JP4008378B2 - Low yield ratio high strength steel with excellent toughness and weldability - Google Patents

Low yield ratio high strength steel with excellent toughness and weldability Download PDF

Info

Publication number
JP4008378B2
JP4008378B2 JP2003114053A JP2003114053A JP4008378B2 JP 4008378 B2 JP4008378 B2 JP 4008378B2 JP 2003114053 A JP2003114053 A JP 2003114053A JP 2003114053 A JP2003114053 A JP 2003114053A JP 4008378 B2 JP4008378 B2 JP 4008378B2
Authority
JP
Japan
Prior art keywords
less
toughness
yield ratio
steel
strength steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003114053A
Other languages
Japanese (ja)
Other versions
JP2004315925A (en
Inventor
喜臣 岡崎
等 畑野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003114053A priority Critical patent/JP4008378B2/en
Publication of JP2004315925A publication Critical patent/JP2004315925A/en
Application granted granted Critical
Publication of JP4008378B2 publication Critical patent/JP4008378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明が属する技術分野】
本発明は、主として建築構造物や橋梁などの大型構造物に使用される490〜590MPaの引張強さを有する高強度鋼に関する。
【0002】
【従来の技術】
建築構造物や橋梁などの大型構造物に使用される建築用鋼材には、ある程度の強度を確保しつつ耐震性が要求され、さらに大入熱溶接に対する良好な溶接性が求められる。前記耐震性は鋼材の降伏比を低くすることによって確保される。
【0003】
鋼材の強度を確保しつつ、低降伏比を達成して耐震性を改善するには、フェライトおよび第二相組織を形成する低温変態生成物の形態が重要であることが知られている。一般的に、軟質のフェライト組織にマルテンサイトなどの硬質組織を分散させることによって低降伏比を実現しているが、母材靭性が劣化する傾向がある。近年、耐震性能等、構造物の安全性の向上に対する要求が強まっており、引張強さが490〜590MPa級の高強度鋼板においても母材靭性の向上が求められている。
【0004】
低降伏比でありながら母材靭性を改善する技術として、例えば、特開2002−266022号公報(特許文献1)には、軟質相であるフェライトの靭性を高めることによって、二相組織全体として靭性を確保する高靭性・高張力鋼の製造方法が提案されている。また、特開2001−342538号公報(特許文献2)には、マルテンサイトまたはMA(Martensite-Austenite Constituents:マルテンサイトとオーステナイトの混合物)の分率を1〜10%とし、そのサイズを3μm 以下に制限した低降伏比高張力鋼およびその製造方法が記載されている。
【0005】
【特許文献1】
特開2002−266022号公報(特許請求の範囲)
【特許文献2】
特開2001−342538号公報(特許請求の範囲)
【0006】
【発明が解決しようとする課題】
上記特許文献1に記載された技術は、二相域熱処理前の組織を超細粒化するため、低温域で特殊な熱間圧延を行うことが必要であり、圧延負荷が大きく、生産性が悪い。また、特許文献2の技術は、未再結晶域で圧延するため、やはり圧延負荷が大きく、また鋼板の機械的性質に異方性が発現するおそれがあり、材質の均一性が損なわれる。さらにマルテンサイト分率、サイズのみを規定するに過ぎず、フェライトの生成を回避するように圧延終了温度を規定しているものの(段落番号0045)、結局、マルテンサイトあるいはMA以外の他の組織構成は不明であり、技術内容が不明瞭である。
【0007】
本発明はかかる問題に鑑みなされたもので、低温度域での熱間圧延を行うことなく製造することができる、490〜590MPaの引張強さを有し、母材靭性および溶接性に優れた低降伏比高強度鋼を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明の高強度鋼は、mass%で、
C:0.01〜0.15%、
Si:0.8%以下、
Mn:0.88〜2.0%、
Al:0.10%以下、
Ti:0.004〜0.050%、
B:0.0003〜0.0050%、
を含み、残部がFe及び不純物からなり、鋼板の板厚1/4部位において光学顕微鏡を用いて倍率200倍で300μm ×300μm の領域を5視野観察したときのポリゴナルフェライトの面積率の平均値が5〜30 面積%、鋼板の板厚1/4部位において光学顕微鏡を用いて倍率1000倍で50μm ×50μm の領域を10視野観察したときのMA(マルテンサイトとオーステナイトの混合物)の面積率の平均値が5〜15 面積%、残部がベイナイトからなる組織を有し、前記MAの平均サイズが5μm 以下とされたものである。
【0009】
上記本発明鋼において、上記基本成分のほか、(1) Cu1.5%以下、Ni1.5%以下、Cr1.5%以下、Mo1.5%以下のいずれか1種または2種以上、(2) Nb:0.05%以下、V:0.20%のいずれか1種または2種、(3) Zr:0.05%以下、Mg:0.005%以下の1種または2種、(4) Ca:0.005%以下の各群から選ばれた元素を単独で、あるいは複合してさらに添加することができる。
【0010】
【発明の実施の形態】
発明者は、延性特性に優れた低降伏比を有する鋼として、軟質相を延性に富んだポリゴナルフェライトで形成し、硬質相をマルテンサイトとオーステナイト(残留オーステナイト)の混合物であるMA、ベイナイトを有する高強度鋼について、靭性を向上させる方法を研究したところ、ポリゴナルフェライトが旧オーステナイト粒界に沿って生成した鋼では、これらのポリゴナルフェライトが生成した粒界に沿って亀裂が進展する結果、母材靭性が低下することを知見した。また、MA量が多くなるとその粒径も大きくなり、MAが破壊の起点になるためやはり母材靭性を劣化させることを知見した。本発明はかかる知見を基に、合金元素を適正化することによって大入熱溶接時のHAZ(溶接熱影響部)靭性を確保するとともに、鋼の組織を適正に制御することによって、延性(低降伏比)、母材靭性および大入熱溶接時の溶接性(HAZ靭性)に優れた高強度鋼を完成した。すなわち、本発明の高強度鋼は、鋼板の板厚1/4部位において光学顕微鏡を用いて倍率200倍で300μm ×300μm の領域を5視野観察したときのポリゴナルフェライトの面積率の平均値(以下、単に「ポリゴナルフェライト量」という。)が5〜30 面積%、鋼板の板厚1/4部位において光学顕微鏡を用いて倍率1000倍で50μm ×50μm の領域を10視野観察したときのMA(マルテンサイトとオーステナイトの混合物)の面積率の平均値(以下、単に「MA量」という。)が5〜15 面積%、残部がベイナイトからなる組織を有し、前記MAの平均サイズが5μm 以下とされたものである。
【0011】
ポリゴナルフェライトは、延性に優れた組織であり、降伏比を低下させるのに有効な組織である。一方、ポリゴナルフェライトは旧オーステナイト粒界に沿って生成するため、その量が多くなると組織が不均一になり、靭性を劣化させる。このため、本発明ではポリゴナルフェライト量の下限を5%、好ましくは7%とし、一方その上限を30%、好ましくは20%とした。
【0012】
MAは、強度の確保と降伏比を低下させるのに有効な組織である。もっとも、その平均サイズが5μm を超えると塊状のMAは亀裂の発生源となり、靭性が低下するので、本発明では5μm 以下とする。平均サイズがあまりに小さいと前記作用も過小となるので、1μm 以上とすることが好ましい。かかる平均サイズのMA量が5%未満では強度向上および降伏比の低減効果が過小であり、一方15%超では靭性が低下するようになる。このため、MA量の下限を5%、好ましくは5%とし、その上限を15%、好ましくは10%とする。
【0013】
残部の組織はベイナイトで構成される。前記微細なMAを組織中に分散生成させるためには、熱間圧延後の二相熱処理の前の組織をポリゴナルフェライトの生成を低減したベイナイト組織とすることが重要であり、二相熱処理時にベイナイトのラス界面にオーステナイトを生成させ、この一部をマルテンサイトに変態させることで前記平均サイズの微細なMA組織を得ることができる。また、残部組織をベイナイトとすることにより、5〜30%のポリゴナルフェライト、3〜15%のMAの存在下で490MPa以上の強度化を図ることができる。なお、MAの平均サイズの測定法は後述の実施例において説明する。
【0014】
次に、上記3相組織を形成するに際し、好適な鋼成分(単位mass%)について説明する。
【0015】
C:0.01〜0.15%
Cは母材強度を確保するために必要な元素である。0.01%未満では本発明の企図する強度レベルを得ることができず、一方0.15%超では溶接時にHAZでのMAの生成を促進し、靭性が劣化する。このため、本発明ではC量の下限を0.01%、好ましくは0.03%とし、その上限は0.15%、好ましくは0.09%とする。
【0016】
Si:0.8%以下
Siは脱酸作用を有する元素であり、また延性の劣化を抑制しつつ強度を向上させる効果を有するため、0.1%以上添加することが好ましい。しかし、0.8%超ではHAZのMAの生成を促進し、靭性が劣化する。このため、Si量の上限を0.8%、好ましくは0.6%とする。
【0017】
Mn:0.88〜2.0%
Mnは焼き入れ性を向上させ強度、靭性の確保に有効であり、0.88%未満ではかかる作用が過小であり、一方2.0%超では強度が過多となり、靭性が劣化する。このため、Mn量の下限を0.88%、好ましくは1.2%とし、その上限を2.0%、好ましくは1.8%とする。
【0018】
Al:0.10%以下
Alは脱酸およびミクロ組織の微細化による母材靭性向上効果を有するため、好ましくは0.01%以上添加するのがよい。しかし、過剰に添加するとSiと同様、HAZのMAの生成を助長し、靭性が低下する。このため、上限を0.10%、好ましくは0.05%とする。
【0019】
Ti:0.004〜0.050%
TiはNと結合して固溶Nを低減するとともにHAZのオーステナイト粒の粗大化を抑制し、HAZ靭性改善に有効な元素である。Ti量が0.004%未満では細粒化効果が過小であり、一方0.050%を超えるとTiNが粗大化して、TiNの個数が減少するため、HAZ靭性が返って劣化するようになる。このため、Ti量の下限を0.004%とし、その上限を0.050%、好ましくは0.030%とする。
【0020】
B:0.0003〜0.0050%
Bはオーステナイト粒界からポリゴナルフェライトが生成するのを抑制し、またHAZ靭性を改善する作用を有するため、0.0003%以上添加する。しかし、焼き入れ性向上作用を有するので、過剰に添加すると、強度が過大になり、返ってHAZ靭性が低下するようになる。このため、含有量を0.0050%以下、好ましくは0.0040%以下に止める。
【0021】
本発明の鋼は、以上の基本成分のほか、残部Feおよび不純物によって形成される。不純物であるP、Sは母材靭性、HAZ靭性を劣化させるため少ない程よく、いずれも0.01%以下に止めることが好ましい。もっとも、鋼成分として、前記基本成分の作用効果を損なわず、あるいは機械的特性をより向上させる元素の添加を妨げるものではない。例えば、特性向上成分として、(1) Cu1.5%以下、Ni1.5%以下、Cr1.5%以下、Mo1.5%以下のいずれか1種または2種以上、(2) Nb:0.05%以下、V:0.20%のいずれか1種または2種、(3) Zr:0.05%以下、Mg:0.005%以下の1種または2種、(4) Ca:0.005%以下の各群から選ばれた元素を単独で、あるいは複合してさらに添加することができる。以下、これらの元素の添加理由を説明する。
【0022】
Cu:1.5%以下、Ni:1.5%以下、Cr:1.5%以下、Mo:1.5%以下
これらの元素は焼き入れ性を改善する作用を有し、HAZ靭性を損なうことなく母材の強度、靭性を改善する。かかる作用を効果的に発現させるには、これらの元素は各々0.10%以上添加することが好ましい。しかし、過剰に添加すると強度が過大となり、HAZ靭性が返って低下するようになる。このため、各々1.5%以下、好ましくは1.0%以下とする。
【0023】
Nb:0.05%以下、V:0.20%以下
これらの元素は、圧延後のベイナイト組織を微細化することができ、炭化物を微細分散させることが可能で、二相域熱処理前のベイナイト組織を好ましい形態にすることができる。さらに、炭化物の析出により二相域熱処理時の組織粗大化による不均一化を抑制することができ、強度、靭性の低下を防止することができる。かかる作用を効果的に発現させるには、Nbを0.01%以上、Vを0.05%以上添加することが好ましい。しかし、過剰な添加は炭化物が粗大化してHAZ靭性を劣化させるので、Nbを0.05%以下、Vを0.20%以下に止める。
【0024】
Zr:0.05%以下、Mg:0.005%以下
これらの元素はHAZのオーステナイト粒の粗大化を抑制する作用を有し、HAZ靭性を向上させる作用を有する。ZrはTiと同様、窒化物を形成することにより、MgはTiN等の窒化物の析出の核となる酸化物を微細分散させることにより上記作用を奏する。かかる作用を効果的に発現させるには、Zrを0.005%以上、Mgを0.001%以上添加することが好ましい。しかし、過剰に添加すると介在物が粗大化し、HAZ靭性が返って低下するようになる。このため、Zrは0.05%以下、好ましくは0.03%とし、一方Mgは0.005%以下、好ましくは0.004%以下とする。
【0025】
Ca:0.005%以下
Caは介在物の異方性を低減させる作用を有し、HAZ靭性の改善に寄与する。かかる作用を効果的に発現させるには、0.0005%以上添加することが好ましい。しかし、過剰に添加すると介在物が粗大化し、返ってHAZ靭性を劣化させる。このため、添加量の上限を0.005%、好ましくは0.004%とする。
【0026】
本発明の鋼は、板、H形、管などの適宜の形態の鋼材として使用に供されるが、建築用鋼材としては主として鋼板として用いられる。特に、490〜590MPa級の鋼板は肉厚が30〜80mm程度の厚鋼板として使用される場合が多い。そこで、本発明鋼の製造方法を板材として製造する場合を例として説明する。なお、板材に限らず、H形鋼材など圧延によって鋼材を製造する場合、同様の条件によって製造することができる。
【0027】
本発明にかかる鋼板は、前記成分を有する鋼を溶製し、その鋼片を熱間圧延した後、二相域で熱処理することによって製造される。熱間圧延は、常法によって行えばよく、圧延終了温度についても従来のように再結晶温度域、あるいはそれより低い温度域で行う必要はなく、850〜900℃程度とすればよい。
【0028】
圧延終了後の冷却は、ポリゴナルフェライトの生成を抑制しつつ、ベイナイト組織を微細化させるように、代表的には500℃までを2℃/s〜7℃/sで冷却することが好ましい。500℃以下の冷却速度は特に制限されない。ベイナイト組織を微細化することによって、後工程の二相域熱処理の際にMA組織を微細化することができる。
【0029】
以上のようにして、適量のポリゴナルフェライトと微細ベイナイト組織とされた鋼板を板厚にもよるが700〜760℃程度の二相域温度に1.5〜3.0hr程度加熱する。この加熱によって、ベイナイトのラス間からオーステナイトが生成する。その後、1〜3℃/sの冷却速度で冷却することによって、前記オーステナイトが変態して微細分散したMAが得られる。MAは二相域熱処理の温度、保持時間によって所定の組織分率に制御される。
【0030】
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものではない。
【0031】
【実施例】
下記表1に示す鋼を溶製し、その溶湯を鋳造して得られたスラブ(厚さ250mm)を1100℃で加熱した後、板厚50mmまで熱間圧延を行い、表2に示す圧延終了温度にて熱間圧延を終了し、同表に示す冷却速度にて冷却した。その後、同表に示す二相域温度に加熱し、2.0hr程度保持した後、同表に示す冷却速度にて冷却した。なお、表1において含有量に下線を付したものは発明範囲外を意味する。
【0032】
【表1】

Figure 0004008378
【0033】
得られた熱延鋼板に対し、下記要領にて組織観察を行い、ポリゴナルフェライト量(面積%)、MA量(面積%)およびMAの平均サイズを測定した。なお、ポリゴナルフェライト、MA以外の組織はベイナイトであった。
ポリゴナルフェライトは、熱延鋼板の板厚1/4部位について、光学顕微鏡を用いて倍率200倍で300μm ×300μm の領域を5視野観察し、画像解析ソフトを用いてポリゴナルフェライトの面積率の平均値を求め、その値をポリゴナルフェライト量とした。また、MAは、熱延鋼板の板厚1/4部位について、レペラー腐食をした後、光学顕微鏡を用いて倍率1000倍で50μm ×50μm の領域を10視野観察し、画像解析ソフトを用いてMAの面積率の平均値を求め、その値をMA量とした。また、MAの平均サイズは、前記観察視野について画像解析ソフトを用いてMA粒の面積と同面積の円(相当円)を想定し、その相当円の直径の平均値を求め、その値を平均サイズとした。
【0034】
また下記要領にて引張試験、衝撃試験を行い、母材の機械的性質を調べた。
・引張試験
各鋼板の板厚1/4部位からJIS4号試験片を得て、引張試験を行い、0.2%耐力、引張強さを測定した。
・衝撃試験
各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験(試験温度−20℃)を行い、吸収エネルギー(vE-20 )を求めた。
【0035】
さらに、以下の要領にて溶接を模擬した熱サイクル試験を行い、HAZ靭性を調べた。溶接入熱量が1000kJ/cmに相当する熱サイクル(1350℃に加熱した後、800℃から500℃までの冷却時間が720sec である熱履歴)を与えた後、JIS4号試験片を採取し、シャルピー衝撃試験(試験温度−20℃)を行い、ボンド部の吸収工ネルギ(vE-20 )の平均値を求めた。なお、サンプル数は3とした。
【0036】
【表1】
Figure 0004008378
【0037】
上記調査結果を表2に併せて示す。表2より、発明例(試料No. 1〜14)は母材の降伏比(YR)が70〜77%と低降伏比でありながら、吸収エネルギーが250J以上と靭性に優れる。さらに大入熱溶接後のHAZにおいても、その吸収エネルギーが200J以上であり、優れたHAZ靭性が得られた。一方、成分が本発明範囲外の比較例(試料No. 15〜20)は、引張強さ、降伏比は本発明レベルを満足するものの、母材靭性あるいはHAZ靭性のいずれか一方が著しく劣化した。また、本発明の成分条件を満足するものの、製造条件が不適切であるため、本発明の組織条件を満足するに至らなかった比較例(試料No. 21〜25)は、強度およびHAZ靭性は本発明レベルを満足するものの、降伏比が高くなったり、降伏比が低い場合には母材靭性が劣化した。
【0038】
【発明の効果】
本発明鋼によれば、HAZ靭性を確保すべく合金成分を調整しつつ、組織をポリゴナルフェライトを5〜30%に抑制しつつ、平均サイズが5μm 以下の微細なMAを3〜15%および残部ベイナイトとしたので、490〜590MPaの引張強さを確保しながら、HAZ靭性に優れ、しかも優れた母材靭性を有する。[0001]
[Technical field to which the invention belongs]
The present invention relates to a high-strength steel having a tensile strength of 490 to 590 MPa, which is mainly used for large structures such as building structures and bridges.
[0002]
[Prior art]
Building steels used for large structures such as building structures and bridges are required to have earthquake resistance while ensuring a certain level of strength, and also have good weldability for large heat input welding. The earthquake resistance is ensured by lowering the yield ratio of the steel material.
[0003]
In order to achieve a low yield ratio and improve earthquake resistance while ensuring the strength of the steel, it is known that the form of the low-temperature transformation product forming ferrite and the second phase structure is important. In general, a low yield ratio is realized by dispersing a hard structure such as martensite in a soft ferrite structure, but the base material toughness tends to deteriorate. In recent years, demands for improving the safety of structures, such as seismic performance, have increased, and improvement in the base metal toughness has been demanded even in high strength steel sheets having a tensile strength of 490 to 590 MPa.
[0004]
As a technique for improving the toughness of the base metal while having a low yield ratio, for example, Japanese Patent Laid-Open No. 2002-266022 (Patent Document 1) discloses that the toughness of the entire two-phase structure is improved by increasing the toughness of ferrite, which is a soft phase. A method for producing a high toughness and high strength steel to ensure the strength is proposed. Japanese Patent Laid-Open No. 2001-342538 (Patent Document 2) describes that the fraction of martensite or MA (Martensite-Austenite Constituents) is 1 to 10% and the size is 3 μm or less. Limited low-yield ratio high-strength steels and methods for their production are described.
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-266022 (Claims)
[Patent Document 2]
JP 2001-342538 A (Claims)
[0006]
[Problems to be solved by the invention]
The technique described in Patent Document 1 requires ultra-fine graining of the structure before the heat treatment in the two-phase region, and therefore requires special hot rolling in a low temperature region, resulting in a large rolling load and productivity. bad. Moreover, since the technique of patent document 2 rolls in a non-recrystallized region, the rolling load is still large, and anisotropy may occur in the mechanical properties of the steel sheet, and the uniformity of the material is impaired. Furthermore, although only the martensite fraction and size are specified, the rolling end temperature is specified so as to avoid the formation of ferrite (paragraph number 0045), but in the end, the structure structure other than martensite or MA Is unknown and the technical content is unclear.
[0007]
The present invention has been made in view of such problems, and has a tensile strength of 490 to 590 MPa, which can be produced without performing hot rolling in a low temperature range, and has excellent base material toughness and weldability. An object is to provide high strength steel with low yield ratio.
[0008]
[Means for Solving the Problems]
The high strength steel of the present invention is mass%,
C: 0.01 to 0.15%,
Si: 0.8% or less,
Mn: 0.88 to 2.0%,
Al: 0.10% or less,
Ti: 0.004 to 0.050%,
B: 0.0003 to 0.0050%,
And the balance is Fe and impurities, and the average value of the area ratio of polygonal ferrite when observing five fields of 300 μm × 300 μm at 200 × magnification using an optical microscope at a 1/4 thickness portion of the steel sheet Is an area ratio of MA (a mixture of martensite and austenite) when observing 10 fields of 50 μm × 50 μm at a magnification of 1000 times in an area of 1/4 to 5% by area using an optical microscope . The average value is 5 to 15 area%, the balance is a bainite structure, and the average size of the MA is 5 μm or less.
[0009]
In the steel of the present invention, in addition to the above basic components, (1) one or more of Cu 1.5% or less, Ni 1.5% or less, Cr 1.5% or less, Mo 1.5% or less, (2 Nb: 0.05% or less, V: Any one or two of 0.20%, (3) Zr: 0.05% or less, Mg: 0.005% or less, 4) Ca: An element selected from each group of 0.005% or less can be further added alone or in combination.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The inventor, as a steel having a low yield ratio with excellent ductility characteristics, forms a soft phase with polygonal ferrite rich in ductility and a hard phase with MA and bainite, which are a mixture of martensite and austenite (residual austenite). As a result of research on methods for improving the toughness of high-strength steels with steel, the results of cracks propagating along the grain boundaries produced by these polygonal ferrites in steels produced by polygonal ferrites along the former austenite grain boundaries It has been found that the toughness of the base material decreases. In addition, it has been found that as the amount of MA increases, the particle size also increases, and since MA becomes a starting point of fracture, the toughness of the base metal is deteriorated. Based on this knowledge, the present invention secures HAZ (welding heat affected zone) toughness during high heat input welding by optimizing the alloy elements, and appropriately controls the structure of steel, thereby reducing ductility (low A high-strength steel excellent in yield ratio), base metal toughness, and weldability (HAZ toughness) during high heat input welding was completed. That is, the high-strength steel of the present invention is an average value of the area ratio of polygonal ferrite when observing five fields of 300 μm × 300 μm at 200 × magnification using an optical microscope at a ¼ portion of the thickness of the steel sheet ( Hereinafter, it is simply referred to as “polygonal ferrite amount”)) of 5 to 30% by area, and the MA when the 50 μm × 50 μm region is observed at 10 × magnification using an optical microscope at a 1/4 thickness portion of the steel sheet. The average area ratio (hereinafter simply referred to as “MA amount”) of (a mixture of martensite and austenite) is 5 to 15 area%, the balance is a bainite structure, and the average size of the MA is 5 μm or less. It is said that.
[0011]
Polygonal ferrite is a structure excellent in ductility and effective in reducing the yield ratio. On the other hand, polygonal ferrite is produced along the prior austenite grain boundaries, so that when the amount increases, the structure becomes non-uniform and the toughness deteriorates. For this reason, in the present invention, the lower limit of the amount of polygonal ferrite is 5%, preferably 7%, while the upper limit is 30%, preferably 20%.
[0012]
MA is a structure effective for securing strength and reducing the yield ratio. However, if the average size exceeds 5 μm, the massive MA becomes a crack generation source and the toughness is lowered. Therefore, in the present invention, it is set to 5 μm or less. If the average size is too small, the effect is too small. If the average amount of MA is less than 5%, the effect of improving the strength and reducing the yield ratio is too small, whereas if it exceeds 15%, the toughness is lowered. Therefore, the lower limit of the MA amount is 5%, preferably 5%, and the upper limit is 15%, preferably 10%.
[0013]
The remaining structure is composed of bainite. In order to disperse and produce the fine MA in the structure, it is important that the structure before the two-phase heat treatment after hot rolling is a bainite structure in which the formation of polygonal ferrite is reduced. By forming austenite at the lath interface of bainite and transforming a part thereof into martensite, a fine MA structure with the above average size can be obtained. Further, by using bainite as the remaining structure, it is possible to increase the strength to 490 MPa or more in the presence of 5 to 30% polygonal ferrite and 3 to 15% MA. In addition, the measuring method of the average size of MA is demonstrated in the below-mentioned Example.
[0014]
Next, a suitable steel component (unit mass%) in forming the three-phase structure will be described.
[0015]
C: 0.01 to 0.15%
C is an element necessary for ensuring the strength of the base material. If it is less than 0.01%, the intended strength level of the present invention cannot be obtained. On the other hand, if it exceeds 0.15%, the formation of MA in HAZ is promoted during welding, and the toughness deteriorates. Therefore, in the present invention, the lower limit of the C amount is 0.01%, preferably 0.03%, and the upper limit is 0.15%, preferably 0.09%.
[0016]
Si: 0.8% or less Si is an element having a deoxidizing action, and since it has an effect of improving strength while suppressing deterioration of ductility, 0.1% or more is preferably added. However, if it exceeds 0.8%, the production of HAZ MA is promoted and the toughness deteriorates. For this reason, the upper limit of the amount of Si is made into 0.8%, preferably 0.6%.
[0017]
Mn: 0.88 to 2.0%
Mn is effective for improving the hardenability and securing the strength and toughness, and if it is less than 0.88 %, such action is too small, while if it exceeds 2.0%, the strength becomes excessive and the toughness deteriorates. For this reason, the lower limit of the Mn content is 0.88 %, preferably 1.2%, and the upper limit is 2.0%, preferably 1.8%.
[0018]
Al: 0.10% or less Since Al has an effect of improving the base metal toughness by deoxidation and refinement of the microstructure, it is preferable to add 0.01% or more. However, if added in excess, like Si, the formation of HAZ MA is promoted and the toughness is reduced. For this reason, the upper limit is made 0.10%, preferably 0.05%.
[0019]
Ti: 0.004 to 0.050%
Ti is an element effective in improving HAZ toughness by combining with N to reduce solid solution N and to suppress the coarsening of HAZ austenite grains. If the amount of Ti is less than 0.004 %, the effect of refining is too small. On the other hand, if it exceeds 0.050%, TiN becomes coarse and the number of TiNs decreases, so that the HAZ toughness returns and deteriorates. . For this reason, the lower limit of the Ti amount is 0.004 %, and the upper limit is 0.050%, preferably 0.030%.
[0020]
B: 0.0003 to 0.0050%
B has the effect of suppressing the formation of polygonal ferrite from the austenite grain boundaries and improving the HAZ toughness, so 0.0003% or more is added. However, since it has an effect of improving the hardenability, when it is added excessively, the strength becomes excessive, and the HAZ toughness decreases. Therefore, the content is limited to 0.0050% or less, preferably 0.0040% or less.
[0021]
The steel of the present invention is formed by the remaining Fe and impurities in addition to the above basic components. Impurities P and S are preferably as small as possible because they deteriorate the base metal toughness and the HAZ toughness. However, it does not impair the effect of the basic component as a steel component or prevent the addition of an element that further improves the mechanical properties. For example, (1) any one or more of Cu 1.5% or less, Ni 1.5% or less, Cr 1.5% or less, Mo 1.5% or less, (2) Nb = 0. 05% or less, V: Any one or two of 0.20%, (3) Zr: 0.05% or less, Mg: One or two of 0.005% or less, (4) Ca: 0 An element selected from each group of 0.005% or less can be further added alone or in combination. Hereinafter, the reason for adding these elements will be described.
[0022]
Cu: 1.5% or less, Ni: 1.5% or less, Cr: 1.5% or less, Mo: 1.5% or less These elements have the effect of improving the hardenability and impair the HAZ toughness. Improve the strength and toughness of the base material without any problems. In order to effectively exhibit such an action, it is preferable to add 0.10% or more of each of these elements. However, when it is added excessively, the strength becomes excessive, and the HAZ toughness returns and decreases. For this reason, each is 1.5% or less, preferably 1.0% or less.
[0023]
Nb: 0.05% or less, V: 0.20% or less These elements can refine the bainite structure after rolling, finely disperse carbides, and bainite before two-phase region heat treatment. The tissue can be in a preferred form. Furthermore, the precipitation of carbides can suppress non-uniformization due to the coarsening of the structure during the two-phase heat treatment, and the strength and toughness can be prevented from being lowered. In order to effectively exhibit such an action, it is preferable to add 0.01% or more of Nb and 0.05% or more of V. However, excessive addition causes the carbides to become coarse and deteriorates the HAZ toughness, so Nb is limited to 0.05% or less and V is limited to 0.20% or less.
[0024]
Zr: 0.05% or less, Mg: 0.005% or less These elements have an action of suppressing coarsening of HAZ austenite grains and an action of improving HAZ toughness. Zr, like Ti, forms nitrides, and Mg finely disperses oxides that form nuclei of nitrides such as TiN, thereby achieving the above-described action. In order to effectively express such an action, it is preferable to add 0.005% or more of Zr and 0.001% or more of Mg. However, if it is added excessively, the inclusions become coarse, and the HAZ toughness returns and decreases. For this reason, Zr is 0.05% or less, preferably 0.03%, while Mg is 0.005% or less, preferably 0.004% or less.
[0025]
Ca: 0.005% or less
Ca has the effect | action which reduces the anisotropy of an inclusion, and contributes to the improvement of HAZ toughness. In order to effectively exhibit such an action, it is preferable to add 0.0005 % or more. However, if it is added excessively, the inclusions become coarse and return to deteriorate the HAZ toughness. For this reason, the upper limit of the addition amount is 0.005%, preferably 0.004%.
[0026]
The steel of the present invention is used as a steel material in an appropriate form such as a plate, an H shape, and a pipe, but is mainly used as a steel plate as a construction steel material. In particular, a 490 to 590 MPa grade steel plate is often used as a thick steel plate having a thickness of about 30 to 80 mm. Then, the case where the manufacturing method of this invention steel is manufactured as a board | plate material is demonstrated as an example. In addition, not only a board | plate material but when manufacturing steel materials, such as H-shaped steel materials, by rolling, it can manufacture on the same conditions.
[0027]
The steel plate according to the present invention is manufactured by melting steel having the above components, hot rolling the steel slab, and then heat-treating it in a two-phase region. Hot rolling may be performed by a conventional method, and the rolling end temperature does not need to be performed in a recrystallization temperature range or lower temperature range as in the past, and may be about 850 to 900 ° C.
[0028]
As for cooling after the end of rolling, it is typically preferable to cool up to 500 ° C. at 2 ° C./s to 7 ° C./s so as to refine the bainite structure while suppressing the formation of polygonal ferrite. The cooling rate of 500 ° C. or lower is not particularly limited. By refining the bainite structure, it is possible to refine the MA structure during the subsequent two-phase heat treatment.
[0029]
As described above, a steel sheet having an appropriate amount of polygonal ferrite and a fine bainite structure is heated to a two-phase temperature of about 700 to 760 ° C. for about 1.5 to 3.0 hours, depending on the plate thickness. By this heating, austenite is generated between the laths of bainite. Thereafter, the austenite is transformed and finely dispersed MA is obtained by cooling at a cooling rate of 1 to 3 ° C./s. MA is controlled to a predetermined structure fraction by the temperature and holding time of the two-phase region heat treatment.
[0030]
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated more concretely, this invention is not limitedly interpreted by this Example.
[0031]
【Example】
The steel shown in Table 1 was melted and the slab (thickness 250 mm) obtained by casting the molten metal was heated at 1100 ° C., then hot-rolled to a thickness of 50 mm, and the rolling shown in Table 2 was completed. The hot rolling was finished at the temperature, and cooled at the cooling rate shown in the same table. Thereafter, the mixture was heated to the two-phase region temperature shown in the same table, maintained for about 2.0 hours, and then cooled at the cooling rate shown in the same table. In Table 1, the content underlined means outside the scope of the invention.
[0032]
[Table 1]
Figure 0004008378
[0033]
The obtained hot-rolled steel sheet was observed for structure in the following manner, and the amount of polygonal ferrite (area%) , the amount of MA (area%), and the average size of MA were measured. The structure other than polygonal ferrite and MA was bainite.
The amount of polygonal ferrite is the area ratio of polygonal ferrite by using an optical microscope to observe five fields of 300 μm × 300 μm at a magnification of 200 times for a 1/4 thickness portion of a hot-rolled steel sheet, and using image analysis software. The average value was obtained, and the value was defined as the amount of polygonal ferrite . In addition, the amount of MA was determined by observing 10 fields of 50 μm × 50 μm area at 1000 × magnification using an optical microscope after repeller corrosion at a thickness 1/4 part of the hot-rolled steel sheet, and using image analysis software. The average value of the area ratio of MA was determined, and the value was defined as the MA amount . The average size of MA is assumed to be a circle (equivalent circle) having the same area as that of the MA grain by using image analysis software for the observation field of view, and an average value of the diameters of the equivalent circles is obtained. Size.
[0034]
In addition, a tensile test and an impact test were performed in the following manner to examine the mechanical properties of the base material.
-Tensile test A JIS No. 4 test piece was obtained from a 1/4 thickness portion of each steel plate, a tensile test was performed, and 0.2% yield strength and tensile strength were measured.
-Impact test A JIS No. 4 test piece was collected from a 1/4 thickness portion of each steel plate, subjected to a Charpy impact test (test temperature-20 ° C), and an absorbed energy (vE- 20 ) was obtained.
[0035]
Furthermore, a thermal cycle test simulating welding was performed in the following manner to examine the HAZ toughness. After giving a heat cycle corresponding to 1000 kJ / cm of the heat input of welding (heat history with a cooling time from 800 ° C. to 500 ° C. of 720 sec after heating to 1350 ° C.), a JIS No. 4 test piece was collected and Charpy An impact test (test temperature −20 ° C.) was performed, and an average value of absorption energy (vE −20 ) of the bond portion was obtained. The number of samples was 3.
[0036]
[Table 1]
Figure 0004008378
[0037]
The survey results are also shown in Table 2. From Table 2, the invention examples (Sample Nos. 1 to 14) are excellent in toughness with absorbed energy of 250 J or more, while the yield ratio (YR) of the base material is 70 to 77% and a low yield ratio. Furthermore, even in HAZ after high heat input welding, the absorbed energy was 200 J or more, and excellent HAZ toughness was obtained. On the other hand, in Comparative Examples (Sample Nos. 15 to 20) whose components are outside the scope of the present invention, the tensile strength and the yield ratio satisfy the present invention level, but either the base material toughness or the HAZ toughness is remarkably deteriorated. . Moreover, although the component conditions of the present invention were satisfied, the manufacturing conditions were inappropriate, so the comparative examples (samples Nos. 21 to 25) that did not satisfy the structural conditions of the present invention had the strength and HAZ toughness Although the present invention level was satisfied, the base material toughness deteriorated when the yield ratio was high or the yield ratio was low.
[0038]
【The invention's effect】
According to the steel of the present invention, while adjusting the alloy components to ensure the HAZ toughness, the amount of polygonal ferrite is suppressed to 5 to 30%, and the fine MA amount with an average size of 5 μm or less is 3 to 15 % . % And the balance bainite, it has excellent HAZ toughness and excellent base material toughness while ensuring a tensile strength of 490 to 590 MPa.

Claims (5)

mass%で、
C:0.01〜0.15%、
Si:0.8%以下、
Mn:0.88〜2.0%、
Al:0.10%以下、
Ti:0.004〜0.050%、
B:0.0003〜0.0050%、
を含み、残部がFe及び不純物からなり、鋼板の板厚1/4部位において光学顕微鏡を用いて倍率200倍で300μm ×300μm の領域を5視野観察したときのポリゴナルフェライトの面積率の平均値が5〜30 面積%、鋼板の板厚1/4部位において光学顕微鏡を用いて倍率1000倍で50μm ×50μm の領域を10視野観察したときのMA(マルテンサイトとオーステナイトの混合物)の面積率の平均値が5〜15 面積%、残部がベイナイトからなる組織を有し、前記MAの平均サイズが5μm 以下である、靭性および溶接性に優れた低降伏比高強度鋼。
mass%
C: 0.01 to 0.15%,
Si: 0.8% or less,
Mn: 0.88 to 2.0%,
Al: 0.10% or less,
Ti: 0.004 to 0.050%,
B: 0.0003 to 0.0050%,
And the balance is Fe and impurities, and the average value of the area ratio of polygonal ferrite when observing five fields of 300 μm × 300 μm at 200 × magnification using an optical microscope at a 1/4 thickness portion of the steel sheet Is an area ratio of MA (a mixture of martensite and austenite) when observing 10 fields of 50 μm × 50 μm at a magnification of 1000 times in an area of 1/4 to 5% by area using an optical microscope . A low-yield ratio high-strength steel excellent in toughness and weldability, having an average value of 5 to 15 area%, the balance being a bainite structure, and an average size of the MA of 5 μm or less.
さらに、
Cu:1.5%以下、
Ni:1.5%以下、
Cr:1.5%以下、
Mo:1.5%以下
のいずれか1種または2種以上を含有する請求項1に記載した低降伏比高強度鋼。
further,
Cu: 1.5% or less,
Ni: 1.5% or less,
Cr: 1.5% or less,
The low yield ratio high-strength steel according to claim 1, which contains any one or more of Mo: 1.5% or less.
さらに、
Nb:0.05%以下、
V:0.20%以下
のいずれか1種または2種を含有する請求項1または2に記載した低降伏比高強度鋼。
further,
Nb: 0.05% or less,
The low yield ratio high-strength steel according to claim 1 or 2, which contains any one or two of V: 0.20% or less.
さらに、
Zr:0.05%以下、
Mg:0.005%以下
のいずれか1種または2種を含有する請求項1から3のいずれか1項に記載した低降伏比高強度鋼。
further,
Zr: 0.05% or less,
The low yield ratio high-strength steel according to any one of claims 1 to 3, containing any one or two of Mg: 0.005% or less.
さらに、
Ca:0.005%以下を含有する請求項1から4のいずれか1項に記載した低降伏比高強度鋼。
further,
The low yield ratio high strength steel according to any one of claims 1 to 4, containing Ca: 0.005% or less.
JP2003114053A 2003-04-18 2003-04-18 Low yield ratio high strength steel with excellent toughness and weldability Expired - Fee Related JP4008378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003114053A JP4008378B2 (en) 2003-04-18 2003-04-18 Low yield ratio high strength steel with excellent toughness and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003114053A JP4008378B2 (en) 2003-04-18 2003-04-18 Low yield ratio high strength steel with excellent toughness and weldability

Publications (2)

Publication Number Publication Date
JP2004315925A JP2004315925A (en) 2004-11-11
JP4008378B2 true JP4008378B2 (en) 2007-11-14

Family

ID=33473758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003114053A Expired - Fee Related JP4008378B2 (en) 2003-04-18 2003-04-18 Low yield ratio high strength steel with excellent toughness and weldability

Country Status (1)

Country Link
JP (1) JP4008378B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998726A (en) * 2018-07-26 2018-12-14 南京钢铁股份有限公司 The 420MPa grade low yield strength ratio low temperature bridge steel and production method of think gauge

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100973923B1 (en) 2007-12-20 2010-08-03 주식회사 포스코 High strength steel for construction having excellent low temperature toughness
US8778096B2 (en) * 2009-09-30 2014-07-15 Jfe Steel Corporation Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
JP5621478B2 (en) * 2010-09-29 2014-11-12 Jfeスチール株式会社 High toughness and high deformation steel plate for high strength steel pipe and method for producing the same
US8876987B2 (en) * 2011-10-04 2014-11-04 Jfe Steel Corporation High-strength steel sheet and method for manufacturing same
CN108603267B (en) 2016-02-03 2021-02-23 杰富意钢铁株式会社 Steel material for high heat input welding
KR102020415B1 (en) * 2017-12-24 2019-09-10 주식회사 포스코 High strength steel sheet having excellent low yield ratio property, and manufacturing method for the same
JP6901417B2 (en) * 2018-02-21 2021-07-14 株式会社神戸製鋼所 High-strength steel sheet and high-strength galvanized steel sheet, and their manufacturing method
JP7260780B2 (en) * 2019-06-17 2023-04-19 日本製鉄株式会社 High strength steel plate for high heat input welding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108998726A (en) * 2018-07-26 2018-12-14 南京钢铁股份有限公司 The 420MPa grade low yield strength ratio low temperature bridge steel and production method of think gauge
CN108998726B (en) * 2018-07-26 2020-11-20 南京钢铁股份有限公司 Thick 420 MPa-grade low-yield-ratio low-temperature bridge steel and production method thereof

Also Published As

Publication number Publication date
JP2004315925A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
JP5162382B2 (en) Low yield ratio high toughness steel plate
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JPWO2006009299A1 (en) Welded structural steel excellent in low temperature toughness of heat affected zone and its manufacturing method
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP2011001620A (en) High strength thick steel plate combining excellent productivity and weldability and having excellent drop weight characteristic after pwht, and method for producing the same
JP5034290B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP6795048B2 (en) Non-treated low yield ratio high-strength thick steel sheet and its manufacturing method
JP2011246768A (en) High-tensile steel sheet and production method therefor
JP5347827B2 (en) High yield point 490 MPa class welded structural steel excellent in acoustic anisotropy and method for producing the same
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP6086090B2 (en) Non-tempered low yield ratio high tensile thick steel plate with excellent weld heat affected zone toughness and method for producing the same
JP2005068519A (en) Method for producing high strength thick steel plate for building structure, having excellent toughness to super-large heat input welding-affected zone
JP3849244B2 (en) Steel material excellent in ductile crack growth resistance under repeated large deformation and its manufacturing method
JP2010111924A (en) Low yield ratio steel plate for building having excellent high heat input weld zone toughness and method for producing the same
JP4008378B2 (en) Low yield ratio high strength steel with excellent toughness and weldability
JP4096839B2 (en) Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone
JP2005187853A (en) Method for producing high strength thick steel plate excellent in toughness in extra-high heat input welded-heat affected part
JP5999005B2 (en) Low yield ratio high strength steel sheet with excellent weld heat affected zone toughness and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP2006118007A (en) High strength steel having excellent toughness in weld heat affected zone
JP4259145B2 (en) Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same
JP3970801B2 (en) High strength high toughness steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070320

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070605

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4008378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100907

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110907

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120907

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130907

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees