以下に抑えるのがよい。
<V: 0.05% or less,
1 or more types selected from the group consisting of Nb: 0.01% or less, and B: 0.0020% or less [provided that it is within the range of the following formula (3)]
(V + 2Nb + 10B) ≦ 0.03 (3)
{In the formula, V, Nb, and B indicate the content (% by mass) of each element} >>
These V, Nb, and B are effective elements for securing the strength and toughness of the base material. V is an element useful for improving the hardenability and resistance to temper softening and ensuring the strength and toughness of the base material. However, if V is contained excessively, the HAZ toughness deteriorates, so the V content is preferably suppressed to 0.05% or less.

Nbは、γ粒を微細化して母材の強度・靭性を確保するのに有効な元素である。しかし、Nbが過剰に含まれているとHAZ靭性が劣化するため、0.01%以下に抑えるのがよい。   Nb is an element effective for refining γ grains and ensuring the strength and toughness of the base material. However, if Nb is contained excessively, the HAZ toughness deteriorates, so it is better to keep it at 0.01% or less.

Bは、焼入れ性を向上させて母材の強度・靭性を確保するのに有用な元素である。しかし、Bが過剰に含まれていると、鉄炭硼化物が析出し母材靭性が劣化するため、0.0020%以下に抑えるのがよい。   B is an element useful for improving the hardenability and ensuring the strength and toughness of the base material. However, if B is excessively contained, ferroboride precipitates and the toughness of the base metal deteriorates, so it is preferable to keep it to 0.0020% or less.

また、上記V、NbおよびBよりなる群から選択される1種以上を含有させる場合、上記式(3)も満足させる必要がある。(V+2Nb+10B)を0.03%以下に抑えることで、前記(ii)に示した通り、MAおよび粗大なラス状組織の生成を抑制でき、HAZ靭性の劣化を抑制できる。   Moreover, when it contains 1 or more types selected from the group which consists of said V, Nb, and B, it is necessary to satisfy the said Formula (3). By suppressing (V + 2Nb + 10B) to 0.03% or less, as shown in the above (ii), the generation of MA and a coarse lath structure can be suppressed, and the degradation of HAZ toughness can be suppressed.

〈Cu:0.1〜1.0%〉
Cuは、焼入れ性を向上させるのに有効な元素であり、該効果を発揮させるには0.1%以上含有させることが好ましい。しかし、Cuが過剰になると、圧延時に熱間割れを引き起こし易くなるため、1.0%以下に抑えることが好ましい。
<Cu: 0.1 to 1.0%>
Cu is an element effective for improving the hardenability, and is preferably contained in an amount of 0.1% or more for exhibiting the effect. However, if Cu is excessive, hot cracking is likely to occur during rolling, so it is preferable to keep it to 1.0% or less.

〈Ca:0.0005〜0.0030%〉
Caは、非金属介在物を粒状に形態制御してHAZ靭性を向上させるのに有効な元素である。この様な効果を十分発揮させるには、Caを0.0005%以上含有させることが好ましいが、過剰に含有させると、Ca介在物が粗大化して母材の延性を劣化させる。よってCa量は、0.0030%以下とすることが好ましい。
<Ca: 0.0005 to 0.0030%>
Ca is an element effective for improving the HAZ toughness by controlling the form of nonmetallic inclusions in a granular form. In order to sufficiently exhibit such an effect, it is preferable to contain Ca in an amount of 0.0005% or more. However, if it is excessively contained, Ca inclusions are coarsened and the ductility of the base material is deteriorated. Therefore, the Ca content is preferably 0.0030% or less.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例
によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらはいずれも本発明の技術的範囲に含まれる。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

表1に示す成分組成の鋼材を溶製しスラブとした後、1100℃に加熱し、板厚50mmまで熱間圧延を行った。その後、930℃まで再加熱して焼入れし、500℃にて焼戻しを行い製造した。尚、熱間圧延後、直ちに焼入れ、焼戻しを行ってもよい。   Steel materials having the composition shown in Table 1 were melted to form slabs, heated to 1100 ° C., and hot rolled to a plate thickness of 50 mm. Then, it re-heated to 930 degreeC, quenched, and tempered at 500 degreeC and manufactured. In addition, you may quench and temper immediately after hot rolling.

そして得られた鋼板を用いて、下記の通り母材強度の測定とHAZ靭性の評価を行った。   And using the obtained steel plate, the base material strength was measured and the HAZ toughness was evaluated as follows.

[母材強度の測定]
各鋼板のt/4(tは板厚)から、圧延方向に対して直角の方向にJISZ 2201の4号試験片を採取して、JISZ 2241の要領で引張試験を行ない、引張強度(TS)を測定した。そして、引張強度が590MPa以上のものを高張力であると評価した。
[Measurement of base material strength]
From t / 4 (t is the plate thickness) of each steel plate, specimen No. 4 of JISZ 2201 was sampled in a direction perpendicular to the rolling direction, and subjected to a tensile test in accordance with the procedure of JISZ 2241. Tensile strength (TS) Was measured. And the thing whose tensile strength is 590 Mpa or more was evaluated as high tension.

[HAZ靭性の評価]
溶接入熱が800kJ/cmのエレクトロスラグ溶接を行ったときのボンド近傍の熱影響部の熱履歴を模擬し、t/4から採取した12.5mm厚さ×32mm幅×55mm長さの試験片に、加熱:1400℃で30秒間保持、800〜500℃の冷却時間(Tc):700秒のサイクルで、高周波誘導加熱装置にて熱処理を施した[熱処理後の試験片は、スキンプレート材(50mm厚)とダイアフラム材(50mm厚)を組合せ、溶接入熱が800kJ/cmのエレクトロスラグ溶接を行った場合の熱影響部に相当]。
[Evaluation of HAZ toughness]
Test specimen of 12.5 mm thickness x 32 mm width x 55 mm length taken from t / 4, simulating the heat history of the heat affected zone near the bond when electroslag welding with welding heat input of 800 kJ / cm was performed Heating: 1400 ° C. for 30 seconds, 800-500 ° C. cooling time (Tc): 700 seconds, heat treatment was performed with a high-frequency induction heating apparatus [the test piece after heat treatment is a skin plate material ( 50 mm thickness) and a diaphragm material (50 mm thickness), corresponding to a heat-affected zone when electroslag welding with a welding heat input of 800 kJ / cm is performed.

そして、JIS Z 2202のVノッチ試験片を採取して、JISZ 2242の要領でシャルピー衝撃試験を行い、試験温度0℃での吸収エネルギー(vE)を測定し、該吸収エネルギーが100J以上のものを、HAZの靭性に優れると評価した。 Then, a V-notch test piece of JIS Z 2202 is sampled and subjected to a Charpy impact test according to the procedure of JISZ 2242, and the absorbed energy (vE 0 ) at a test temperature of 0 ° C. is measured. Was evaluated as having excellent HAZ toughness.

これらの結果を表2に示す。   These results are shown in Table 2.

Figure 0004652952
Figure 0004652952

Figure 0004652952
Figure 0004652952

表1、表2から次の様に考察することができる(尚、下記No.は、表中の実験No.を示す)。   Table 1 and Table 2 can be considered as follows (note that the following No. indicates the experiment No. in the table).

本発明で規定する要件を満たし、前記図1の斜線範囲(本発明の範囲)にあるNo.1〜7、9、10の鋼板は、良好なHAZ靭性を示す高張力鋼板であることがわかる。   No. 1 that satisfies the requirements defined in the present invention and falls within the hatched area (the scope of the present invention) of FIG. It can be seen that the steel plates 1 to 7, 9, and 10 are high-tensile steel plates that exhibit good HAZ toughness.

これに対し、本発明の規定を満足しないNo.13〜28は、夫々、以下の不具合を有している。即ち、No.13は、C量が上限を超えているためHAZ靭性に劣っている。   On the other hand, No. which does not satisfy the provisions of the present invention. Each of 13 to 28 has the following problems. That is, no. No. 13 is inferior in HAZ toughness because the amount of C exceeds the upper limit.

またNo.14は、Mn量とNi量が不足しているため、HAZ靭性に劣っている。   No. No. 14 is inferior in HAZ toughness because the amount of Mn and the amount of Ni are insufficient.

No.15とNo.17は、(Mn+0.7×Ni+Cr)が上限を超えているため、またNo.16は、(Mn+0.7×Ni+Cr)が下限を下回っているため、いずれもHAZ靭性の小さいものとなっている。   No. 15 and No. No. 17 has an upper limit of (Mn + 0.7 × Ni + Cr). No. 16 has a low HAZ toughness because (Mn + 0.7 × Ni + Cr) is below the lower limit.

No.18はCr量が過剰であるため、またNo.19はAl量が過剰であるため、HAZ靭性に劣っている。   No. No. 18 has an excessive amount of Cr. No. 19 is inferior in HAZ toughness because the amount of Al is excessive.

No.20は、N量が不足しているためHAZ靭性に劣っている。   No. No. 20 is inferior in HAZ toughness because the N amount is insufficient.

またNo.21は、Ti量とN量が上限を超えているため、HAZ靭性に劣っている。   No. No. 21 is inferior in HAZ toughness because the Ti amount and the N amount exceed the upper limit.

No.22は、[Cr/(Mn+0.7×Ni)]が下限を下回っているため、HAZ靭性が劣化している。   No. In No. 22, [Cr / (Mn + 0.7 × Ni)] is below the lower limit, so the HAZ toughness is degraded.

No.23は、Moを過剰に含んでいるためHAZ靭性に劣っている。   No. No. 23 is inferior in HAZ toughness because it contains excessive Mo.

No.24は、VとBの個々の含有量は規定範囲内にあるが、(V+2Nb+10B)が0.03%を超えているため、HAZ靭性が劣化している。   No. No. 24, the individual contents of V and B are within the specified range, but (V + 2Nb + 10B) exceeds 0.03%, so the HAZ toughness is deteriorated.

No.25はMn量が過剰であるため、No.26はNi量が過剰であるため、No.27はTi量が過剰であるため、また、No.28はN量が過剰であるため、いずれもHAZ靭性に劣っている。   No. No. 25 has an excessive amount of Mn. No. 26 has an excessive amount of Ni. No. 27 has an excessive amount of Ti. No. 28 is inferior in HAZ toughness because the N amount is excessive.

(Mn+0.7×Ni+Cr)と(GBF+FSP)量またはブロックサイズの関係を示すグラフである。It is a graph which shows the relationship between (Mn + 0.7 * Ni + Cr) and (GBF + FSP) amount or block size. (Mn+0.7×Ni+Cr)とHAZ靭性(vE)の関係を示すグラフである。Is a graph showing the relationship (Mn + 0.7 × Ni + Cr ) and HAZ toughness (vE 0). [Cr/(Mn+0.7×Ni)]と針状MA[アスペクト比(長径/短径)が2.5以上のMA]の面積率との関係を示すグラフである。It is a graph which shows the relationship between [Cr / (Mn + 0.7 * Ni)] and the area ratio of acicular MA [MA whose aspect ratio (major axis / minor axis) is 2.5 or more]. [Cr/(Mn+0.7×Ni)]とHAZ靭性(vE)の関係を示すグラフである。Is a graph showing the relationship between [Cr / (Mn + 0.7 × Ni)] and HAZ toughness (vE 0). Cr量と(Mn+0.7×Ni)の関係において、本発明で規定する範囲を示した図である。It is the figure which showed the range prescribed | regulated by this invention in the relationship between Cr amount and (Mn + 0.7 * Ni).

Claims (3)

質量%で(以下同じ)、
C :0.02〜0.05%、
Si:0.05〜0.20%、
Mn:1.0〜2.5%、
P :0.02%以下(0%を含まない)、
S :0.005%以下(0%を含まない)、
Al:0.01〜0.05%、
Ni:0.2〜2.0%、
Cr:0.5〜2.0%、
Ti:0.005〜0.025%、
N :0.004〜0.010%
を満たすと共に、下記式(1)および式(2)を満たし、残部鉄および不可避不純物からなることを特徴とする大入熱溶接熱影響部の靭性に優れた高張力鋼板。
2.3≦(Mn+0.7×Ni+Cr)≦3.7 …(1)
[Cr/(Mn+0.7×Ni)]≧0.3 …(2)
{式中、Mn、Ni、Crは、それぞれの元素の含有量(質量%)を示す}
% By mass (the same applies below)
C: 0.02 to 0.05%,
Si: 0.05-0.20%,
Mn: 1.0 to 2.5%
P: 0.02% or less (excluding 0%),
S: 0.005% or less (excluding 0%),
Al: 0.01 to 0.05%,
Ni: 0.2 to 2.0%,
Cr: 0.5 to 2.0%,
Ti: 0.005 to 0.025%,
N: 0.004 to 0.010%
A high-tensile steel sheet that satisfies the following formulas (1) and (2) and has the toughness of the heat-affected zone with high heat input welding, characterized by comprising the remaining iron and inevitable impurities.
2.3 ≦ (Mn + 0.7 × Ni + Cr) ≦ 3.7 (1)
[Cr / (Mn + 0.7 × Ni)] ≧ 0.3 (2)
{Wherein Mn, Ni, and Cr indicate the content (% by mass) of each element}
更に、Mo:0.2%以下(0%を含まない)を含む請求項1に記載の鋼板。   Furthermore, the steel plate of Claim 1 containing Mo: 0.2% or less (it does not contain 0%). 更に、
V :0.05%以下、
Nb:0.01%以下、および
B :0.0020%以下
よりなる群から選択される1種以上を下記式(3)を満たすように含む請求項1または2に記載の鋼板。
(V+2Nb+10B)≦0.03 …(3)
{式中、V、Nb、Bは、それぞれの元素の含有量(質量%)を示す}
Furthermore,
V: 0.05% or less,
The steel plate according to claim 1 or 2, comprising at least one selected from the group consisting of Nb: 0.01% or less and B: 0.0020% or less so as to satisfy the following formula (3).
(V + 2Nb + 10B) ≦ 0.03 (3)
{Wherein V, Nb, and B represent the content (% by mass) of each element}
JP2005321404A 2005-11-04 2005-11-04 High-tensile steel plate with excellent toughness of heat affected zone Active JP4652952B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005321404A JP4652952B2 (en) 2005-11-04 2005-11-04 High-tensile steel plate with excellent toughness of heat affected zone
KR1020060094028A KR100867139B1 (en) 2005-11-04 2006-09-27 High Tensile Strength Steel Sheet Excellent in Toughness in Large Heat Input Heat-affected Zone
CNB2006101432506A CN100523264C (en) 2005-11-04 2006-11-01 High-tension steel plate with excellent toughness for high heat energy welding heat influence part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321404A JP4652952B2 (en) 2005-11-04 2005-11-04 High-tensile steel plate with excellent toughness of heat affected zone

Publications (2)

Publication Number Publication Date
JP2007126725A JP2007126725A (en) 2007-05-24
JP4652952B2 true JP4652952B2 (en) 2011-03-16

Family

ID=38070684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321404A Active JP4652952B2 (en) 2005-11-04 2005-11-04 High-tensile steel plate with excellent toughness of heat affected zone

Country Status (3)

Country Link
JP (1) JP4652952B2 (en)
KR (1) KR100867139B1 (en)
CN (1) CN100523264C (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5157657B2 (en) * 2008-06-06 2013-03-06 Jfeスチール株式会社 High-strength steel plate with excellent toughness in heat-affected zone of large heat input welding
JP5509945B2 (en) * 2010-03-12 2014-06-04 Jfeスチール株式会社 Steel sheet with excellent toughness of weld heat affected zone
JP5509946B2 (en) * 2010-03-12 2014-06-04 Jfeスチール株式会社 Steel sheet with excellent toughness of weld heat affected zone
JP5685960B2 (en) * 2011-01-31 2015-03-18 Jfeスチール株式会社 High strength steel with excellent toughness of weld heat affected zone
CN106756614B (en) * 2016-11-26 2018-08-31 江阴兴澄特种钢铁有限公司 The thick easily welding F690 steel plates of 210mm that resistance to marine atmosphere, seawater splash corrode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160835A (en) * 2001-11-26 2003-06-06 Kobe Steel Ltd High-tension thick steel plate superior in weldability and uniform elongation
JP2004300567A (en) * 2003-03-19 2004-10-28 Kobe Steel Ltd High tensile steel sheet and its manufacturing method
JP2005036295A (en) * 2003-07-17 2005-02-10 Kobe Steel Ltd Low yield ratio high tensile strength steel sheet excellent in gas cutting crack resistance and high heat input welded joint toughness and low in acoustic anisotropy
JP2005200716A (en) * 2004-01-16 2005-07-28 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602471B2 (en) * 2000-05-24 2004-12-15 株式会社神戸製鋼所 High tensile strength steel sheet excellent in weldability and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003160835A (en) * 2001-11-26 2003-06-06 Kobe Steel Ltd High-tension thick steel plate superior in weldability and uniform elongation
JP2004300567A (en) * 2003-03-19 2004-10-28 Kobe Steel Ltd High tensile steel sheet and its manufacturing method
JP2005036295A (en) * 2003-07-17 2005-02-10 Kobe Steel Ltd Low yield ratio high tensile strength steel sheet excellent in gas cutting crack resistance and high heat input welded joint toughness and low in acoustic anisotropy
JP2005200716A (en) * 2004-01-16 2005-07-28 Kobe Steel Ltd Steel material superior in toughness of weld heat-affected zone

Also Published As

Publication number Publication date
KR100867139B1 (en) 2008-11-06
KR20070048591A (en) 2007-05-09
CN100523264C (en) 2009-08-05
JP2007126725A (en) 2007-05-24
CN1958830A (en) 2007-05-09

Similar Documents

Publication Publication Date Title
KR101386042B1 (en) Steel material for high heat input welding
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5849940B2 (en) Low yield ratio high strength steel plate with excellent weld heat affected zone toughness
JP5276871B2 (en) Low yield specific thickness steel plate with excellent toughness of weld heat affected zone
JP4652952B2 (en) High-tensile steel plate with excellent toughness of heat affected zone
KR101971772B1 (en) Method of manufacturing steel plate for high-heat input welding
TWI526545B (en) Steel material for welding
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5849892B2 (en) Steel material for large heat input welding
JP4778779B2 (en) High-tensile steel plate with excellent low-temperature toughness in heat affected zone
JP2005307261A (en) Thick high strength steel plate having large heat input weld heat affected zone toughness
JP5509945B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP5862592B2 (en) High-tensile steel plate with excellent weld heat-affected zone toughness
JP3863413B2 (en) High toughness high tension non-tempered thick steel plate and manufacturing method thereof
JP2688312B2 (en) High strength and high toughness steel plate
JP2020204091A (en) High strength steel sheet for high heat input welding
JP5509946B2 (en) Steel sheet with excellent toughness of weld heat affected zone
JP3739997B2 (en) High-tensile steel plate with excellent weldability
JP2005307313A (en) Method for producing steel plate excellent in earthquake-proof and weldability
JP4332064B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP5659949B2 (en) Thick steel plate excellent in toughness of weld heat affected zone and method for producing the same
JP4736374B2 (en) Steel material with super large heat input welding characteristics
JP2006213976A (en) High tensile strength steel having excellent weldability and joint toughness
JP2003166033A (en) Thick steel plate with excellent toughness in welded heat affected zone
JP3837083B2 (en) One-pass large heat input welding method with excellent weld heat-affected zone toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101216

R150 Certificate of patent or registration of utility model

Ref document number: 4652952

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3