JP4730088B2 - Low yield ratio high strength thick steel plate and method for producing the same - Google Patents
Low yield ratio high strength thick steel plate and method for producing the same Download PDFInfo
- Publication number
- JP4730088B2 JP4730088B2 JP2005374923A JP2005374923A JP4730088B2 JP 4730088 B2 JP4730088 B2 JP 4730088B2 JP 2005374923 A JP2005374923 A JP 2005374923A JP 2005374923 A JP2005374923 A JP 2005374923A JP 4730088 B2 JP4730088 B2 JP 4730088B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- strength
- yield ratio
- mpa
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 60
- 239000010959 steel Substances 0.000 title claims description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 15
- 238000001816 cooling Methods 0.000 claims description 37
- 229910000734 martensite Inorganic materials 0.000 claims description 25
- 238000003303 reheating Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 14
- 229910000859 α-Fe Inorganic materials 0.000 claims description 13
- 229910001563 bainite Inorganic materials 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims description 8
- 229910052759 nickel Inorganic materials 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 229910052799 carbon Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052720 vanadium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 description 28
- 238000005096 rolling process Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 229910001566 austenite Inorganic materials 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 238000010791 quenching Methods 0.000 description 8
- 230000000171 quenching effect Effects 0.000 description 8
- 239000010953 base metal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 229910052758 niobium Inorganic materials 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 229910001562 pearlite Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910000746 Structural steel Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009863 impact test Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000001846 repelling effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009628 steelmaking Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、建築、橋梁、ラインパイプ、海洋構造物等に供して好適な、高強度、低降伏比および高靭性の特性を併せ持つ鋼板に係り、特に、降伏強さ(YP)が650MPa以上、降伏比(YR)が80%以下の建築用高強度厚鋼板及びその製造方法に関する。 The present invention relates to a steel plate having characteristics of high strength, low yield ratio and high toughness, suitable for use in buildings, bridges, line pipes, offshore structures, etc., in particular, yield strength (YP) is 650 MPa or more, The present invention relates to a high strength thick steel sheet for construction having a yield ratio (YR) of 80% or less and a method for producing the same.
近年、建築構造物の大型化、長スパン化に伴い、使用される鋼材の厚肉化、高強度化が要望され、鋼構造物の安全性の観点からは、高い許容応力を有するとともに、降伏比を低減することが要求されている。 In recent years, with the increase in size and span of building structures, it has been required to increase the thickness and strength of steel used. From the viewpoint of safety of steel structures, it has high allowable stress and yield. There is a need to reduce the ratio.
降伏比を低減すると、降伏点以上の応力が付加されても破壊までに許容される応力が大きくなり、また、一様伸びが大きくなるため、塑性変形能に優れた鋼材となる。 When the yield ratio is reduced, even if a stress higher than the yield point is applied, the stress allowed until failure increases, and the uniform elongation increases, so that the steel material is excellent in plastic deformability.
ラインパイプの場合、使用される鋼材の高強度化への要求が高く、それに伴い、UOプレス加工時のスプリングバック、座屈等が問題となることから、これらを抑制する目的で降伏比の低い高張力鋼板が望まれている。 In the case of line pipes, there is a high demand for higher strength of steel materials used, and accordingly, springback, buckling, etc. during UO press processing become problems, so the yield ratio is low for the purpose of suppressing these A high strength steel sheet is desired.
特に、引張強さが780MPaを超える高張力鋼板では、強度確保のために合金を多量に添加することが一般的であるため、降伏比が上昇する傾向で、靭性も低下する。 In particular, in a high-tensile steel sheet having a tensile strength exceeding 780 MPa, it is common to add a large amount of an alloy for securing the strength, so that the yield ratio tends to increase and the toughness also decreases.
従来、低降伏比高強度厚鋼板の製造プロセスとしては、フェライト+オーステナイト2相域への再加熱焼入れを含む多段熱処理が一般的であるが、得られるミクロ組織は、フェライト相を主体とし、硬質第2相としてベイナイトあるいはマルテンサイトを分散させるものであり、フェライト相の体積分率によっては、780MPa以上の引張強度、650MPa以上の降伏強さ(YP)を安定して達成することが困難である。 Conventionally, a multistage heat treatment including reheating and quenching into a ferrite + austenite two-phase region is generally used as a manufacturing process of a low yield ratio high strength thick steel plate, but the obtained microstructure is mainly composed of a ferrite phase and is hard. Bainite or martensite is dispersed as the second phase, and depending on the volume fraction of the ferrite phase, it is difficult to stably achieve a tensile strength of 780 MPa or more and a yield strength (YP) of 650 MPa or more. .
一方、降伏比を考慮しない、780MPa級厚鋼板の製造プロセスは、圧延後、直ちにあるいは再加熱後、Ac3点以上の温度域から比較的低温域まで焼入れるので、ミクロ組織がベイナイト相あるいはマルテンサイト相となり、80%以下の降伏比とすることが難しい。 On the other hand, the manufacturing process of the 780 MPa class thick steel sheet without considering the yield ratio is quenched immediately after the rolling or after reheating and from the temperature range of Ac 3 or higher to a relatively low temperature range, so that the microstructure is bainite phase or martensite. It becomes a site phase and it is difficult to obtain a yield ratio of 80% or less.
そのため、高強度、低降伏比を併せ持った厚鋼板が要望され、種々の提案がなされている。 Therefore, a thick steel plate having both high strength and a low yield ratio is desired, and various proposals have been made.
特許文献1、特許文献2には、熱間圧延後の鋼板を焼入れした後、再度フェライト+オーステナイトの2相域まで加熱して焼入れを行い、高強度化と低降伏比化を達成することが記載されている。 In Patent Document 1 and Patent Document 2, after quenching the hot-rolled steel sheet, it is again heated to the two-phase region of ferrite + austenite for quenching to achieve high strength and low yield ratio. Are listed.
特許文献3には、圧延後、直ちに焼入れする直接焼入れ法により、焼入れ後のミクロ組織をベイナイト相あるいはマルテンサイト相とした後、再度フェライト+オーステナイトの2相域まで加熱し焼ならしを行い、高強度化と低降伏比化を達成することが記載されている。 In Patent Document 3, after rolling, by direct quenching immediately after quenching, the microstructure after quenching is changed to a bainite phase or a martensite phase, and then again heated to a ferrite + austenite two-phase region and subjected to normalization. It is described that high strength and low yield ratio are achieved.
特許文献4には、圧延後、一定時間経過し、フェライトを析出させた後、焼入れを行う直接焼入れ法により、フェライト相+マルテンサイト相の2相組織とし、高強度化と低降伏比化を達成することが記載されている。
しかしながら、特許文献1、特許文献2および特許文献3に記載された技術は、煩雑な熱処理プロセスにより、製造コストが上昇することが懸念され、特許文献4に記載された技術では、製造条件や鋼板内位置により、フェライトとマルテンサイト相の体積分率が変化しやすく、高強度化と低降伏比を安定的に得るために製造条件を調整する操業負荷が大きい。 However, the techniques described in Patent Document 1, Patent Document 2 and Patent Document 3 are concerned with an increase in manufacturing cost due to a complicated heat treatment process. In the technique described in Patent Document 4, the manufacturing conditions and the steel plate Depending on the inner position, the volume fraction of the ferrite and martensite phases is likely to change, and the operation load for adjusting the manufacturing conditions in order to stably obtain high strength and a low yield ratio is large.
そこで、本発明は、製造が容易で、安定した性能を備えた低降伏比高張力厚鋼板およびその製造方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a low-yield ratio high-tensile steel plate that is easy to manufacture and has stable performance, and a method for manufacturing the same.
本発明者らは、上記課題を達成するために、厚鋼板を対象に強度および降伏比に及ぼす各種要因のうち、従来、非常に脆く、母材の延性、靭性を低下させることから、低降伏比高強度厚鋼板の組織制御因子として、これまで積極的に利用されていない島状マルテンサイトに着目し.鋭意研究を行い、以下の知見を得た。 In order to achieve the above-mentioned problems, the present inventors have hitherto been considered to be very brittle among various factors affecting the strength and yield ratio of a thick steel plate, and lower the ductility and toughness of the base metal. Focusing on island martensite, which has not been actively used so far, as a structural control factor for high strength steel plates. We conducted intensive research and obtained the following knowledge.
1 780MPa級以上の引張強さと、650MPa以上の降伏強度および80%以下の低降伏比を安定して達成するためには、適切に選定した鋼組成において炭素当量Ceqを0.38〜0.55%とし、ミクロ組織中の島状マルテンサイトの面積分率、粒径およびアスペクト比を適正に制御することが重要である。 In order to stably achieve a tensile strength of 1 780 MPa or higher, a yield strength of 650 MPa or higher, and a low yield ratio of 80% or lower, a carbon equivalent Ceq of 0.38 to 0.55 in an appropriately selected steel composition is achieved. It is important to appropriately control the area fraction, the particle size, and the aspect ratio of the island martensite in the microstructure.
2 上記成分組成の鋼素材に熱間圧延を施した後、冷却速度と冷却停止温度を適正化した冷却処理を施し、さらには、冷却停止後の昇温速度と再加熱温度を適正化した再加熱処理を実施することにより、所望のミクロ組織を得ることが可能である。 2 After hot rolling the steel material having the above composition, it is subjected to a cooling process in which the cooling rate and the cooling stop temperature are optimized, and further, the heating rate after the cooling stop and the reheating temperature are optimized. By performing the heat treatment, a desired microstructure can be obtained.
本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.鋼組成が、質量%で、
C:0.03〜0.20%、
Si:0.05〜0.50%、
Mn:0.8〜3.0%、
P:0.02%以下、
S:0.0050%以下、
Al:0.005〜0.1%、
N:0.0070%以下、
を含有し、下記(1)式で定義されるCeqが0.38〜0.55%を満足し、残部がFeおよび不可避的不純物からなり、ミクロ組織が、フェライト相とベイナイト相主体の母相であって、硬質相として、平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で3〜30%を含むことを特徴とする降伏強さ(YP)が650MPa以上、引張強さが780MPa以上、降伏比(YR)が80%以下の低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で含有しない元素は0とする。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. Steel composition is mass%,
C: 0.03 to 0.20%
Si: 0.05 to 0.50%,
Mn: 0.8 to 3.0%,
P: 0.02% or less,
S: 0.0050% or less,
Al: 0.005 to 0.1%,
N: 0.0070% or less,
Ceq defined by the following formula (1) satisfies 0.38 to 0.55%, the balance is composed of Fe and unavoidable impurities, and the microstructure is a parent phase mainly composed of a ferrite phase and a bainite phase. The yield strength is characterized in that, as the hard phase, an island-shaped martensite having an average equivalent circle diameter of 1 to 10 μm and an average aspect ratio of 4.0 or less is contained in an area fraction of 3 to 30%. Low yield ratio high strength thick steel plate with (YP) of 650 MPa or more, tensile strength of 780 MPa or more , and yield ratio (YR) of 80% or less.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The element not contained in the content (mass%) of each element is set to 0.
2.1に記載した鋼組成からなる鋼片を、1000〜1250℃に加熱し、800℃以上の温度域において熱間圧延を終了後、Ar3点以上の温度域から5〜60℃/sの冷却速度でAr3−400℃〜Ar3−100℃の温度域まで冷却を行った後、一旦冷却を中断し、その後、Ac1点以下の温度域まで0.5℃/s以上の昇温速度で再加熱した後、空冷し、さらに、400℃以上、Ac 1 点以下で焼き戻すことを特徴とする降伏強さ(YP)が650MPa以上、引張強さが780MPa以上、降伏比(YR)が80%以下の低降伏比高強度厚鋼板の製造方法。 The steel slab having the steel composition described in 2.1 is heated to 1000 to 1250 ° C., and after the hot rolling is finished in the temperature range of 800 ° C. or higher, 5 to 60 ° C./s from the temperature range of Ar 3 points or higher. After cooling to a temperature range of Ar 3 -400 ° C. to Ar 3 -100 ° C. at a cooling rate of 1 , the cooling is temporarily interrupted, and then the temperature is increased to 0.5 ° C./s or more to a temperature range of 1 point or less of Ac. After reheating at a temperature rate, air cooling, and further tempering at 400 ° C. or more and Ac 1 point or less, yield strength (YP) is 650 MPa or more, tensile strength is 780 MPa or more , yield ratio (YR ) Is a method for producing a low yield ratio high strength thick steel plate having a strength of 80% or less.
本発明によれば、引張強さが780MPa級以上で、降伏強さ(YP)が650MPa以上および80%以下の低降伏比を有する厚鋼板を、煩雑な熱処理なく、安定して製造することができ、鋼構造物の大型化、鋼構造物の耐震性の向上や施工能率向上に大きく寄与し、産業上格段の効果を奏する。 According to the present invention, it is possible to stably produce a thick steel plate having a tensile strength of 780 MPa or more and a yield strength (YP) of 650 MPa or more and a low yield ratio of 80% or less without complicated heat treatment. It can greatly contribute to increasing the size of steel structures, improving the earthquake resistance of steel structures and improving construction efficiency, and has a remarkable industrial effect.
本発明ではミクロ組織と成分組成を規定する。
ミクロ組織
平均円相当径が1〜10μm、かつ平均アスペクト比が4.0以下の島状マルテンサイトを面積分率で3〜30%含む組織とする。
本発明ではミクロ組織を、フェライト相とベイナイト相主体の母相であって、硬質相として、島状マルテンサイトを含むものとする。
In the present invention, the microstructure and component composition are defined.
The microstructure contains an island-shaped martensite having an average equivalent circle diameter of 1 to 10 μm and an average aspect ratio of 4.0 or less in an area fraction of 3 to 30%.
In the present invention, the microstructure is a parent phase mainly composed of a ferrite phase and a bainite phase, and includes island-like martensite as a hard phase.
島状マルテンサイトは転位密度が非常に高く、またCの濃縮により、母相と比べて非常に硬い相であるために、TSが向上するとともに、多量に導入された可動転位がYSの上昇を抑制することにより、高強度と低降伏比の両立に有効である。 Island-like martensite has a very high dislocation density, and due to the concentration of C, it is a very hard phase compared to the parent phase, so TS is improved and a large amount of movable dislocations increases YS. Suppression is effective for achieving both high strength and a low yield ratio.
島状マルテンサイトの体積分率が3%未満では、上記のような、高強度化と低降伏比化の効果が得られず、一方、30%を超えると母材の延性、靭性が劣化する.このため、面積分率は3〜30%の範囲に限定する.なお、好ましくは、5〜20%である。 If the volume fraction of island-like martensite is less than 3%, the effects of increasing the strength and reducing the yield ratio as described above cannot be obtained. On the other hand, if it exceeds 30%, the ductility and toughness of the base material deteriorate. . For this reason, the area fraction is limited to a range of 3 to 30%. In addition, Preferably, it is 5 to 20%.
島状マルテンサイトの平均円相当径が1μm未満では、上記のような、高強度と低降伏比の効果が得られず、一方、10μmを超えると母材の靭性が劣化する。このため、平均円相当径は1〜10μmの範囲に限定する。なお、好ましくは、3〜8μmである。 If the average equivalent circle diameter of the island-like martensite is less than 1 μm, the effects of high strength and low yield ratio as described above cannot be obtained, while if it exceeds 10 μm, the toughness of the base material deteriorates. For this reason, an average equivalent circle diameter is limited to the range of 1-10 micrometers. In addition, Preferably, it is 3-8 micrometers.
島状マルテンサイトの平均アスペクト比は、高くなると母材靭性が劣化するため、可能なかぎり低くすることが望ましい。平均アスペクト比が4.0を超えると、この傾向が顕著となるため、上限とした。 The average aspect ratio of the island martensite is preferably as low as possible because the base material toughness deteriorates as the average aspect ratio increases. When the average aspect ratio exceeds 4.0, this tendency becomes remarkable, so the upper limit is set.
尚、島状マルテンサイトは、試料にレペラ腐食(JOURNAL OF METALS、March、1980、p.38−39)を実施して倍率1000倍の光学顕微鏡で観察して同定し、平均円相当径、平均アスペクト比は、倍率1000倍の光学顕微鏡で撮影した画像を画像解析装置を用いて求めた。 In addition, island martensite is identified by observing with an optical microscope having a magnification of 1000 times after carrying out repelling corrosion (JOURNAL OF METALS, March, 1980, p.38-39) on the sample. The aspect ratio was obtained by using an image analysis device for an image taken with an optical microscope having a magnification of 1000 times.
なお、島状マルテンサイトを除く母相は、実質的にベイナイト相とフェライト相の混合組織が主体組織で、パーライトおよびセメンタイト等の組織が混在すると強度が低下するため、面積分率は少ない方が良い。 The parent phase excluding island martensite is essentially a mixed structure of bainite phase and ferrite phase, and the strength decreases when a structure such as pearlite and cementite is mixed, so the area fraction should be smaller. good.
但し、パーライトおよびセメンタイト等の組織が面積分率で15%以下の場合には影響が無視できるため含有してもよい。強度確保の観点から、ベイナイト相の面積分率は60%以上であることが好ましい。 However, when the structure of pearlite, cementite or the like is 15% or less in area fraction, the influence can be ignored, so it may be contained. From the viewpoint of securing strength, the area fraction of the bainite phase is preferably 60% or more.
成分組成
説明において%は質量%を意味するものとする。
C:0.03〜0.20%
Cは、鋼の強度を増加させ、構造用鋼材として必要な強度を確保するのに有用な元素であり、また、上記した島状マルテンサイトを得るためには、0.03%以上の含有を必要とする。
In the description of the component composition,% means mass%.
C: 0.03-0.20%
C is an element useful for increasing the strength of steel and ensuring the necessary strength as a structural steel material. In order to obtain the above-described island-shaped martensite, the content of C is 0.03% or more. I need.
一方、0.20%を超える含有は、HAZ靭性、耐溶接割れ性を劣化させるとともに、母材の靭性を劣化させるため、0.03〜0.20%の範囲に限定する。好ましくは、0.05〜0.15%である。 On the other hand, if the content exceeds 0.20%, the HAZ toughness and weld crack resistance are deteriorated and the toughness of the base material is deteriorated, so the content is limited to the range of 0.03 to 0.20%. Preferably, it is 0.05 to 0.15%.
Si:0.05〜0.50%
Siは、脱酸材として作用し、製鋼上、少なくとも0.05%必要であるが、0.50%を超えて含有すると、母材の靭性が劣化するとともに、溶接性、HAZ靭性が顕著に劣化するため、0.05〜0.50%の範囲に限定する。好ましくは、0.05〜0.35%である。
Si: 0.05 to 0.50%
Si acts as a deoxidizing material, and at least 0.05% is necessary for steelmaking. However, when it exceeds 0.50%, the toughness of the base material deteriorates and the weldability and HAZ toughness are remarkable. In order to deteriorate, it limits to 0.05 to 0.50% of range. Preferably, it is 0.05 to 0.35%.
Mn:0.8〜3.0%
Mnは、鋼の強度を増加させる効果を有しており、本発明では、引張強度780MPa級以上を確保するためには、0.8%以上の含有を必要とする。一方、3.0%を超えて含有すると、母材の靭性およびHAZ靭性が著しく劣化するため、0.8〜3.0%の範囲に限定する。好ましくは、1.0〜2.5%である。
Mn: 0.8 to 3.0%
Mn has the effect of increasing the strength of steel, and in the present invention, it is necessary to contain 0.8% or more in order to ensure a tensile strength of 780 MPa or more. On the other hand, if the content exceeds 3.0%, the toughness of the base material and the HAZ toughness are remarkably deteriorated, so the content is limited to the range of 0.8 to 3.0%. Preferably, it is 1.0 to 2.5%.
P:0.02%以下
Pは、鋼の強度を増加させ靭性を劣化させる元素であり、特に溶接部の靭性を劣化させるので、可能なかぎり低減することが望ましい。0.02%を超えて含有されると、この傾向が顕著となるため、上限とした。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.005%以上とすることが望ましい。
P: 0.02% or less P is an element that increases the strength of steel and deteriorates toughness, and particularly deteriorates the toughness of welds. Therefore, it is desirable to reduce it as much as possible. When the content exceeds 0.02%, this tendency becomes remarkable, so the upper limit is set. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.005% or more.
S:0.0050%以下
Sは母材および溶接部の靭性を劣化させる元素であり、できるだけ低減することが望ましい。0.0050%を超えて含有されると、この傾向が顕著となるため、上限とした。
S: 0.0050% or less S is an element that deteriorates the toughness of the base metal and the welded portion, and is desirably reduced as much as possible. When the content exceeds 0.0050%, this tendency becomes remarkable, so the upper limit is set.
Al:0.1%以下
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中のNをAlNとして固定し、母材の靭性向上に寄与するが、0.1%を超える含有は、母材の靭性が低下するとともに、溶接時に溶接金属部に混入して、靭性を劣化させるため、0.1%以下に限定した。尚、このような効果はAl:0.005%以上の含有で認められ、好ましくは、0.01〜0.07%である。
Al: 0.1% or less Al acts as a deoxidizer, and is most commonly used in the molten steel deoxidation process of high-strength steel. In addition, N in the steel is fixed as AlN and contributes to the improvement of the toughness of the base metal. However, if the content exceeds 0.1%, the toughness of the base material decreases, and the weld metal part is mixed during welding, In order to deteriorate toughness, the content is limited to 0.1% or less. In addition, such an effect is recognized by containing Al: 0.005% or more, Preferably, it is 0.01 to 0.07%.
N:0.0070%以下
Nは不可避的不純物として鋼中に含まれ、0.0070%を超えて含有すると、母材および溶接部靭性が著しく低下するため、0.0070%以下に限定する。
N: 0.0070% or less N is contained in steel as an inevitable impurity, and if it exceeds 0.0070%, the toughness of the base metal and the welded portion is remarkably lowered, so the content is limited to 0.0070% or less.
Ceq:0.38〜0.55%
本発明では、上記した成分範囲内において(1)式で定義される炭素当量Ceqが0.38〜0.55%となるように、上述した成分組成の範囲内で含有量を調整する。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 (1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で、含有しないものは0とする。
Ceq: 0.38 to 0.55%
In the present invention, the content is adjusted within the above-described component composition range so that the carbon equivalent Ceq defined by the formula (1) is 0.38 to 0.55% within the above-described component range.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (1)
However, C, Mn, Si, Ni, Cr, Mo, V: The content (mass%) of each element, and 0 is not included.
Ceqが0.38%未満では、圧延、加速冷却時の焼入れ性が不足し、上記の組織要件を満足せず、所望の引張強さ780MPa級以上で650MPa以上の降伏強さ(YP)を確保できず、あるいは加速冷却および再加熱後に島状マルテンサイトが生成せず、所望の降伏比80%以下が確保できない。 If Ceq is less than 0.38%, the hardenability at the time of rolling and accelerated cooling is insufficient, the above structural requirements are not satisfied, and a desired tensile strength of 780 MPa class or higher and a yield strength (YP) of 650 MPa or higher are ensured. Otherwise, island martensite is not formed after accelerated cooling and reheating, and a desired yield ratio of 80% or less cannot be ensured.
一方、Ceqが0.55%を超えると、圧延、冷却後の母材靭性、および溶接部靭性が著しく劣化するため、0.38〜0.55%の範囲に限定した。 On the other hand, when Ceq exceeds 0.55%, the base metal toughness after rolling and cooling, and the welded portion toughness deteriorate significantly, so the range is limited to 0.38 to 0.55%.
本発明では、上記した基本成分系に加えて、必要に応じ、Cu、Ni、Cr、Mo、Nb、V、Ti、B、Ca、REM、Mgの1種または2種以上を含有することができる。 In the present invention, in addition to the basic component system described above, one or more of Cu, Ni, Cr, Mo, Nb, V, Ti, B, Ca, REM, and Mg may be contained as necessary. it can.
Cu:0.1〜1.0%、Ni:0.1〜2.0%の1種または2種以上
CuおよびNiは、高靭性を保ちつつ強度を増加させることが可能な元素であり、HAZ靭性への影響も小さいため、高強度化のために有用な元素であり、必要に応じ選択して含有できる。
One or more of Cu: 0.1 to 1.0%, Ni: 0.1 to 2.0% Cu and Ni are elements that can increase strength while maintaining high toughness, Since the influence on the HAZ toughness is small, it is an element useful for increasing the strength, and can be selected and contained as necessary.
添加する場合は、Cuは0.1%以上含有することが好ましいが、含有量が1.0%を超えると熱間脆性を生じて鋼板の表面性状を劣化させるため、0.1〜1.0%とする。尚、好ましくは、0.2〜0.7%である。 When added, Cu is preferably contained in an amount of 0.1% or more. However, if the content exceeds 1.0%, hot brittleness is caused and the surface properties of the steel sheet are deteriorated. 0%. In addition, Preferably, it is 0.2 to 0.7%.
Niは、添加する場合は、0.1%以上含有することが好ましいが、2.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利になるため、0.1〜2.0%に限定した。尚、好ましくは0.2〜1.7%である。 When Ni is added, it is preferably contained in an amount of 0.1% or more. However, even if Ni is contained in an amount exceeding 2.0%, the effect is saturated and an effect commensurate with the content cannot be expected. Since it becomes disadvantageous, it limited to 0.1 to 2.0%. In addition, Preferably it is 0.2 to 1.7%.
Cr:1.0%以下、Mo:1.0%以下、Nb:0.1%以下、V:0.2%以下、Ti:0.03%以下、B:0.005%以下の1種または2種以上
Cr、Mo、Nb、V、Ti、Bは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて適宜含有できる。
Cr: 1.0% or less, Mo: 1.0% or less, Nb: 0.1% or less, V: 0.2% or less, Ti: 0.03% or less, B: 0.005% or less Or 2 or more types Cr, Mo, Nb, V, Ti, and B are all elements that contribute to improving the strength of steel, and can be appropriately contained depending on the desired strength.
Crは、添加する場合、0.05%以上含有することが好ましいが、1.0%を超える含有は、HAZ靭性を劣化させるため、1.0%以下に限定することが望ましい。 When Cr is added, the content is preferably 0.05% or more. However, the content exceeding 1.0% deteriorates the HAZ toughness, so it is desirable to limit the content to 1.0% or less.
Moは、添加する場合、0.05%以上含有することが好ましいが、1.0%を超える含有は、母材靭性およびHAZ靭性に悪影響を及ぼすため、1.0%以下に限定することが望ましい。 When Mo is added, the content is preferably 0.05% or more. However, since the content exceeding 1.0% adversely affects the base material toughness and the HAZ toughness, it may be limited to 1.0% or less. desirable.
Nbは、添加する場合、0.005%以上含有することが好ましいが、0.1%を超える含有は、母材靭性およびHAZ靭性を劣化させるため、0.1%以下に限定することが望ましい。 When Nb is added, it is preferably contained in an amount of 0.005% or more. However, if the content exceeds 0.1%, the base material toughness and the HAZ toughness are deteriorated, so it is desirable to limit the content to 0.1% or less. .
Vは、添加する場合、0.01%以上含有することが好ましいが、0.2%を超える含有は、HAZ靭性を劣化させるため、0.2%以下に限定することが望ましい。 When V is added, it is preferably contained in an amount of 0.01% or more. However, if the content exceeds 0.2%, the HAZ toughness is deteriorated, so it is desirable to limit it to 0.2% or less.
Tiは、添加する場合、0.005%以上含有することにより、強度向上に寄与し、また、Nとの親和力が強く凝固時にTiNとして析出し、HAZでのオーステナイト粒の粗大化抑制してHAZの高靭化に寄与する。 When Ti is added, it contributes to strength improvement by containing 0.005% or more, and has a strong affinity for N and precipitates as TiN during solidification, and suppresses coarsening of austenite grains in HAZ. Contributes to higher toughness.
一方、0.03%を超えて含有すると、母材靭性を劣化させるため、0.03%以下に限定することが望ましい。 On the other hand, if the content exceeds 0.03%, the base material toughness is deteriorated, so it is desirable to limit the content to 0.03% or less.
Bは、焼入れ性の向上を介して、鋼の強度を増加させる作用を有するが、0.005%を超える含有は焼入れ性を著しく増加させ、母材の靭性、延性の劣化をもたらすため、含有させる場合は0.005%以下に限定した。なお、好ましくは、0.0003〜0.002%である。 B has the effect of increasing the strength of the steel through the improvement of hardenability, but the content exceeding 0.005% remarkably increases the hardenability and brings about deterioration of the toughness and ductility of the base material. When it is made to be limited to 0.005% or less. In addition, Preferably, it is 0.0003 to 0.002%.
Ca:0.005%以下、REM:0.02%以下およびMg:0.005%以下の1種または2種以上
Ca、REMおよびMgは、いずれも靭性向上に寄与する元素であり、所望する特性に応じて選択して含有できる。
Ca:0.005%以下
Caは、結晶粒の微細化を介して靭性を向上させる有用な元素であり、含有させる場合、0.001%以上含有することが好ましいが、0.005%を超えて含有しても効果が飽和するため、0.005%を上限とした。
One or more of Ca: 0.005% or less, REM: 0.02% or less, and Mg: 0.005% or less Ca, REM, and Mg are elements that contribute to toughness improvement, and are desired It can be selected depending on the characteristics.
Ca: 0.005% or less Ca is a useful element that improves toughness through refinement of crystal grains. When Ca is contained, it is preferably contained in an amount of 0.001% or more, but exceeds 0.005%. Even if contained, the effect is saturated, so 0.005% was made the upper limit.
REMは、含有させる場合、0.002%以上含有することが好ましいが、0.02%を超えて含有しても効果が飽和するため、0.02%を上限とした。 When REM is contained, it is preferably contained in an amount of 0.002% or more. However, even if contained over 0.02%, the effect is saturated, so 0.02% was made the upper limit.
Mgは、結晶粒の微細化を介して靭性を向上させる有用な元素であり、0.001%以上含有することが好ましいが、0.005%を超えて含有しても効果が飽和するため、0.005%を上限とした。 Mg is a useful element that improves toughness through refinement of crystal grains, and is preferably contained in an amount of 0.001% or more, but even if contained in excess of 0.005%, the effect is saturated, The upper limit was 0.005%.
上記した成分以外の残部は、Feおよび不可避的不純物である。 The balance other than the above components is Fe and inevitable impurities.
次に、製造方法について説明する。尚、温度は板厚1/2t部の温度とする。 Next, a manufacturing method will be described. The temperature is a temperature of 1/2 t part of the plate thickness.
1000℃〜1250℃加熱
上述した組成の溶鋼を、転炉、電気炉、真空溶解炉等、定法で溶製し、得られた鋼素材を1000℃〜1250℃に再加熱する。
1000 ° C. to 1250 ° C. Heating The molten steel having the above composition is melted by a conventional method such as a converter, electric furnace, vacuum melting furnace, etc., and the obtained steel material is reheated to 1000 ° C. to 1250 ° C.
再加熱温度が1000℃未満では、熱間圧延での変形抵抗が高くなり、1パス当たりの圧下量が大きく取れなくなることから、圧延パス数が増加し、圧延能率の低下を招くとともに、鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合がある。 If the reheating temperature is less than 1000 ° C., the deformation resistance in hot rolling becomes high, and the amount of reduction per pass cannot be made large. Therefore, the number of rolling passes increases and the rolling efficiency decreases, and the steel material The casting defect in (slab) may not be crimped.
一方、再加熱温度が1250℃を超えると、加熱時のスケールによって表面疵が生じやすく、圧延後の手入れ負荷が増大する。このため、鋼素材の再加熱温度は1000〜1250℃の範囲とするのが好ましい。 On the other hand, when the reheating temperature exceeds 1250 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases. For this reason, it is preferable to make the reheating temperature of a steel raw material into the range of 1000-1250 degreeC.
熱間圧延
再加熱された鋼素材は、所定の板厚になるまで、圧延終了温度を800℃以上となる熱間圧延を施す。熱間圧延条件は、圧延終了温度を800℃以上とする以外には、所定の板厚および形状を満足できればよく、その条件はとくに限定されない。
Hot rolling The reheated steel material is subjected to hot rolling with a rolling end temperature of 800 ° C. or higher until a predetermined thickness is reached. The hot rolling conditions are not particularly limited as long as a predetermined plate thickness and shape can be satisfied except that the rolling end temperature is 800 ° C. or higher.
尚、板厚が80mmを超える極厚鋼板の場合には、ザク圧着のために1パスあたりの圧下率が15%以上となる圧延パスを少なくとも1パス以上確保することが望ましい。
圧延終了温度が800℃未満では、変形抵抗が高くなりすぎて、圧延荷重が増大し、圧延機への負担が大きくなる。
In the case of an extremely thick steel plate having a plate thickness exceeding 80 mm, it is desirable to secure at least one or more rolling passes with a rolling reduction per pass of 15% or more for zaku pressure bonding.
When the rolling end temperature is less than 800 ° C., the deformation resistance becomes too high, the rolling load increases, and the burden on the rolling mill increases.
また、厚肉材を800℃未満まで圧延温度を低下させるためには、圧延途中で待機する必要で、生産性を大きく阻害する。このため、圧延終了温度を800℃以上とした。 Further, in order to lower the rolling temperature of the thick material to less than 800 ° C., it is necessary to wait in the middle of rolling, which greatly hinders productivity. For this reason, the rolling end temperature was set to 800 ° C. or higher.
冷却条件
圧延終了後、得られた厚鋼板は、Ar3点以上の温度域から5〜60℃/sの平均冷却速度で、Ar3−400℃〜Ar3−100℃まで冷却する。
Cooling conditions After the end of rolling, the obtained thick steel plate is cooled from an Ar 3 point or higher temperature range to Ar 3 -400 ° C. to Ar 3 -100 ° C. at an average cooling rate of 5 to 60 ° C./s.
冷却停止温度は、本発明の製造方法において、特に重要な制御因子であり、冷却停止温度がAr3−400℃よりも低くなると、冷却停止時にはベイナイト変態が完了し残留オーステナイトが存在せず、その後の再加熱、空冷時に、残留オーステナイトからの島状マ
ルテンサイトの生成がなく、所望の降伏比80%以下を満足することができない。
The cooling stop temperature is a particularly important control factor in the production method of the present invention. When the cooling stop temperature becomes lower than Ar 3 -400 ° C., the bainite transformation is completed and no residual austenite exists after the cooling stop, At the time of reheating and air cooling, there is no formation of island martensite from retained austenite, and the desired yield ratio of 80% or less cannot be satisfied.
一方、冷却後の冷却停止温度がAr3−100℃よりも高くなると、冷却停止時にはベイナイト変態が進行せず、残留オーステナイトへのCの拡散が進行しないために、島状マルテンサイトが生成せず、所望の引張強さ780MPa級以上で650MPa以上の降伏
強さ(YP)および降伏比80%以下を満足することができない。
On the other hand, if the cooling stop temperature after cooling is higher than the Ar 3 -100 ° C., cooling the stop does not proceed bainite transformation, in order to diffuse the C into the retained austenite does not proceed, without generating the island martensite The desired tensile strength of 780 MPa or higher and the yield strength (YP) of 650 MPa or higher and the yield ratio of 80% or lower cannot be satisfied.
また、圧延終了後の冷却速度が5℃/s未満では、加速冷却後のミクロ組織がフェライト主体組織となるため、所望の引張強さ780MPa級以上で650MPa以上の降伏強さ(YP)を確保できなくなる。 In addition, when the cooling rate after rolling is less than 5 ° C./s, the microstructure after accelerated cooling becomes a ferrite main structure, so that a desired tensile strength of 780 MPa class or higher and a yield strength (YP) of 650 MPa or higher is ensured. become unable.
一方、冷却速度が60℃/sを超えると、鋼板位置による温度制御が困難となり、材質
ばらつきが生じる。
On the other hand, when the cooling rate exceeds 60 ° C./s, it becomes difficult to control the temperature depending on the position of the steel sheet, resulting in material variations.
加速冷却終了後の厚鋼板は、一旦冷却を中断し、Ac1点以下の温度域まで0.5℃/s以上の昇温速度で再加熱した後、空冷する。 After the accelerated cooling is finished, the thick steel plate is temporarily cooled and reheated to a temperature range of Ac 1 point or less at a heating rate of 0.5 ° C./s or higher and then air-cooled.
昇温速度が0.5℃/s未満では、目的の再加熱温度まで長時間を要するために製造効率が低下し、またパーライト変態が生じるために島状マルテンサイトが生成せず、所望の降伏比80%以下を満足することができない。 If the rate of temperature rise is less than 0.5 ° C / s, it takes a long time to reach the desired reheating temperature, resulting in a decrease in production efficiency, and because pearlite transformation occurs, no island-like martensite is generated and the desired yield is achieved. The ratio of 80% or less cannot be satisfied.
また、再加熱温度がAc1点以上になるとベイナイトの軟化により、所望の引張強さ780MPa級以上で650MPa以上の降伏強さ(YP)を満足することができなくなる。 When the reheating temperature is Ac 1 point or higher, the desired tensile strength of 780 MPa or higher and yield strength (YP) of 650 MPa or higher cannot be satisfied due to softening of bainite.
再加熱温度は、残留オーステナイトへのCの拡散を進行させるため、冷却停止温度より100℃以上昇温することが望ましい。 The reheating temperature is desirably raised by 100 ° C. or more from the cooling stop temperature in order to promote diffusion of C into the retained austenite.
尚、再加熱後の保持時間は、生産性を阻害しないように、好ましくは、保持時間15min.以下とする。再加熱の手段として、雰囲気炉加熱、ガス炎、誘導加熱等が利用できるが、経済性、制御性等を考慮すると、誘導加熱が好ましい。 The holding time after reheating is preferably 15 min. So as not to inhibit productivity. The following. As means for reheating, atmospheric furnace heating, gas flame, induction heating and the like can be used, but in consideration of economy, controllability and the like, induction heating is preferable.
上記した、圧延後の冷却速度が5〜60℃/sの平均冷却速度範囲で、かつ加速冷却停止温度がAr3−400℃〜Ar3−100℃の範囲を満足することにより、加速冷却直後に、ベイナイト主体組織中に、残留オーステナイトが微細に分散したミクロ組織が得られる。 When the cooling rate after rolling is within the average cooling rate range of 5 to 60 ° C./s and the accelerated cooling stop temperature satisfies the range of Ar 3 to 400 ° C. to Ar 3 to 100 ° C., immediately after the accelerated cooling. In addition, a microstructure in which retained austenite is finely dispersed in the bainite main structure is obtained.
さらに、その後の0.5℃/s以上の昇温速度でAc1点以下までの再加熱、空冷により、微細に分散した残留オーステナイトにCが拡散して島状マルテンサイトが生成され、目的とするミクロ組織が達成され、引張り強さ780MPa級以上の高強度で650MPa以上の降伏強さ(YP)と80%以下の低降伏比が両立される。 Furthermore, C is diffused into the finely dispersed residual austenite by the subsequent reheating up to the Ac1 point or less at a heating rate of 0.5 ° C./s or more and air cooling, and island martensite is generated. A microstructure is achieved, and a tensile strength of 780 MPa or higher and a yield strength (YP) of 650 MPa or higher and a low yield ratio of 80% or lower are compatible.
尚、Ar3点は化学組成との相関が認められ、一例として(2)式が利用できる。
Ar3=868−396C+25Si−68Mn−21Cu−36Ni−25Cr−30Mo (2)
(ただし、C、Si、Mn、Cu、Ni、Cr、Mo:各合金元素の含有量(質量%))。
Incidentally, Ar 3 points observed correlation with chemical composition, as an example (2) can be used.
Ar 3 = 868-396C + 25Si-68Mn-21Cu-36Ni-25Cr-30Mo (2)
(However, C, Si, Mn, Cu, Ni, Cr, Mo: content of each alloy element (mass%)).
また、Ac1点も化学組成との相関が認められ、一例として(3)式が利用できる。
Ac1=751−27C+18Si−12Mn−23Cu−23Ni+24Cr+23Mo−40V−6Ti+233Nb−169Al−895B (3)
(ただし、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti、Nb、Al、B:各合金元素の含有量(質量%))。
Further, a correlation with the chemical composition is also observed at Ac 1 point, and the formula (3) can be used as an example.
Ac 1 = 751-27C + 18Si-12Mn -23Cu-23Ni + 24Cr + 23Mo-40V-6Ti + 233Nb-169Al-895B (3)
(However, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al, B: content of each alloy element (mass%)).
本発明では、鋼板を室温まで冷却した後、再加熱、焼もどし処理を施してもよい。焼もどし工程では、400℃以上Ac1点以下の焼もどし処理により、靭性を向上させることが可能である。 In the present invention, the steel sheet may be cooled to room temperature and then reheated and tempered. In the tempering step, it is possible to improve toughness by tempering at 400 ° C. or higher and Ac 1 point or lower.
焼もどし処理後のミクロ組織として、硬質相は焼もどされた島状マルテンサイトとなるが、母相よりも十分に硬度が高ければ、高強度と低降伏比を両立させる効果を得ることができる。 As the microstructure after tempering, the hard phase becomes tempered island martensite, but if the hardness is sufficiently higher than the parent phase, the effect of achieving both high strength and low yield ratio can be obtained. .
このような効果を得るためには、焼もどし温度を400℃以上とする必要があるが、 Ac1点を超えると強度低下を招くため、焼もどし処理は、400℃〜Ac1点で行うことが望ましい。 In order to obtain such an effect, it is necessary to set the tempering temperature to 400 ° C. or higher. However, if the temperature exceeds 1 Ac, the strength is reduced, so the tempering treatment should be performed at 400 ° C. to 1 Ac. Is desirable.
上記した組成の鋼素材を用いて、上記した条件の熱間圧延、冷却および再加熱、空冷を施すことにより、島状マルテンサイトを分散して生成させることが可能で、引張強さ780MPa級以上で650MPa以上の降伏強さ(YP)および降伏比80%以下を兼備する低降伏比高強度鋼板を容易に製造することができる. By using the steel material having the above composition, by performing hot rolling, cooling and reheating, and air cooling under the above-described conditions, it is possible to disperse and generate island martensite and have a tensile strength of 780 MPa or more. Thus, it is possible to easily produce a low yield ratio high strength steel plate having a yield strength (YP) of 650 MPa or more and a yield ratio of 80% or less.
転炉−取鍋精錬−連続鋳造法で、調製された鋼素材を、熱間圧延−加速冷却−再加熱−空冷、さらには焼もどしにより種々の板厚の厚鋼板とした。 The steel materials prepared by the converter-ladder refining-continuous casting method were made into thick steel plates having various thicknesses by hot rolling-accelerated cooling-reheating-air cooling and tempering.
表1に鋼素材の成分組成を、表2に製造条件と鋼板の板厚を示す。得られた各厚鋼板の板厚1/2位置から、JIS4号引張試験片を採取し、JIS Z 2241(1998年)の既定に準拠して引張試験を実施し、引張特性を調査した。 Table 1 shows the component composition of the steel material, and Table 2 shows the manufacturing conditions and the plate thickness of the steel sheet. A JIS No. 4 tensile test piece was sampled from the plate thickness ½ position of each thick steel plate obtained, and a tensile test was performed according to the default of JIS Z 2241 (1998) to examine the tensile properties.
また、得られた各厚鋼板の板厚1/2位置から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠してシャルピー衝撃試験を実施し、0℃における吸収エネルギー(vE0)を求め、母材靭性を評価した。 In addition, a V-notch test piece was taken from the position of 1/2 of the thickness of each steel plate obtained in accordance with JIS Z 2202 (1998), and in accordance with JIS Z 2242 (1998). Then, a Charpy impact test was carried out, the absorbed energy (vE 0 ) at 0 ° C. was determined, and the base material toughness was evaluated.
得られた結果を表3に示す。本発明例は、いずれも、引張強さ780MPa以上で650MPa以上の降伏強さ(YP)および降伏比80%以下、0℃での吸収エネルギー vEo>100Jの高強度、低降伏比で、高靭性の母材特性を有する。 The obtained results are shown in Table 3. The examples of the present invention all have a tensile strength of 780 MPa or more, a yield strength (YP) of 650 MPa or more, a yield ratio of 80% or less, an absorbed energy at 0 ° C., a high strength of vEo> 100 J, a low yield ratio, and high toughness. The base material characteristics are
一方、本発明の範囲を外れる比較例は、母材強度、降伏比、母材靭性のうち、いずれか、あるいは複数の特性が目標値を満足していない。 On the other hand, in a comparative example that is out of the scope of the present invention, one or a plurality of characteristics among the base material strength, the yield ratio, and the base material toughness do not satisfy the target value.
Claims (2)
C:0.03〜0.20%、
Si:0.05〜0.50%、
Mn:0.8〜3.0%、
P:0.02%以下、
S:0.0050%以下、
Al:0.005〜0.1%、
N:0.0070%以下、
を含有し、下記(1)式で定義されるCeqが0.38〜0.55%を満足し、残部が
Feおよび不可避的不純物からなり、ミクロ組織が、フェライト相とベイナイト相主体
の母相であって、硬質相として、平均円相当径が1〜10μm、かつ平均アスペクト比
が4.0以下の島状マルテンサイトを面積分率で3〜30%を含むことを特徴とする降
伏強さ(YP)が650MPa以上、引張強さが780MPa以上、降伏比(YR)が
80%以下の低降伏比高強度厚鋼板。
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14
(1)
但し、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)で含有しな
い元素は0とする。 Steel composition is mass%,
C: 0.03 to 0.20%
Si: 0.05 to 0.50%,
Mn: 0.8 to 3.0%,
P: 0.02% or less,
S: 0.0050% or less,
Al: 0.005 to 0.1%,
N: 0.0070% or less,
Ceq defined by the following formula (1) satisfies 0.38 to 0.55%, the balance is composed of Fe and inevitable impurities, and the microstructure is mainly composed of ferrite phase and bainite phase.
The hard phase includes an island-like martensite having an average equivalent circle diameter of 1 to 10 μm and an average aspect ratio of 4.0 or less in an area fraction of 3 to 30%. Low yield ratio high strength thick steel sheet with a yield strength (YP) of 650 MPa or more, a tensile strength of 780 MPa or more , and a yield ratio (YR) of 80% or less.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14
(1)
However, C, Mn, Si, Ni, Cr, Mo, V: Elements not contained in the content (mass%) of each element shall be 0.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005374923A JP4730088B2 (en) | 2005-12-27 | 2005-12-27 | Low yield ratio high strength thick steel plate and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005374923A JP4730088B2 (en) | 2005-12-27 | 2005-12-27 | Low yield ratio high strength thick steel plate and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007177266A JP2007177266A (en) | 2007-07-12 |
JP4730088B2 true JP4730088B2 (en) | 2011-07-20 |
Family
ID=38302738
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005374923A Active JP4730088B2 (en) | 2005-12-27 | 2005-12-27 | Low yield ratio high strength thick steel plate and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4730088B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101257547B1 (en) * | 2007-07-23 | 2013-04-23 | 신닛테츠스미킨 카부시키카이샤 | Steel pipes excellent in deformation characteristics and process for manufacturing the same |
JP5245414B2 (en) * | 2008-01-07 | 2013-07-24 | Jfeスチール株式会社 | Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe |
JP5076959B2 (en) * | 2008-02-22 | 2012-11-21 | Jfeスチール株式会社 | Low yield ratio high strength steel sheet with excellent ductile crack initiation characteristics and its manufacturing method |
JP5162382B2 (en) * | 2008-09-03 | 2013-03-13 | 株式会社神戸製鋼所 | Low yield ratio high toughness steel plate |
KR101091306B1 (en) * | 2008-12-26 | 2011-12-07 | 주식회사 포스코 | High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof |
CN102549189B (en) * | 2009-09-30 | 2013-11-27 | 杰富意钢铁株式会社 | Steel plate with low yield ratio, high strength, and high toughness and process for producing same |
RU2502820C1 (en) * | 2009-09-30 | 2013-12-27 | ДжФЕ СТИЛ КОРПОРЕЙШН | Plate steel characterised by low ratio between yield point and ultimate strength, high strength and high uniform relative elongation, and method for its manufacture |
JP2011153366A (en) * | 2010-01-28 | 2011-08-11 | Nippon Steel Corp | Method for manufacturing high-tensile-strength steel sheet to be laser-welded or laser/arc hybrid-welded having tensile strength of 1,100 mpa or more |
JP6064320B2 (en) * | 2012-01-04 | 2017-01-25 | Jfeスチール株式会社 | Low yield ratio high strength steel plate with excellent ductile fracture resistance |
JP7006154B2 (en) * | 2017-01-16 | 2022-02-10 | 日本製鉄株式会社 | Manufacturing method of thick steel plate and thick steel plate |
WO2020218244A1 (en) * | 2019-04-23 | 2020-10-29 | Jfeスチール株式会社 | Hot-rolled steel strip for cold-rolled square steel pipe, method for manufacturing same, and method for manufacturing cold-rolled square steel pipe |
CN116145022B (en) * | 2021-11-19 | 2024-03-08 | 宝山钢铁股份有限公司 | Low yield ratio steel plate with yield strength not lower than 900MPa and manufacturing method thereof |
CN116377337A (en) * | 2023-02-08 | 2023-07-04 | 武安市裕华钢铁有限公司 | Production process of high-strength-to-yield-ratio series anti-seismic profile steel |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003293076A (en) * | 2002-04-09 | 2003-10-15 | Jfe Steel Kk | High strength steel pipe stock having low yield ratio after pipe making and production method thereof |
JP2005023423A (en) * | 2003-06-12 | 2005-01-27 | Jfe Steel Kk | Method for producing low-yield-ratio high-strength high-toughness steel sheet |
JP2006291348A (en) * | 2005-03-17 | 2006-10-26 | Jfe Steel Kk | Low yield-ratio high-tensile steel having excellent weldability, and its production method |
-
2005
- 2005-12-27 JP JP2005374923A patent/JP4730088B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003293076A (en) * | 2002-04-09 | 2003-10-15 | Jfe Steel Kk | High strength steel pipe stock having low yield ratio after pipe making and production method thereof |
JP2005023423A (en) * | 2003-06-12 | 2005-01-27 | Jfe Steel Kk | Method for producing low-yield-ratio high-strength high-toughness steel sheet |
JP2006291348A (en) * | 2005-03-17 | 2006-10-26 | Jfe Steel Kk | Low yield-ratio high-tensile steel having excellent weldability, and its production method |
Also Published As
Publication number | Publication date |
---|---|
JP2007177266A (en) | 2007-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4730088B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP5130796B2 (en) | Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same | |
JP4730102B2 (en) | Low yield ratio high strength steel with excellent weldability and manufacturing method thereof | |
JP5573265B2 (en) | High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same | |
JP4897125B2 (en) | High-strength steel sheet and its manufacturing method | |
JP5476763B2 (en) | High tensile steel plate with excellent ductility and method for producing the same | |
JP5354164B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP5267048B2 (en) | Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction | |
JP5439973B2 (en) | High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same | |
JP5407478B2 (en) | High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same | |
JP5034290B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
JP2018053281A (en) | Rectangular steel tube | |
JPWO2012060405A1 (en) | High strength steel plate and manufacturing method thereof | |
JP2012122111A (en) | Method for producing tmcp and tempering process type high-strength thick steel plate having both excellent productivity and weldability, and excellent in drop-weight characteristic after pwht | |
JP6056235B2 (en) | Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more | |
JP5089224B2 (en) | Manufacturing method of on-line cooling type high strength steel sheet | |
JP4096839B2 (en) | Manufacturing method of high yield thick steel plate with low yield ratio and excellent toughness of heat affected zone | |
JP5200600B2 (en) | Manufacturing method of high strength and low yield ratio steel | |
JP2013108168A (en) | Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance | |
JP5477457B2 (en) | High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less | |
JP4924047B2 (en) | Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less | |
JP5245414B2 (en) | Steel plate for low yield ratio high strength steel pipe, its manufacturing method and low yield ratio high strength steel pipe | |
JP2023031269A (en) | Ultra-low yield ratio high tensile strength thick steel sheet, and method for producing the same | |
JP2023045253A (en) | Steel plate and method for producing the same | |
JP2009161811A (en) | Steel sheet for low yield ratio high strength steel pipe, method for producing the same, and low yield ratio high strength steel pipe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110104 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110322 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110404 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140428 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4730088 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |