JP2004300567A - High tensile steel sheet and its manufacturing method - Google Patents

High tensile steel sheet and its manufacturing method Download PDF

Info

Publication number
JP2004300567A
JP2004300567A JP2003336220A JP2003336220A JP2004300567A JP 2004300567 A JP2004300567 A JP 2004300567A JP 2003336220 A JP2003336220 A JP 2003336220A JP 2003336220 A JP2003336220 A JP 2003336220A JP 2004300567 A JP2004300567 A JP 2004300567A
Authority
JP
Japan
Prior art keywords
less
steel sheet
tensile steel
steel plate
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003336220A
Other languages
Japanese (ja)
Other versions
JP4220871B2 (en
Inventor
Shogo Murakami
昌吾 村上
Hiroyuki Takaoka
宏行 高岡
Yoshiomi Okazaki
喜臣 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003336220A priority Critical patent/JP4220871B2/en
Publication of JP2004300567A publication Critical patent/JP2004300567A/en
Application granted granted Critical
Publication of JP4220871B2 publication Critical patent/JP4220871B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a 590 MPa class steel sheet having various characteristics such as low sound anisotropy, base metal toughness and weldability (especially, HAZ toughness in high-heat input) even in non-heat-treated state and to provide its manufacturing method. <P>SOLUTION: The high tensile steel sheet has a specific chemical composition, and 90 vol.% or more of the steel structure consists of bainite, and old γ particles have an average aspect ratio of 1.8 or less and an average equivalent circular diameter of 100 μm or less, and the steel sheet has a tensile strength of not less than 590 MPa and less than 780 MPa. The high tensile steel sheet can be manufactured by using partial recrystallization phenomenon. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、低音響異方性、溶接性[溶接熱影響部(HAZ)の靭性]および耐力(例えば、0.2%伸長時の耐力)に優れた590MPa以上780MPa未満の鋼板(以下、単に「590MPa級鋼板」という)およびその製造方法に関するものである。本発明の高張力鋼板は、特に建築構造物や橋梁などの大型構造物に好適に用いられる。   The present invention is a steel plate having a low acoustic anisotropy, weldability [weld heat affected zone (HAZ) toughness] and proof stress (for example, proof strength at 0.2% elongation) of 590 MPa or more and less than 780 MPa (hereinafter simply referred to as “steel plate”). And a manufacturing method thereof. The high-tensile steel plate of the present invention is particularly suitably used for large structures such as building structures and bridges.

例えば、建築用や橋梁用の鋼板(厚鋼板)では、溶接部に欠陥が存在すると、この部分が破壊発生の起点となり易いため、超音波探傷試験によって欠陥部分の有無を調査し、欠陥部分が存在していた場合には、該部分を補修するといった作業が一般的に行われている。ところが、探傷方向によって著しく音速が変化する鋼板では、超音波探傷試験で溶接欠陥部の正確な位置を検出できないことから、上記分野などに適用される鋼板においては、所謂「音響異方性」が小さいことが要求されている。   For example, in steel plates for construction and bridges (thick steel plates), if there is a defect in the welded part, this part is likely to be the starting point of fracture occurrence, so the presence or absence of the defective part is investigated by ultrasonic testing. When it exists, the work of repairing the part is generally performed. However, in a steel plate whose sound speed changes remarkably depending on the flaw detection direction, the exact position of the weld defect cannot be detected by an ultrasonic flaw detection test. Small is required.

また、こうした建築用や橋梁用などに用いられる鋼板では、母材強度、靭性、溶接性などの各種特性が要求されるに加えて、製造コストの低減化の面から、焼入れ焼戻しを行わずに製品とする所謂非調質であっても、こうした特性が十分に確保できることが求められている。   In addition, steel sheets used for construction and bridges are required to have various properties such as base metal strength, toughness, weldability, etc., and from the standpoint of reducing manufacturing costs, quenching and tempering are not performed. Even in the so-called non-tempered product, it is required that such characteristics can be sufficiently secured.

例えば、特許文献1には、極低炭素ベイナイト鋼において、αB(Granular bainitic α)組織の中に、より拡散的なαq(Quasi−Polygonal α)を微細分散させることで、母材強度(引張り強さ)、板厚方向の靭性、および低音響異方性を確保した極厚鋼板が開示されている。   For example, Patent Document 1 discloses that in ultra-low carbon bainitic steel, base material strength (tensile strength) is obtained by finely dispersing more diffusive αq (Quasi-Polygonal α) in αB (Granular Bainitic α) structure. ), An extremely thick steel plate that ensures toughness in the thickness direction and low acoustic anisotropy is disclosed.

また、特許文献2や特許文献3には、マルテンサイトまたはベイナイトの一方あるいは双方の組織を有し、旧オーステナイト(γ)粒のアスペクト比が1.5以下、旧γ粒の短径の平均値が60〜700μmであり、且つTi、N、Sの含有量および旧γ粒の短径の平均値が、特定の関係を有する鋼材が提案されている。   Patent Document 2 and Patent Document 3 have a structure of one or both of martensite and bainite, the aspect ratio of prior austenite (γ) grains is 1.5 or less, and the average value of the short diameters of prior γ grains. Has been proposed in which the content of Ti, N and S and the average value of the minor axis of the old γ grains have a specific relationship.

これら特許文献1〜3では、低音響異方性はある程度達成されているものの、例えば溶接性や母材靭性の面で、不十分な場合があった。   In these Patent Documents 1 to 3, although low acoustic anisotropy has been achieved to some extent, there have been cases where it is insufficient in terms of, for example, weldability and base material toughness.

他方、特許文献4では、化学組成を特定のものとすることで、溶接性(大入熱HAZ靭性および耐溶接割れ性)に優れた高張力鋼板が開示されている。この特許文献4に開示の高張力鋼板は、非常に優れた特性を有しているものの、音響異方性については一切考慮されておらず、必ずしも低音響異方性が達成されている訳ではないため、かかる点に未だ改善の余地を残していた。
特開平11−193445号公報 特開2000−178645号公報 特開2001−3137号公報 特開2002−47532号公報
On the other hand, Patent Document 4 discloses a high-tensile steel plate having excellent weldability (high heat input HAZ toughness and weld crack resistance) by making the chemical composition specific. Although the high-tensile steel sheet disclosed in Patent Document 4 has very excellent characteristics, no consideration is given to acoustic anisotropy, and low acoustic anisotropy is not necessarily achieved. There was still room for improvement in this point.
Japanese Patent Laid-Open No. 11-193445 JP 2000-178645 A JP 2001-3137 A JP 2002-47532 A

本発明は上記事情に鑑みてなされたものであり、その目的は、非調質であっても、低音響異方性、母材靭性、溶接性(特に大入熱HAZ靭性)といった各種特性に優れた590MPa級鋼板と、その製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to achieve various characteristics such as low acoustic anisotropy, base material toughness, and weldability (particularly, high heat input HAZ toughness) even if it is not tempered. An object of the present invention is to provide an excellent 590 MPa grade steel sheet and a method for producing the same.

上記目的を達成し得た本発明の高張力鋼板は、C:0.010〜0.06%(質量%の意味、以下同じ),Mn:1.25〜2.5%,Cr:0.1〜2.0%,Mo:0.005〜1.5%,V:0.04%以下(0%を含む),Nb:0.001〜0.04%,Ti:0.005〜0.03%,B:0.0006〜0.005%,N:0.0020〜0.010%を満たす鋼からなり、2.4≦KP≦4.5、KV≦0.040を夫々満足すると共に、鋼組織の90体積%以上がベイナイトであり、旧γ粒(旧オーステナイト粒)は、平均アスペクト比が1.8以下であり、且つ平均円相当径が100μm以下であり、引張強さが590MPa以上780MPa未満であるところに要旨を有するものである。   The high-tensile steel sheet of the present invention that has achieved the above-mentioned object has C: 0.010 to 0.06% (meaning of mass%, the same applies hereinafter), Mn: 1.25 to 2.5%, Cr: 0.00. 1 to 2.0%, Mo: 0.005 to 1.5%, V: 0.04% or less (including 0%), Nb: 0.001 to 0.04%, Ti: 0.005 to 0 .03%, B: 0.0006-0.005%, N: 0.0020-0.010% steel satisfying 2.4 ≦ KP ≦ 4.5 and KV ≦ 0.040, respectively. In addition, 90% by volume or more of the steel structure is bainite, the old γ grain (former austenite grain) has an average aspect ratio of 1.8 or less, an average equivalent circle diameter of 100 μm or less, and a tensile strength of It has a gist where it is 590 MPa or more and less than 780 MPa.

ここで、上記KP値は下記式(1)で、また上記KV値は下記式(2)で表される。
KP=[Mn]+1.5×[Cr]+2×[Mo] (1)
KV=[V]+[Nb] (2)
《式中、[ ]は各元素の含有量(質量%)を意味する。》
Here, the KP value is represented by the following formula (1), and the KV value is represented by the following formula (2).
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo] (1)
KV = [V] + [Nb] (2)
<< In formula, [] means content (mass%) of each element. >>

本発明において、上記鋼組織に占めるマルテンサイトとオーステナイトよりなる混合組織(MA組織)の平均体積分率が3%以下である高張力鋼板は、母材靭性が一層良好となるので好ましい。このとき、上記MA組織の平均円相当径は1μm以下であるものが好ましく、上記MA組織の平均アスペクト比は2.5以下であるものが好ましい。   In the present invention, a high-tensile steel sheet in which the average volume fraction of the mixed structure (MA structure) composed of martensite and austenite in the steel structure is 3% or less is preferable because the base material toughness is further improved. At this time, the average equivalent circle diameter of the MA structure is preferably 1 μm or less, and the average aspect ratio of the MA structure is preferably 2.5 or less.

本発明の高張力鋼板としては、前記Mo含量が0.05〜1.5%であり、且つ、前記Nb含量が0.005〜0.04%であるものが好ましい。   The high-tensile steel plate of the present invention preferably has a Mo content of 0.05 to 1.5% and a Nb content of 0.005 to 0.04%.

本発明において、さらにNi:5%以下および/またはCu:1.2%以下を含有する高張力鋼板、あるいは上記のMn含有量が1.25〜1.8%であるとき、さらにCu:1.2%を超え、2.0%以下を含有する高張力鋼板や、これらのMn量およびCu量を満たし、さらにNi:5%以下を含有する高張力鋼板は、溶接性がより高められるので好ましい。また、さらにCa:0.005%以下を含有する高張力鋼板や、さらにSi:1%以下,P:0.020%以下,S:0.010%以下,Al:0.2%以下に夫々抑えられている高張力鋼板は、溶接性が一層高められるので好ましい態様である。   In the present invention, when a high-tensile steel plate further containing Ni: 5% or less and / or Cu: 1.2% or less, or when the Mn content is 1.25 to 1.8%, Cu: 1 .High tensile steel sheets containing more than 2% and containing 2.0% or less, and high tensile steel sheets satisfying these Mn and Cu contents, and further containing Ni: 5% or less, have improved weldability. preferable. Further, high-tensile steel sheets containing Ca: 0.005% or less, Si: 1% or less, P: 0.020% or less, S: 0.010% or less, Al: 0.2% or less, respectively. The suppressed high-tensile steel sheet is a preferable embodiment because the weldability is further improved.

このような本発明の高張力鋼板は、肉厚(板厚)が80mm以上のものでも良好な特性を有するものである。   Such a high-tensile steel plate of the present invention has good characteristics even when the thickness (plate thickness) is 80 mm or more.

上記の高張力鋼板は、Ac3点〜1300℃に加熱して熱間圧延を行う際に、全圧下量の50%以上を部分再結晶域で圧延することにより製造できる。ここで、上記部分再結晶域とは、該温度域においてγ粒径(オーステナイト粒径):100±10μmとした鋼板試験片を、歪速度:10sec-1、相当歪:0.2の条件で圧下し10sec後に組織を凍結したときに、20〜80体積%が再結晶粒となる温度域である。 The above-described high-tensile steel sheet can be produced by rolling 50% or more of the total rolling reduction in the partially recrystallized region when hot rolling is performed at a point of Ac 3 to 1300 ° C. Here, the partial recrystallization region refers to a steel plate test piece having a γ grain size (austenite grain size): 100 ± 10 μm in the temperature range under the conditions of strain rate: 10 sec −1 and equivalent strain: 0.2. When the structure is frozen after 10 seconds of reduction, the temperature range is 20 to 80% by volume of recrystallized grains.

また、上記熱間圧延後に、200℃まで冷却し、その後Ac1点以下の温度で焼戻しを行うことも推奨される。このときの冷却は、水冷で行うことが好ましい。 It is also recommended to cool to 200 ° C. after the hot rolling and then perform tempering at a temperature below the A c1 point. The cooling at this time is preferably performed by water cooling.

また、上記熱間圧延の後、Bs点以下の温度まで水冷することも好ましい態様である。   In addition, after the hot rolling, it is also a preferable aspect that water cooling is performed to a temperature below the Bs point.

なお、本発明に係る上記高張力鋼板の化学組成は、典型的には上記元素の他は残部Feおよび不可避不純物からなるが、その他の化学成分についても、本発明の効果を阻害しない範囲内で含有されていてもよい。   The chemical composition of the high-strength steel sheet according to the present invention typically consists of the balance of the above elements and the remainder Fe and unavoidable impurities, but other chemical components are within a range that does not impair the effects of the present invention. It may be contained.

本発明によれば、優れた母材特性および溶接性に加えて、鋼組織中の旧γ粒を特定の形態に制御することにより、優れた低音響異方性をも有する高張力鋼板を提供できる。これにより、超音波探傷試験による溶接欠陥の正確な調査が可能であり、例えば、建築構造物や橋梁などの大型構造物の分野において、信頼性の高い材料として適用し得る。   According to the present invention, in addition to excellent base material properties and weldability, a high strength steel sheet having excellent low acoustic anisotropy is provided by controlling old γ grains in a steel structure to a specific form. it can. Thereby, it is possible to accurately investigate a welding defect by an ultrasonic flaw detection test, and for example, it can be applied as a highly reliable material in the field of large structures such as building structures and bridges.

さらに、本発明の高張力鋼板は、部分再結晶という現象を利用する方法で製造可能であり、非調質鋼板としても、上述の優れた特性を確保し得る。   Furthermore, the high-strength steel sheet of the present invention can be manufactured by a method using a phenomenon called partial recrystallization, and the above-described excellent characteristics can be secured even as a non-tempered steel sheet.

本発明者等は、前掲の従来技術では達成困難であった低音響異方性、母材強度・靭性、さらに大入熱HAZ靭性といった特性を、再加熱焼入れ、さらには調質処理なしでも確保し得る鋼板を開発すべく鋭意検討を重ねた結果、特定の化学組成に加えて、旧γ粒の形態を適切に制御すれば、こうした目的が高度に達成されることを見出した。また、このような鋼板の組織制御は、熱間圧延条件を厳格に管理し、部分再結晶という現象を利用することによって、実施可能であることも見出し、本発明を完成させたのである。   The present inventors have secured characteristics such as low acoustic anisotropy, base material strength / toughness, and high heat input HAZ toughness, which were difficult to achieve with the above-described prior art, without reheating and quenching and further tempering treatment. As a result of intensive studies to develop a steel plate that can be used, it has been found that such an object can be achieved to a high degree if the morphology of the old γ grains is appropriately controlled in addition to a specific chemical composition. Further, the inventors have found that such a structure control of the steel sheet can be implemented by strictly controlling the hot rolling conditions and utilizing the phenomenon of partial recrystallization, and thus completed the present invention.

なお、本発明でいう「旧γ粒」とは、上記の通り、旧オーステナイト粒を意味し、一般に組織がオーステナイトの状態から冷却されると、組織変態が生じてフェライトやマルテンサイトなどの別組織になるが、この変態前のオーステナイト粒を、変態後の鋼材(鋼板など)より見る立場から指す用語が「旧γ粒」である。以下、本発明を詳細に説明する。   The “old γ grains” as used in the present invention means old austenite grains as described above. Generally, when the structure is cooled from the austenite state, a structural transformation occurs and another structure such as ferrite or martensite. However, the term that refers to the austenite grains before transformation from the standpoint of the steel material (steel plate, etc.) after transformation is “old γ grains”. Hereinafter, the present invention will be described in detail.

本発明の鋼板は、鋼組織の90体積%以上がベイナイトであり、旧γ粒について、平均アスペクト比が1.8以下であり、且つ平均円相当径が100μm以下である。   In the steel sheet of the present invention, 90% by volume or more of the steel structure is bainite, and the old γ grains have an average aspect ratio of 1.8 or less and an average equivalent circle diameter of 100 μm or less.

まず、鋼板の音響異方性の低減と、母材靭性向上の観点から、旧γ粒の形態に着目して検討を重ねた。音響異方性については、JIS Z 3060に規定される横波音速比CSL/CSC[振動方向をL方向(主圧延方向)とC方向(L方向に直交する方向)として得られた横波音速値CSL(m/sec)とCSC(m/sec)の比]の値を、例えば1.02以下といった低い値、すなわち、低音響異方性とすべく、旧γ粒の形態との関係を調査した。 First, from the viewpoint of reducing the acoustic anisotropy of the steel sheet and improving the toughness of the base metal, investigations were made focusing on the form of the old γ grains. As for acoustic anisotropy, the transverse wave sound velocity ratio C SL / C SC defined in JIS Z 3060 [the transverse wave sound velocity obtained with the vibration direction as the L direction (main rolling direction) and the C direction (direction perpendicular to the L direction)] Value C SL (m / sec) to C SC (m / sec)] is set to a low value of, for example, 1.02 or less, that is, low acoustic anisotropy. The relationship was investigated.

図1は、C:0.03%、Si:0.1%、Mn:1.5%、Ni:0.4%、Cr:0.6%、Mo:0.3%、Nb:0.01%、Ti:0.014%、B:0.010%、を含み、KP値:3.0、KV値:0.01、板厚:80mm、旧γ粒:60μmである鋼板(焼戻しなし)において、旧γ粒の平均アスペクト比(横軸)と横波音速比CSL/CSC(縦軸)との関係を表したグラフである。このように、旧γ粒の平均アスペクト比(「長径/短径」の比)が1.8以下のときに、例えば横波音速比が1.02以下といった低音響異方性が達成されることを見出した。より好ましい旧γ粒の平均アスペクト比は1.5未満、さらに好ましくは1.3未満である。 FIG. 1 shows C: 0.03%, Si: 0.1%, Mn: 1.5%, Ni: 0.4%, Cr: 0.6%, Mo: 0.3%, Nb: 0.0. Steel sheet containing 01%, Ti: 0.014%, B: 0.010%, KP value: 3.0, KV value: 0.01, sheet thickness: 80 mm, old γ grain: 60 μm (no tempering) ) Is a graph showing the relationship between the average aspect ratio (horizontal axis) of the prior γ grains and the transverse wave sound velocity ratio C SL / C SC (vertical axis). Thus, when the average aspect ratio (ratio of “major axis / minor axis”) of the old γ grains is 1.8 or less, for example, low acoustic anisotropy such as a shear wave velocity ratio of 1.02 or less is achieved. I found. The average aspect ratio of the prior γ grains is more preferably less than 1.5, and still more preferably less than 1.3.

また、母材靭性については、鋼板の板厚1/4部位からJIS4号試験片を採取して−5℃でシャルピー衝撃試験を行い、測定される吸収エネルギー(vE-5)と旧γ粒の形態との関係を調査した。 As for the base material toughness, JIS No. 4 specimens were collected from a 1/4 thickness part of the steel sheet, and subjected to a Charpy impact test at -5 ° C. The measured absorbed energy (vE -5 ) and old γ grains The relationship with form was investigated.

図2は、C:0.03%、Si:0.1%、Mn:1.5%、Ni:0.4%、Cr:0.6%、Mo:0.3%、Nb:0.01%、Ti:0.014%、B:0.010%、を含み、KP値:3.0、KV値:0.01、板厚:80mmである鋼板(焼戻しなし)において、旧γ粒の平均円相当径(横軸)と母材靭性(vE-5、縦軸)との関係を表したグラフである。このように、旧γ粒の平均円相当径が100μm以下のときには、例えば、vE-5が200J以上といった優れた母材靭性を確保できることが判明した。より好ましい旧γ粒の平均円相当径は60μm以下であり、さらに好ましくは40μm以下である。他方、旧γ粒の平均円相当径の下限は3μmであることが望ましい。旧γ粒の平均円相当径が3μm未満になると、焼入れ性が極端に低下し、ベイナイト組織を得るために多量の合金元素が必要となり、溶接性が低下傾向になると共にコストアップを招く原因になる。より好ましくは10μm以上、さらに好ましくは20μm以上である。 FIG. 2 shows C: 0.03%, Si: 0.1%, Mn: 1.5%, Ni: 0.4%, Cr: 0.6%, Mo: 0.3%, Nb: 0.0. In the steel sheet (without tempering) containing 01%, Ti: 0.014%, B: 0.010%, KP value: 3.0, KV value: 0.01, and plate thickness: 80 mm Is a graph showing the relationship between the average equivalent circle diameter (horizontal axis) and the base material toughness (vE -5 , vertical axis). Thus, it has been found that when the average equivalent circle diameter of the old γ grains is 100 μm or less, excellent base material toughness such as vE −5 of 200 J or more can be secured. More preferably, the average equivalent circle diameter of the prior γ grains is 60 μm or less, and more preferably 40 μm or less. On the other hand, the lower limit of the average equivalent circle diameter of the old γ grains is preferably 3 μm. If the average equivalent circle diameter of the former γ grains is less than 3 μm, the hardenability is extremely lowered, and a large amount of alloying elements are required to obtain a bainite structure. Become. More preferably, it is 10 micrometers or more, More preferably, it is 20 micrometers or more.

なお、旧γ粒の平均アスペクト比および平均円相当径は、以下のようにして測定される。板厚の1/4部位を鏡面研磨した試験片を、山本科学工具研究社製AGS液や、2%硝酸−エタノール液(2%ナイタール液)などを用いてエッチング処理する。エッチング条件は、上記AGS液の場合は室温で5〜10分、2%ナイタール液の場合は室温で5〜30秒とすることが推奨される。エッチング処理を施した後の試験片を、光学顕微鏡を用いて倍率:400倍で観察し、写真撮影をする。得られた顕微鏡写真(観察視野10視野)について、Media Cybernetics社製「Image−Pro Plus」などを用いて画像解析を行い、旧γ粒の長径、短径および円相当径を測定する。   The average aspect ratio and the average equivalent circle diameter of the old γ grains are measured as follows. A test piece obtained by mirror-polishing a ¼ portion of the plate thickness is etched using an AGS solution manufactured by Yamamoto Scientific Tool Research Co., Ltd. or a 2% nitric acid-ethanol solution (2% nital solution). It is recommended that the etching conditions be 5 to 10 minutes at room temperature for the AGS solution and 5 to 30 seconds at room temperature for the 2% nital solution. The test piece after the etching treatment is observed at a magnification of 400 times using an optical microscope, and photographed. The obtained micrograph (observation visual field: 10 visual fields) is subjected to image analysis using “Image-Pro Plus” manufactured by Media Cybernetics, and the major diameter, minor diameter, and equivalent circle diameter of the former γ grains are measured.

平均アスペクト比については、観察視野中に認められる個々の旧γ粒のアスペクト比(長径/短径)を求め、このアスペクト比の平均値を求めることで得られる。また、旧γ粒の円相当径は、各旧γ粒の面積を画像解析により測定し、該面積から個々の旧γ粒の円相当径(観察した旧γ粒を、真円であると見なした場合の直径)を求める。旧γ粒の平均円相当径は、観察視野中に認められる全ての旧γ粒の円相当径を平均して求める。   The average aspect ratio can be obtained by determining the aspect ratio (major axis / minor axis) of each old γ grain observed in the observation field and determining the average value of the aspect ratios. In addition, the equivalent circle diameter of the old γ grain is measured by image analysis of the area of each old γ grain, and the equivalent circle diameter of each old γ grain (the observed old γ grain is considered to be a perfect circle). (Diameter when done). The average equivalent circle diameter of the old γ grains is obtained by averaging the equivalent circle diameters of all the old γ grains observed in the observation field.

さらに本発明の鋼板では、旧γ粒の形態制御に伴う母材強度(例えば、0.2%伸長時の耐力)低下を抑制するため、鋼組織の90体積%以上をベイナイトとする。すなわち、母材靭性確保の点で旧γ粒を微細化するため、結果として焼入れ性の低下による鋼板の強度低下が引き起こされるが、鋼組織をベイナイト主体とすることによってこれを回避するのである。   Furthermore, in the steel plate of the present invention, 90% by volume or more of the steel structure is bainite in order to suppress a decrease in the base material strength (for example, the yield strength at 0.2% elongation) associated with the shape control of the old γ grains. That is, the refinement of the old γ grains in terms of securing the base material toughness results in a decrease in the strength of the steel sheet due to a decrease in hardenability, but this is avoided by using the steel structure as the main component.

図3は、C:0.03%、Si:0.1%、Mn:1.5%、Ni:0.4%、Cr:0.6%、Mo:0.3%、Nb:0.01%、Ti:0.014%、B:0.010%、を含み、KP値:3.0、KV値:0.01、板厚:80mmである鋼板(焼戻しなし)において、組織中のベイナイト分率(横軸)と、0.2%伸長時の耐力(縦軸)との関係を表したグラフである。このように、鋼組織の90体積%以上をベイナイトとすることで、例えば430MPa以上といった優れた耐力を確保することができ、さらには、引張強度を590MPa以上790MPa未満とすることができる。なお、上記0.2%伸長時の耐力および引張強度は、鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことで得られる値である。より好ましい鋼組織中のベイナイト分率は95体積%以上であり、さらに好ましくは97体積%以上である。   FIG. 3 shows C: 0.03%, Si: 0.1%, Mn: 1.5%, Ni: 0.4%, Cr: 0.6%, Mo: 0.3%, Nb: 0.0. In steel sheet (with no tempering) including 01%, Ti: 0.014%, B: 0.010%, KP value: 3.0, KV value: 0.01, plate thickness: 80 mm, It is a graph showing the relationship between a bainite fraction (horizontal axis) and the yield strength at the time of 0.2% elongation (vertical axis). Thus, by using 90% by volume or more of the steel structure as bainite, an excellent proof stress such as 430 MPa or more can be ensured, and further, the tensile strength can be set to 590 MPa or more and less than 790 MPa. In addition, the yield strength and tensile strength at the time of 0.2% elongation are values obtained by taking a JIS No. 4 test piece from a 1/4 thickness portion of the steel sheet and conducting a tensile test. A more preferable bainite fraction in the steel structure is 95% by volume or more, and more preferably 97% by volume or more.

なお、鋼組織中のベイナイト分率は、上述した旧γ粒の平均アスペクト比および平均円相当径を測定する際に得られる光学顕微鏡写真を、上記と同様の方法で画像解析し、フェライト、擬ポリゴナルフェライト、MA(Martensite Austenite Constituent)以外のラス状組織を全てベイナイトと見なして、ベイナイトの面積率を測定し、この値からベイナイト分率(体積%)を算出し、観察視野10視野の平均値として求める。   The bainite fraction in the steel structure was determined by conducting image analysis on the optical micrograph obtained when measuring the average aspect ratio and average equivalent circle diameter of the old γ grains as described above to obtain ferrite, pseudo All the lath-like structures other than polygonal ferrite and MA (Martensite Austenite Constituent) are regarded as bainite, and the area ratio of bainite is measured. Calculate as a value.

本発明の高張力鋼板において特に好ましいのは、上記鋼組織に占めるマルテンサイトとオーステナイトよりなる混合組織(以下「MA組織」と称する場合がある)の平均体積分率が、3%以下であるものである。後述する実施例から明らかな様に、本発明者らが種々研究を重ねた結果、MA組織の平均体積分率を3%以下に抑制することによって、母材の靭性が一段と向上することが明らかになったからである。母材の靭性を確保する観点からは、MA組織の割合は3%まで許容できるが、MA組織の割合はできるだけ少ない方が良く、より好ましくは2%以下に抑えることが推奨される。最も好ましいMA組織の割合は0%であるが、実操業でMA組織の生成量を0%にすることは非常に困難であり、少なからず生成する。   In the high-tensile steel sheet of the present invention, the average volume fraction of the mixed structure (hereinafter sometimes referred to as “MA structure”) composed of martensite and austenite in the steel structure is preferably 3% or less. It is. As will be apparent from Examples described later, as a result of various studies conducted by the present inventors, it is clear that the toughness of the base material is further improved by suppressing the average volume fraction of the MA structure to 3% or less. Because it became. From the viewpoint of securing the toughness of the base material, the proportion of the MA structure can be tolerated up to 3%, but the proportion of the MA structure should be as small as possible, more preferably 2% or less. The most preferable ratio of the MA structure is 0%, but it is very difficult to make the amount of the MA structure generated to 0% in actual operation, and it is generated not a little.

MA組織の生成を3%以下に抑制するには、後述する如く、熱間圧延後に水冷で急冷すればよく、冷却時の降温速度を高めて急冷することでMA組織の生成を抑えればよい。   In order to suppress the formation of the MA structure to 3% or less, as will be described later, it is only necessary to quench with water cooling after hot rolling, and to suppress the formation of the MA structure by increasing the temperature-decreasing rate during cooling. .

この様に、MA組織の平均体積分率を3%以下に抑えると、母材の靭性が飛躍的に向上するので、MoやNbなどの添加量を低減することができる(詳細は後述する)。   Thus, if the average volume fraction of the MA structure is suppressed to 3% or less, the toughness of the base material is remarkably improved, so that the amount of addition of Mo, Nb, etc. can be reduced (details will be described later). .

MA組織以外の組織は、実質的にベイナイト組織であることが好ましい。「実質的に」とは、不可避的に生成する他の組織の混入を許容する意味であり、基本的にはMA組織とベイナイト組織からなることを表している。   It is preferable that the structure other than the MA structure is substantially a bainite structure. “Substantially” means that it is inevitably mixed with other structures that are inevitably generated, and basically represents an MA structure and a bainite structure.

鋼組織に占めるMA組織の平均体積分率は、鋼板の厚みをtとしたときに、鋼板表面からの深さがt/4の位置における組織を光学顕微鏡で観察することによって求める。鋼板の組織は、加熱条件や冷却条件に大きく影響を受けて変化するので、鋼板の表面部と中心部では生成する組織の割合に若干のバラツキを生じる。そのため、鋼板の表面部におけるMA組織の生成量と中心部におけるMA組織の生成量を比べると、MA組織の生成量は表面部の方が中心部よりも相対的に少なくなる。そこで、本発明において上記MA組織の平均体積分率は、鋼板表面からの深さがt/4の位置における組織を観察し、これを代表値として用いることとする。また、鋼板の特性を評価する際に用いる試験片(供試体)は、鋼板表面からの深さがt/4の位置から切り出すことが一般的であり、このことからも明らかな様に、鋼板表面からの深さがt/4の位置における組織組成を鋼板全体の組織組成とすることは妥当である。   The average volume fraction of the MA structure in the steel structure is determined by observing the structure at a position where the depth from the steel sheet surface is t / 4 with an optical microscope, where the thickness of the steel sheet is t. Since the structure of the steel sheet changes greatly depending on the heating conditions and the cooling conditions, there is a slight variation in the proportion of the structure generated at the surface and the center of the steel sheet. Therefore, when the amount of MA structure generated in the surface portion of the steel sheet is compared with the amount of MA structure generated in the center portion, the amount of MA structure generated is relatively smaller in the surface portion than in the center portion. Therefore, in the present invention, the average volume fraction of the MA structure is determined by observing the structure at a position where the depth from the steel sheet surface is t / 4 and using this as a representative value. In addition, the test piece (specimen) used for evaluating the characteristics of the steel sheet is generally cut out from a position where the depth from the steel sheet surface is t / 4. It is appropriate that the structure composition at the position where the depth from the surface is t / 4 is the structure composition of the entire steel sheet.

本発明の高張力鋼板においては、上記MA組織の平均円相当径が1μm以下であるものが好ましい。MA組織が微細化することによって、母材の靭性が一層高くなるからである。MA組織の平均円相当径は0.7μm以下であることがより好ましい。   In the high-tensile steel plate of the present invention, it is preferable that the average equivalent circle diameter of the MA structure is 1 μm or less. This is because the toughness of the base material is further increased by making the MA structure finer. The average equivalent circle diameter of the MA structure is more preferably 0.7 μm or less.

MA組織の平均円相当径を1μm以下に制御するには、後述する如く、熱間圧延の後に水冷すればよい。水冷により冷却時の降温速度を高めて急冷すると、ベイナイト変態途中における未変態オーステナイトへのCの濃縮が緩和され、MA組織の平均円相当径が相対的に小さくなるからである。   In order to control the average equivalent circle diameter of the MA structure to 1 μm or less, as described later, water cooling may be performed after hot rolling. This is because when the cooling rate is increased by water cooling and the temperature is lowered rapidly, the concentration of C into untransformed austenite during bainite transformation is relaxed, and the average equivalent circle diameter of the MA structure becomes relatively small.

本発明の高張力鋼板においては、上記MA組織の平均アスペクト比が2.5以下であるものが好ましい。MA組織の形状は母材の靭性に影響を与え、MA組織が球状化することで、母材の靭性が向上するからである。MA組織のより好ましい平均アスペクト比は2.2以下である。   In the high-tensile steel sheet of the present invention, it is preferable that the average aspect ratio of the MA structure is 2.5 or less. This is because the shape of the MA structure affects the toughness of the base material, and the toughness of the base material is improved by making the MA structure spherical. A more preferable average aspect ratio of the MA structure is 2.2 or less.

MA組織の平均アスペクト比を2.5以下に制御するには、旧γ粒径をできるだけ小さくすればよく、旧γ粒径を小さくすることによって、MA組織の結晶成長が阻害されてアスペクト比が小さくなる。旧γ粒径を制御する具体的な手段については後述する。   In order to control the average aspect ratio of the MA structure to 2.5 or less, it is only necessary to make the old γ grain size as small as possible. By reducing the old γ grain size, crystal growth of the MA structure is inhibited and the aspect ratio is reduced. Get smaller. Specific means for controlling the prior γ particle size will be described later.

なお、MA組織の平均体積分率や平均円相当径、平均アスペクト比は、次の様に測定する。まず、鋼板表面からの深さがt/4となる部位を鏡面研磨した試験片を、腐食液を用いてエッチング処理し、処理後の試験片を、光学顕微鏡を用いて倍率:1000倍で観察して写真撮影する。MA組織を観察するためのエッチング処理には、エタノール(96質量%)とピクリン酸(4質量%)を混合して得られるA液と、蒸留水(99質量%)とメタ重亜硫酸ナトリウム(1質量%)を混合して得られるB液を、50質量部:60質量部(A液:B液)で混合して得られる腐食液を用いる。   The average volume fraction, average equivalent circle diameter, and average aspect ratio of the MA structure are measured as follows. First, a test piece in which a part having a depth of t / 4 from the steel sheet surface is mirror-polished is etched using a corrosive solution, and the treated test piece is observed at a magnification of 1000 times using an optical microscope. And take a photo. For the etching treatment for observing the MA structure, solution A obtained by mixing ethanol (96% by mass) and picric acid (4% by mass), distilled water (99% by mass) and sodium metabisulfite (1 A corrosive liquid obtained by mixing 50 parts by mass of 60 parts by mass (A liquid: B liquid) of B liquid obtained by mixing (mass%) is used.

次に、得られた顕微鏡写真(観察視野10視野)について、Media Cybernetics社製「Image−Pro Plus」などを用いて画像解析を行ってMA組織の平均面積率、平均円相当径および平均アスペクト比を夫々測定し、平均面積率を平均体積率とする。   Next, the obtained microphotograph (observation visual field: 10 visual fields) was subjected to image analysis using “Image-Pro Plus” manufactured by Media Cybernetics, etc., and the average area ratio, average equivalent circle diameter and average aspect ratio of MA tissue were analyzed. And the average area ratio is defined as the average volume ratio.

MA組織の平均円相当径については、各MA組織の面積を画像解析により測定し、該面積から個々のMA組織の円相当径を求める。次に、観察視野中に認められる全てのMA組織の円相当径を平均して平均円相当径を求める。円相当径とは、観察したMA組織を真円と見なした場合の直径である。   Regarding the average equivalent circle diameter of the MA tissue, the area of each MA tissue is measured by image analysis, and the equivalent circle diameter of each MA tissue is obtained from the area. Next, the average equivalent circle diameter is obtained by averaging the equivalent circle diameters of all MA structures observed in the observation field. The equivalent circle diameter is a diameter when the observed MA structure is regarded as a perfect circle.

MA組織の平均アスペクト比については、観察視野中に認められる個々のMA組織のアスペクト比(長径/短径)を求め、このアスペクト比の平均値を求めることで得られる。   The average aspect ratio of the MA structure can be obtained by calculating the aspect ratio (major axis / minor axis) of each MA structure observed in the observation visual field and determining the average value of the aspect ratios.

上記の鋼組織は、後述する化学組成の鋼を用いて、後記の方法によって鋼板を製造することで確保できる。   Said steel structure is securable by manufacturing a steel plate by the method of a postscript using the steel of the chemical composition mentioned later.

さらに、本発明の鋼板では、優れた溶接性(特に大入熱HAZ靭性や耐溶接割れ性)を確保する観点からも、その化学組成を特定する。具体的には、Cを極低Cに制限した上で、焼入れ性向上元素であるMn、CrおよびMoを積極的に添加し、これら焼入れ向上元素の含有量によって定まるKP値を適切に制御すると共に、さらにBを添加し、大入熱HAZ靭性低下元素であるVおよびNbの添加をKV値として適切に制御する。これらの成分を適量添加すると、ベイナイトの連続冷却曲線(図4のCCT線図を参照)が短時間側且つ低温度側へ移動すると共に、フェライトのCCT線が長時間側へ移動する(実線から破線へ移動)。   Furthermore, in the steel plate of this invention, the chemical composition is specified also from a viewpoint of ensuring the outstanding weldability (especially high heat input HAZ toughness and weld crack resistance). Specifically, after limiting C to extremely low C, Mn, Cr and Mo which are hardenability improving elements are positively added, and the KP value determined by the content of these quenching improving elements is appropriately controlled. At the same time, B is further added, and the addition of V and Nb, which are large heat input HAZ toughness reducing elements, is appropriately controlled as the KV value. When appropriate amounts of these components are added, the continuous cooling curve of bainite (see the CCT diagram in FIG. 4) moves to the short time side and the low temperature side, and the ferrite CCT wire moves to the long time side (from the solid line). Move to dashed line).

そのため、従来は、高冷却速度ではマルテンサイト、低冷却速度ではフェライトまたは擬ポリゴナルフェライトを生成するために、硬さの冷却速度依存性が大きく、小入熱溶接時におけるHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度を両立できず、予熱フリーの達成が困難であったが、本発明によれば、高冷却速度、低冷却速度のいずれにおいても低温変態ベイナイトを生成し、硬さの冷却速度依存が低下し、溶接時のHAZ部の硬さ低減(耐溶接割れ性の改善)と母材強度確保を両立ならしめた。   For this reason, conventionally, in order to produce martensite at a high cooling rate and ferrite or pseudopolygonal ferrite at a low cooling rate, the hardness depends greatly on the cooling rate, and the hardness of the HAZ part is reduced during small heat input welding. (Improvement of weld crack resistance) and base material strength were not compatible, and preheating-free was difficult to achieve. According to the present invention, low-temperature transformation bainite was produced at both high and low cooling rates. As a result, the dependence of the hardness on the cooling rate was reduced, and both the reduction of the hardness of the HAZ part during welding (improvement of weld crack resistance) and the securing of the base metal strength were achieved.

一方、大入熱溶接の場合、HAZの冷却速度が遅くなるため、従来はフェライトまたは擬ポリゴナルフェライトが生成し、それに伴い粗大且つ塊状の島状マルテンサイト組織が生成してHAZ靭性の劣化を招いていたが、本発明では、冷却速度が遅くても低温変態ベイナイトが生成するため塊状ではなくフィルム状のマルテンサイト組織になると同時に、極低Cであるため生成するマルテンサイト組織が微細となり、HAZ靭性を確保できる。   On the other hand, in the case of high heat input welding, since the cooling rate of HAZ is slow, conventionally ferrite or pseudopolygonal ferrite is generated, and a coarse and massive island-like martensite structure is formed accordingly, resulting in deterioration of HAZ toughness. However, in the present invention, low-temperature transformation bainite is generated even when the cooling rate is slow, so that it becomes a film-like martensite structure instead of a lump, and at the same time, the generated martensite structure becomes fine because it is extremely low C, HAZ toughness can be secured.

加えて、上述の如く極低Cとすると共に焼入れ性向上元素の添加は、鋼組織をベイナイト主体とする点においても重要である。以下、本発明の鋼板の化学組成について説明する。   In addition, as described above, the addition of the element having a very low C and a hardenability improving element is important in that the steel structure is mainly composed of bainite. Hereinafter, the chemical composition of the steel sheet of the present invention will be described.

C:0.010〜0.06%
Cは、溶接時におけるHAZ部の耐溶接割れ性と母材強度を両立させ、且つ大入熱HAZ靭性を改善するために重要な元素である。Cが0.06%を超えると高冷却速度側で低温変態ベイナイトでなくマルテンサイトが生成するようになり、耐溶接割れ性および大入熱HAZ靭性が改善されない。好ましくは0.055%以下である。なお、0.010%未満では必要最小限の母材強度が得られない。好ましくは0.020%以上、さらに好ましくは0.030%以上である。
C: 0.010 to 0.06%
C is an important element for achieving both the weld crack resistance of the HAZ part during welding and the strength of the base material and improving the high heat input HAZ toughness. If C exceeds 0.06%, martensite is generated instead of low-temperature transformation bainite on the high cooling rate side, and the weld crack resistance and high heat input HAZ toughness are not improved. Preferably it is 0.055% or less. In addition, if it is less than 0.010%, the necessary minimum base material strength cannot be obtained. Preferably it is 0.020% or more, More preferably, it is 0.030% or more.

Mn:1.25〜2.5%,Cr:0.1〜2.0%,Mo:0.005〜1.5%
これらの元素は焼入れ性を改善する作用を有し、高冷却速度〜低冷却速度で低温変態ベイナイトを生成しやすくすると共に、上記の通り、極低Cとし、同時に所定のB量を添加することで小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度確保を両立させ、且つ大入熱HAZ靭性を高めるうえで重要な元素である。
Mn: 1.25 to 2.5%, Cr: 0.1 to 2.0%, Mo: 0.005 to 1.5%
These elements have the effect of improving the hardenability, make it easy to produce low-temperature transformation bainite at a high cooling rate to a low cooling rate, and as described above, make it extremely low C and simultaneously add a predetermined amount of B. Therefore, it is an important element for achieving both the weld cracking resistance of the HAZ part and securing the base metal strength at the time of small heat input welding and increasing the high heat input HAZ toughness.

Mn、CrおよびMoの含有量は、夫々1.25%以上、0.1%以上、0.005%以上であることが必要となる。これらの含有量に満たないと所望の焼入れ性改善作用が発揮されず、母材強度が不足する。好ましくはMn:1.3%以上、Cr:0.3%以上、Mo:0.05%以上である。Cr:0.5%超、Mo:0.1%以上であると一層好ましい。ただし、Mn,CrおよびMoの含有量が、夫々2.5%、2.0%、1.5%を超えると母材の靭性が低下する。好ましくはMn:2.2%以下、Cr:1.5%以下、Mo:1.3%以下である。   The contents of Mn, Cr, and Mo are required to be 1.25% or more, 0.1% or more, and 0.005% or more, respectively. If these contents are not satisfied, the desired hardenability improving effect is not exhibited and the base material strength is insufficient. Preferably, Mn: 1.3% or more, Cr: 0.3% or more, Mo: 0.05% or more. More preferably, Cr is more than 0.5%, and Mo is 0.1% or more. However, if the contents of Mn, Cr, and Mo exceed 2.5%, 2.0%, and 1.5%, respectively, the toughness of the base material decreases. Preferably, Mn is 2.2% or less, Cr is 1.5% or less, and Mo is 1.3% or less.

さらに、これらの元素の含有量によって定まる前記KP値は、2.4以上4.5以下であることが必要である。KP値が2.4未満では上記作用を有効に発揮させることができず、擬ポリゴナルフェライトやフェライトが生成し易くなり、590MPa以上の母材強度が得られなくなる。好ましくは2.7以上である。ただし、KP値が4.5を超えると大入熱HAZ靭性が低下する。好ましくは4.3以下である。   Further, the KP value determined by the content of these elements needs to be 2.4 or more and 4.5 or less. If the KP value is less than 2.4, the above-described effect cannot be exhibited effectively, and pseudopolygonal ferrite and ferrite are easily generated, and a base material strength of 590 MPa or more cannot be obtained. Preferably it is 2.7 or more. However, if the KP value exceeds 4.5, the high heat input HAZ toughness decreases. Preferably it is 4.3 or less.

V:0.04%以下(0%を含む),Nb:0.001〜0.04%以下
Vは少量の添加で焼入れ性および焼戻し軟化抵抗を高める作用がある。ただし、0.04%を超えて添加すると大入熱HAZ靭性が低下する。好ましくはV:0.03%以下である。Nbも少量の添加で焼入れ性を高め、母材強度の向上に寄与する。よって、Nbの添加量は0.001%以上とする。好ましくは0.005%以上、より好ましくは0.006%以上である。ただし、Nbの添加量が0.04%を超えると大入熱HAZ靭性が低下する。好ましくはNb:0.03%以下である。
V: 0.04% or less (including 0%), Nb: 0.001 to 0.04% or less V has the effect of increasing hardenability and temper softening resistance with a small amount of addition. However, if added over 0.04%, the high heat input HAZ toughness decreases. V is preferably 0.03% or less. Nb is also added in a small amount to improve hardenability and contribute to improvement of the strength of the base material. Therefore, the amount of Nb added is 0.001% or more. Preferably it is 0.005% or more, More preferably, it is 0.006% or more. However, if the amount of Nb added exceeds 0.04%, the high heat input HAZ toughness decreases. Preferably it is Nb: 0.03% or less.

さらにこれらの元素によって定まる前記KV値は、0.040以下であることが必要である。上記の通り、これらの元素はどちらも添加量が多すぎると大入熱HAZ靭性を低下させるからである。好ましくは0.035以下である。   Furthermore, the KV value determined by these elements needs to be 0.040 or less. This is because, as described above, when both of these elements are added in an excessive amount, the high heat input HAZ toughness is lowered. Preferably it is 0.035 or less.

B:0.0006〜0.005%
Bは焼入れ性改善元素であり、低冷却速度で低温変態ベイナイトを生成しやすくすると共に、上述の如く極低Cとし、同時に適量のMn,Cr,Moを添加することで小入熱溶接時におけるHAZ部の耐溶接割れ性と母材強度を高める作用を発揮する。しかし、B量が0.0006%未満では焼入れ性改善効果が不足し、満足のいく母材強度が得られない。好ましくは0.0007%以上、さらに好ましくは0.0010%以上である。ただし、B量が0.005%を超えるとかえって焼入れ性が低下し、母材強度が不足する。好ましくは0.003%以下である。
B: 0.0006 to 0.005%
B is an element for improving hardenability and facilitates formation of low-temperature transformation bainite at a low cooling rate, and is extremely low C as described above, and at the same time, by adding an appropriate amount of Mn, Cr, Mo, at the time of small heat input welding. It exhibits the effect of increasing the weld crack resistance and the base metal strength of the HAZ part. However, if the amount of B is less than 0.0006%, the effect of improving hardenability is insufficient, and a satisfactory base material strength cannot be obtained. Preferably it is 0.0007% or more, More preferably, it is 0.0010% or more. However, if the amount of B exceeds 0.005%, the hardenability deteriorates and the base material strength is insufficient. Preferably it is 0.003% or less.

Ti:0.005〜0.03%
TiはNと窒化物を形成して大入熱溶接時におけるHAZ部のγ粒を微細化し、HAZ靭性改善に寄与する点で有用である。ただし、Tiが0.03%を超えると逆にHAZ靭性が低下する。好ましくは0.02%以下である。なお、0.005%未満では大入熱HAZ靭性改善の効果が十分でない。好ましくは0.007%以上である。
Ti: 0.005 to 0.03%
Ti is useful in that it forms nitrides with N to refine γ grains in the HAZ part during high heat input welding and contributes to improvement in HAZ toughness. However, if Ti exceeds 0.03%, the HAZ toughness decreases. Preferably it is 0.02% or less. If it is less than 0.005%, the effect of improving the high heat input HAZ toughness is not sufficient. Preferably it is 0.007% or more.

N:0.0020〜0.010%
Nは上記の通り、Tiと窒化物を形成して大入熱溶接時におけるHAZ靭性改善に寄与する点で有用である。ただし、NはBと結合して固溶Bを減少させ、Bの焼入れ性向上作用を阻害し、母材の靭性および大入熱HAZ靭性を低下させる作用も有しており、Nの含有量が0.010%を超えるとその作用が顕著になる。好ましくは0.008%以下である。なお、0.0020%未満ではTiとの窒化物形成による大入熱HAZ靭性改善の効果が十分でない。好ましくは0.0030%以上である。
N: 0.0020 to 0.010%
As described above, N is useful in that it forms Ti and nitrides and contributes to the improvement of HAZ toughness during high heat input welding. However, N combines with B to reduce the solid solution B, inhibits the hardenability improvement effect of B, and also has the effect of lowering the toughness of the base metal and the high heat input HAZ toughness. When it exceeds 0.010%, the effect becomes remarkable. Preferably it is 0.008% or less. If it is less than 0.0020%, the effect of improving the high heat input HAZ toughness by forming a nitride with Ti is not sufficient. Preferably it is 0.0030% or more.

さらに本発明では、溶接性の一層の向上を目指して、下記の元素を積極的に添加すること、あるいはその含有量を抑制することが推奨される。   Furthermore, in the present invention, it is recommended to positively add the following elements or to suppress the content thereof with the aim of further improving the weldability.

Ni:5%以下
Niは母材靭性向上に有用な元素であるが、5%を超えて添加するとスケール疵が発生しやすくなるため、その上限を5%とすることが好ましい。より好ましくは4%以下である。
Ni: 5% or less Ni is an element useful for improving the toughness of the base metal, but if added over 5%, scale wrinkles are likely to occur, so the upper limit is preferably made 5%. More preferably, it is 4% or less.

Cu:1.2%以下
Cuは固溶強化および析出強化により母材強度を向上させると共に、焼入れ性向上作用も有する元素である。ただし、1.2%を超えて添加すると大入熱HAZ靭性が低下するため、1.2%以下に抑えることが好ましい。より好ましくは1.0%以下である。
Cu: 1.2% or less Cu is an element that improves the strength of the base metal by solid solution strengthening and precipitation strengthening and also has an effect of improving hardenability. However, if added over 1.2%, the high heat input HAZ toughness decreases, so it is preferable to keep it to 1.2% or less. More preferably, it is 1.0% or less.

ただし、Mn量が1.25〜1.8%の範囲にある場合は、Cuによる大入熱HAZ靭性の低下を補うことができるので、1.2%超のCuを添加しても大入熱HAZ靭性を確保できる。しかし、この場合でもCu量が2.0%を超えると大入熱HAZ靭性が低下するため、その上限を2.0%とすることが好ましい。より好ましくは1.5%以下である。   However, when the amount of Mn is in the range of 1.25 to 1.8%, it is possible to compensate for the decrease in the high heat input HAZ toughness due to Cu. Thermal HAZ toughness can be ensured. However, even in this case, if the Cu content exceeds 2.0%, the high heat input HAZ toughness decreases, so the upper limit is preferably made 2.0%. More preferably, it is 1.5% or less.

Ca:0.005%以下
CaはMnSを球状化し、介在物の異方性を低減する効果を有する元素である。このような作用を発揮させるためには0.0005%以上添加することが好ましい。より好ましくは0.0010%以上である。ただし、0.005%を超えて過剰に添加すると母材靭性が低下するので0.005%以下に抑えることが好ましい。より好ましくは0.004%以下である。
Ca: 0.005% or less Ca is an element having an effect of spheroidizing MnS and reducing the anisotropy of inclusions. In order to exert such an effect, it is preferable to add 0.0005% or more. More preferably, it is 0.0010% or more. However, if added in excess of 0.005%, the toughness of the base material decreases, so it is preferable to keep it to 0.005% or less. More preferably, it is 0.004% or less.

Si:1%以下
Siは脱酸剤として有用な元素であるが、1%を超えると溶接性および母材靭性が低下するので1%以下に抑えることが好ましい。より好ましくは0.6%以下である。
Si: 1% or less Si is an element useful as a deoxidizer, but if it exceeds 1%, weldability and base metal toughness are lowered, so it is preferable to keep the content to 1% or less. More preferably, it is 0.6% or less.

P:0.020%以下,S:0.010%以下
PおよびSは、靭性等の物性に悪影響を及ぼす有害な不純物元素であり、P:0.020%以下、S:0.010%以下に夫々抑えられていることが好ましい。
P: 0.020% or less, S: 0.010% or less P and S are harmful impurity elements that adversely affect physical properties such as toughness, P: 0.020% or less, S: 0.010% or less It is preferable that each is suppressed.

Al:0.2%以下
Alは脱酸元素であると共に、Nを固定して固溶Bを増加させることでBに基づく焼入れ性向上作用を高める元素であるが、0.2%を超えると母材の靭性が低下するので、その上限を0.2%とすることが好ましい。より好ましくは0.1%以下である。
Al: with 0.2% or less Al is a deoxidizing element, is an element to improve the hardenability improving effect based on B by increasing the solid solution B by fixing the N, exceeds 0.2% Since the toughness of the base material decreases, the upper limit is preferably made 0.2%. More preferably, it is 0.1% or less.

本発明の高張力鋼板の化学組成は上述した通りであるが、鋼組織の90体積%以上がベイナイトで、且つ、鋼組織に占めるMA組織の平均体積分率が3%を超える場合は、Mo含量とNb含量を夫々Mo:0.05〜1.5%、且つ、Nb:0.005〜0.04%とすることが好ましい。MoとNbを比較的多く添加することによってYRの極端な低下を防ぎ、0.2%耐力を確保するためである。   The chemical composition of the high-strength steel sheet of the present invention is as described above. However, when 90 volume% or more of the steel structure is bainite and the average volume fraction of the MA structure in the steel structure exceeds 3%, Mo The content and the Nb content are preferably Mo: 0.05 to 1.5% and Nb: 0.005 to 0.04%, respectively. This is because by adding a relatively large amount of Mo and Nb, an extreme decrease in YR is prevented and 0.2% proof stress is secured.

一方、鋼組織の90体積%以上がベイナイトで、且つ、鋼組織に占めるMA組織の平均体積分率が3%以下の場合は、Mo含量とNb含量を夫々Mo:0.005〜1.5%、且つ、Nb:0.001〜0.04%とすることが好ましい。MoとNbの添加量を減らしても、MA組織を低減することによって0.2%耐力を確保できるからである。   On the other hand, when 90 volume% or more of the steel structure is bainite and the average volume fraction of the MA structure in the steel structure is 3% or less, the Mo content and the Nb content are respectively set to Mo: 0.005 to 1.5. % And Nb: 0.001 to 0.04% are preferable. This is because even if the addition amounts of Mo and Nb are reduced, 0.2% proof stress can be secured by reducing the MA structure.

次に、本発明に係る鋼板の製法について説明する。本発明の製法においては、上記化学組成を満足する鋼を用いることに加えて、特に旧γ粒の形態を上述のように制御するに当たり、熱間圧延条件を厳格に管理する必要がある。具体的には、Ac3点〜1300℃に加熱して熱間圧延を行う際に、全圧下量の50%以上、好ましくは全圧下量の70%以上を、部分再結晶域で圧延する。こうした操作で部分再結晶という現象を利用することにより、鋼板中の旧γ粒を上述の形態(平均アスペクト比、および平均円相当径)に抑制することができる。 Next, the manufacturing method of the steel plate which concerns on this invention is demonstrated. In the production method of the present invention, in addition to using steel satisfying the above chemical composition, it is necessary to strictly manage the hot rolling conditions, particularly when controlling the morphology of the old γ grains as described above. Specifically, when hot rolling is performed by heating from point A 3 to 1300 ° C., 50% or more of the total reduction amount, preferably 70% or more of the total reduction amount, is rolled in the partial recrystallization region. By utilizing the phenomenon of partial recrystallization in such an operation, the old γ grains in the steel sheet can be suppressed to the above-described form (average aspect ratio and average equivalent circle diameter).

ここで、上記部分再結晶域とは、該温度域においてγ粒径:100±10μmとした鋼板試験片を、歪速度:10sec-1、相当歪:0.2の条件で圧下を加えて10sec後に組織を凍結(例えば水冷)したときに、20〜80体積%が再結晶粒となる温度域である。この部分再結晶域は、鋼板の化学組成に応じて変動するので、熱間圧延を実施する前に、各鋼板と同じ化学組成の鋼板試験片について上記操作を行い確認しておけばよい。 Here, the partially recrystallized region is a steel plate test piece having a γ grain size of 100 ± 10 μm in the temperature region and is subjected to a reduction of 10 sec under the conditions of strain rate: 10 sec −1 and equivalent strain: 0.2. When the structure is later frozen (for example, water-cooled), the temperature range is 20 to 80% by volume of recrystallized grains. Since this partial recrystallization region varies depending on the chemical composition of the steel plate, it is only necessary to confirm by performing the above operation on a steel plate test piece having the same chemical composition as each steel plate before hot rolling.

本発明の高張力鋼板を製造するには、上記部分再結晶域におけるトータルの圧下率が重要であり、熱間圧延後の冷却手段や冷却条件は特に限定されず、通常通り空冷すればよい。   In order to produce the high-tensile steel sheet of the present invention, the total reduction ratio in the partial recrystallization region is important, and the cooling means and cooling conditions after hot rolling are not particularly limited, and may be air-cooled as usual.

ただし、鋼組織の90体積%以上をベイナイト組織とすると共に、該鋼組織に占めるMA組織の平均体積率を3%以下に抑制するためには、上記熱間圧延後、Bs点以下の温度まで水冷することが好ましい。熱間圧延後の鋼板を水冷によって急冷すると、MA組織の生成が抑制されて当該組織の平均円相当径も小さくなり、母材の靭性が向上するからである。   However, 90% by volume or more of the steel structure is a bainite structure, and in order to suppress the average volume ratio of the MA structure in the steel structure to 3% or less, the temperature is below the Bs point after the hot rolling. It is preferable to cool with water. This is because when the steel sheet after hot rolling is rapidly cooled by water cooling, the formation of the MA structure is suppressed, the average equivalent circle diameter of the structure is reduced, and the toughness of the base material is improved.

上記水冷条件は特に限定されないが、本発明で採用する上記水冷とは、降温速度が3℃/sec以上の冷却を指す。より好ましくは水冷時の降温速度を5℃/sec以上とするのがよく、さらに好ましくは10℃/sec以上とすることが望ましい。   Although the said water cooling conditions are not specifically limited, The said water cooling employ | adopted by this invention points out the cooling whose temperature-fall rate is 3 degrees C / sec or more. More preferably, the cooling rate during water cooling is 5 ° C./sec or more, and more preferably 10 ° C./sec or more.

また、上記熱間圧延後に200℃以下まで冷却し、その後、必要に応じてAc1点以下の温度で焼戻しを行ってもよい。例えば、より高い母材靭性が求められる場合には、上記焼戻しにより靭性阻害因子であるMA組織をフェライトとセメンタイトに分解できることから有効である。 Moreover, after the said hot rolling, you may cool to 200 degrees C or less, and you may then temper at the temperature below Ac1 point as needed. For example, when higher base metal toughness is required, it is effective because the MA structure, which is a toughness inhibiting factor, can be decomposed into ferrite and cementite by the tempering.

なお、上記200℃まで冷却する際の冷却手段も特に限定されず、通常通り空冷すればよいが、空冷の代わりに水冷することによってMA組織の結晶成長を抑えても勿論構わない。   The cooling means for cooling to 200 ° C. is not particularly limited, and may be air-cooled as usual, but it is of course possible to suppress MA crystal growth by water-cooling instead of air-cooling.

本発明の鋼板を製造する際の、その他の工程・条件は特に限定されず、通常用いられる高張力鋼板の製造工程、および条件(温度、時間など)を適宜採用すればよい。なお、本発明では、所謂調質処理を施さない非調質鋼板のままで、低音響異方性、母材強度・靭性、溶接性、といった各種特性を確保できる。よって、製造工程の省略が可能であり、生産コストを低減できる。   The other steps and conditions for producing the steel plate of the present invention are not particularly limited, and the usually used production steps and conditions (temperature, time, etc.) of the high-tensile steel plate may be adopted as appropriate. In the present invention, various properties such as low acoustic anisotropy, base material strength / toughness, and weldability can be secured with a non-tempered steel sheet not subjected to so-called tempering treatment. Therefore, the manufacturing process can be omitted and the production cost can be reduced.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

表1および2に示す化学組成の鋼を通常の溶製法により溶製し、スラブとした後、表3および4に示す条件で熱間圧延を行い、所定板厚の評価用鋼板を製造した。一部の鋼板については、上記熱間圧延後、200℃まで冷却した後に、表3および4に示す温度で焼戻しを行った。   Steels having chemical compositions shown in Tables 1 and 2 were melted by an ordinary melting method to form slabs, and then hot-rolled under the conditions shown in Tables 3 and 4 to produce evaluation steel plates having a predetermined thickness. Some steel plates were tempered at the temperatures shown in Tables 3 and 4 after being cooled to 200 ° C. after the hot rolling.

このようにして得られた評価用鋼板について、下記の各測定を行った。結果を表5および6に示す。   The following measurements were performed on the steel sheet for evaluation thus obtained. The results are shown in Tables 5 and 6.

[旧γ粒の形態、およびベイナイト分率]
各鋼板の板厚1/4部位を鏡面研磨した試験片を、2%ナイタール液でエッチング後、該箇所について光学顕微鏡を用いて400倍で観察し、写真撮影をした。この観察視野10視野について、Media Cybernetics社製「Image−Pro Plus」を用いて画像解析を行い、鋼組織中の旧γ粒の形態(平均アスペクト比および平均円相当径)およびベイナイト分率を測定した。この際、フェライト、擬ポリゴナルフェライトおよびMA以外のラス状組織はベイナイトとみなした。
[Form of former γ grains and bainite fraction]
A test piece obtained by mirror-polishing a 1/4 thickness part of each steel plate was etched with a 2% nital solution, and the spot was observed at 400 times using an optical microscope and photographed. Image analysis was performed using “Image-Pro Plus” manufactured by Media Cybernetics, and the morphology (average aspect ratio and average equivalent circle diameter) and bainite fraction of the old γ grains in the steel structure were measured for the 10 visual fields. did. At this time, a lath-like structure other than ferrite, pseudo-polygonal ferrite and MA was regarded as bainite.

[引張強度(TS)、0.2%伸長時の耐力(0.2%耐力)、および降伏比(YR)]
各鋼板の板厚1/4部位からJIS4号試験片を採取し、引張試験を行うことによりTS、0.2%耐力、およびYRを測定した。このうち、TSおよび0.2%耐力については、590MPa≦TS<780MPa、0.2%耐力≧430MPaを合格とした。
[Tensile strength (TS), yield strength at 0.2% elongation (0.2% yield strength), and yield ratio (YR)]
A JIS No. 4 test piece was taken from a 1/4 thickness portion of each steel plate and subjected to a tensile test to measure TS, 0.2% proof stress, and YR. Among these, regarding TS and 0.2% yield strength, 590 MPa ≦ TS <780 MPa and 0.2% yield strength ≧ 430 MPa were regarded as acceptable.

[母材靭性]
各鋼板の板厚1/4部位からJIS4号試験片を採取し、−5℃でシャルピー衝撃試験をおこなうことにより吸収エネルギー(vE-5)を測定した。vE-5≧200Jを合格とした。
[Base material toughness]
JIS No. 4 test specimens were collected from a 1/4 thickness portion of each steel plate, and the absorbed energy (vE -5 ) was measured by conducting a Charpy impact test at -5 ° C. vE -5 ≧ 200 J was accepted.

[音響異方性(横波音速比)]
JIS Z 3060の規定に準じて、横波音速比CSL/CSCを測定した。CSL/CSC≦1.02を合格とした。
[Acoustic anisotropy (ratio of sound speed of shear wave)]
The shear wave sound velocity ratio C SL / C SC was measured in accordance with JIS Z 3060. C SL / C SC ≦ 1.02 was accepted.

[HAZ靭性]
最高加熱温度を1350℃、Tc(800〜500℃の冷却時間)=40sec、あるいは最高加熱温度を1400℃、Tc=100secの条件でHAZ再現試験を行い、該試験後にJIS4号試験片を採取して、−5℃でシャルピー衝撃試験を行い、吸収エネルギー(vE-5)を求めた。なお、Tc=40secは入熱5kJ/mmに、Tc=100secは入熱15kJ/mmに相当するものである。いずれの条件でHAZ再現試験をしたものにおいても、vE-5≧80Jを合格とした。
[HAZ toughness]
A HAZ reproduction test was conducted under the conditions of a maximum heating temperature of 1350 ° C. and Tc (cooling time of 800 to 500 ° C.) = 40 sec, or a maximum heating temperature of 1400 ° C. and Tc = 100 sec, and a JIS No. 4 specimen was collected after the test. Then, a Charpy impact test was conducted at −5 ° C. to determine the absorbed energy (vE −5 ). Tc = 40 sec corresponds to a heat input of 5 kJ / mm, and Tc = 100 sec corresponds to a heat input of 15 kJ / mm. Also in that the HAZ reproduction test in any of the conditions were judged as acceptable vE -5 ≧ 80 J.

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

表3〜6において、鋼板No.のAまたはBの後の数字は、表1および2における鋼種No.を意味している。また、表5および6のHAZ特性における「Tc=40sec」は、最高加熱温度を1350℃、Tc=40secの条件でHAZ再現試験をした試験片について測定した結果を、「Tc=100sec」は、最高加熱温度を1400℃、Tc=100secの条件でHAZ再現試験をした試験片について測定した結果を、夫々意味している。なお、表6の旧γ粒における「―」は、旧γ粒が実質的に観察不可であったことを意味している。   In Tables 3-6, steel plate No. The numbers after A or B are steel type Nos. In Tables 1 and 2. Means. In addition, “Tc = 40 sec” in the HAZ characteristics of Tables 5 and 6 is a result of measuring a test piece subjected to a HAZ reproduction test under the conditions of a maximum heating temperature of 1350 ° C. and Tc = 40 sec, and “Tc = 100 sec” It means the result of measurement on a test piece that was subjected to a HAZ reproduction test under the conditions of a maximum heating temperature of 1400 ° C. and Tc = 100 sec. In Table 6, “-” in the old γ grains means that the old γ grains were substantially unobservable.

表5および6から、以下のように考察できる。表5に示す各鋼板は、成分組成、鋼組織、およびTSが本発明の要件を満足しており、低音響異方性、その他の各種母材特性(0.2%耐力、vE-5)、および溶接性(HAZ特性)のいずれも良好であった。 From Tables 5 and 6, it can be considered as follows. Each steel plate shown in Table 5 has the composition, steel structure, and TS satisfying the requirements of the present invention, low acoustic anisotropy, and other various base material properties (0.2% proof stress, vE -5 ). And weldability (HAZ characteristics) were both good.

他方、表6に示す各鋼板は、本発明で定めるいずれかの要件を欠く比較例であり、以下の不具合を有している。   On the other hand, each steel plate shown in Table 6 is a comparative example lacking any of the requirements defined in the present invention, and has the following problems.

B2−1、B2−2、B13−1、B13−2の各鋼板は、部分再結晶域での圧下量が本発明の範囲を下回る熱間圧延条件で製造されており、B2−1およびB13−1の鋼板は旧γ粒の平均アスペクト比が、B2−2およびB13−2の鋼板は旧γ粒の平均円相当径が、夫々大きい例である。B2−1およびB13−1の鋼板では横波音速比が大きく、低音響異方性が低減されておらず、B2−2およびB13−2の鋼板では、母材靭性が劣っている。   Each steel sheet of B2-1, B2-2, B13-1, and B13-2 is manufactured under hot rolling conditions in which the amount of reduction in the partial recrystallization region falls below the range of the present invention, and B2-1 and B13 The steel sheet of -1 is an example in which the average aspect ratio of old γ grains is large, and the steel sheets of B2-2 and B13-2 are large in average circular equivalent diameter of old γ grains. The steel plate of B2-1 and B13-1 has a large shear wave sound velocity ratio and the low acoustic anisotropy is not reduced, and the steel plate of B2-2 and B13-2 has poor base material toughness.

B20の鋼板はC量が高い例であり、母材靭性が劣っている。B21の鋼板はC量が低い例であり、TSおよび0.2%耐力が劣っている。   The steel plate of B20 is an example with a high C content, and the base metal toughness is inferior. The steel plate of B21 is an example having a low C content, and TS and 0.2% proof stress are inferior.

B22の鋼板はMo量が、B23の鋼板はMo量およびNb量が、B28の鋼板はCr量およびKP値が、夫々低い例であり、いずれもベイナイト分率が低く、旧γ粒が実質的に観察されない。これらの鋼板では、TSおよび0.2%耐力が劣っている。   The steel sheet of B22 has a low Mo content, the steel sheet of B23 has a low Mo content and Nb content, and the steel sheet of B28 has a low Cr content and a KP value, both of which have a low bainite fraction and are substantially free of old γ grains. Not observed. These steel plates are inferior in TS and 0.2% yield strength.

B24の鋼板はKV値が、B25の鋼板はV量およびKV値が、夫々高い例であり、母材靭性が劣っている。   The steel plate of B24 is an example in which the KV value is high, and the steel plate of B25 is a high V amount and KV value, and the base metal toughness is inferior.

B26の鋼板は、Mn量およびKP値が低い例であり、TSおよび0.2%耐力が劣っている。   The steel plate of B26 is an example in which the Mn amount and the KP value are low, and TS and 0.2% proof stress are inferior.

B27の鋼板はKP値が高く、B29の鋼板はMn量が低く、且つMo量およびKP値が高い例である。これらの鋼板では、TSが非常に高く、母材靭性が劣っている。   The B27 steel plate has a high KP value, the B29 steel plate has a low Mn amount, and has a high Mo amount and KP value. In these steel plates, TS is very high and the base metal toughness is inferior.

B30の鋼板は、Mn量、Cr量およびKP値が低く、且つCu量が高い例であり、母材靭性が劣っている。   The steel sheet of B30 is an example in which the Mn content, Cr content and KP value are low and the Cu content is high, and the base metal toughness is inferior.

B31の鋼板はTi量が、B32の鋼板はN量が、夫々低い例であり、HAZ靭性(Tc=40secの条件の場合)が劣っている。   The steel sheet of B31 has a low Ti content, and the steel sheet of B32 has a low N content, and the HAZ toughness (in the case of Tc = 40 sec) is inferior.

表7および8に示す化学組成の鋼を通常の溶製法により溶製し、スラブとした後、表9および10に示す条件で熱間圧延し、次いで表9および10に示す冷却停止温度まで同表に示す冷却速度で冷却し、所定の板厚からなる評価用鋼板を製造した。   Steels having the chemical compositions shown in Tables 7 and 8 were melted by a normal melting method to form slabs, then hot-rolled under the conditions shown in Tables 9 and 10, and then the same as the cooling stop temperatures shown in Tables 9 and 10. The steel sheet for evaluation which consists of predetermined | prescribed board thickness was manufactured by cooling with the cooling rate shown to a table | surface.

一部の鋼板については、上記熱間圧延後、200℃まで表9および10に示す冷却速度で冷却し、次いで表9および10に示す温度で焼戻しを行った。   Some of the steel plates were cooled to 200 ° C. at the cooling rates shown in Tables 9 and 10 after the hot rolling, and then tempered at the temperatures shown in Tables 9 and 10.

また、一部の鋼板については、上記熱間圧延後、表9および10に示す冷却停止温度まで同表に示す冷却速度で水冷し、次いで200℃以下まで空冷した後に、表9および10に示す温度で焼戻しを行なった。   Moreover, about some steel plates, after the said hot rolling, it water-cools to the cooling stop temperature shown to Table 9 and 10 at the cooling rate shown to the same table, and then air-cools to 200 degrees C or less, Then, it shows to Table 9 and 10 Tempering was performed at temperature.

このようにして得られた評価用鋼板について、上記実施例1と同様に、各測定を行った。結果を表11および12に示す。   Thus, about the obtained steel plate for evaluation, each measurement was performed similarly to the said Example 1. FIG. The results are shown in Tables 11 and 12.

なお、MA組織の平均体積分率、平均円相当径および平均アスペクト比は、下記の方法で測定した。   The average volume fraction, the average equivalent circle diameter and the average aspect ratio of the MA structure were measured by the following methods.

[MA組織の平均体積分率、平均円相当径および平均アスペクト比]
鋼板の板厚をtとしたとき、鋼板表面からの深さがt/4となる部位を鏡面研磨した試験片を、腐食液を用いてエッチング処理し、処理後の試験片を、光学顕微鏡を用いて倍率:1000倍で観察して写真撮影した。なお、エッチング処理には、エタノール(96質量%)とピクリン酸(4質量%)を混合して得られるA液と、蒸留水(99質量%)とメタ重亜硫酸ナトリウム(1質量%)を混合して得られるB液を、50質量部:60質量部(A液:B液)で混合して得られる腐食液を用いた。
[Average volume fraction of MA texture, average equivalent circle diameter and average aspect ratio]
When the thickness of the steel sheet is t, a test piece obtained by mirror-polishing a portion having a depth of t / 4 from the steel sheet surface is etched using a corrosive solution, and the processed test piece is subjected to an optical microscope. Using magnification: observing at 1000 times and taking a picture. Etching is performed by mixing A solution obtained by mixing ethanol (96% by mass) and picric acid (4% by mass), distilled water (99% by mass) and sodium metabisulfite (1% by mass). Then, the corrosive liquid obtained by mixing the B liquid obtained by mixing at 50 parts by mass (60 parts by mass (A liquid: B liquid)) was used.

次に、得られた顕微鏡写真(観察視野10視野)について、Media Cybernetics社製「Image−Pro Plus」などを用いて画像解析を行ってMA組織の平均面積率や平均円相当径、平均アスペクト比を測定し、この平均面積率を平均体積率とした。   Next, with respect to the obtained micrograph (observation visual field 10 visual fields), image analysis was performed using “Image-Pro Plus” manufactured by Media Cybernetics, etc., and the average area ratio, average equivalent circle diameter, average aspect ratio of MA tissue were analyzed. And the average area ratio was defined as the average volume ratio.

また、母材靭性については、各鋼板の板厚1/4部位からJIS4号試験片を採取し、−10℃でシャルピー衝撃試験をおこなうことにより吸収エネルギー(vE-10)を測定した。vE-10≧200Jを合格とした。 Moreover, about base material toughness, the absorbed energy (vE- 10 ) was measured by extract | collecting a JIS4 test piece from the board thickness 1/4 site | part of each steel plate, and performing a Charpy impact test at -10 degreeC. the vE -10 ≧ 200J was passed.

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

Figure 2004300567
Figure 2004300567

表9〜12において、鋼板No.のAまたはBの後の数字は、表7および8における鋼種No.を意味している。また、表11および12のHAZ特性における「Tc=40sec」は、最高加熱温度を1350℃、Tc=40secの条件でHAZ再現試験をした試験片について測定した結果を、「Tc=100sec」は、最高加熱温度を1400℃、Tc=100secの条件でHAZ再現試験をした試験片について測定した結果を、夫々意味している。なお、表12の旧γ粒における「測定不能」とは、フェライトや擬ポリゴナルフェライトが生成していたため、旧γ粒の判別がつかなかったことを意味している。   In Tables 9-12, steel plate No. The numbers after A or B are steel grade numbers in Tables 7 and 8. Means. In addition, “Tc = 40 sec” in the HAZ characteristics of Tables 11 and 12 is a result of measuring a test piece that was subjected to a HAZ reproduction test under the conditions of a maximum heating temperature of 1350 ° C. and Tc = 40 sec, and “Tc = 100 sec” It means the result of measurement on a test piece that was subjected to a HAZ reproduction test under the conditions of a maximum heating temperature of 1400 ° C. and Tc = 100 sec. “Unmeasureable” in the old γ grains in Table 12 means that the old γ grains could not be identified because ferrite or pseudopolygonal ferrite was generated.

表11および12から、以下のように考察できる。表11に示す各鋼板は、成分組成、鋼組織、およびTSが本発明の要件を満足しており、低音響異方性、その他の各種母材特性(0.2%耐力)、および溶接性(HAZ特性)のいずれもが良好であった。特に、母材特性のうち母材靭性(vE-10)は非常に優れたものであった。 From Tables 11 and 12, it can be considered as follows. Each steel plate shown in Table 11 has the composition, steel structure, and TS satisfying the requirements of the present invention, low acoustic anisotropy, other various base material properties (0.2% proof stress), and weldability. All of the (HAZ characteristics) were good. In particular, the base material toughness (vE -10 ) is very excellent among the base material characteristics.

他方、表12に示す各鋼板は、本発明の要件を満足しない比較例であり、上記何れかの特定が劣っている。   On the other hand, each steel plate shown in Table 12 is a comparative example that does not satisfy the requirements of the present invention, and any one of the above specifications is inferior.

鋼板中の旧γ粒の平均アスペクト比と、鋼板の横波音速比との関係を示すグラフである。It is a graph which shows the relationship between the average aspect-ratio of the old gamma grain in a steel plate, and the transverse wave sound speed ratio of a steel plate. 鋼板中の旧γ粒の平均円相当径と、母材靭性との関係を示すグラフである。It is a graph which shows the relationship between the average equivalent circular diameter of the former gamma grain in a steel plate, and base material toughness. 鋼板中のベイナイト分率と、鋼板の0.2%伸長時の耐力との関係を示すグラフである。It is a graph which shows the relationship between the bainite fraction in a steel plate, and the yield strength at the time of 0.2% elongation of a steel plate. 溶接性向上の面から本発明における成分設計の考え方を説明するための模式的なCCT線図である。It is a typical CCT diagram for demonstrating the concept of the component design in this invention from the surface of weldability improvement.

Claims (14)

C :0.010〜0.06%(質量%の意味、以下同じ),
Mn:1.25〜2.5%,
Cr:0.1〜2.0%,
Mo:0.005〜1.5%,
V :0.04%以下(0%を含む),
Nb:0.001〜0.04%,
Ti:0.005〜0.03%,
B :0.0006〜0.005%,
N :0.0020〜0.010%
を満たす鋼からなり、
2.4≦KP≦4.5
KV≦0.040
を夫々満足すると共に、
鋼組織の90体積%以上がベイナイトであり、
旧γ粒は、平均アスペクト比が1.8以下で、且つ平均円相当径が100μm以下であり、
引張強さが590MPa以上780MPa未満であることを特徴とする高張力鋼板。
ただし、
KP=[Mn]+1.5×[Cr]+2×[Mo]
KV=[V]+[Nb]
《式中、[ ]は各元素の含有量(質量%)を意味する。》
C: 0.010 to 0.06% (meaning mass%, the same shall apply hereinafter),
Mn: 1.25 to 2.5%,
Cr: 0.1 to 2.0%,
Mo: 0.005 to 1.5%,
V: 0.04% or less (including 0%),
Nb: 0.001 to 0.04%,
Ti: 0.005 to 0.03%,
B: 0.0006 to 0.005%,
N: 0.0020 to 0.010%
Made of steel that meets
2.4 ≦ KP ≦ 4.5
KV ≦ 0.040
As well as satisfying each
90% by volume or more of the steel structure is bainite,
The old γ grains have an average aspect ratio of 1.8 or less and an average equivalent circle diameter of 100 μm or less.
A high-tensile steel sheet having a tensile strength of 590 MPa or more and less than 780 MPa.
However,
KP = [Mn] + 1.5 × [Cr] + 2 × [Mo]
KV = [V] + [Nb]
<< In formula, [] means content (mass%) of each element. >>
上記鋼組織に占めるマルテンサイトとオーステナイトよりなる混合組織(MA組織)の平均体積分率が3%以下のものである請求項1に記載の高張力鋼板。   The high-tensile steel sheet according to claim 1, wherein an average volume fraction of a mixed structure (MA structure) composed of martensite and austenite in the steel structure is 3% or less. 上記MA組織の平均円相当径が1μm以下のものである請求項2に記載の高張力鋼板。   The high-tensile steel sheet according to claim 2, wherein the average equivalent circle diameter of the MA structure is 1 µm or less. 上記MA組織の平均アスペクト比が2.5以下のものである請求項2または3に記載の高張力鋼板。   The high-tensile steel sheet according to claim 2 or 3, wherein the average aspect ratio of the MA structure is 2.5 or less. さらにNi:5%以下および/またはCu:1.2%以下を含有するものである請求項1〜4のいずれかに記載の高張力鋼板。 Furthermore, Ni: 5% or less and / or Cu: 1.2% or less are contained, The high-tensile steel plate in any one of Claims 1-4. 請求項1〜4のいずれかに記載の高張力鋼板であって、
Mn含有量が1.25〜1.8%であるとき、さらにCu:1.2%を超え、2.0%以下を含有するものである高張力鋼板。
The high-tensile steel plate according to any one of claims 1 to 4,
When the Mn content is 1.25 to 1.8%, Cu: more than 1.2%, and a high-tensile steel sheet containing 2.0% or less.
さらにNi:5%以下を含有するものである請求項6に記載の高張力鋼板。 The high-tensile steel plate according to claim 6, further comprising Ni: 5% or less. さらにCa:0.005%以下を含有するものである請求項1〜7のいずれかに記載の高張力鋼板。 The high-tensile steel plate according to any one of claims 1 to 7, further containing Ca: 0.005% or less. Si:1%以下,P:0.020%以下,S:0.010%以下,Al:0.2%以下に夫々抑えられている請求項1〜8のいずれかに記載の高張力鋼板。 The high-tensile steel sheet according to any one of claims 1 to 8, which is suppressed to Si: 1% or less, P: 0.020% or less, S: 0.010% or less, and Al: 0.2% or less. 板厚が80mm以上である請求項1〜9のいずれかに記載の高張力鋼板。 The high-tensile steel plate according to any one of claims 1 to 9, wherein the plate thickness is 80 mm or more. 請求項1〜10のいずれかに記載の高張力鋼板を製造する方法であって、
c3点〜1300℃に加熱して熱間圧延を行うに当たり、全圧下量の50%以上を部分再結晶域で圧延することを特徴とする高張力鋼板の製造方法。
ここで、上記部分再結晶域とは、該温度域においてγ粒径:100±10μmとした鋼板試験片に、歪速度:10sec-1、相当歪:0.2の条件で圧下を加えて10sec後に組織を凍結したときに、20〜80体積%が再結晶粒となる温度域である。
A method for producing the high-tensile steel sheet according to any one of claims 1 to 10,
Upon heated to A c3 point to 1300 ° C. performing hot rolling method for producing a high-tensile steel plate, characterized in that rolling at least 50 percent of the total rolling reduction at partial recrystallization region.
Here, the partially recrystallized region is a steel plate test piece having a γ grain size of 100 ± 10 μm in the temperature region, and is subjected to a reduction of 10 sec -1 and an equivalent strain of 0.2 for 10 sec. When the structure is frozen later, 20 to 80% by volume is a temperature range in which recrystallized grains are formed.
上記熱間圧延後、200℃まで冷却し、その後Ac1点以下の温度で焼戻しを行う請求項11に記載の製造方法。 The manufacturing method of Claim 11 which cools to 200 degreeC after the said hot rolling, and performs tempering at the temperature below Ac1 point after that. 上記冷却を水冷で行う請求項12に記載の製造方法。   The manufacturing method of Claim 12 which performs the said cooling by water cooling. 上記熱間圧延後、Bs点以下の温度まで水冷する請求項11に記載の製造方法。   The manufacturing method of Claim 11 which water-cools to the temperature below Bs point after the said hot rolling.
JP2003336220A 2003-03-19 2003-09-26 High-tensile steel plate and manufacturing method thereof Expired - Fee Related JP4220871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003336220A JP4220871B2 (en) 2003-03-19 2003-09-26 High-tensile steel plate and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003076399 2003-03-19
JP2003336220A JP4220871B2 (en) 2003-03-19 2003-09-26 High-tensile steel plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2004300567A true JP2004300567A (en) 2004-10-28
JP4220871B2 JP4220871B2 (en) 2009-02-04

Family

ID=33421885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003336220A Expired - Fee Related JP4220871B2 (en) 2003-03-19 2003-09-26 High-tensile steel plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4220871B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006307324A (en) * 2005-03-29 2006-11-09 Jfe Steel Kk High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method
WO2007033711A1 (en) * 2005-09-22 2007-03-29 Volkswagen Aktiengesellschaft Method for treating a steel strip
JP2007126725A (en) * 2005-11-04 2007-05-24 Kobe Steel Ltd High tensile strength steel plate having excellent toughness in high heat input weld heat-affected zone
KR100748809B1 (en) * 2005-03-31 2007-08-13 가부시키가이샤 고베 세이코쇼 High Strength High Toughness Bainite Non-heat-treated Steel Plate of Low Acoustic Anisotropy
JP2007224404A (en) * 2006-02-27 2007-09-06 Nippon Steel Corp High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JP2008255458A (en) * 2007-04-09 2008-10-23 Kobe Steel Ltd Thick steel plate having haz toughness and base metal toughness
JP2008261009A (en) * 2007-04-12 2008-10-30 Kobe Steel Ltd Thick steel plate having reduced material anisotropy and excellent haz toughness and low temperature base metal toughness
JP2009263715A (en) * 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
CN101314831B (en) * 2007-05-29 2010-12-01 株式会社神户制钢所 Steel plate with excellent weariness fissure advance inhibition character and brittle break inhibition character
WO2011040624A1 (en) * 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
CN102260825A (en) * 2010-05-27 2011-11-30 株式会社神户制钢所 High-strength Steel Board And Manufacturing Method Thereof
JP2012193411A (en) * 2011-03-16 2012-10-11 Kobe Steel Ltd High-strength thick steel plate excellent in haz toughness
JP2012219297A (en) * 2011-04-06 2012-11-12 Kobe Steel Ltd Thick steel plate
JP2012219351A (en) * 2011-04-12 2012-11-12 Kobe Steel Ltd High-strength thick steel plate with excellent toughness
JP2013047393A (en) * 2005-03-29 2013-03-07 Jfe Steel Corp High-strength and high-toughness steel plate having excellent resistance to crack by cutting
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
JP2017008343A (en) * 2015-06-17 2017-01-12 新日鐵住金株式会社 Steel plate for lpg storage tank and production method therefor
CN107587065A (en) * 2016-07-08 2018-01-16 攀钢集团攀枝花钢铁研究院有限公司 A kind of atmosphere corrosion resistance structural steel molten steel of niobium containing chromium and atmosphere corrosion resistance structural steel and its production method
JP2018090872A (en) * 2016-12-06 2018-06-14 Jfeスチール株式会社 Low yield ratio high tensile strength thick steel sheet and production method thereof

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013047393A (en) * 2005-03-29 2013-03-07 Jfe Steel Corp High-strength and high-toughness steel plate having excellent resistance to crack by cutting
JP2006307324A (en) * 2005-03-29 2006-11-09 Jfe Steel Kk High-strength and high-toughness steel plate excellent in resistance to crack by cutting and its manufacturing method
KR100748809B1 (en) * 2005-03-31 2007-08-13 가부시키가이샤 고베 세이코쇼 High Strength High Toughness Bainite Non-heat-treated Steel Plate of Low Acoustic Anisotropy
WO2007033711A1 (en) * 2005-09-22 2007-03-29 Volkswagen Aktiengesellschaft Method for treating a steel strip
JP4652952B2 (en) * 2005-11-04 2011-03-16 株式会社神戸製鋼所 High-tensile steel plate with excellent toughness of heat affected zone
JP2007126725A (en) * 2005-11-04 2007-05-24 Kobe Steel Ltd High tensile strength steel plate having excellent toughness in high heat input weld heat-affected zone
JP2007224404A (en) * 2006-02-27 2007-09-06 Nippon Steel Corp High tensile strength steel plate having excellent strength and low temperature toughness, and method for producing high tensile strength steel plate
JP2008255458A (en) * 2007-04-09 2008-10-23 Kobe Steel Ltd Thick steel plate having haz toughness and base metal toughness
JP2008261009A (en) * 2007-04-12 2008-10-30 Kobe Steel Ltd Thick steel plate having reduced material anisotropy and excellent haz toughness and low temperature base metal toughness
CN101314831B (en) * 2007-05-29 2010-12-01 株式会社神户制钢所 Steel plate with excellent weariness fissure advance inhibition character and brittle break inhibition character
JP2009263715A (en) * 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
WO2011040624A1 (en) * 2009-09-30 2011-04-07 Jfeスチール株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
JP2011094231A (en) * 2009-09-30 2011-05-12 Jfe Steel Corp Steel sheet having low yield ratio, high strength and high toughness, and method for manufacturing the same
CN102549189A (en) * 2009-09-30 2012-07-04 杰富意钢铁株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
US8778096B2 (en) 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
CN102549189B (en) * 2009-09-30 2013-11-27 杰富意钢铁株式会社 Steel plate with low yield ratio, high strength, and high toughness and process for producing same
CN102260825A (en) * 2010-05-27 2011-11-30 株式会社神户制钢所 High-strength Steel Board And Manufacturing Method Thereof
JP2012193411A (en) * 2011-03-16 2012-10-11 Kobe Steel Ltd High-strength thick steel plate excellent in haz toughness
JP2012219297A (en) * 2011-04-06 2012-11-12 Kobe Steel Ltd Thick steel plate
JP2012219351A (en) * 2011-04-12 2012-11-12 Kobe Steel Ltd High-strength thick steel plate with excellent toughness
JP2013151742A (en) * 2011-12-28 2013-08-08 Jfe Steel Corp High toughness and high tensile strength steel and method for producing the same
JP2017008343A (en) * 2015-06-17 2017-01-12 新日鐵住金株式会社 Steel plate for lpg storage tank and production method therefor
CN107587065A (en) * 2016-07-08 2018-01-16 攀钢集团攀枝花钢铁研究院有限公司 A kind of atmosphere corrosion resistance structural steel molten steel of niobium containing chromium and atmosphere corrosion resistance structural steel and its production method
CN107587065B (en) * 2016-07-08 2019-04-02 攀钢集团攀枝花钢铁研究院有限公司 One kind atmosphere corrosion resistance structural steel molten steel of niobium containing chromium and atmosphere corrosion resistance structural steel and its production method
JP2018090872A (en) * 2016-12-06 2018-06-14 Jfeスチール株式会社 Low yield ratio high tensile strength thick steel sheet and production method thereof

Also Published As

Publication number Publication date
JP4220871B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
JP4220871B2 (en) High-tensile steel plate and manufacturing method thereof
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP4252949B2 (en) Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same
JP5096088B2 (en) Welded joints with excellent toughness and fatigue cracking suppression properties
JP5733484B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP4437972B2 (en) Thick steel plate with low base material toughness with little acoustic anisotropy and method for producing the same
JP2011001607A (en) Thick steel plate having excellent hydrogen-induced cracking resistance and brittle crack arrest property
JP5618037B1 (en) Thick steel plate excellent in multi-layer welded joint CTOD characteristics and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
WO2014175122A1 (en) H-shaped steel and method for producing same
JPWO2012141220A1 (en) High strength steel plate and high strength steel pipe excellent in deformation performance and low temperature toughness, and methods for producing them
JP5612532B2 (en) Steel sheet excellent in low temperature toughness and weld joint fracture toughness and method for producing the same
US20200115782A1 (en) Steel plate and method of producing same
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP4044470B2 (en) High toughness steel sheet excellent in low temperature base metal toughness and low temperature HAZ toughness, and method for producing the same
JP4335789B2 (en) High-tensile steel plate with excellent weldability with small acoustic anisotropy and method for producing the same
JP2005256037A (en) Method for producing high strength-high toughness-thick steel plate
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP4432719B2 (en) Thick steel plate for line pipe and manufacturing method thereof
JP2019173053A (en) High strength high ductility steel sheet
JP4646719B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP4899885B2 (en) Thin-walled tempered high-strength steel sheet with excellent toughness and brittle crack propagation stopping characteristics and method for producing the same

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220871

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees