JP2006118007A - High strength steel having excellent toughness in weld heat affected zone - Google Patents
High strength steel having excellent toughness in weld heat affected zone Download PDFInfo
- Publication number
- JP2006118007A JP2006118007A JP2004307856A JP2004307856A JP2006118007A JP 2006118007 A JP2006118007 A JP 2006118007A JP 2004307856 A JP2004307856 A JP 2004307856A JP 2004307856 A JP2004307856 A JP 2004307856A JP 2006118007 A JP2006118007 A JP 2006118007A
- Authority
- JP
- Japan
- Prior art keywords
- less
- toughness
- strength steel
- strength
- haz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、例えば橋梁、建築、船舶、ペンストック、タンク、その他の大型構造物に使用される、引張強さが780MPa以上の高強度鋼材に係り、特に大入熱溶接後の溶接熱影響部(以下、「HAZ」ということがある。)の靭性に優れたものに関する。 The present invention relates to a high-strength steel material having a tensile strength of 780 MPa or more, which is used for, for example, a bridge, a building, a ship, a penstock, a tank, and other large structures. (Hereinafter sometimes referred to as “HAZ”).
780MPa以上の高強度鋼板では母材強度を確保する観点から合金成分が多量に添加されるため、小入熱溶接条件で冷却速度が速い場合、HAZが硬化して溶接割れ(低温割れ)が生じやすい。これを防ぐために溶接施工時に100℃以上の予熱が行われる。この予熱を省略することができれば施工効率が大きく上がり、かつコスト低下を実現することができる。このため耐低温割れ性に優れた780MPa級以上の高張力鋼板が要望されている。 In high strength steel plates of 780 MPa or more, a large amount of alloy components are added from the viewpoint of securing the strength of the base metal. Therefore, when the cooling rate is fast under small heat input welding conditions, the HAZ hardens and weld cracks (cold cracks) occur. Cheap. In order to prevent this, preheating at 100 ° C. or higher is performed during welding. If this preheating can be omitted, the construction efficiency can be greatly increased, and the cost can be reduced. For this reason, a high-tensile steel plate of 780 MPa class or more that has excellent cold cracking resistance is desired.
耐低温割れ性の指標として下記式で定義されるPcm(%)というパラメーターが提案され、従来、特開平9−3591号公報(特許文献1)や特開2001−200334号公報(特許文献2)に記載されているように、Pcmを制限して耐低温割れ性を改善する一方、Pcmを増加させ難く、微量添加で焼入性を向上させることができるNb、V、Moを積極的に添加することで母材強度を確保することが行われてきた。
Pcm=[C]+[Si]/30+[Mn]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5×[B]
ただし、[C]〜[B]は各元素のmass%を表す。
A parameter called Pcm (%) defined by the following formula has been proposed as an index of cold cracking resistance. Conventionally, Japanese Patent Application Laid-Open No. 9-3591 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2001-200334 (Patent Document 2). As described in, Nb, V, and Mo, which can improve the cold cracking resistance by restricting Pcm, while being hard to increase Pcm and improving the hardenability by adding a small amount, are actively added. By doing so, the strength of the base material has been secured.
Pcm = [C] + [Si] / 30 + [Mn] / 20 + [Ni] / 60 + [Cr] / 20 + [Mo] / 15 + [V] / 10 + 5 × [B]
However, [C]-[B] represent mass% of each element.
一方、近年、構造物の大型化に伴い、大断面部材の溶接(大入熱溶接)が不可避となっており、この場合、HAZの組織が粗大化して、HAZ靭性が低下するという問題があった。これまで、鋼材のHAZ靭性を改善する技術として、例えば、特開平9−104949号公報(特許文献3)にはTiNを活用して、あるいは特開2002−121641号公報(特許文献4)にはTi含有酸化物系介在物を活用してHAZ靭性を改善する技術が提案されている。
780MPa級の高強度鋼板は、上記のとおり、耐低温割れ性を確保すべく、Nb、V、Moを積極的に添加しているが、このためベイナイト変態時に亀裂伝播の抵抗として作用するベイナイト・ブロックが粗大化し、第二相として粗大な硬質のMA(Martensite-Austenite Constituent:マルテンサイトおよびオーステナイトの混合物)が生成するため、母材靭性やHAZ靭性が劣化するという問題がある。
近年、耐震性の向上など、構造物の安全性の向上に対する要求がますます強まっており、780MPa以上の高強度鋼板においても母材靭性や耐低温割れ性を確保した上で、大入熱溶接の際のHAZ靭性の改善が求められている。しかし、従来のHAZ靭性の改善技術ではかかる要望を満足させるに至っていない。
As described above, Nb, V, and Mo are positively added to the high-strength steel sheet of 780 MPa class in order to ensure low-temperature cracking resistance. For this reason, bainite and steel that act as resistance to crack propagation during bainite transformation. Since the block is coarsened and coarse hard MA (Martensite-Austenite Constituent: mixture of martensite and austenite) is generated as the second phase, there is a problem that the base metal toughness and the HAZ toughness deteriorate.
In recent years, there has been an increasing demand for improved structural safety, such as improved seismic resistance, and high heat input welding with high base metal toughness and cold cracking resistance in high-strength steel sheets of 780 MPa or higher. Improvement of the HAZ toughness at the time is required. However, the conventional HAZ toughness improvement technology does not satisfy such a demand.
本発明はかかる問題に鑑みなされたもので、780MPa級の高強度を有しながら、母材靭性や耐低温割れ性を確保した上で、大入熱溶接の際に優れたHAZ靭性を得ることができる高強度鋼材、鋼板を提供することを目的とする。 The present invention has been made in view of such a problem, and obtains excellent HAZ toughness at the time of high heat input welding while ensuring the base material toughness and low temperature cracking resistance while having a high strength of 780 MPa class. An object of the present invention is to provide a high-strength steel material and a steel plate that can be used.
本発明のポイントの一つは、鋼成分の設計に際し、これまで耐低温割れ割れ性の指標とされていたPcmにとらわれず、鋼組織を考慮した成分設計を行うこと、すなわちCを極低量に制限した上で、母材靭性、HAZ靭性に悪影響を与えるNb、V、Moの添加を抑制し、焼き入れ性向上元素であるMn及びNi、あるいはさらにCuを積極的に添加し、これによって熱間圧延後の冷却速度が高速、低速のいずれにおいても、ベイニティック・フェライトを主体とする組織を生成させた点にある。
また、本発明の他のポイントは、大入熱溶接の際にボンド付近のHAZにおいて吸収エネルギーが低下する原因を調べた結果、旧オーステナイト粒(γ粒)径の粗大化が原因となってHAZ組織が全体的に粗大化するためHAZ靭性が劣化するとの知見を得て、この知見を基に、微細分散することができるTiNを高温まで安定化し、旧γ粒の微細化が可能な成分系とした点にある。
One of the points of the present invention is that when designing a steel component, it is not limited to Pcm, which has been regarded as an index of cold cracking resistance until now, but the component design is performed in consideration of the steel structure, that is, the amount of C is extremely low. Nb, V, and Mo, which adversely affect the base material toughness and HAZ toughness, are suppressed, and the hardenability improving elements Mn and Ni, or further Cu are positively added. This is in that a structure mainly composed of bainitic ferrite is generated regardless of whether the cooling rate after hot rolling is high or low.
Another point of the present invention is that, as a result of investigating the cause of the decrease in absorbed energy in the HAZ near the bond during high heat input welding, the HAZ is caused by the coarsening of the prior austenite grain (γ grain) diameter. Based on this knowledge, we obtained the knowledge that the HAZ toughness is deteriorated because the entire structure is coarsened. Based on this knowledge, the component system that can stabilize TiN that can be finely dispersed to a high temperature and refine the old γ grains. It is in the point.
すなわち、本発明の高強度鋼材あるいは高強度鋼板は、mass%で、
C:0.010〜0.080%、
Si:0.02〜1.00%、
Mn:1.10〜2.90%、
P:0〜0.030%、
S:0〜0.010%、
Al:0.20%以下、
Ni:0.40〜2.40%、
Cr:0.50〜1.95%、
Mo:0.16〜1.10%、
Ti:0.002〜0.030%、
N:0.0058〜0.0120%
で、1.0≦[Ti]/[N]<4.0
を含み、残部がFe及び不可避的不純物からなり、かつ下記式で定義されるAS値およびDL値がAS≧3.60、DL≦2.80であり、組織が主としてベイニティック・フェライトからなるものである。
AS=[Mn]+[Ni]+2×[Cu]
DL=2.5×[Mo]+30×[Nb]+10×[V]
ただし、[X]は元素Xの含有量(mass%)を表す。
That is, the high-strength steel material or high-strength steel sheet of the present invention is mass%,
C: 0.010 to 0.080%,
Si: 0.02 to 1.00%,
Mn: 1.10 to 2.90%,
P: 0 to 0.030%,
S: 0 to 0.010%,
Al: 0.20% or less,
Ni: 0.40 to 2.40%,
Cr: 0.50 to 1.95%,
Mo: 0.16 to 1.10%,
Ti: 0.002 to 0.030%,
N: 0.0058 to 0.0120%
1.0 ≦ [Ti] / [N] <4.0
The balance is composed of Fe and inevitable impurities, and AS and DL values defined by the following formulas are AS ≧ 3.60 and DL ≦ 2.80, and the structure is mainly composed of bainitic ferrite. Is.
AS = [Mn] + [Ni] + 2 × [Cu]
DL = 2.5 × [Mo] + 30 × [Nb] + 10 × [V]
However, [X] represents content (mass%) of element X.
本発明鋼材あるいは高強度鋼板は、前記化学成分にさらに、(1) Cu:1.60%以下、(2) B:0.0050%以下、Nb:0.100%以下、V:0.060%未満のいずれか一種以上、(3) Ca、REMの1種または2種を合計で0.0050%以下、(4) Mg:0.0050%以下、(5) Hf:0.050%以下、Zr:0.100%以下のいずれか1種または2種、(6) W:5.0%以下、Co:5.0%以下のいずれか1種または2種、の各群から選ばれる元素を単独で、あるいは複合してさらに含有することができる。 The steel material of the present invention or the high-strength steel plate further includes (1) Cu: 1.60% or less, (2) B: 0.0050% or less, Nb: 0.100% or less, V: 0.060 in addition to the chemical components. % Or less, (3) One or two of Ca and REM in total, 0.0050% or less, (4) Mg: 0.0050% or less, (5) Hf: 0.050% or less Zr: Any one or two of 0.100% or less, (6) W: 5.0% or less, Co: Any one or two of 5.0% or less Elements can be further contained alone or in combination.
また、上記高強度鋼板は、上記成分を有する鋼をオーステナイト域温度に加熱し、熱間圧延し、冷却して製造するに際し、熱間圧延の仕上温度を870℃以下とすることが好ましい。仕上温度を870℃以下とすることにより、溶接後の旧γ粒が微細化し、大入熱溶接の際のHAZ靭性をより向上させることができる。 Further, when the high-strength steel sheet is manufactured by heating the steel having the above components to the austenite temperature, hot rolling, and cooling, it is preferable to set the finishing temperature of the hot rolling to 870 ° C. or less. By setting the finishing temperature to 870 ° C. or less, the old γ grains after welding are refined, and the HAZ toughness at the time of high heat input welding can be further improved.
本発明鋼材、鋼板によれば、Cを極低量とし、Mn及びNi、あるいはさらにCuをAS値が3.60以上になるように積極的に添加する一方、Mo、Nb、Vの添加をDL値が2.80以下となるように抑制したので、熱延後の冷却速度の高低に拘わらず、また板厚が厚い場合であっても、ベイニティック・フェライトを主体とする組織とすることができ、母材強度、母材靭性に優れる。さらに比較的多量のNを所定の[Ti]/[N]比の範囲内で添加したので、TiNを高温で安定化させることができ、これによってボンド近傍の旧γ粒を微細化することができるので、大入熱溶接を行った場合でも、優れたHAZ靭性を得ることができる。 According to the steel material and steel sheet of the present invention, C is extremely low, and Mn and Ni, or even Cu is positively added so that the AS value is 3.60 or more, while addition of Mo, Nb, and V is performed. Since the DL value is suppressed to 2.80 or less, the structure is mainly composed of bainitic ferrite regardless of the cooling rate after hot rolling, even when the plate thickness is thick. It is excellent in base material strength and base material toughness. Furthermore, since a relatively large amount of N is added within a predetermined [Ti] / [N] ratio range, TiN can be stabilized at a high temperature, which can refine old γ grains near the bond. Therefore, even when high heat input welding is performed, excellent HAZ toughness can be obtained.
本発明鋼板の成分上の第一の要点は、極低C量の下で焼き入れ性向上元素であるMn、Ni、Cuを所定の母材強度を確保すべくAS≧3.60となるように積極的に添加し、他方、Nb、V、Moを母材靭性を確保すべくDL≦2.80となるように積極的に抑制した点にある。まず、本発明鋼板の鋼成分によって熱間圧延後に生じる組織、特性をCCT図を参照して説明する。 The first important point on the composition of the steel sheet of the present invention is that AS ≧ 3.60 in order to ensure a predetermined base material strength of Mn, Ni and Cu, which are hardenability improving elements under an extremely low C content. On the other hand, Nb, V, and Mo are positively suppressed so as to satisfy DL ≦ 2.80 in order to ensure the base material toughness. First, the structure and characteristics produced after hot rolling by the steel components of the steel sheet of the present invention will be described with reference to the CCT diagram.
図1は本発明にかかるMn、Ni、Cuを積極的に添加した極低C系鋼(A)および従来の高C系鋼(B1)、低C系鋼(B2)のCCT図を示す。図中、BFはベイニティック・フェライト、GBFはグラニュラ・ベイニティック・フェライト、Mはマルテンサイト、Bはベイナイト、Fはフェライトを示す。同図より、本発明の鋼板では、熱間圧延後の冷却が高冷却速度(CR1)、低冷却速度(CR2)のいずれにおいても、BFが面積率で85%以上、より好ましくは90%以上生成し、第二相MAが微細に分散した微細ベイナイト(ベイニティックフェライト)組織が得られるようになる。かかるBFを主体とする組織により、肉厚が50mm程度以上の厚板であっても、母材の機械的性質として780MPa以上の強度が得られ、また優れた靭性を備えたものになる。しかも、高冷却速度(CR1)、低冷却速度(CR2)のいずれにおいても、上記のとおり、ほぼ全組織が硬さの冷却速度感受性の低いBFとなるため、小入熱溶接条件(入熱数kJ/cm程度)においてはHAZの硬さを低減(耐低温割れ性を向上)させることができ、また大入熱溶接条件(入熱数百kJ/cm程度)下での低速冷却時においても比較的良好なHAZ靭性を得ることができる。一方、従来の高C系鋼(B1)は高冷却速度(CR1)では、フェライトや粗大ベイナイトが生成し、それに伴い粗大かつ塊状のMAが生成するため、母材強度や靭性が低下し、また前記中入熱溶接時のHAZ靭性を確保することも難しかった。 FIG. 1 shows CCT diagrams of an extremely low C steel (A) to which Mn, Ni, and Cu according to the present invention are positively added, a conventional high C steel (B1), and a low C steel (B2). In the figure, BF represents bainitic ferrite, GBF represents granular bainitic ferrite, M represents martensite, B represents bainite, and F represents ferrite. From the same figure, in the steel sheet of the present invention, BF is 85% or more, more preferably 90% or more in terms of area ratio, regardless of whether the cooling after hot rolling is high cooling rate (CR1) or low cooling rate (CR2). Thus, a fine bainite (bainitic ferrite) structure in which the second phase MA is finely dispersed can be obtained. With such a structure mainly composed of BF, even a thick plate having a thickness of about 50 mm or more can obtain a strength of 780 MPa or more as a mechanical property of the base material and has excellent toughness. In addition, as described above, since the entire structure becomes BF having a low hardness cooling rate sensitivity at both high cooling rate (CR1) and low cooling rate (CR2), small heat input welding conditions (heat input number) kJ / cm) can reduce the hardness of HAZ (improve cold cracking resistance), and also during low-speed cooling under high heat input welding conditions (heat input several hundred kJ / cm) A relatively good HAZ toughness can be obtained. On the other hand, conventional high-C steel (B1) produces ferrite and coarse bainite at a high cooling rate (CR1), and as a result, coarse and massive MA forms, resulting in a decrease in the strength and toughness of the base material. It was also difficult to ensure the HAZ toughness during the medium heat input welding.
次に、本発明鋼板の成分上の第二の要点について説明する。
上記BFを主体とする組織にすることにより、母材靭性、HAZ靭性が向上するが、800kJ/cm程度の大入熱溶接下においても、十分なHAZ靭性を確保するには、前記組織を前提として、HAZにおける旧γ粒径の粗大化を抑制すべく、比較的多量のNを[Ti]/[N]比が1.0〜4.0となる範囲で添加することが重要である。
前記Nの多量添加により、大入熱溶接下においてHAZ靭性が向上する理由は必ずしも明らかではないが、以下のように推測される。まず、高N化することによって、TiN生成時の駆動力を増加させ、常法により製造しても、TiNを微細分散することが出来るものと考えられる。さらに、それと同時にNとTiの添加バランスを上記のように制御することにより、TiNの高温での安定性を増加させることができたものと考えられる。すなわち、高N化およびNとTiの添加バランスによって、ボンド近傍の旧γ粒の微細化が安定的に達成され、HAZ靭性のバラツキが大幅に改善(低減)するとともに、さらにAS、DLの適正な調整と相まって変態後のγ粒内の組織(ベイニティックフェライト)も微細化することができ、これらによって大入熱溶接後においても優れたHAZ靭性を確保することができたものと推測される。
なお、本発明者の研究により、従来のように母相がフェライト・パーライト組織では、母相中に固溶Nが存在すると靭性が劣化するため、十分に高N化することができないが、本発明のように母相をBF主体の組織とすることにより、固溶Nを第二相MA中に濃化させることができるため、高N化しても靭性が劣化しないことがわかった。
Next, the 2nd main point on the component of this invention steel plate is demonstrated.
Although the base material toughness and the HAZ toughness are improved by making the structure mainly composed of the above-mentioned BF, the structure is presupposed to ensure sufficient HAZ toughness even under high heat input welding of about 800 kJ / cm. As described above, it is important to add a relatively large amount of N in a range where the [Ti] / [N] ratio is 1.0 to 4.0 in order to suppress the coarsening of the prior γ grain size in HAZ.
The reason why the HAZ toughness is improved under large heat input welding by adding a large amount of N is not necessarily clear, but is presumed as follows. First, it is considered that by increasing the N content, the driving force at the time of TiN generation is increased, and TiN can be finely dispersed even if manufactured by a conventional method. At the same time, it is considered that the stability of TiN at a high temperature could be increased by controlling the balance of addition of N and Ti as described above. That is, by increasing N and adding N and Ti, refinement of old γ grains in the vicinity of the bond is stably achieved, and the variation in HAZ toughness is greatly improved (reduced), and the appropriateness of AS and DL is further improved. In combination with proper adjustment, the microstructure in the γ grains after transformation (bainitic ferrite) can be refined, and it is speculated that these have ensured excellent HAZ toughness even after high heat input welding. The
According to the research of the present inventor, when the parent phase is a ferrite pearlite structure as in the prior art, the toughness is deteriorated if solid solution N exists in the parent phase, and thus the N cannot be sufficiently increased. It was found that the toughness does not deteriorate even when the N content is increased because the solid phase can be concentrated in the second phase MA by making the parent phase a BF-based structure as in the invention.
ここで、本発明の高強度鋼材、鋼板の成分限定理由を説明する。単位は全てmass%である。
C:0.010〜0.080%
Cは母材強度を確保するために必要な元素である。0.010%未満では焼き入れ性向上元素を積極的に添加しても780MPa以上の母材強度を確保できないようになる。一方、0.080%超になると、MAが多量に生成するようになり、母材靭性、HAZ靭性が劣化するようになる。このため、C量の下限を0.01%とし、好ましくは0.020%以上、より好ましくは0.030%以上とするのがよく、一方その上限を0.080%とし、好ましくは0.070%、より好ましくは0.060%とするのがよい。
Here, the reason for limiting the components of the high-strength steel material and the steel plate of the present invention will be described. All units are mass%.
C: 0.010-0.080%
C is an element necessary for ensuring the strength of the base material. If it is less than 0.010%, even if a hardenability improving element is positively added, a base material strength of 780 MPa or more cannot be secured. On the other hand, if it exceeds 0.080%, a large amount of MA is generated, and the base material toughness and the HAZ toughness are deteriorated. For this reason, the lower limit of the C content is 0.01%, preferably 0.020% or more, more preferably 0.030% or more, while the upper limit is 0.080%, preferably 0.8%. It should be 070%, more preferably 0.060%.
Si:0.02〜1.00%
Siは固溶強化作用を有するが、過剰に添加すると母材、HAZにMAが多く生成するようになり、母材靭性、HAZ靭性が劣化する。このため、Si量の下限を0.02%、好ましくは0.10%とし、その上限を1.00%、好ましくは0.80%とする。
Si: 0.02 to 1.00%
Si has a solid solution strengthening action, but if added excessively, a large amount of MA is generated in the base material and HAZ, and the base material toughness and HAZ toughness deteriorate. Therefore, the lower limit of Si content is 0.02%, preferably 0.10%, and the upper limit is 1.00%, preferably 0.80%.
Mn:1.10〜2.90%
Mnは焼き入れ性を向上させ、強度、靭性を確保するのに有効な元素であるが、過剰に添加すると強度が過大になり、母材靭性、HAZ靭性が却って低下するようになる。このため、Mn量の下限を1.10%とし、好ましくは1.40%、より好ましくは1.70%、さらに好ましくは1.90%とするのがよい。
Mn: 1.10 to 2.90%
Mn is an element effective for improving the hardenability and ensuring the strength and toughness. However, when added excessively, the strength becomes excessive, and the base metal toughness and the HAZ toughness are lowered. For this reason, the lower limit of the amount of Mn is 1.10%, preferably 1.40%, more preferably 1.70%, and still more preferably 1.90%.
P:0〜0.030%以下、S:0〜0.010%以下
これらの元素は偏析し易い不純物元素であり、母材靭性、HAZ靭性に悪影響を及ぼすため、少ない程よく、本発明ではPを0.030%以下、Sを0.010%以下に止める。
P: 0 to 0.030% or less, S: 0 to 0.010% or less These elements are easily segregated impurity elements and adversely affect the base material toughness and HAZ toughness. Is 0.030% or less, and S is 0.010% or less.
Al:0.20%以下
Alは脱酸元素として添加するが、過剰に添加するとMAが多く生成するようになり、母材靭性、HAZ靭性が劣化する。このため、Al量の上限を0.20%、好ましくは0.15%、より好ましくは0.10%とするのがよい。
Al: 0.20% or less Al is added as a deoxidizing element. However, if excessively added, a large amount of MA is generated, and the base material toughness and the HAZ toughness deteriorate. For this reason, the upper limit of the amount of Al is 0.20%, preferably 0.15%, more preferably 0.10%.
Ni:0.40〜2.40%
Niは鋼の低温靭性の向上および焼き入れ性を高めて強度を向上させるとともに、熱間割れおよび溶接高温割れの防止にも効果がある。しかし、過剰に添加すると、スケール疵が発生しやすくなる。このため、Ni量の下限を0.40%、好ましくは0.60%、より好ましくは0.80%、さらに好ましくは1.00%以上とし、その上限を2.40%とする。
Ni: 0.40 to 2.40%
Ni improves the low temperature toughness and hardenability of the steel to improve the strength, and is also effective in preventing hot cracking and weld hot cracking. However, when excessively added, scale wrinkles are likely to occur. For this reason, the lower limit of the Ni amount is 0.40%, preferably 0.60%, more preferably 0.80%, still more preferably 1.00% or more, and the upper limit is 2.40%.
Cr:0.50〜1.95%
Crは母材、溶接部の強度を高めるが、過剰に添加すると母材靭性、HAZ靭性を却って劣化させる。このため、Cr量の下限を0.50%、好ましくは0.70%、より好ましくは1.00%とし、その上限を1.95%、好ましくは1.70%、より好ましくは1.50%とする。
Cr: 0.50 to 1.95%
Cr increases the strength of the base metal and the welded portion, but if added excessively, it degrades the base metal toughness and HAZ toughness. For this reason, the lower limit of the Cr amount is 0.50%, preferably 0.70%, more preferably 1.00%, and the upper limit is 1.95%, preferably 1.70%, more preferably 1.50. %.
Mo:0.16〜1.10%
Moは焼き入れ性を向上させ、高強度を確保するために有効であり、焼き戻し脆性を防止するために有効な元素であるが、過剰に添加すると母材靭性、HAZ靭性が却って低下する。このため、Mo量の下限を0.16%、好ましくは0.22%、より好ましくは0.25%、さらに好ましくは0.40%とし、その上限を1.10%、好ましくは0.80%、より好ましくは0.60%とする。
Mo: 0.16 to 1.10%
Mo is effective for improving the hardenability and ensuring high strength, and is an effective element for preventing temper brittleness. However, when added excessively, the base material toughness and the HAZ toughness are lowered. For this reason, the lower limit of the Mo amount is 0.16%, preferably 0.22%, more preferably 0.25%, still more preferably 0.40%, and the upper limit is 1.10%, preferably 0.80. %, More preferably 0.60%.
Ti:0.002〜0.030%
TiはNと結合して窒化物を形成し、溶接時におけるHAZのオーステナイト粒を微細化し、HAZ靭性改善に有効な元素である。Ti量が0.002%未満では細粒化効果が過小でありため、その下限を0.002%、好ましくは0.007%、より好ましくは0.010%、さらに好ましくは0.012%とする。一方、過剰に添加すると、TiNが粗大化し、却って母材靭性、HAZ靭性を劣化させるおそれがあるため、上限を0.030%、好ましくは0.025%、より好ましくは0.020%とする。
Ti: 0.002 to 0.030%
Ti combines with N to form nitrides, refines the HAZ austenite grains during welding, and is an effective element for improving HAZ toughness. If the Ti content is less than 0.002%, the effect of refining is too small, so the lower limit is 0.002%, preferably 0.007%, more preferably 0.010%, and even more preferably 0.012%. To do. On the other hand, if added excessively, TiN becomes coarse and may deteriorate the base metal toughness and HAZ toughness, so the upper limit is 0.030%, preferably 0.025%, more preferably 0.020%. .
N:0.0058〜0.0120%
Nは、Tiと共に大入熱溶接時のHAZ靭性を向上させるための重要な元素であり、Tiと結合し、TiNを形成して大入熱溶接時のオーステナイト粒を微細化し、HAZ勒性を向上させる効果を有する。しかし、Nの過剰添加は、母材靭性、HAZ靭性に悪影響を与えるようになる。前記Nの効果を有効に発揮させるため、N量の下限を0.0058%とし、好ましくは0.0060%、より好ましくは0.0070%、さらに好ましくは0.0080とするのがよく、その上限を0.0120%とし、好ましくは0.0100%、より好ましくは0.0090%とするのがよい。
N: 0.0058 to 0.0120%
N is an important element for improving the HAZ toughness at the time of high heat input welding together with Ti, and combines with Ti to form TiN to refine the austenite grains at the time of high heat input welding, thereby reducing the HAZ inertia. Has the effect of improving. However, excessive addition of N adversely affects the base material toughness and the HAZ toughness. In order to effectively exhibit the effect of N, the lower limit of the N amount is 0.0058%, preferably 0.0060%, more preferably 0.0070%, and still more preferably 0.0080, The upper limit is 0.0120%, preferably 0.0100%, more preferably 0.0090%.
[Ti]/[N]:1.0〜4.0
[Ti]/[N]の比が1.0未満では固溶Nが過剰となり、母材靭性、HAZ靭性が劣化する。一方、4.0を超えるとTiNが微細分散し難くなり、やはり母材靭性、HAZ靭性が低下するようになる。このため、前記比の下限を1.0とし、その上限を4.0、好ましくは3.0、より好ましくは2.0とする。
[Ti] / [N]: 1.0 to 4.0
When the ratio of [Ti] / [N] is less than 1.0, the solute N becomes excessive, and the base metal toughness and the HAZ toughness deteriorate. On the other hand, when it exceeds 4.0, TiN becomes difficult to finely disperse, and the base material toughness and the HAZ toughness are also lowered. For this reason, the lower limit of the ratio is 1.0, and the upper limit is 4.0, preferably 3.0, more preferably 2.0.
AS値:3.60以上
Mn、Ni、Cuの添加量は、母材強度、HAZ靭性と密接な関係があり、CuはMn、Niに比して2倍程度、強度向上効果が高い。熱延後、高冷却速度から低冷却速度の範囲で母材強度を780MPa以上にするには、後述の実施例から明らかなようにAS値を3.60以上にする必要がある。それにより、母相のBF量も85面積%以上得られるようになる。母材靭性、HAZ靭性は、BF量が多いほど向上するため、BF量は好ましくは90面積%以上、より好ましくは95面積%以上とするのがよく、そのためには前記AS値を高くするようにMn、Ni、後述するCuの添加量を調整する。AS値が高いほど、低冷却速度(大入熱溶接)時に低温で変態したBFが得られ、BF量が増大する。このため、AS値は、好ましくは4.00以上、より好ましくは4.50以上、さらに好ましくは5.00以上とするのがよい。
AS value: 3.60 or more The addition amount of Mn, Ni, and Cu is closely related to the base material strength and HAZ toughness, and Cu is about twice as strong as Mn and Ni, and has a high strength improvement effect. In order to increase the base metal strength to 780 MPa or more in the range from high cooling rate to low cooling rate after hot rolling, it is necessary to set the AS value to 3.60 or more, as will be apparent from Examples described later. As a result, a BF amount of the mother phase can be obtained by 85 area% or more. Since the base metal toughness and the HAZ toughness increase as the amount of BF increases, the amount of BF is preferably 90 area% or more, more preferably 95 area% or more. For this purpose, the AS value is increased. The addition amount of Mn, Ni and Cu described later is adjusted. As the AS value is higher, BF transformed at a low temperature is obtained at a low cooling rate (high heat input welding), and the amount of BF increases. For this reason, the AS value is preferably 4.00 or more, more preferably 4.50 or more, and further preferably 5.00 or more.
DL値:2.80以下
Moは上記のとおり焼き入れ性を向上させる作用がある。後述するNb、Vも同様の作用がある。その一方、これらの元素が過剰に添加されると、粗大なベイナイト組織が生成し、母材靭性、HAZ靭性が劣化する。このような靭性の劣化作用は各元素について一様ではなく、発明者等の実験によりMoを1としたとき、Nbは12倍程度、Vは4倍程度である。後述の実施例から明らかなように、vE-20=200J以上の良好な母村靭性を確保するには、DL値を2.80以下とし、好ましくは2.50以下、より好ましくは2.00以下、さらに好ましくは1.50%、さらにより好ましくは1.00以下とするようにMo、Nb、Vの添加を制限するのがよい。
DL value: 2.80 or less Mo has the effect of improving hardenability as described above. Nb and V, which will be described later, have the same action. On the other hand, when these elements are added excessively, a coarse bainite structure is generated, and the base metal toughness and the HAZ toughness deteriorate. Such a deterioration effect of toughness is not uniform for each element, and when Mo is set to 1 by experiments by the inventors, Nb is about 12 times and V is about 4 times. As will be apparent from the examples described later, in order to ensure good Maemura toughness of vE -20 = 200 J or more, the DL value is 2.80 or less, preferably 2.50 or less, more preferably 2.00. Hereinafter, the addition of Mo, Nb, and V should be limited so that it is more preferably 1.50%, and still more preferably 1.00 or less.
本発明の鋼板は以上の成分のほか、残部Feおよび不可避的不純物によって形成されるが、上記成分の作用、効果を損なわない範囲で特性をより向上させる元素の添加を妨げるものではない。例えば、(1) Cu:1.60%以下、(2) B:0.0050%以下、Nb:0.100%以下、V:0.060%未満のいずれか一種以上、(3) Ca、REMの1種または2種を合計で0.0050%以下、(4) Mg:0.0050%以下、(5) Hf:0.050%以下、Zr:0.100%以下のいずれか1種または2種、(6) W:5.0%以下、Co:5.0%以下のいずれか1種または2種、の各群から選ばれる元素を単独で、あるいは複合してさらに含有することができる。以下、これらの補助元素の限定理由を述べる。 The steel plate of the present invention is formed by the balance Fe and unavoidable impurities in addition to the above components, but does not hinder the addition of elements that further improve the characteristics within a range that does not impair the effects and effects of the above components. For example, (1) Cu: 1.60% or less, (2) B: 0.0050% or less, Nb: 0.100% or less, V: less than 0.060%, (3) Ca, One or two types of REM in total of 0.0050% or less, (4) Mg: 0.0050% or less, (5) Hf: 0.050% or less, Zr: 0.100% or less Or two or more (6) W: 5.0% or less, Co: Any one or two elements selected from the group of 5.0% or less alone or in combination Can do. The reasons for limiting these auxiliary elements will be described below.
Cu:1.60%以下
Cuは固溶強化と析出強化によって母材強度を向上させ、またMo、Mn、Ni、Crほどではないが焼き入れ性を向上させる作用を有する。かかる作用を効果的に発現させるには、好ましくは0.30%以上、より好ましくは0.50%以上添加することが望ましい。もっとも、1.60%を超えると母材靭性、HAZ靭性を低下させるようになるので、Cu量の上限を1.60%とし、好ましくは1.40%、より好ましくは1.20%、さらに好ましくは1.00%とするのがよい。
Cu: 1.60% or less Cu has the effect of improving the base metal strength by solid solution strengthening and precipitation strengthening, and improving the hardenability although not as much as Mo, Mn, Ni, and Cr. In order to effectively exhibit such an action, it is desirable to add 0.30% or more, more preferably 0.50% or more. However, if it exceeds 1.60%, the toughness of the base metal and the HAZ toughness will be lowered, so the upper limit of the Cu content is 1.60%, preferably 1.40%, more preferably 1.20%, Preferably it is 1.00%.
B:0.0050%以下
Bは焼き入れ性を向上させてHAZ靭性を改善する作用を有する。特に、入熱量の大きい溶接の際にその効果は大きい。かかる作用を効果的に発現させるためには、0.0005%以上の添加が好ましい。もっとも多量に添加すると、かえって母材靭性、HAZ靭性を劣化させるようになる。このため、B量の上限を0.0050%とし、好ましくは0.030%、より好ましくは0.0020とするのがよい。
B: 0.0050% or less B has an action of improving the hardenability and improving the HAZ toughness. In particular, the effect is great when welding with a large heat input. Addition of 0.0005% or more is preferable in order to effectively exhibit such action. When added in a large amount, the base material toughness and HAZ toughness are deteriorated. For this reason, the upper limit of the amount of B is made 0.0050%, preferably 0.030%, more preferably 0.0020.
Nb:0.100%以下
NbもBと同様、焼き入れ性を向上させる。すなわち、固溶Nbは母材の焼入れ性を向上させて母材強度、溶接継手強度を向上させる効果があるが、過剰に添加すると、強度が過大になり、母材靭性、HAZ靭性を劣化させるようになる。このため、Nb量の上限を0.100%、好ましくは0.040%、より好ましくは0.020%とする。
Nb: 0.100% or less Nb, like B, improves the hardenability. That is, solid solution Nb has the effect of improving the hardenability of the base material and improving the strength of the base material and the welded joint. However, if added excessively, the strength becomes excessive and deteriorates the base material toughness and HAZ toughness. It becomes like this. For this reason, the upper limit of the amount of Nb is made 0.100%, preferably 0.040%, more preferably 0.020%.
V:0.060%未満
VもB、Nbと同様、少量の添加により焼入れ性を向上させる。また、焼き戻し軟化抵抗を高める効果がある。しかし、過剰に添加すると、強度が過大になり、母材靭性、HAZ靭性を劣化させるようになる。このため、V量の上限を0.060%、好ましくは0.050%、より好ましくは0.040%とする。
V: Less than 0.060% V, like B and Nb, improves hardenability by adding a small amount. Moreover, there is an effect of increasing the temper softening resistance. However, if added excessively, the strength becomes excessive and the base metal toughness and the HAZ toughness are deteriorated. For this reason, the upper limit of the V amount is 0.060%, preferably 0.050%, more preferably 0.040%.
Ca、REM:合計で0.0050%以下
これらの元素は、MnSを球状化するという介在物の形態制御により異方性を低減する効果を有し、HAZ靭性を向上させる効果を有する。しかし、過剰に添加すると、母材靭性をかえって劣化させるようになる。このため、これらの元素は合計で、その上限を0.0050%、好ましくは0.0030%とする。
Ca, REM: 0.0050% or less in total These elements have an effect of reducing anisotropy by controlling the form of inclusions to spheroidize MnS, and have an effect of improving HAZ toughness. However, when added excessively, the base material toughness is deteriorated. For this reason, the total of these elements is 0.0050%, preferably 0.0030%.
Mg:0.0050%以下
MgはMgOを形成し、HAZのオーステナイト粒の粗大化を抑制することによってHAZ靭性を向上させる効果を有する。しかし、過剰に添加すると、母材靭性をかえって劣化させるようになる。このため、その上限を0.0050%、好ましくは0.0035%とする。
Mg: 0.0050% or less Mg has the effect of improving HAZ toughness by forming MgO and suppressing the coarsening of HAZ austenite grains. However, when added excessively, the base material toughness is deteriorated. For this reason, the upper limit is made 0.0050%, preferably 0.0035%.
Zr:0.100%以下
Hf:0.050%以下
Zr、HfはTiと同様、Nと窒化物を形成して溶接時におけるHAZのオーステナイト粒を微細化し、HAZ靭性改善に有効な元素である。しかし、過剰に添加すると返って母材靭性、HAZ靭性を低下させる。このため、Zr量の上限を0.100%、好ましくは0.050%とし、Hf量の上限を0.050%、好ましくは0.030とする。
Zr: 0.100% or less Hf: 0.050% or less Zr and Hf are elements that are effective in improving HAZ toughness by forming nitrides with N to refine HAZ austenite grains during welding. . However, when added excessively, it returns and lowers the base metal toughness and the HAZ toughness. For this reason, the upper limit of the amount of Zr is set to 0.100%, preferably 0.050%, and the upper limit of the amount of Hf is set to 0.050%, preferably 0.030.
W :5.0%以下
Co:5.0%以下
W、Coは、少量で焼入れ性を向上させ、強度を容易に確保するために有効である。Wはさらに焼き戻し軟化抵抗を向上させる作用を併有する。一方、過剰に添加すると、強度が高くなり過ぎて、却って母材靭性、HAZ靭性を低下させる。このため、これらの元素の上限を各々5.0%、好ましくは2.5%とする。
W: 5.0% or less Co: 5.0% or less W and Co are effective for improving hardenability and securing strength easily with a small amount. W further has the effect of improving the temper softening resistance. On the other hand, if added excessively, the strength becomes too high, and on the contrary, the base metal toughness and the HAZ toughness are lowered. Therefore, the upper limit of these elements is 5.0%, preferably 2.5%.
本発明の高強度高靭性鋼板は、常法によって製造することができ、鋼片をオーステナイト温度域、好ましくはAC3 〜1350℃程度に加熱後、熱間圧延を行い、熱間圧延後、空冷あるいは直接冷却により60℃/sec程度以下の平均冷却冷却速度で冷却すればよい。MAやGBFの生成をできるだけ抑制するには、好ましくは5℃/sec程度以上の平均冷却速度で加速冷却を行うのがよい。この加速冷却は、BF変態点(650〜400℃程度)以下の温度域まで行えばよい。確実にBF変態点以下にするには、200℃程度以下まで行えばよい。なお、加速冷却は、高温では冷却速度が速いので、少なくとも800℃以下で行えばよい。 The high-strength, high-toughness steel sheet of the present invention can be produced by a conventional method. The steel slab is heated to an austenite temperature range, preferably about AC 3 to 1350 ° C., then hot-rolled, hot-rolled, and air-cooled. Alternatively, it may be cooled at an average cooling rate of about 60 ° C./sec or less by direct cooling. In order to suppress the production of MA and GBF as much as possible, accelerated cooling is preferably performed at an average cooling rate of about 5 ° C./sec or more. This accelerated cooling may be performed up to a temperature range below the BF transformation point (about 650 to 400 ° C.). In order to ensure the BF transformation point or lower, the temperature may be lowered to about 200 ° C. or lower. Note that accelerated cooling is performed at a temperature of at least 800 ° C. because the cooling rate is high at high temperatures.
熱間圧延の仕上温度は、常法のように1000℃以下とすればよいが、870℃以下にすることにより、HAZ靭性をより向上させることができる。その理由は、母材を圧延するときに未再結晶域圧延を多く行うと、溶接熱影響を受けて逆変態する際に、変態核(圧延加工による歪)が多く存在するため、溶接後の旧γ粒径が結果的に高温(870℃超)で仕上げるよりも微細化するからである。このような理由から、仕上温度を870℃以下とすることが望ましいが、好ましくは800℃以下、より好ましくは750℃以下とることによって、より効果的にHAZ靭性を向上させることができる。また、このような低温仕上圧延を行うことにより、常法にて熱間圧延する場合に比して、ASの下限を3.20程度まで下方に拡大することができる。 The hot rolling finishing temperature may be 1000 ° C. or lower as in a conventional method, but by setting it to 870 ° C. or lower, the HAZ toughness can be further improved. The reason for this is that if unrecrystallized zone rolling is performed a lot when rolling the base metal, there will be many transformation nuclei (strain due to rolling) during reverse transformation under the influence of welding heat. This is because the old γ grain size is finer than finishing at a high temperature (above 870 ° C.). For these reasons, it is desirable to set the finishing temperature to 870 ° C. or lower. However, the HAZ toughness can be more effectively improved by setting the finishing temperature to preferably 800 ° C. or lower, more preferably 750 ° C. or lower. Moreover, by performing such low temperature finish rolling, the lower limit of AS can be expanded downward to about 3.20 as compared with the case of hot rolling by a conventional method.
上記製造方法により、熱間圧延後、高冷却速度から低冷却速度に渡ってBFが面積%で85%以上、好ましくは90%以上を含み、残部がGBF、MAで形成された高強度、高靭性組織が得られる。MAはBFやGBFの界面に微細に生成するため、塊状MAにように靭性を劣化させないが、少ない方が優れた靭性が得られるため、好ましくは5.0面積%以下、より好ましくは3.0%以下とするのがよい。 By the above manufacturing method, after hot rolling, BF is 85% or more, preferably 90% or more in area% over a high cooling rate to a low cooling rate, and the balance is high strength and high formed by GBF and MA. A tough structure is obtained. Since MA is finely generated at the interface of BF or GBF, the toughness is not deteriorated as in the case of massive MA. However, since less toughness provides better toughness, it is preferably 5.0 area% or less, more preferably 3. It should be 0% or less.
本発明の鋼板は、上記のとおり、熱間圧延後の冷却が高冷却速度から低冷却速度に渡ってBFを主体とした組織が得られるので、比較的厚い鋼板、例えば肉厚が50mm程度のものでも780MPa以上の強度を有しながら、良好な母材靭性、HAZ靭性、耐低温割れ性を有するするものとなる。
次に、実施例を挙げて本発明をより具体的に説明するが、本発明はかかる実施例によって限定的に解釈されるものはでない。
As described above, the steel sheet of the present invention can obtain a structure mainly composed of BF from the high cooling rate to the low cooling rate after the hot rolling, so that a relatively thick steel plate, for example, a thickness of about 50 mm is obtained. Even if it has a strength of 780 MPa or more, it has good base material toughness, HAZ toughness, and low temperature cracking resistance.
Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the examples.
下記表1〜3に示す鋼を溶製し、その溶湯を鋳造して得られたスラブ(厚さ250mm)を1150℃で加熱した後、熱間圧延を行い、表4及び5に示す仕上温度にて熱間圧延を終了し、800〜200℃の温度域を10℃/secの平均冷却速度にて直接冷却(オンラインでの水冷)した。なお、表4及び5の試料の鋼は、試料番号と同様の鋼番号(表1〜3)の鋼に対応する。 The slabs (thickness 250 mm) obtained by melting the steel shown in Tables 1 to 3 and casting the molten metal were heated at 1150 ° C., and then hot-rolled, and the finishing temperatures shown in Tables 4 and 5 were obtained. The hot rolling was finished at, and the temperature range of 800 to 200 ° C. was directly cooled (on-line water cooling) at an average cooling rate of 10 ° C./sec. In addition, the steel of the sample of Table 4 and 5 respond | corresponds to the steel of the steel number (Tables 1-3) similar to a sample number.
得られた熱延板(板厚50mm)に対し、熱延板の板厚の1/4部位から組織観察試験片を採取し、光学顕微鏡観察(倍率400倍)を行ったところ、BFを主体とし、残部がGBF及びMAによって形成されていた。また、BFの面積分率を測定するため、組織観察試験片をナイタール腐食後、SEM(走査電子顕微鏡)を用いて倍率1000倍で組織を撮影し、撮影した画像を画像解析ソフト(名称 Image-Pro、プラネトロン社製)を用いて解析し、BFの面積率を求めた。その結果を表4及び5に併せて示す。なお、発明例(試料No. 1〜59)についてはMA量を測定したところ、3.0面積%以下であった。 From the obtained hot-rolled sheet (thickness: 50 mm), a specimen for observing the structure was sampled from a quarter of the thickness of the hot-rolled sheet and subjected to optical microscope observation (400 times magnification). And the remainder was formed by GBF and MA. In addition, in order to measure the area fraction of BF, the tissue observation test piece was subjected to nital corrosion, and then the tissue was photographed at a magnification of 1000 using an SEM (scanning electron microscope), and the photographed image was image analysis software (named Image- Pro, manufactured by Planetron), and the area ratio of BF was determined. The results are also shown in Tables 4 and 5. In addition, about the example of an invention (sample No. 1-59), when MA amount was measured, it was 3.0 area% or less.
また下記要領にて引張試験、衝撃試験を行い、母材の機械的性質を調べた。合格レベルは、引張強さが780MPa以上、靭性が吸収エネルギー(vE-20 )で200J以上である。
・引張試験
各鋼板の板厚1/4部位からJIS4号試験片を得て、引張試験を行い、0.2%耐力、引張強さを測定した。
・衝撃試験
各鋼板の板厚1/4部位からJIS4号試験片を採取し、シャルピー衝撃試験を行い、−40℃での吸収エネルギー(vE-20 )を求め、母材靭性を評価した。
In addition, a tensile test and an impact test were performed in the following manner to examine the mechanical properties of the base material. As for the pass level, the tensile strength is 780 MPa or more, and the toughness is 200 J or more in absorbed energy (vE −20 ).
-Tensile test A JIS No. 4 test piece was obtained from a 1/4 thickness portion of each steel plate, a tensile test was performed, and 0.2% yield strength and tensile strength were measured.
-Impact test A JIS No. 4 test piece was sampled from a 1/4 thickness portion of each steel plate, subjected to a Charpy impact test, an absorption energy (vE- 20 ) at -40 ° C was determined, and a base material toughness was evaluated.
さらに、下記の要領にてHAZ靭性を調べた。
入熱800kJ/cmの1パス大入熱溶接(エレクトロスラグ溶接)を行い、ボンド(溶融線)から0.5mm離れたHAZからJIS4号試験片を採取し、Vノッチシャルピー衝撃試験を行い、−40℃での吸収工ネルギー(vE-40 )を測定した。このとき、サンプル数を5個とし、その平均値を求め、HAZ靭性を評価した。合格レベルは、吸収エネルギー(vE-40 )が平均値で150J以上である。
なお、発明例については、JISZ3158に規定されたy形溶接割れ試験方法に基づいて、試験に供した鋼板を0℃及び−20℃に冷やした状態(ルート割れ防止予熱温度=0℃,−20℃)で、入熱1.7kJ/mmで被覆アーク溶接を行い、耐低温割れ性を調べたが、いずれの温度においても、割れが生じなかった。
Further, the HAZ toughness was examined in the following manner.
Perform one-pass large heat input welding (electroslag welding) with a heat input of 800 kJ / cm, extract a JIS No. 4 test piece from HAZ 0.5 mm away from the bond (melting line), conduct a V-notch Charpy impact test, Absorption energy (vE -40 ) at 40 ° C was measured. At this time, the number of samples was set to 5, the average value was obtained, and the HAZ toughness was evaluated. The acceptable level is that the absorbed energy (vE -40 ) is 150 J or more on average.
In addition, about the invention example, based on the y-type weld crack test method prescribed | regulated to JISZ3158, the state which cooled the steel plate used for the test to 0 degreeC and -20 degreeC (Root crack prevention preheating temperature = 0 degreeC, -20 (° C.), and coating arc welding was performed at a heat input of 1.7 kJ / mm, and the low temperature cracking resistance was examined. No cracking occurred at any temperature.
上記調査結果を表4及び5に併せて示す。同表より、発明例は、母材靭性については、引張強さが780MPa以上であり、またvE-20 がすべて200J以上であり、高強度にして母材靭性に優れる。また、800J/cmという大入熱溶接時のHAZ靭性についても、vE-40 が150J以上の吸収エネルギーを有し、大入熱溶接においてもHAZ靭性が優れていることが確かめられた。
一方、合金組成、[Ti]/[N]、AS値、DL値のいずれかが発明範囲を外れる比較例(表5、No. 81〜115)は、発明例と同様、熱間圧延後、10℃/sec程度の加速冷却を行ったにもかかわらず、HAZ靭性が60J程度に達しないものが大部分であり、また母材のvE-20 が総じて200J未満で、母材靭性に劣るものであった。
The survey results are shown in Tables 4 and 5. From the table, the inventive examples have a base material toughness of 780 MPa or more and vE -20 of all 200 J or more, and have high strength and excellent base material toughness. Further, regarding the HAZ toughness at the time of high heat input welding of 800 J / cm, vE- 40 has an absorbed energy of 150 J or more, and it was confirmed that the HAZ toughness is excellent also at the high heat input welding.
On the other hand, comparative examples (Table 5, Nos. 81 to 115) in which any of the alloy composition, [Ti] / [N], AS value, and DL value are out of the scope of the invention, Despite accelerated cooling at about 10 ° C / sec, most of the HAZ toughness does not reach about 60J, and the base material vE- 20 is generally less than 200J, and the base metal toughness is inferior. Met.
Claims (9)
C:0.010〜0.080%、
Si:0.02〜1.00%、
Mn:1.10〜2.90%、
P:0〜0.030%、
S:0〜0.010%、
Al:0.20%以下、
Ni:0.40〜2.40%、
Cr:0.50〜1.95%、
Mo:0.16〜1.10%、
Ti:0.002〜0.030%、
N:0.0058〜0.0120%
で、1.0≦[Ti]/[N]<4.0
を含み、残部がFe及び不可避的不純物からなり、かつ下記式で定義されるAS値およびDL値がAS≧3.60、DL≦2.80であり、組織が主としてベイニティック・フェライトからなることを特徴とする溶接熱影響部の靭性に優れた高強度鋼板。
AS=[Mn]+[Ni]+2×[Cu]
DL=2.5×[Mo]+30×[Nb]+10×[V]
ただし、[X]は元素Xの含有量(mass%)を表す。 mass%
C: 0.010 to 0.080%,
Si: 0.02 to 1.00%,
Mn: 1.10 to 2.90%,
P: 0 to 0.030%,
S: 0 to 0.010%,
Al: 0.20% or less,
Ni: 0.40 to 2.40%,
Cr: 0.50 to 1.95%,
Mo: 0.16 to 1.10%,
Ti: 0.002 to 0.030%,
N: 0.0058 to 0.0120%
1.0 ≦ [Ti] / [N] <4.0
The balance is composed of Fe and inevitable impurities, and AS and DL values defined by the following formulas are AS ≧ 3.60 and DL ≦ 2.80, and the structure is mainly composed of bainitic ferrite. A high-strength steel sheet excellent in toughness of the weld heat-affected zone.
AS = [Mn] + [Ni] + 2 × [Cu]
DL = 2.5 × [Mo] + 30 × [Nb] + 10 × [V]
However, [X] represents content (mass%) of element X.
A method for producing a high-strength steel sheet, wherein the steel having the component according to any one of claims 1 to 7 is heated to an austenite temperature, hot-rolled at a finishing temperature of 870 ° C or lower, and cooled.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004307856A JP4279231B2 (en) | 2004-10-22 | 2004-10-22 | High-strength steel material with excellent toughness in weld heat affected zone |
KR1020050099227A KR100714540B1 (en) | 2004-10-22 | 2005-10-20 | High strength steel having superior toughness in weld heat-affected zone |
CNB2005101164512A CN100494463C (en) | 2004-10-22 | 2005-10-21 | Tenacity excellent high intensity steel for welding heat influenced part |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004307856A JP4279231B2 (en) | 2004-10-22 | 2004-10-22 | High-strength steel material with excellent toughness in weld heat affected zone |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2006118007A true JP2006118007A (en) | 2006-05-11 |
JP4279231B2 JP4279231B2 (en) | 2009-06-17 |
Family
ID=36536158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004307856A Expired - Fee Related JP4279231B2 (en) | 2004-10-22 | 2004-10-22 | High-strength steel material with excellent toughness in weld heat affected zone |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP4279231B2 (en) |
KR (1) | KR100714540B1 (en) |
CN (1) | CN100494463C (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100987877B1 (en) | 2007-03-15 | 2010-10-13 | 가부시키가이샤 고베 세이코쇼 | High strength hot rolled steel sheet with excellent press workability and method for manufacturing the same |
CN101407893B (en) * | 2008-11-25 | 2011-04-06 | 武汉钢铁(集团)公司 | High strength, high heat input welding property, fire resistant and earthquake resistant steel for construction and production method thereof |
WO2013024861A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社神戸製鋼所 | High strength steel plate with excellent warm and room-temperature formability and warm forming method thereof |
WO2018117509A1 (en) * | 2016-12-21 | 2018-06-28 | 주식회사 포스코 | Ultra-high strength steel having low yield ratio and method for manufacturing same |
CN111910127A (en) * | 2020-08-07 | 2020-11-10 | 安阳钢铁股份有限公司 | Q890 steel plate for hydraulic support meeting welding heat input of 30kJ/cm and preparation method thereof |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100954042B1 (en) * | 2007-04-09 | 2010-04-20 | 가부시키가이샤 고베 세이코쇼 | Thick steel plate having excellent haz toughness |
JP4976905B2 (en) * | 2007-04-09 | 2012-07-18 | 株式会社神戸製鋼所 | Thick steel plate with excellent HAZ toughness and base metal toughness |
JP4914783B2 (en) * | 2007-08-07 | 2012-04-11 | 株式会社神戸製鋼所 | Large steel plate for high heat input welding with excellent shearability |
CN102796966A (en) * | 2011-05-25 | 2012-11-28 | 宝山钢铁股份有限公司 | High-intensity steel and steel pipes and preparation method thereof |
CN106756612B (en) * | 2016-12-07 | 2018-02-23 | 钢铁研究总院 | A kind of easy laser welding hull plate steel of bainite/martensite/austenite high-ductility and manufacture method |
KR20200065067A (en) * | 2017-11-15 | 2020-06-08 | 닛폰세이테츠 가부시키가이샤 | Austenitic heat-resistant steel welded metal, welding joint, austenitic heat-resistant steel welding material, and method of manufacturing welded joint |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3233743B2 (en) * | 1993-06-28 | 2001-11-26 | 株式会社神戸製鋼所 | High strength hot rolled steel sheet with excellent stretch flangeability |
JP4022019B2 (en) * | 1998-07-16 | 2007-12-12 | 新日本製鐵株式会社 | High-strength cold-rolled steel sheet with excellent formability after welding and difficult to soften weld heat-affected zone |
CN100591789C (en) * | 2002-12-24 | 2010-02-24 | 新日本制铁株式会社 | Good burring property high strength steel sheet excellent in softening resistance in welded heat affecting zone, and its production method |
-
2004
- 2004-10-22 JP JP2004307856A patent/JP4279231B2/en not_active Expired - Fee Related
-
2005
- 2005-10-20 KR KR1020050099227A patent/KR100714540B1/en active IP Right Grant
- 2005-10-21 CN CNB2005101164512A patent/CN100494463C/en not_active Expired - Fee Related
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100987877B1 (en) | 2007-03-15 | 2010-10-13 | 가부시키가이샤 고베 세이코쇼 | High strength hot rolled steel sheet with excellent press workability and method for manufacturing the same |
US8052808B2 (en) * | 2007-03-15 | 2011-11-08 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | High strength hot rolled steel sheet with excellent press workability and method of manufacturing the same |
CN101407893B (en) * | 2008-11-25 | 2011-04-06 | 武汉钢铁(集团)公司 | High strength, high heat input welding property, fire resistant and earthquake resistant steel for construction and production method thereof |
WO2013024861A1 (en) * | 2011-08-17 | 2013-02-21 | 株式会社神戸製鋼所 | High strength steel plate with excellent warm and room-temperature formability and warm forming method thereof |
JP2013040382A (en) * | 2011-08-17 | 2013-02-28 | Kobe Steel Ltd | High-strength steel sheet having excellent formability at room temperature and at warm temperature, and method for warm-forming the same |
CN103732778A (en) * | 2011-08-17 | 2014-04-16 | 株式会社神户制钢所 | High strength steel plate with excellent warm and room-temperature formability and warm forming method thereof |
US9657381B2 (en) | 2011-08-17 | 2017-05-23 | Kobe Steel, Ltd. | High-strength steel sheet having excellent room-temperature formability and warm formability, and warm forming method thereof |
WO2018117509A1 (en) * | 2016-12-21 | 2018-06-28 | 주식회사 포스코 | Ultra-high strength steel having low yield ratio and method for manufacturing same |
KR20180072500A (en) * | 2016-12-21 | 2018-06-29 | 주식회사 포스코 | Ultra high strength steel having low yield ratio method for manufacturing the same |
KR101879082B1 (en) * | 2016-12-21 | 2018-07-16 | 주식회사 포스코 | Ultra high strength steel having low yield ratio method for manufacturing the same |
CN111910127A (en) * | 2020-08-07 | 2020-11-10 | 安阳钢铁股份有限公司 | Q890 steel plate for hydraulic support meeting welding heat input of 30kJ/cm and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR20060049102A (en) | 2006-05-18 |
JP4279231B2 (en) | 2009-06-17 |
CN100494463C (en) | 2009-06-03 |
KR100714540B1 (en) | 2007-05-07 |
CN1763234A (en) | 2006-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5162382B2 (en) | Low yield ratio high toughness steel plate | |
JP4252949B2 (en) | Low yield ratio high-tensile steel sheet with small acoustic anisotropy and excellent weldability, and method for producing the same | |
JP5110989B2 (en) | Large steel plate for high heat input welding with excellent brittle crack propagation stopping characteristics | |
KR100714540B1 (en) | High strength steel having superior toughness in weld heat-affected zone | |
JP4721956B2 (en) | Thick steel plate with excellent base metal toughness and fatigue crack growth characteristics | |
JP4897126B2 (en) | Thick steel plate manufacturing method | |
JPWO2013089156A1 (en) | High-strength H-section steel with excellent low-temperature toughness and method for producing the same | |
JP2012207237A (en) | 500 MPa YIELD STRENGTH THICK STEEL PLATE EXCELLENT IN TOUGHNESS IN MULTILAYER WELD ZONE AND PRODUCTION METHOD THEREOF | |
JP2013194316A (en) | High strength steel plate for high heat input welding excellent in material uniformity in steel plate and method for manufacturing the same | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
WO2020004410A1 (en) | Clad steel sheet and production method thereof | |
JP5276871B2 (en) | Low yield specific thickness steel plate with excellent toughness of weld heat affected zone | |
JP4571915B2 (en) | Refractory thick steel plate and manufacturing method thereof | |
JP2009041073A (en) | High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same | |
JP7048378B2 (en) | High strength and high ductility steel sheet | |
JP4008378B2 (en) | Low yield ratio high strength steel with excellent toughness and weldability | |
JP2004156095A (en) | Steel sheet excellent in toughness of parent metal and weld-heat affected zone and its manufacturing method | |
JP3970801B2 (en) | High strength high toughness steel plate | |
JP2004124113A (en) | Non-water-cooled thin low yield ratio high tensile steel, and production method therefor | |
JP2018168411A (en) | Manufacturing method of high strength/high toughness steel plate | |
JP4497009B2 (en) | Thick steel plate with excellent fatigue crack propagation characteristics and toughness and method for producing the same | |
JP4354754B2 (en) | High-tensile steel plate with excellent base metal toughness and HAZ toughness | |
JP4313730B2 (en) | High-tensile steel plate with low material anisotropy and excellent low-temperature toughness | |
JP6237681B2 (en) | Low yield ratio high strength steel plate with excellent weld heat affected zone toughness | |
JP2004124114A (en) | Non-water-cooled thin low yield ratio high tensile steel having excellent toughness, and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20081007 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090116 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090310 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090311 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120319 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4279231 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130319 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140319 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |