KR101091306B1 - High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof - Google Patents

High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof Download PDF

Info

Publication number
KR101091306B1
KR101091306B1 KR1020080134885A KR20080134885A KR101091306B1 KR 101091306 B1 KR101091306 B1 KR 101091306B1 KR 1020080134885 A KR1020080134885 A KR 1020080134885A KR 20080134885 A KR20080134885 A KR 20080134885A KR 101091306 B1 KR101091306 B1 KR 101091306B1
Authority
KR
South Korea
Prior art keywords
less
steel sheet
high strength
excluding
strength steel
Prior art date
Application number
KR1020080134885A
Other languages
Korean (ko)
Other versions
KR20100076745A (en
Inventor
홍순택
장성호
방기현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020080134885A priority Critical patent/KR101091306B1/en
Priority to PCT/KR2009/007647 priority patent/WO2010074473A2/en
Priority to EP09835239.6A priority patent/EP2370608A4/en
Priority to CN200980152846.4A priority patent/CN102264936B/en
Priority to US13/141,733 priority patent/US20110259481A1/en
Publication of KR20100076745A publication Critical patent/KR20100076745A/en
Application granted granted Critical
Publication of KR101091306B1 publication Critical patent/KR101091306B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명은, 중량%로, C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하, Mo: 0.2% 이하, Ni: 0.6% 이하, V: 0.07% 이하, Nb: 0.04% 이하, Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, B: 0.0005~0.0020%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 고강도 강판을 제공한다. 본 발명의 강판은 템퍼드 마르텐사이트로 이루어질 수 있으며, 미세조직의 평균 입자 크기 및 조직 결정립의 형상비를 제어하기 위하여 냉각 및 재결정 제어 압연 조건을 최적화하여 원자력 발전소에서의 사용, 예를 들면 650MPa 이상의 인장 강도 및 -50℃에서의 충격 인성이 200J 이상으로 1000MW 이상의 원자력 발전소에서 원자로 격납 용기(Containment Vessel)로 사용이 가능한 우수한 고강도 강판 및 그 제조방법을 제공할 수 있다.In the present invention, by weight%, C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less, Mo: 0.2% or less, Ni: 0.6% or less, V: 0.07% or less, Nb: 0.04% or less, Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, B: Provided is a high strength steel sheet containing 0.0005 to 0.0020%, balance Fe and other unavoidable impurities. The steel sheet of the present invention may be made of tempered martensite, and used in a nuclear power plant by optimizing cooling and recrystallization controlled rolling conditions in order to control the average particle size of microstructure and the shape ratio of tissue grains, for example, a tension of 650 MPa or more. It is possible to provide an excellent high strength steel sheet and its manufacturing method which can be used as a reactor containment vessel in a nuclear power plant of 1000MW or more with strength and impact toughness at -50 ° C of 200J or more.

템퍼드 마르텐사이트, 결정립 형상비, 충격 인성, 인장 강도, 원자로 격납 용기(Containment Vessel) Tempered martensite, grain shape ratio, impact toughness, tensile strength, reactor containment vessel

Description

원자로 격납 용기용 고강도 강판 및 그 제조방법{High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof}High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof}

본 발명은 인장 강도 및 충격 인성이 우수한 고강도 강판 및 그 제조방법에 관한 것으로, 보다 상세하게는 원자로 격납 용기로 사용이 가능한 수준의 인장 강도 및 충격 인성을 확보할 수 있는 고강도 강판 및 그 제조방법에 관한 것이다.The present invention relates to a high strength steel sheet excellent in tensile strength and impact toughness and a method for manufacturing the same, and more particularly, to a high strength steel sheet and a method for manufacturing the same, capable of securing tensile strength and impact toughness that can be used as a reactor containment vessel. It is about.

세계적으로 석탄, 석유 등과 같은 화석 에너지의 매장량은 점차 고갈되어 가는 추세이다. 이러한 세계적인 에너지 문제는 원자력 에너지의 중요성을 더욱 부각시키고 있으며, 실제로 원자력 에너지의 사용 비중은 나날이 증가하고 있는 추세이다.Globally, the reserves of fossil energy such as coal and oil are gradually depleted. This global energy problem has highlighted the importance of nuclear energy, and in fact, the share of nuclear energy is increasing day by day.

하지만, 원자력 에너지를 안정적으로 생산하기 위해서는 원자력 발전소의 안전성을 보증할 수 있는 설비와 부재가 필수적을 확보되어야 한다. 실제로 천재지변 기타 각종 원인으로 인하여 원자력 발전소에 사고가 발생하는 경우에는, 큰 문제가 발생할 수 있고 이는 환경적 측면이나 비용적 측면에서 막대한 손해를 피할 수 없 는 결과를 가져올 수 있기 때문이다. However, in order to stably produce nuclear energy, facilities and components that can guarantee the safety of nuclear power plants must be secured. In fact, in the event of an accident at a nuclear power plant due to natural disasters or other causes, a big problem can occur, which can result in inevitable damages in terms of environmental and cost.

원자력 발전소에 사용되는 구조, 설비 등을 구성하는 재료는 그 종류, 용도, 안전성 등에 따라 다양한 소재가 이용되고 있다. 특히 원자로 격납 용기(Containment Vessel)에는 철강 소재가 이용되고 있는데, 여기에는 두꺼운 강판 재료로, 특히 노멀라이징 열처리법으로 제조된 A516-70강이 주로 사용되고 있다.Various materials are used for the material which comprises the structure, installation, etc. which are used for a nuclear power plant according to the kind, a use, safety, etc. In particular, a steel material is used in a reactor vessel, and a thick steel sheet material, in particular, A516-70 steel manufactured by a normalizing heat treatment method is mainly used.

하지만, 상기 A516-70강은 원자력 발전소의 안전성을 보증하기에는 다소 낮은 인장 강도(500Mpa 수준)를 나타내기 때문에, 그 사용 범위가 한정되어 있는 것이 현실이었다. 낮은 인장 강도의 소재를 사용하는 경우, 내부로부터의 높은 압력을 견디지 못할 수 있어 심각한 위험을 초래할 수 있기 때문이다.However, since the A516-70 steel exhibits a tensile strength (500 Mpa level) which is somewhat low to guarantee the safety of nuclear power plants, the use range of the A516-70 steel is limited. This is because when using a material with low tensile strength, it may not be able to withstand the high pressure from the inside, which may cause a serious danger.

하지만, 인장 강도의 향상을 위하여 단순히 고가의 합금 원소를 다량 첨가하거나 강재에 별도의 열처리를 한다면 생산 비용의 증가를 피할 수 없으며, 기타 다른 부수적인 문제를 수반할 우려가 나타날 수 있다. 따라서, 기존의 특성은 유지하면서도 원자력 발전소에서의 사용, 예를 들어 1000MW급 고전력 원자력 발전소에서 원자로 격납 용기로의 사용이 가능한 인장 강도 650MPa급 소재의 개발이 요구되는 실정이다.However, simply adding a large amount of expensive alloying elements or a separate heat treatment to the steel in order to improve the tensile strength is inevitable to increase the production cost, and may cause other incidental problems. Therefore, there is a need to develop a tensile strength 650MPa material that can be used in a nuclear power plant, for example, as a nuclear reactor containment vessel while maintaining existing characteristics.

본 발명은 기존의 원자력 발전소에 사용되던 원자로 격납 용기용 강재의 인장 강도를 보다 향상시켜 1000MW급 이상의 원자력 발전소에서 사용이 가능한 고강도 강판 및 그 제조방법을 제공하고자 한다.The present invention is to provide a high-strength steel sheet and a method of manufacturing the same that can be used in a nuclear power plant of 1000MW or more by improving the tensile strength of the steel for reactor containment vessels used in the existing nuclear power plant.

본 발명은, 중량%로, C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하, Mo: 0.2% 이하, Ni: 0.6% 이하, V: 0.07% 이하, Nb: 0.04% 이하, Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, B: 0.0005~0.0020%, 잔부 Fe 및 기타 불가피한 불순물을 포함하며, Cu + Ni + Cr + Mo: 1.5% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하 및 Ca/S: 1.0 이하를 만족하는 고강도 강판에 관한 것이다. 이 경우, 상기 강판의 미세조직은 템퍼드 마르텐사이트로 이루어질 수 있으며, 이 경우 미세조직의 평균 입자 크기는 30㎛ 이하일 수 있다. 또한, 상기 미세조직의 결정립 형상비(장축/단축)는 1.1~2.5일 수 있다.In the present invention, by weight%, C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less, Mo: 0.2% or less, Ni: 0.6% or less, V: 0.07% or less, Nb: 0.04% or less, Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, B: 0.0005 to 0.0020%, balance Fe and other unavoidable impurities, including Cu + Ni + Cr + Mo: 1.5% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less and Ca / S: 1.0 or less It relates to a satisfactory high strength steel sheet. In this case, the microstructure of the steel sheet may be made of tempered martensite, in which case the average particle size of the microstructure may be 30 μm or less. In addition, the grain shape ratio (long axis / short axis) of the microstructure may be 1.1 to 2.5.

나아가, 본 발명은 상기 조성의 강 슬라브를 1050~1250℃로 가열, Tnr~Tnr+100℃의 온도에서 압연하여 870~950℃에서 압연 종료하고, 870~950℃까지 1.3*t + (10~30분)간 오스테나이징 열처리하고 급냉한 후, 650~700℃에서 템퍼링하 여 고강도 강판을 제조하는 제조방법에 관한 것이다. 이 경우, 상기 재결정역 압연 단계는 각 압연 패스당 10% 이상의 압하율로 누적압하량 50~90%의 범위로 압연할 수 있으며, 구 오스테나이트 조직의 결정립 형상비(장축/단축)를 1.1~2.5로 제어할 수 있다. Furthermore, the present invention is to heat the steel slab of the above composition to 1050 ~ 1250 ℃, rolled at a temperature of Tnr ~ Tnr + 100 ℃ and finish rolling at 870 ~ 950 ℃, 1.3 * t + (10 ~ ~ 870 ~ 950 ℃ After 30 minutes austenizing heat treatment and quenching, to a tempering at 650 ~ 700 ℃ to produce a high strength steel sheet. In this case, the recrystallization rolling step can be rolled in the range of 50 ~ 90% cumulative reduction amount with a reduction ratio of 10% or more per each rolling pass, and the grain shape ratio (long axis / short axis) of the old austenite structure is 1.1 to 2.5 Can be controlled by

본 발명에 의하면, 650MPa 이상의 인장 강도 및 -50℃에서의 충격 인성이 200J 이상으로 1000MW 이상의 원자력 발전소에서 원자로 격납 용기(Containment Vessel)로 사용이 가능한 우수한 고강도 강판 및 그 제조방법을 제공할 수 있다.According to the present invention, it is possible to provide an excellent high strength steel sheet capable of being used as a reactor containment vessel in a nuclear power plant of 1000 MW or more with a tensile strength of 650 MPa or more and an impact toughness at -50 ° C of 200 J or more, and a method of manufacturing the same.

본 발명은 템퍼드 마르텐사이트 조직을 가지며, 재결정 제어 압연에 의하여 결정립의 미세화 및 형상비를 제어하여 650MPa 수준의 인장 강도를 구비하는 강판에 관한 것이다.The present invention relates to a steel sheet having a tempered martensite structure, and having a tensile strength of 650 MPa level by controlling the refinement and shape ratio of grains by recrystallization controlled rolling.

이하, 본 발명을 구성하는 성분계에 관하여 보다 상세히 설명한다. 단, 이하 성분계의 %는 중량%를 의미한다.Hereinafter, the component system which comprises this invention is demonstrated in detail. However,% of the component system below means weight%.

C: 0.03~0.20%C: 0.03-0.20%

본 발명에서 C는 강도를 확보하기 위한 원소로서 0.03~0.20%로 한정한다. C 의 함량이 0.03% 미만인 경우에는 기지 상의 자체 강도가 저하될 수 있어 바람직하지 않은 반면, 0.20%를 초과하면 인성 및 용접성의 저하가 발생하여 원자력 발전소에 사용하기 적합하지 않다는 문제점이 있다.In the present invention, C is limited to 0.03 to 0.20% as an element for securing strength. If the content of C is less than 0.03%, the strength on the matrix may be lowered, which is not preferable. However, if the content of C is less than 0.20%, the toughness and weldability may be deteriorated, which is not suitable for use in nuclear power plants.

Si: 0.15~0.55%Si: 0.15 to 0.55%

Si은 탈산 효과, 고용 강화 효과 및 충격 천이 온도 상승 효과를 위하여 첨가되는 합금 원소로서, 0.15% 이상을 첨가한다. 하지만, 그 함량이 0.55%를 초과하면 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성될 수 있으므로 Si는 0.15~0.55%로, 바람직하게는 0.15~0.40%로 첨가한다.Si is an alloying element added for the deoxidation effect, the solid solution strengthening effect, and the impact transition temperature raising effect, and at least 0.15% is added. However, if the content exceeds 0.55%, the weldability is lowered and the oxide film may be severely formed on the steel plate surface, so Si is added in an amount of 0.15 to 0.55%, preferably 0.15 to 0.40%.

Mn: 0.9~1.5%Mn: 0.9-1.5%

Mn이 과다하게 첨가되면 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온 인성을 저하시키므로 본 발명에서는 Mn을 1.5% 이하로 관리한다. 그러나, 본 발명의 성분 특성상 Mn이 0.9% 미만이 되면 적절한 강도를 확보하기 어려우므로 Mn의 첨가량은 0.9~1.5%로 제한한다.Excessive addition of Mn forms MnS, which is a non-metallic inclusion drawn together with S, thereby lowering room temperature elongation and low temperature toughness, thereby managing Mn to 1.5% or less. However, when Mn is less than 0.9% due to the component properties of the present invention, it is difficult to secure appropriate strength, so the amount of Mn added is limited to 0.9 to 1.5%.

Al: 0.001~0.05%Al: 0.001-0.05%

Al은 Si와 더불어 제강 공정에서 강력한 탈산제의 하나로서 0.001% 이상을 첨가하여야 이러한 효과를 얻을 수 있다. 하지만, 0.05%를 초과하여 첨가하면 그 효과는 포화되며 오히려 제조 원가가 상승하므로 Al은 0.001~0.05%로 한정한다.Al, together with Si, is one of the strong deoxidizers in the steelmaking process to add 0.001% or more to achieve this effect. However, if the content is added in excess of 0.05%, the effect is saturated and the manufacturing cost is increased, so Al is limited to 0.001 to 0.05%.

P: 0.030% 이하P: 0.030% or less

P는 저온 인성을 해치는 원소이므로 최대한 낮게 관리하는 것이 좋으나, 제강 공정에서 이를 과다하게 제거하는 것은 많은 비용이 소요되므로 0.030% 이하의 범위 내에서 관리한다.Since P is an element that impairs low temperature toughness, it is better to manage it as low as possible, but to remove it excessively in the steelmaking process is expensive, so it is managed within 0.030% or less.

S: 0.030% 이하S: 0.030% or less

S 역시 P와 더불어 저온인성에 악영향을 주는 원소이지만 P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로 0.030%이하의 범위 내에서 관리함이 적절하다.S is also an element that adversely affects low temperature toughness along with P, but like P, it may be excessively expensive to remove in the steelmaking process, so it is appropriate to manage it within 0.030% or less.

Cr: 0.30% 이하(0%는 제외)Cr: 0.30% or less (excluding 0%)

Cr은 강도를 증대시킬 수 있는 합금 원소이지만 고가의 원소이므로 0.30%를 초과하여 첨가하는 경우에는 생산비용의 상승을 초래하므로 0.30% 이내로 한정한다.Cr is an alloying element that can increase the strength, but is an expensive element, and if it is added in excess of 0.30%, Cr causes an increase in production cost, so it is limited to within 0.30%.

Mo: 0.2% 이하(0%는 제외)Mo: 0.2% or less (except 0%)

Mo는 Cr과 같이 강도 향상에 유효한 합금 원소이며 황화물에 의한 균열 발생을 방지하는 원소로 알려져 있다. 하지만 Mo 역시 고가의 원소로서 0.2% 이하의 범위에서 첨가하는 것이 경제성 측면에서 바람직하다.Mo is an alloying element that is effective for improving strength, such as Cr, and is known as an element that prevents cracking caused by sulfides. However, Mo is also an expensive element, it is preferable to add in the range of 0.2% or less from the economical point of view.

Ni: 0.6% 이하(0%는 제외)Ni: 0.6% or less (except 0%)

Ni은 저온 인성의 향상에 효과적인 원소로서 본 발명에 첨가되지만, Ni 역시 고가의 원소로서 다량 첨가되면 생산 비용이 증가하므로 본 발명에서는 0.6% 이하로 첨가한다. Ni is added to the present invention as an element effective in improving low-temperature toughness, but Ni is also added in an amount of 0.6% or less in the present invention because the production cost increases when a large amount is added as an expensive element.

V: 0.07% 이하(0%는 제외)V: 0.07% or less (except 0%)

V은 Cr, Mo 등과 같이 강도를 향상시키는데 효과적인 원소이지만 고가인 관계로 0.07% 이하로 첨가한다.V is an effective element for improving strength, such as Cr and Mo, but is added at 0.07% or less due to its high cost.

Nb: 0.04% 이하(0%는 제외)Nb: 0.04% or less (except 0%)

Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 또한 Ti와 더불어 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출되어 본 발명이 추구하는 650MPa 이상의 인장 강도를 얻는데 필요한 중요 원소로 작용한다. 그러나, Nb가 지나치게 다량으로 첨가되면 연주 단계에서 조대한 석출물로 나타나 수소 유기 균열(HIC)의 사이트로 작용할 수 있으므로, 본 발명에서 Nb의 함량은 0.04% 이하로 제한한다.Nb is dissolved in austenite to increase the hardenability of austenite, and precipitated as carbonitrides (Nb (C, N)) that match with matrix (Mab) together with Ti, and thus the tensile strength of 650 MPa or more pursued by the present invention. It acts as an important element to get. However, when Nb is added in an excessively large amount, it may appear as a coarse precipitate in the playing step to act as a site of hydrogen organic cracking (HIC), so the content of Nb in the present invention is limited to 0.04% or less.

Ca: 5~50ppmCa: 5 ~ 50ppm

Ca은 CaS로 생성되어 MnS의 비금속 개재물을 억제하는 역할을 하는바, 이를 위하여 본 발명에서는 5ppm 이상 첨가한다. 하지만 그 첨가량이 과다하면 강중에 함유된 O와 반응하여 비금속 개재물인 CaO를 생성하여 물성에 좋지 않으므로 그 상한치를 50ppm으로 정한다.Ca is produced by CaS serves to suppress the non-metallic inclusions of MnS, for this purpose is added 5ppm or more. However, if the amount is excessive, the upper limit is set to 50 ppm because it reacts with O contained in the steel to form CaO, which is a non-metallic inclusion, which is not good for physical properties.

Ti: 0.005~0.025%Ti: 0.005-0.025%

Ti의 적정 첨가량은 N의 함량에 따라 다소 유동적일 수 있다. 만일 N의 양에 비해 Ti의 첨가량이 상대적으로 적으면, TiN의 생성량이 감소하여 결정립을 미세화시키는데 좋지 않다. 반면 Ti가 지나치게 과량으로 첨가되면 가열 공정 중 TiN이 조대해져서 결정립 성장 억제 효과가 오히려 감소할 수 있다. 따라서 Ti의 첨가량은 통상적으로 함유되는 N의 함량(20~60ppm)을 고려하여 0.005~0.025%로 한정한다.The proper addition amount of Ti may be somewhat fluid depending on the content of N. If the amount of Ti added is relatively small compared to the amount of N, the amount of TiN produced decreases, which is not good for refining grains. On the other hand, when Ti is excessively added, TiN may be coarsened during the heating process, thereby reducing the grain growth inhibition effect. Therefore, the amount of Ti is generally limited to 0.005 to 0.025% in consideration of the N content (20 to 60ppm) contained.

N: 0.0020~0.0060%(20~60ppm)N: 0.0020 to 0.0060% (20 to 60 ppm)

N는 Ti과 함께 TiN 석출물을 형성하여 강의 결정립을 미세화시켜 모재의 인성 및 HAZ부 충격 인성을 증대시키는 역할을 하는 것으로 알려져 있으며, 본 발명에서도 결정립 미세화의 목적을 이루기 위해서는 반드시 첨가되어야 하는 원소이다. 이를 위하여 N의 첨가량은 Ti의 함량을 고려하여 0.0020~0.0060% 범위로 한정한다. 0.0060%를 초과하는 N의 첨가는 TiN의 생성량이 지나치게 증가하고 저온 인성이 오히려 저하될 수 있다.N is known to play a role of increasing the toughness of the base metal and impact toughness of the HAZ portion by forming a TiN precipitate with Ti to refine the grain of steel, and is an element that must be added to achieve the purpose of grain refinement in the present invention. To this end, the amount of N added is limited to 0.0020 to 0.0060% in consideration of the content of Ti. The addition of N exceeding 0.0060% may cause excessive increase in the amount of TiN produced and lower the low temperature toughness.

B: 0.0005~0.0020%B: 0.0005 ~ 0.0020%

B는 미량을 첨가해도 소입성을 높여 고강도화를 이룰 수 있는 합금 원소로서 본 발명에서 인장 강도 확보를 위한 중요한 원소로 작용한다. 따라서, 높은 인장 강도를 확보하기 위하여 B를 0.0005% 이상 첨가할 필요가 있으나, 0.0020%를 초과하는 과다 첨가는 그 효과의 상승이 포화되므로 B는 0.0005~0.0020%로 첨가한다.B is an alloying element that can increase the hardenability even if a small amount is added, thereby achieving high strength, and serves as an important element for securing tensile strength in the present invention. Therefore, in order to secure high tensile strength, it is necessary to add B or more than 0.0005%, but excessive addition of more than 0.0020% saturation of the effect is saturated, so B is added in 0.0005 ~ 0.0020%.

Cu + Ni + Cr + Mo: 1.5% 이하Cu + Ni + Cr + Mo: 1.5% or less

Cr + Mo: 0.4% 이하Cr + Mo: 0.4% or less

V + Nb: 0.1% 이하V + Nb: 0.1% or less

Ca/S: 1.0 초과Ca / S: greater than 1.0

Cu + Ni + Cr + Mo, Cr + Mo 및 V + Nb의 관계는 압력용기용 강재의 기본 규격(ASTM A20)에서 각각 제한하고 있는 수치로서, 이에 따라 Cu + Ni + Cr + Mo함량은 1.5% 이하로, Cr + Mo함량은 0.4% 이하로, 그리고 V + Nb함량은 0.1% 이하로 제한한다. (단, Cu와 같이 본 발명에 포함되지 않은 합금 원소는 0으로 계산할 수 있다.)The relationship between Cu + Ni + Cr + Mo, Cr + Mo, and V + Nb is a value limited by the basic standard for steel for pressure vessels (ASTM A20), and accordingly, the Cu + Ni + Cr + Mo content is 1.5%. Hereinafter, the Cr + Mo content is limited to 0.4% or less, and the V + Nb content is limited to 0.1% or less. (However, alloy elements not included in the present invention such as Cu can be calculated as 0.)

그리고 Ca / S의 비는 MnS 개재물을 구상화시켜 수소 유기 균열 저항성을 향상시키는 필수 구성비로서 1.0을 이하로 하는 경우에서는 그 효과를 기대하기 어려우므로 그 비율을 1.0 초과가 되도록 조절한다.The ratio of Ca / S is an essential component ratio for spheroidizing MnS inclusions to improve hydrogen organic cracking resistance. When the ratio is 1.0 or less, the effect is hardly expected, so the ratio is adjusted to be greater than 1.0.

이하 본 발명의 강판을 구성하는 미세조직에 관하여 보다 상세히 설명한다.Hereinafter, the microstructure constituting the steel sheet of the present invention will be described in more detail.

미세조직: 템퍼드 마르텐사이트 조직Microstructure: Tempered Martensite Tissue

본 발명에서는 충분한 강도를 확보하기 위하여 제조 단계에서 급냉 처리에 의하여 발생하는 마르텐사이트 조직을 이용한다. 마르텐사이트 조직의 높은 인장 강도 향상 효과를 이용하면 본 발명이 목표로 하는 650MPa급 강판의 제조가 가능하기 때문이다. In the present invention, in order to secure sufficient strength, the martensite structure generated by the quenching treatment in the manufacturing step is used. It is because the 650 MPa grade steel plate aimed at by this invention can be manufactured by using the high tensile strength improvement effect of a martensitic structure.

하지만, 마르텐사이트는 기본적으로 취성이 강한 조직으로 알려져 있으며, 잔류 응력이 강하게 존재하므로 외부로부터의 충격에 의해 쉽게 깨어질 수 있으며, 이러한 성질은 원자로 격납 용기로 사용되기에 적합하지 않다. 따라서, 마르텐사이트의 강도 향상 효과를 살리면서 잔류 응력을 완화함으로써 650MPa급의 인장 강도 및 -50℃에서 200J 이상의 충격 인성을 구비하도록 템퍼링 처리를 통해 미세조직을 템퍼드 마르텐사이트 조직으로 형성한다.However, martensite is basically known as a brittle structure, and because of the strong residual stress, it can be easily broken by an impact from the outside, which is not suitable for use as a reactor containment vessel. Therefore, the microstructure is formed into a tempered martensite structure by tempering to have a tensile strength of 650 MPa grade and impact toughness of 200 J or more at -50 ° C by relieving residual stress while utilizing the strength improving effect of martensite.

결정립 형상비: 1.1≤장축/단축≤2.5Grain shape ratio: 1.1≤long axis / short axis≤2.5

재결정 제어 압연을 통해 미세조직 결정립의 형상비를 제어할 필요가 있는데, 본 발명에서는 장축/단축의 비율을 1.1~2.5로 제어한다. 결정립의 형상비는 높은 충격 인성-강도를 얻기 위한 것으로, 결정립 형상비가 1.1이하로 되는 경우 결정립의 미세화를 기대하기 어렵고 그 형상비가 2.5이상일 경우 충격인성 저하가 우려되기 때문이다.It is necessary to control the shape ratio of the microstructure grains through the recrystallization control rolling. In the present invention, the ratio of the major axis to the minor axis is controlled to 1.1 to 2.5. The shape ratio of the crystal grains is for obtaining high impact toughness-strength, because when the grain shape ratio becomes 1.1 or less, it is difficult to expect the refinement of the grains, and when the shape ratio is 2.5 or more, the impact toughness is feared.

형상비가 1.1보다 낮으면 결정립의 형상이 둥글게 되므로 표면 에너지가 작아지고 충분한 강도와 인성의 확보가 어렵게 되며, 반면 2.5를 초과하면 결정립을 형성하기 위해서는 압연 부하가 커지므로 바람직하지 않기 때문이다.If the aspect ratio is lower than 1.1, the shape of the crystal grains is rounded, so that the surface energy is small and it is difficult to secure sufficient strength and toughness. On the other hand, if the ratio exceeds 2.5, the rolling load is large to form the grains, which is not preferable.

이하 본 발명의 강판을 제조하는 제조방법에 있어서 각 단계별 조건에 대하여 상세히 설명한다.Hereinafter, each step condition in the manufacturing method of manufacturing the steel sheet of the present invention will be described in detail.

본 발명의 강판은 강 슬라브를 재가열-압연-냉각-열처리하는 일련의 단계를 거쳐 생산된다. 이 경우, 본 발명에서는 템퍼드 마르텐사이트 조직을 형성하기 위하여, 급냉 처리를 포함하는 냉각 단계, 템퍼링 처리를 포함하는 열처리 단계 및 구 오스테나이트 조직의 결정립 제어를 위한 재결정역 제어 압연 단계에서 각각 중요한 제조조건을 요구한다.The steel sheet of the present invention is produced through a series of steps of reheat-rolling-cooling-heat treating steel slabs. In this case, in the present invention, in order to form a tempered martensite structure, the production step is important in the cooling step including the quenching treatment, the heat treatment step including the tempering treatment and the recrystallization zone control rolling step for grain control of the old austenite structure. Requires a condition.

재가열 온도: 1050~1250℃Reheating Temperature: 1050 ~ 1250 ℃

본 발명에서는 상술한 조성을 가지는 슬라브를 1050~1250℃에서 재가열한다. 재가열 온도가 1050℃보다 낮을 경우에는 용질 원자의 고용이 어렵고, 반면 재가열 온도가 1250℃를 초과하면 오스테나이트 결정립 크기가 너무 조대하게 되어 강판의 물성이 저하되기 때문이다. In the present invention, the slab having the composition described above is reheated at 1050 to 1250 ° C. If the reheating temperature is lower than 1050 ° C, solute atoms are difficult to be dissolved, whereas if the reheating temperature exceeds 1250 ° C, the austenite grain size becomes too coarse and the properties of the steel sheet are degraded.

재결정역 제어 압연: Tnr ~Tnr+100℃의 온도, 각 압연 패스당 10% 이상의 압하율로 누적압하량 50~90%Recrystallization-controlled rolling: 50 to 90% cumulative reduction at a temperature of Tnr to Tnr + 100 ° C and a rolling reduction of 10% or more per each rolling pass

압연의 수행을 위하여 가열된 강 슬라브는 미재결정역 이상의 온도 범위에서 열간 압연이 이루어진다. 상기 미재결정역 온도인 Tnr은 기공지된 하기 식 1에 의하 여 계산이 가능하다. 단, 수식에서 각 합금원소의 단위는 중량%를 나타낸다.The steel slabs heated to perform the rolling are hot rolled at a temperature range above the unrecrystallized zone. The non-recrystallization temperature T nr can be calculated by Equation 1 below. However, in the formula, the unit of each alloy element represents weight%.

[식 1][Equation 1]

Tnr(℃)=887-464×C+890×Ti+363×Al-357×Si+(6445×Nb-644×Nb1/2)+(732×V-230×V1/2)Tnr (° C) = 887-464 × C + 890 × Ti + 363 × Al-357 × Si + (6445 × Nb-644 × Nb 1/2 ) + (732 × V-230 × V 1/2 )

충분한 강도의 향상을 얻기 위해서는 재결정역 제어 압연 과정에서 구 오스테나이트의 평균 입경(Austenite Grain Size)을 30㎛ 이하로 미세화시킬 필요가 있다. 구 오스테나이트 평균 입경이 30㎛를 초과하는 경우에는 제품의 강도 및 인성이 충분하게 나타날 수 없으므로 원자로 격납 용기로 사용할 수 있는 수준의 안전성을 보증할 수 없다. 이를 위하여, 본 발명에서는 Tnr~Tnr+100℃의 온도 범위에서 압연을 실시한다. In order to obtain sufficient strength improvement, it is necessary to refine the average grain size (Austenite Grain Size) of the old austenite to 30 µm or less in the recrystallization zone controlled rolling process. If the old austenite average particle diameter exceeds 30 µm, the strength and toughness of the product cannot be sufficiently exhibited, and thus the level of safety that can be used as the reactor containment vessel cannot be guaranteed. To this end, in the present invention, rolling is carried out at a temperature range of T nr to T nr + 100 ° C.

이 경우, 압연의 구간에서는 각 압연 패스당 10% 이상의 압하율을 가하여 최종적으로 누적압하량 50~90% 범위로 압연이 이루어진다. 이러한 압하량은 본 발명에서 요구하는 미세조직의 평균 크기(30㎛ 이하)와 결정립 형상비(장축/단축)를 1.1~2.5로 제어하기 위한 것이다. 따라서, 누적압하량이 50% 미만인 경우에는 이러한 결과를 기대하기 어렵고, 반면 누적압하량이 90%를 초과하면 압연기의 부하가 심해질 수 밖에 없어 공정상 문제가 될 수 있다. In this case, in the section of rolling, rolling is applied in the range of 50 to 90% of the cumulative rolling amount by applying a rolling reduction rate of 10% or more per rolling pass. This amount of reduction is for controlling the average size (30 µm or less) and grain shape ratio (long axis / short axis) of the microstructure required by the present invention to 1.1 to 2.5. Therefore, when the cumulative reduction is less than 50%, it is difficult to expect such a result. On the other hand, if the cumulative reduction exceeds 90%, the load of the rolling mill is inevitably increased, which may be a process problem.

냉각 조건: 870 ~ 950℃로 1.3*t + (10~30분)간 오스테나이징 열처리 후 급냉 처리Cooling condition: quenching after austenizing heat treatment for 1.3 * t + (10 ~ 30 minutes) at 870 ~ 950 ℃

냉각 단계는 템퍼드 마르텐사이트 조직을 형성하기 위한 중요한 단계로서 650MPa 이상의 인장 강도와 200J 이상의 -50℃ 충격 인성을 확보하기 위한 미세조직 구성을 위하여 그 조건을 엄격하게 제어할 필요가 있다.The cooling step is an important step for forming the tempered martensite structure, and it is necessary to strictly control the conditions for constructing the microstructure to secure tensile strength of 650 MPa or more and impact toughness of -50 ° C. of 200 J or more.

이를 위하여, 본 발명에서는 870~950℃ 범위로 1.3*t+(10~30분) (단, t는 강재의 두께(mm)를 의미)의 시간 동안 오스테나이징 열처리를 실시한다. 상기 오스테나이징 열처리는 조직을 오스테나이트화 시킨 후 급냉을 하여 마르텐사이트 조직을 생성하기 위한 가열 처리로서, 열처리의 온도가 870℃보다 낮으면 고용 용질 원소들의 재고용이 어려워 강도의 확보가 어려워지고, 그 온도가 950℃보다 높아지면 결정립의 성장이 일어나 조대립이 발생할 수 있어 저온 인성을 해칠 수 있다. To this end, in the present invention, austenizing heat treatment is performed for a time of 1.3 * t + (10 to 30 minutes) (where t denotes the thickness (mm) of steel) in the range of 870 to 950 ° C. The austenizing heat treatment is a heat treatment for generating martensite structure by quenching the tissue after austenizing, and when the temperature of the heat treatment is lower than 870 ° C., it is difficult to re-use solid solution solutes, thereby making it difficult to secure strength. If the temperature is higher than 950 ° C, grains may grow and coarse grains may occur, thereby impairing low-temperature toughness.

또한, 오스테나이징 열처리 시간은 1.3*t+(10~30분) 범위에서 가열 및 유지함으로써 이루어지는데, 너무 짧은 시간 동안의 처리는 가열이 충분치 않아 오스테나이징 효과가 더디고 조직을 균질화시키는 것이 어려울 수 있으며, 너무 열처리를 오래하면 제품 생산 시간이 오래 걸려 생산성이 저하될 수 있기 때문이다. 참고로 여기에서 1.3t를 가열 시간으로 책정하고, 목표 온도에 도달할 경우 10~30분을 유지 시간으로 책정하여 오스테나이징 열처리를 수행하는 것이 바람직하다.In addition, the austenizing heat treatment time is achieved by heating and maintaining in the range of 1.3 * t + (10-30 minutes), while the treatment for too short time may not be enough to heat the austenizing effect and it may be difficult to homogenize the tissue. This is because, if the heat treatment is too long, the production time may be long and the productivity may be reduced. For reference, it is preferable to set 1.3t as a heating time, and when the target temperature is reached, 10 to 30 minutes as a holding time to perform an austenizing heat treatment.

오스테나이징이 종료된 강판은 급냉, 바람직하게는 수냉 처리되어 미세조직을 마르텐사이트 조직으로 변태시킨다. 본 발명에서의 급냉 처리 단계는 특별히 그 요건을 제한하지 않으며, 통상적인 수냉을 비롯한 급냉 처리 방법이라면 적용이 가 능하다.After the austenizing is finished, the steel sheet is quenched, preferably water cooled, to transform the microstructure into martensite. The quench treatment step in the present invention does not particularly limit its requirements, and may be applied to any quench treatment method including conventional water cooling.

템퍼링 조건: 650~700℃에서 1.9*t + (10~30분)간 실시 Tempering condition: 1.9 * t + (10-30 minutes) at 650 ~ 700 ℃

본 발명에서는 생성된 마르텐사이트 조직의 잔류 응력을 제거하기 위하여 템퍼링 처리하여 템퍼드 마르텐사이트 조직을 얻게 된다. 이 경우, 템퍼링 온도는 650~700℃에서 실시하게 된다, In the present invention, the tempered treatment is performed to remove residual stress of the produced martensite structure, thereby obtaining a tempered martensite structure. In this case, the tempering temperature is carried out at 650 ~ 700 ℃,

템퍼링 온도가 650℃ 보다 낮으면 탄화물 등의 석출이 원활하지 않고, 반대로 700℃를 초과하는 고온에서는 강재의 강도가 저하될 수 있으므로 템퍼링의 온도 조건을 적절히 제어할 필요가 있다. If the tempering temperature is lower than 650 ° C., precipitation of carbides or the like is not smooth. On the contrary, the strength of the steel may be lowered at a high temperature exceeding 700 ° C., so it is necessary to appropriately control the tempering temperature conditions.

또한, 템퍼링 처리는 충분한 효과를 얻기 위하여 1.9*t + (10~30분) (단, t는 강재의 두께(mm)를 의미)의 범위에서 이루어지는데, 여기에서 1.9t를 가열 시간으로, 그리고 10~30분은 유지 시간으로 책정하여 템퍼링을 실시하는 것이 바람직하다.In addition, the tempering treatment takes place in the range of 1.9 * t + (10-30 minutes) (where t means the thickness of the steel in mm) in order to obtain a sufficient effect, where 1.9t is the heating time and It is preferable to set 10-30 minutes as a holding time, and to perform tempering.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표 1의 합금 원소를 갖는 발명재 및 비교재로 이루어진 슬라브를 제조하였다.To prepare a slab consisting of the inventive material and the comparative material having the alloying elements of Table 1.

Figure 112008089473441-pat00001
Figure 112008089473441-pat00001

상기 발명재 및 비교재의 조성으로 제조된 각각의 슬라브를 하기 표 2의 조건과 같이 가열 및 재결정역에서 재결정 제어 압연하였다. 제어압연, 열처리 등의 조건을 하기 표 2와 같이 실시한 후 강도, 저온 인성을 평가하여 그 결과를 하기 표 2에 나타내었다. 단, 하기 표 2에서 저온 인성은 -50℃에서 V 노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격 에너지 값으로 평가한 것이다.Each slab prepared with the composition of the invention and the comparative material was subjected to recrystallization controlled rolling in a heating and recrystallization zone as in the conditions of Table 2 below. Conditions such as control rolling and heat treatment were performed as shown in Table 2, and then the strength and low temperature toughness were evaluated, and the results are shown in Table 2 below. However, in Table 2 below, the low temperature toughness is evaluated by the Charpy impact energy value obtained by performing a Charpy impact test on a specimen having a V notch at -50 ° C.

Figure 112008089473441-pat00002
Figure 112008089473441-pat00002

* 결정립 형상비 : 결정립 장축/ 결정립 단축* Grain Shape Ratio: Long Grain / Short Grain

** 비교재의 급냉 온도는 노멀라이징 온도를 나타냄.** The quench temperature of the comparative material represents the normalizing temperature.

*** 충격 인성 : T 방향(압연 방향에 직각으로 V-노치를 줌)의 충격 인성을 의미함*** Impact toughness: Impact toughness in the T direction (V-notch perpendicular to the rolling direction).

상기 표 2의 결과를 살펴보면, 발명재를 사용하여 강판을 제조하는 경우에도 재결정 제어 압연으로 결정립 형상비를 제어하지 못하면 충격 인성이 저하되어 본 발명에서 요구하는 물성을 얻을 수 없음을 알 수 있다. 또한, 비교재 c 및 d는 성분계에서 기본적으로 B 및 Ti가 첨가되지 않아 결정립 미세화가 곤란함을 유추할 수 있다. 이에 따라, 충분한 강도 및 인성을 확보할 수 있는 수준의 미세조직 생성이 어려울 수 밖에 없고 물성 확보가 제대로 이루어지지 않았다. 따라서, 충분한 강도-인성 조건을 만족하여 원자로 격납 용기에 사용될 수 있는 물성을 얻기 위해서는 본 발명의 조건을 모두 만족해야 하는 것이 요구된다.Looking at the results of Table 2, even when manufacturing the steel sheet using the invention material it can be seen that the failure to control the grain shape ratio by the recrystallization control rolling impact impact toughness is reduced to obtain the physical properties required by the present invention. In addition, the comparative materials c and d can be inferred that the grain refinement is difficult because B and Ti are not added basically in the component system. Accordingly, it is difficult to produce a microstructure of a level capable of securing sufficient strength and toughness, and physical properties were not properly secured. Therefore, it is required to satisfy all of the conditions of the present invention in order to satisfy sufficient strength-toughness conditions and obtain physical properties that can be used in the reactor containment vessel.

Claims (8)

삭제delete 중량%로, C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하(0%는 제외), Mo: 0.2% 이하(0%는 제외), Ni: 0.6% 이하(0%는 제외), V: 0.07% 이하(0%는 제외), Nb: 0.04% 이하(0%는 제외), Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, B: 0.0005~0.0020%, 잔부 Fe 및 기타 불가피한 불순물을 포함하며,By weight%, C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less ( 0% excluding), Mo: 0.2% or less (excluding 0%), Ni: 0.6% or less (excluding 0%), V: 0.07% or less (excluding 0%), Nb: 0.04% or less (0%) Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, B: 0.0005-0.0020%, balance Fe and other unavoidable impurities, Cu + Ni + Cr + Mo: 1.5% 이하;Cu + Ni + Cr + Mo: 1.5% or less; Cr + Mo: 0.4% 이하;Cr + Mo: 0.4% or less; V + Nb: 0.1% 이하; 및V + Nb: 0.1% or less; And Ca/S: 1.0 초과Ca / S: greater than 1.0 의 관계를 만족하며, 강판의 미세조직은 템퍼드 마르텐사이트 조직으로 이루어진 것임을 특징으로 하는 고강도 강판.The relationship between the high strength steel sheet, characterized in that the microstructure of the steel sheet is made of a tempered martensite structure. 제2항에 있어서, 상기 미세조직의 결정립 형상비(장축/단축)는 1.1~2.5임을 특징으로 하는 고강도 강판.The high strength steel sheet according to claim 2, wherein the grain shape ratio (long axis / short axis) of the microstructure is 1.1 to 2.5. 제2항 또는 제3항에 있어서, 상기 강판은 650MPa 이상의 인장 강도 및 -50℃에서의 충격 인성이 200J 이상임을 특징으로 하는 고강도 강판.4. The high strength steel sheet according to claim 2 or 3, wherein the steel sheet has a tensile strength of 650 MPa or more and an impact toughness at -50 ° C of 200 J or more. 중량%로, C: 0.03~0.20%, Si: 0.15~0.55%, Mn: 0.9~1.5%, Al: 0.001~0.05%, P: 0.030% 이하, S: 0.030% 이하, Cr: 0.30% 이하(0%는 제외), Mo: 0.2% 이하(0%는 제외), Ni: 0.6% 이하(0%는 제외), V: 0.07% 이하(0%는 제외), Nb: 0.04% 이하(0%는 제외), Ca: 5~50ppm, Ti: 0.005~0.025%, N: 0.0020~0.0060%, B: 0.0005~0.0020%, 잔부 Fe 및 기타 불가피한 불순물을 포함하며,By weight%, C: 0.03-0.20%, Si: 0.15-0.55%, Mn: 0.9-1.5%, Al: 0.001-0.05%, P: 0.030% or less, S: 0.030% or less, Cr: 0.30% or less ( 0% excluding), Mo: 0.2% or less (excluding 0%), Ni: 0.6% or less (excluding 0%), V: 0.07% or less (excluding 0%), Nb: 0.04% or less (0%) Ca: 5-50 ppm, Ti: 0.005-0.025%, N: 0.0020-0.0060%, B: 0.0005-0.0020%, balance Fe and other unavoidable impurities, Cu + Ni + Cr + Mo: 1.5% 이하;Cu + Ni + Cr + Mo: 1.5% or less; Cr + Mo: 0.4% 이하;Cr + Mo: 0.4% or less; V + Nb: 0.1% 이하; 및V + Nb: 0.1% or less; And Ca/S: 1.0 초과Ca / S: greater than 1.0 를 만족하는 강 슬라브를, To meet the river slabs, 1050~1250℃로 가열하는 재가열 단계;Reheating step to heat to 1050 ~ 1250 ℃; Tnr ~Tnr+100℃의 온도에서 압연하는 재결정역 제어 압연 단계;A recrystallization zone controlled rolling step of rolling at a temperature of Tnr ˜Tnr + 100 ° C .; 870 ~ 950℃로 1.3*t + (10~30분)간 오스테나이징 열처리한 후 급냉시키는 급냉 단계; 및Quenching step of quenching after austenizing heat treatment at 870 to 950 ° C for 1.3 * t + (10 to 30 minutes); And 650~700℃에서 1.9*t + (10~30분)간 템퍼링하는 템퍼링 단계Tempering step tempering at 1.9 * t + (10-30 minutes) at 650 ~ 700 ℃ 를 포함하는 것을 특징으로 하는 고강도 강판의 제조방법.Method for producing a high strength steel sheet comprising a. 제5항에 있어서, 상기 재결정역 압연 단계는 각 압연 패스당 10% 이상의 압하율 및 누적압하량 50~90%의 범위로 압연하는 것을 특징으로 하는 고강도 강판의 제조방법.The method of claim 5, wherein the recrystallization rolling step is performed in a rolling range of 10% or more and a 50% to 90% cumulative reduction amount per rolling pass. 제5항 또는 제6항에 있어서, 상기 재결정역 제어 압연 단계는 미세 조직의 결정립 형상비(장축/단축)를 1.1~2.5로 제어하는 것을 특징으로 하는 고강도 강판의 제조방법.The method for manufacturing a high strength steel sheet according to claim 5 or 6, wherein the recrystallization zone controlled rolling step controls the grain shape ratio (long axis / short axis) of the microstructure to 1.1 to 2.5. 삭제delete
KR1020080134885A 2008-12-26 2008-12-26 High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof KR101091306B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020080134885A KR101091306B1 (en) 2008-12-26 2008-12-26 High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof
PCT/KR2009/007647 WO2010074473A2 (en) 2008-12-26 2009-12-21 High strength steel plate for nuclear reactor containment vessel and method of manufacturing the same
EP09835239.6A EP2370608A4 (en) 2008-12-26 2009-12-21 High strength steel plate for nuclear reactor containment vessel and method of manufacturing the same
CN200980152846.4A CN102264936B (en) 2008-12-26 2009-12-21 High strength steel plate for nuclear reactor containment vessel and method of manufacturing the same
US13/141,733 US20110259481A1 (en) 2008-12-26 2009-12-21 High Strength Steel Plate for Nuclear Reactor Containment Vessel and Method of Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080134885A KR101091306B1 (en) 2008-12-26 2008-12-26 High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof

Publications (2)

Publication Number Publication Date
KR20100076745A KR20100076745A (en) 2010-07-06
KR101091306B1 true KR101091306B1 (en) 2011-12-07

Family

ID=42288271

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080134885A KR101091306B1 (en) 2008-12-26 2008-12-26 High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof

Country Status (5)

Country Link
US (1) US20110259481A1 (en)
EP (1) EP2370608A4 (en)
KR (1) KR101091306B1 (en)
CN (1) CN102264936B (en)
WO (1) WO2010074473A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101271990B1 (en) * 2009-12-01 2013-06-05 주식회사 포스코 High strength steel sheet and method for manufacturing the same
WO2012153009A1 (en) * 2011-05-12 2012-11-15 Arcelormittal Investigación Y Desarrollo Sl Method for the production of very-high-strength martensitic steel and sheet thus obtained
CN103014539B (en) 2011-09-26 2015-10-28 宝山钢铁股份有限公司 A kind of yield strength 700MPa grade high-strength high-tenacity steel plate and manufacture method thereof
CN103014554B (en) 2011-09-26 2014-12-03 宝山钢铁股份有限公司 Low-yield-ratio high-tenacity steel plate and manufacture method thereof
CN102605296A (en) * 2012-03-13 2012-07-25 宝山钢铁股份有限公司 Steel for nuclear pressure vessels and manufacturing method thereof
CN102776441A (en) * 2012-08-10 2012-11-14 济钢集团有限公司 Steel plate for third-generation nuclear power station reactor containments and manufacturing method thereof
CN104073731B (en) * 2013-03-27 2017-02-22 鞍钢股份有限公司 Production method for ultrahigh-strength ship plate adopting direct quenching process
WO2014185405A1 (en) * 2013-05-14 2014-11-20 新日鐵住金株式会社 Hot-rolled steel sheet and production method therefor
WO2014188966A1 (en) * 2013-05-21 2014-11-27 新日鐵住金株式会社 Hot-rolled steel sheet and method for manufacturing same
CN103451526B (en) * 2013-09-11 2015-09-30 济钢集团有限公司 A kind of 6-8mm high strength structure plate and manufacture method thereof
CN103911559B (en) * 2014-03-18 2016-08-17 济钢集团有限公司 A kind of nuclear plant pressure vessels steel plate and manufacture method thereof
KR101778398B1 (en) * 2015-12-17 2017-09-14 주식회사 포스코 Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
CN106544597B (en) * 2016-10-18 2018-03-27 武汉钢铁有限公司 Ultra-thin ultra-wide steel for nuclear power pressure equipment plate and its manufacture method
KR102031450B1 (en) * 2017-12-24 2019-10-11 주식회사 포스코 High strength steel sheet and manufacturing method for the same
CN109355570B (en) * 2018-11-30 2020-07-07 湖南华菱湘潭钢铁有限公司 Production method of thin-specification easy-welding low-temperature structural steel plate
JP2020186453A (en) * 2019-05-16 2020-11-19 三菱重工業株式会社 Carbon steel, radioactive material storage container, shield performance analyzing method and shield structure designing method
CN111534747B (en) * 2020-04-30 2021-10-22 鞍钢股份有限公司 Weather-resistant steel for wide 550 MPa-grade hot-rolled container and manufacturing method thereof
CN114959459B (en) * 2022-05-06 2023-06-16 鞍钢股份有限公司 Steel plate for advanced nuclear power unit reactor core shell cylinder and manufacturing method thereof
CN116121645B (en) * 2022-12-23 2023-12-15 鞍钢股份有限公司 Steel for ultra-thick high-strength nuclear reactor containment vessel and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833069B1 (en) * 2006-12-13 2008-05-27 주식회사 포스코 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5597425A (en) * 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
JPH0551696A (en) * 1991-03-28 1993-03-02 Sumitomo Metal Ind Ltd High tensile strength steel excellent in weldability and sr cracking resistance
US5454883A (en) * 1993-02-02 1995-10-03 Nippon Steel Corporation High toughness low yield ratio, high fatigue strength steel plate and process of producing same
IT1275287B (en) * 1995-05-31 1997-08-05 Dalmine Spa SUPERMARTENSITIC STAINLESS STEEL WITH HIGH MECHANICAL AND CORROSION RESISTANCE AND RELATED MANUFACTURED PRODUCTS
KR100375084B1 (en) * 1997-07-28 2003-03-07 닛폰 스틸 가부시키가이샤 Ultra-high strength, weldable, boron-containing steels with superior toughness
JP2000129392A (en) * 1998-10-20 2000-05-09 Nippon Steel Corp High strength steel product excellent in fatigue crack propagation resistance, and its manufacture
JP2001247915A (en) * 2000-03-06 2001-09-14 Nkk Corp Method for producing high toughness steel
US6364968B1 (en) * 2000-06-02 2002-04-02 Kawasaki Steel Corporation High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
TWI290177B (en) * 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
AU2002365596B2 (en) * 2001-11-27 2007-08-02 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
JP4812220B2 (en) * 2002-05-10 2011-11-09 株式会社小松製作所 High hardness and toughness steel
WO2004097059A1 (en) * 2003-04-25 2004-11-11 Tubos De Acero De Mexico, S.A. Seamless steel tube which is intended to be used as a guide pipe and production method thereof
AR047467A1 (en) * 2004-01-30 2006-01-18 Sumitomo Metal Ind STEEL TUBE WITHOUT SEWING FOR OIL WELLS AND PROCEDURE TO MANUFACTURE
JP4926406B2 (en) * 2004-04-08 2012-05-09 新日本製鐵株式会社 Steel sheet with excellent fatigue crack propagation characteristics
WO2006004228A1 (en) * 2004-07-07 2006-01-12 Jfe Steel Corporation Method for producing high tensile steel sheet
JP5124988B2 (en) * 2005-05-30 2013-01-23 Jfeスチール株式会社 High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
KR100723170B1 (en) * 2005-12-26 2007-05-30 주식회사 포스코 Producing method of weather resistable steel having high strength for using at the seaside atmosphere
JP4730088B2 (en) * 2005-12-27 2011-07-20 Jfeスチール株式会社 Low yield ratio high strength thick steel plate and method for producing the same
JP4058097B2 (en) * 2006-04-13 2008-03-05 新日本製鐵株式会社 High strength steel plate with excellent arrestability
CN100439552C (en) * 2006-06-28 2008-12-03 宝山钢铁股份有限公司 Composite high-strength high-ductility hardened and tempered steel and manufacturing method thereof
US20090277547A1 (en) * 2006-07-14 2009-11-12 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
JP4976905B2 (en) * 2007-04-09 2012-07-18 株式会社神戸製鋼所 Thick steel plate with excellent HAZ toughness and base metal toughness

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100833069B1 (en) * 2006-12-13 2008-05-27 주식회사 포스코 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof

Also Published As

Publication number Publication date
CN102264936B (en) 2014-06-18
WO2010074473A2 (en) 2010-07-01
KR20100076745A (en) 2010-07-06
WO2010074473A3 (en) 2010-09-23
EP2370608A2 (en) 2011-10-05
EP2370608A4 (en) 2014-05-21
US20110259481A1 (en) 2011-10-27
CN102264936A (en) 2011-11-30

Similar Documents

Publication Publication Date Title
KR101091306B1 (en) High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof
KR100833069B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
KR101271954B1 (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR100833071B1 (en) Steel plate for pressure vessel with ts 600mpa grade and excellent hic resistance and manufacturing method thereof
KR101998991B1 (en) Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same
KR101322067B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
AU2015387626A1 (en) Low-yield-ratio high-strength-toughness thick steel plate with excellent low-temperature impact toughness and manufacturing method therefor
KR101778398B1 (en) Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
KR20100076727A (en) High strength steel sheet for pressure vessel with excellent hic and fatigue resist properties and manufacturing method thereof
EP3392367A1 (en) High-strength steel material having excellent low-temperature strain aging impact properties and method for manufacturing same
KR101091398B1 (en) High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof
KR20200066512A (en) Ultra high strength steel material having excellent cold workability and sulfide stress cracking resistance and method of manufacturing the same
KR100967030B1 (en) High Tensile Steel for Deep Drawing and Manufacturing Method Thereof
KR20160063532A (en) Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
KR101253888B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR100833070B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof
KR102031450B1 (en) High strength steel sheet and manufacturing method for the same
KR101271990B1 (en) High strength steel sheet and method for manufacturing the same
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR101353858B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR102131537B1 (en) Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same
KR102131536B1 (en) Steel plate for pressure vessel having excellent hydrogen induced cracking resistance and method of manufacturing the same
KR102255828B1 (en) Structural steel material and manufacturing method for the same
KR101908804B1 (en) Steel sheet for pressure vessel having excellent post weld heat treatment resistance and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161123

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20171129

Year of fee payment: 7