KR100833070B1 - Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof - Google Patents

Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof Download PDF

Info

Publication number
KR100833070B1
KR100833070B1 KR1020060127481A KR20060127481A KR100833070B1 KR 100833070 B1 KR100833070 B1 KR 100833070B1 KR 1020060127481 A KR1020060127481 A KR 1020060127481A KR 20060127481 A KR20060127481 A KR 20060127481A KR 100833070 B1 KR100833070 B1 KR 100833070B1
Authority
KR
South Korea
Prior art keywords
less
steel plate
manufacturing
temperature
tensile strength
Prior art date
Application number
KR1020060127481A
Other languages
Korean (ko)
Inventor
홍순택
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020060127481A priority Critical patent/KR100833070B1/en
Application granted granted Critical
Publication of KR100833070B1 publication Critical patent/KR100833070B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Abstract

A steel plate for pressure vessels and a manufacturing method thereof are provided, wherein the steel plate for pressure vessels satisfies tensile strength of 500MPa grade, can be stably used even in an atmosphere of H2S gas(sour gas), and has excellent HIS(Hydrogen Induced Crack) resistance. A manufacturing method of a steel plate with 500MPa grade tensile strength and excellent hydrogen induced crack resistance comprises: a reheating step of reheating a steel plate in a temperature range of 1050 to 1250 deg.C such that microstructure of the steel plate has 0.25 or less of a banding index measured according to ASTM E-1268, the steel plate comprising, by weight percent, 0.1 to 0.30% of C, 0.15 to 0.40% of Si, 0.6 to 1.2% of Mn, 0.035% or less of P, 0.020% or less of S, 0.001 to 0.050% of Al, 0.35% or less of Cr, 0.5% or less of Ni, 0.5% or less of Cu, 0.2% or less of Mo, 0.05% or less of V, 0.05% or less of Nb, 0.0005 to 0.005% of Ca, and the balance of Fe and inevitable impurities, and satisfying component restriction formulas, (1) Cu+Ni+Cr+Mo1.0; a recrystallization controlled rolling step of hot-rolling the reheated steel plate at a temperature of at least the non-recrystallization temperature(Tnr) defined by Tnr(deg.C)=887+464xC+890xTi+363xAl-357xSi+(6445xNb-644xNb^0.5)+(732xV-230xV^0.5), where alloy elements have a unit of wt.%; and a normalizing step of heat-treating the hot-rolled steel plate at 850 to 950 deg.C for 1.3xt+(10 to 30 minutes), where t denotes thickness(mm) of the steel plate. The manufacturing method further comprises a PWHT(Post Welding Heat Treatment) step of heat-treating the normalized steel plate in a temperature range of 600 to 640 deg.C.

Description

내HIC특성이 우수한 인장강도 500㎫급 압력용기용 강판 및 그 제조 방법{Steel Plate For Pressure Vessel With TS 500MPa Grade and Excellent HIC Resistance And Manufacturing Method Thereof}Steel Plate For Pressure Vessel With TS 500MPa Grade and Excellent HIC Resistance And Manufacturing Method Thereof}

본 발명은 습윤 황화수소를 포함하는 원유정제 설비 또는 저장탱크, 열교환기, 반응로, 응축기 등에 사용되는 후강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 수소유기균열 저항성이 높은 후강판 및 그 제조방법에 관한 것이다.The present invention relates to a thick steel plate used in a crude oil refinery or storage tank, a heat exchanger, a reactor, a condenser, and the like, and a method of manufacturing the same, in particular, a hydrogen steel cracking resistant high-strength cracked steel plate and its manufacture. It is about a method.

최근 석유의 품귀 현상 및 고유가 시대를 맞이하여 열악한 환경의 유전이 활발하게 개발되는 추세에 따라 습윤 황화수소를 포함하는 원유의 정제 및 저장용 강재의 수소유기균열(HIC, hydrogen induced crack)에 대한 저항성을 높이는 것이 요구되고 있다.With the recent trend of shortage of oil and high oil prices, the development of oilfields in harsh environments has been actively developed, and thus the resistance to hydrogen induced crack (HIC) of steel for refining and storing crude oil containing wet hydrogen sulfide. It is required to raise.

수소유기균열의 발생기구는 강재와 습윤 황화수소 분위기와의 부식반응에 의해 발생되는 수소가 원자 상태로 강 내부에 침입한 후, 확산하여 강 내부의 개재물 등에서 분자화되어 수소 가스 압력이 발생하고, 이러한 수소 가스 압력에 의하여 조직에 균열이 발생, 성장함에 따라 나타나는 것으로 알려져 있다.The mechanism for generating hydrogen organic cracks is that hydrogen generated by the corrosion reaction between steel and wet hydrogen sulfide atmosphere invades the steel in an atomic state, diffuses, and is molecularly formed in inclusions in the steel to generate hydrogen gas pressure. It is known that cracks appear in tissues due to hydrogen gas pressure.

이러한 수소유기균열에 대한 저항성(내수소유기균열성)을 향상시키기 위한 종래 기술들로는 1) Cu 및/또는 Co의 첨가, 2) 불순물 및 개재물의 저감과 형상제어, 3) 탄질화물의 미세 분산 등에 의해 수소의 침입 혹은 확산을 억제하는 기술 등에 의해 내수소유기균열성을 향상시키는 기술들이 존재한다.Conventional techniques for improving resistance to hydrogen organic cracking (hydrogen organic cracking resistance) include 1) addition of Cu and / or Co, 2) reduction and shape control of impurities and inclusions, and 3) fine dispersion of carbonitride. Therefore, there are techniques for improving the hydrogen-organic crack resistance by techniques for suppressing the intrusion or diffusion of hydrogen.

그러나, 종래 기술 1)은 고가의 원소 첨가에 의한 제조 비용 상승의 문제점이 존재하고, 2)는 제강 조업의 부하를 초래한다는 문제점이 있으며, 또한 3) 역시 강재의 미세 조직이 페라이트와 퍼얼라이트 조직으로 구성되는바, 그러한 조직의 제어에 한계성이 있다는 등의 문제점이 있다. However, the prior art 1) has a problem of an increase in manufacturing cost due to the addition of expensive elements, 2) has a problem of causing a load of steelmaking operations, and 3) also the microstructure of the steel is ferrite and pearlite structure There is a problem in that there is a limit to the control of such an organization.

본 발명은 이러한 종래 기술의 문제점을 해결함과 동시에 내수소유기균열 저항성이 우수한 압력용기용 강재를 생산하기 위하여, 재결정제어압연을 통해 페라이트와 퍼얼라이트로 구성된 미세조직의 Banding Index(ASTM E-1268에 따라 측정)를 0.25이하로 제어함에 의해 수소유기균열 저항성이 우수한 인장강도 500MPa급 압력용기용 강재 및 그 제조 방법을 제공하는데 그 목적이 있다.The present invention solves the problems of the prior art and at the same time to produce a steel vessel for pressure vessels with excellent resistance to hydrogen-organic cracks, the banding index of the microstructure consisting of ferrite and perlite through recrystallization control rolling (ASTM E-1268) It is an object of the present invention to provide a tensile strength 500MPa class steel for excellent hydrogen organic cracking resistance and control method by controlling to 0.25 or less).

본 발명은 중량 %로, C : 0.1~ 0.30%, Si : 0.15~0.40%, Mn : 0.6~1.2%, P : 0.035% 이하, S : 0.020% 이하, Al : 0.001~0.05%, Cr : 0.35% 이하, Ni : 0.5% 이하, Cu : 0.5% 이하, Mo :0.2% 이하, V : 0.05%이하, Nb :0.05% 이하, Ca : 0.0005~0.005%, 나머지는 불가피한 불순물 및 Fe로 구성되며;In the present invention, by weight%, C: 0.1-0.30%, Si: 0.15-0.40%, Mn: 0.6-1.2%, P: 0.035% or less, S: 0.020% or less, Al: 0.001-0.05%, Cr: 0.35 % Or less, Ni: 0.5% or less, Cu: 0.5% or less, Mo: 0.2% or less, V: 0.05% or less, Nb: 0.05% or less, Ca: 0.0005 to 0.005%, and the remainder are composed of inevitable impurities and Fe;

성분 제약식으로 Ingredients

(1) Cu + Ni + Cr + Mo <1.5%, (1) Cu + Ni + Cr + Mo <1.5%,

(2) Cr + Mo <0.4% (2) Cr + Mo <0.4%

(3) V + Nb <0.1%(3) V + Nb <0.1%

(4) Ca / S > 1.0 (4) Ca / S> 1.0

을 만족하고;Satisfy;

미세 조직의 Banding Index(ASTM E-1268에 따라 측정)가 0.25이하인 것을 특징으로 하는 수소유기균열 저항성이 우수한 인장 강도 500MPa급 강판에 관한 것이다.It relates to a tensile strength 500MPa grade steel sheet having excellent hydrogen organic cracking resistance, characterized in that the banding index (measured according to ASTM E-1268) of the microstructure is 0.25 or less.

나아가 본 발명은 상기 조성으로 구성되는 강판을, Furthermore, the present invention provides a steel sheet composed of the above composition,

1050 ~ 1250℃에서 재가열하는 재가열 단계;A reheating step of reheating at 1050-1250 ° C .;

하기 식(1)로 정의되는 미재결정역 온도(Tnr) 이상에서 열간 압연하는 재결정 제어 압연 단계; 및A recrystallization controlled rolling step of hot rolling at an unrecrystallized zone temperature (T nr ) or more defined by the following formula (1); And

Figure 112006092482195-pat00001
Figure 112006092482195-pat00001

(단, 합금원소의 단위는 중량%)(However, the unit of the alloy element is weight%)

850 ~ 950℃에서 1.3*t + (10~30분) (단, t는 강재의 두께(mm)를 의미)의 조건으로 열처리하는 노멀라이징 단계;A normalizing step of heat treatment at 850 to 950 ° C. under conditions of 1.3 * t + (10 to 30 minutes) (where t denotes the thickness of the steel in mm);

를 포함하는 것을 특징으로 하는 수소유기균열 저항성이 우수한 인장 강도 500MPa급 강판의 제조 방법에 관한 것이다.It relates to a method for producing a tensile strength 500MPa grade steel sheet having excellent hydrogen-organic crack resistance.

이하, 본 발명에 대하여 상세히 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.

(강의 성분 및 조직)(Lecture composition and organization)

본 발명에 있어 강 슬라브의 화학성분 범위를 제한하는 이유는 다음과 같다. The reason for limiting the chemical composition range of the steel slab in the present invention is as follows.

C는 0.10~ 0.30%로 한정하는 것이 바람직하다. 만일, C의 함량이 0.10% 미만인 경우에는 기지 상의 자체 강도가 저하되고, 0.30%를 초과하는 경우에는 조직내에 편석이 발생하여 수소유기균열 저항성을 저하시키는 문제점이 있다.It is preferable to limit C to 0.10 to 0.30%. If the content of C is less than 0.10%, the strength of the matrix on the matrix is lowered. If the content of C is more than 0.30%, segregation may occur in the tissue to reduce hydrogen organic crack resistance.

Si은 탈산 효과, 고용 강화 효과 및 충격 천이 온도 상승 효과를 위하여 첨가되는 성분으로서, 이러한 첨가 효과를 달성하기 위해서는 0.15%이상 첨가하는 것이 바람직하다. 하지만, 0.40%를 초과하여 첨가되면 용접성이 저하되고 강판 표면에 산화 피막이 심하게 형성되므로 그 함량은 0.15~0.40%로 제한한다.Si is a component added for the deoxidation effect, the solid solution strengthening effect, and the impact transition temperature raising effect, and in order to achieve such an addition effect, it is preferable to add 0.15% or more. However, if the content exceeds 0.40%, the weldability is lowered and the oxide film is severely formed on the surface of the steel sheet, so the content thereof is limited to 0.15 to 0.40%.

Mn은 S와 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 1.2%이하로 관리하는 것이 바람직하다. 그러나, 본 발명의 성분 특성상 Mn이 0.6%미만이 되면 적절한 강도를 확보하기 어려우므로 Mn의 첨가량은 0.6~1.2%로 제한한다.Since Mn forms MnS, which is a non-metallic inclusion drawn together with S, lowers the normal temperature elongation and low temperature toughness, Mn is preferably managed at 1.2% or less. However, when Mn is less than 0.6% due to the component properties of the present invention, it is difficult to secure appropriate strength, so the amount of Mn added is limited to 0.6 to 1.2%.

Al은 Si와 더불어 제강 공정에서 강력한 탈산제의 하나이며, 0.001% 미만에서는 그 효과가 미미하고 0.05%를 초과하여 첨가시에는 제조원가가 상승하므로 0.001~0.05%로 한정한다.Al, together with Si, is one of the strong deoxidizers in the steelmaking process, and its effect is insignificant at less than 0.001%, and the production cost increases when added in excess of 0.05%, so it is limited to 0.001 to 0.05%.

P는 저온인성을 해치는 원소이나 제강 공정에서 제거하는데 과다한 비용이 소요되므로 0.035%이하의 범위 내에서 관리한다.P is managed at less than 0.035% because excessive cost is required to remove it from elements that harm low temperature toughness or steelmaking process.

S 역시 P와 더불어 저온인성에 악영향을 주는 원소이지만 P와 마찬가지로 제강 공정에서 제거하는데 과다한 비용이 소요될 수 있으므로 0.020%이하의 범위 내에서 관리함이 적절하다.S is also an element that adversely affects low temperature toughness along with P, but like P, it may be excessively expensive to remove in the steelmaking process, so it is appropriate to manage it within 0.020% or less.

Cr은 강도를 증대시킬 수 있는 합금원소이지만 고가의 원소이므로 0.35%를 초과하여 첨가하는 경우에는 제조비의 상승을 초래하므로 0.35% 이내로 한정하는 것이 바람직하다.Cr is an alloying element that can increase the strength, but since it is an expensive element, when it is added in excess of 0.35%, it is preferable to limit it to within 0.35% because it increases the manufacturing cost.

Mo역시 Cr과 같이 강도 증대에 유효한 합금 원소인 반면 황화물에 의한 균열 발생을 방지하는 원소로 알려져 있다. 하지만 Mo 역시 고가의 원소로서 0.2% 이하의 범위에서 첨가함이 바람직하다.Mo is also known as an element that is effective in increasing the strength, such as Cr, while preventing the occurrence of cracks by sulfides. However, Mo is also an expensive element and is preferably added in the range of 0.2% or less.

Ni은 저온 인성의 향상에 가장 효과적인 원소이긴 하지만 고가이므로 0.5%이하의 범위 내에서 첨가함이 바람직하다.Although Ni is the most effective element for improving low temperature toughness, it is expensive, and therefore Ni is preferably added within 0.5% or less.

V은 Cr, Mo와 같이 강도의 증대에 효과적인 원소이지만 고가인 관계로 0.05% 이내로 첨가함이 바람직하다.V is an element effective for increasing the strength, such as Cr and Mo, but is preferably added within 0.05% due to its high cost.

Nb은 오스테나이트에 고용되어 오스테나이트의 경화능을 증대시키고, 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출함으로써 강의 강도를 증가시키는 중요한 원소이다. 그러나 다량으로 첨가시 연주 과정에서 조대한 석출물로 나타나 수소유기균열의 사이트의 역할을 할 수 있으므로 그 함량은 0.05% 이하로 제한하는 것이 바람직하다.Nb is an important element that increases the strength of steel by solidifying the austenite to increase the hardenability of austenite and to precipitate as carbonitrides (Nb (C, N)) matching with matrix (Matrix). However, when added in a large amount may appear as a coarse precipitate in the process of playing the role of the site of hydrogen organic cracks, its content is preferably limited to 0.05% or less.

Ca은 CaS로 생성되어 MnS의 비금속개재물을 억제하기 위해 첨가하는바, 이를 위해 5ppm이상 첨가하는 것이 좋다. 하지만 그 첨가량이 많으면 강중에 함유된 O와 반응하여 비금속개재물인 CaO를 생성하므로 그 상한치는 50ppm로 한다.Ca is produced by CaS is added to suppress the non-metallic inclusions of MnS, for this purpose it is good to add more than 5ppm. However, if the added amount is large, the upper limit thereof is 50 ppm because it reacts with O contained in the steel to generate CaO, which is a non-metallic inclusion.

Cu + Ni + Cr + Mo, Cr + Mo, V + Nb의 첨가량을 제한하는 이유는 압력용기용 강재의 기본규격(ASTM A20)에서 각각 제한하고 있으므로 Cu + Ni + Cr + Mo함량은 1.5%이내로, Cr + Mo함량은 0.4%이내로, 그리고 V + Nb함량은 0.1%이내로 제한한다.The reason for limiting the addition amount of Cu + Ni + Cr + Mo, Cr + Mo, V + Nb is limited by the basic standard of steel for pressure vessel (ASTM A20), so the content of Cu + Ni + Cr + Mo is within 1.5%. , Cr + Mo content is limited to within 0.4%, and V + Nb content is within 0.1%.

그리고 Ca / S 비는 MnS 개재물을 구상화시켜 수소유기균열 저항성을 향상시키는 필수 구성비로서 1.0 이하에서는 그 효과를 기대하기 어려우므로 그 비율을 1.0이 초과되도록 조절한다.And Ca / S ratio is an essential component ratio to improve the hydrogen organic crack resistance by spheroidizing MnS inclusions, the effect is less than 1.0, so the ratio is adjusted to exceed 1.0.

상기와 같은 조성을 갖는 강을 노멀라이징 처리를 하면 그 미세조직이 페라이트 + 퍼얼라이트 2상 복합조직을 갖게 된다. 이 경우, Banding Index(ASTM E-1268에 따라 측정)가 0.25이하로 이루어진 미세조직으로 구성될 수 있도록 상기 복합조직을 처리해야 한다. 만일 Banding Index값이 0.25를 초과하게 되면 그 미세 조직에서는 수소유기균열 저항성이 급격히 저하되므로 각별한 주의를 요한다.When the steel having the above composition is normalized, the microstructure has a ferrite + pearlite two-phase composite structure. In this case, the composite tissue should be treated so that the banding index (measured according to ASTM E-1268) can be composed of microstructures of 0.25 or less. If the banding index value exceeds 0.25, special attention should be paid because the hydrogen organic cracking resistance in the microstructure rapidly decreases.

(제조방법)(Manufacturing method)

이하, 본 발명의 제조방법에 대하여 설명한다. Hereinafter, the manufacturing method of this invention is demonstrated.

상기 조성으로 구성되는 본 발명강의 미세조직이 페라이트 + 퍼얼라이트 2상 복합 조직을 갖고, Banding Index(ASTM E-1268에 따라 측정)값을 0.25 이하로 조절 하기 위해서는 열간 압연 방법(재결정 제어 압연) 및 PWHT(Post Weld Heat Treatment)후 적정 인장강도 500MPa를 확보하기 위한 열처리를 수행할 필요가 있다. The microstructure of the present invention steel composed of the above composition has a ferrite + perlite two-phase composite structure, in order to adjust the Banding Index (measured according to ASTM E-1268) to 0.25 or less, hot rolling method (recrystallization controlled rolling) and After PWHT (Post Weld Heat Treatment), it is necessary to perform heat treatment to secure 500MPa of proper tensile strength.

이 경우, 상기 조성으로 구성되는 강재를 먼저 1050 ~ 1250℃에서 재가열하는데, 그 이유는 재가열 온도가 1050℃보다 낮을 경우 용질원자의 고용이 어렵고, 가열온도가 1250℃를 초과하면 오스테나이트 결정립 크기가 너무 조대하게되어 강판의 성질을 해치기 때문이다. In this case, the steel composed of the composition is first reheated at 1050 to 1250 ° C., because the reheating temperature is lower than 1050 ° C., solute of solid solutes is difficult, and when the heating temperature exceeds 1250 ° C., the austenite grain size is increased. This is because it becomes too coarse and damages the properties of the steel sheet.

상기 재가열 처리를 수행한 후, 본 발명강이 우수한 수소유기균열 저항성을 갖기 위한 필수 미세 조직인 페라이트 + 퍼얼라이트 2상 복합 조직을 갖고 Banding Index(ASTM E-1268에 따라 측정)가 0.25이하를 얻기 위해서는 재결정 제어 압연, 노멀라이징 열처리, PWHT 열처리를 할 것이 요구된다.After the reheating treatment, the steel of the present invention has a ferrite + pearlite two-phase composite structure, which is an essential microstructure for having excellent hydrogen organic crack resistance, and a banding index (measured according to ASTM E-1268) to obtain 0.25 or less. Recrystallization controlled rolling, normalizing heat treatment and PWHT heat treatment are required.

상기 재결정 제어 압연은 미재결정 이상의 온도에서 열간 압연을 행하는 것을 의미하며 미재결정온도인 Tnr은 잘 알려져 있는 다음의 수식(1)을 통해 간단하게 계산이 가능하다. 단, 수식에서 각 합금원소의 단위는 중량%를 나타낸다.The recrystallized controlled rolling means hot rolling at a temperature higher than the uncrystallized crystal . The recrystallized temperature T nr can be easily calculated through the following well-known Equation (1). However, in the formula, the unit of each alloy element represents weight%.

Figure 112006092482195-pat00002
Figure 112006092482195-pat00002

Banding Index(ASTM E-1268에 따라 측정)값이 0.25이하로 나오기 위해서는 재결정 제어 압연이 가장 중요한 변수이며, 재결정 제어 압연은 Tnr ~ Tnr+100℃의 온도 범위 구간에서 각 압연 패스당 10% 이상의 압하율을 가하여 누적압하량 50% 이상을 부여하는 것이 필수적이다. 만일 누적 압하량이 50% 미만인 경우에는 Banding Index 0.25이하를 기대할 수 없다. Recrystallized controlled rolling is the most important variable for the banding index (measured according to ASTM E-1268) to be less than 0.25, and recrystallized controlled rolling is 10% for each rolling pass in the temperature range of T nr to T nr + 100 ° C. It is essential to add more than 50% of the cumulative reduction amount by applying the above reduction ratio. If the cumulative reduction is less than 50%, a banding index of 0.25 or less cannot be expected.

상기의 방법에 의해 열간 압연되고 냉각된 강판을 노멀라이징 열처리와 PWHT를 실시하여, 인장강도 500MPa 및 -50℃ 충격인성 50Joules 이상을 확보할 것이 요구되는바, 이러한 조건을 달성하기 위한 열처리 조건은 다음과 같다.Normalized heat treatment and PWHT on the hot rolled and cooled steel sheet by the above method are required to ensure a tensile strength of 500 MPa and -50 ° C impact toughness of 50 Joules or more. Heat treatment conditions for achieving such conditions are as follows. same.

상기 노멀라이징 열처리는 850 ~ 950℃에서 1.3*t + (10~30분) (단, t는 강재의 두께(mm)를 의미)의 조건으로 실시한다. 상기 노멀라이징 열처리의 온도가 850℃보다 낮으면 고용 용질 원소들의 재고용이 어려워 강도의 확보가 어려워지고, 반면에 노멀라이징 온도가 950℃보다 높아지면 결정립의 성장이 일어나 저온 인성을 해치게 된다. 또한, 열처리 시간의 제약을 두는 이유는 상기 기준 시간보다 적으면 조직의 균질화가 어렵고 그 이상의 유지시간에서는 생산성을 해치기 때문이다. The normalizing heat treatment is carried out at 850 ~ 950 ℃ condition of 1.3 * t + (10 ~ 30 minutes) (where t means the thickness of the steel (mm)). When the temperature of the normalizing heat treatment is lower than 850 ° C, it is difficult to re-use solid solution solute elements, and thus, it is difficult to secure the strength. On the other hand, when the normalizing temperature is higher than 950 ° C, grains grow to damage low-temperature toughness. In addition, the reason for the limitation of the heat treatment time is that the homogenization of the tissue is difficult when less than the reference time, and the productivity is deteriorated at the holding time longer.

노멀라이징 처리가 된 강재를 용접 처리하여 압력 용기를 제조한 이후에는 PWHT 처리가 필요하다. PWHT의 온도 조건은 600 ~ 640℃에서 실시하는 것이 바람직하다. PWHT 온도가 600℃ 보다 낮으면 용접부 등의 잔류 응력 제거가 원활하지 않고, 그 이상의 온도에서는 강재의 강도를 저하시키기 때문이다. PWHT의 시간 조건은 1인치 두께당 3시간동안 하는 것이 바람직한데, 이는 상기 기준 시간보다 적으면 잔류 응력 제거가 어렵고 그 이상의 유지시간은 생산성을 해치기 때문이다.After manufacturing the pressure vessel by welding the steel which has been normalized, PWHT treatment is required. It is preferable to perform temperature conditions of PWHT at 600-640 degreeC. This is because when the PWHT temperature is lower than 600 ° C, residual stress removal such as welds is not smooth, and the strength of the steel is lowered at a temperature higher than that. The PWHT time condition is preferably for 3 hours per inch thickness, because less than the reference time is difficult to remove residual stress and longer holding time is detrimental to productivity.

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

(실시예)(Example)

하기 표1에는 발명강과 비교강의 화학성분을 각각 나타낸 것이다. 표1과 같은 화학 조성을 갖는 발명재의 강 슬라브를 적정한 온도범위에서 가열하고 재결정역에서 재결정 제어 압연을 55~80% 실시하여 Banding Index를 0.25 이하로 제어하는 압연을 실시한다. 그리고 노멀라이징 및 PWHT 등을 하기 표2와 같은 조건으로 실시한 후 항복강도, 저온 인성 및 크랙 길이비(Crack Length Ratio, %)를 조사하여 그 결과를 하기 표 2에 나타내었다.Table 1 shows the chemical components of the inventive steel and the comparative steel, respectively. The steel slab of the inventive material having the chemical composition as shown in Table 1 is heated at an appropriate temperature range, and the recrystallization controlled rolling is performed 55-80% in the recrystallization zone to perform rolling controlling the banding index to 0.25 or less. In addition, normalization and PWHT were performed under the conditions shown in Table 2 below, and then the yield strength, low temperature toughness, and crack length ratio (%) were examined, and the results are shown in Table 2 below.

단, 저온 인성은 -50℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격 에너지값으로 평가한 것이고, 하기 표2에서 크랙 길이비(Crack Length Ratio, %)는 NACE TM0277 규격에 따라 측정된 것이다.However, low-temperature toughness was evaluated by the Charpy impact energy value obtained by Charpy impact test of the specimen having a V notch at -50 ° C. In Table 2, the crack length ratio (%) was determined according to the NACE TM0277 standard. It is measured.

CC MnMn SiSi PP SS CuCu NiNi CrCr MoMo VV NbNb CaCa 발명재Invention aa 0.170.17 1.101.10 0.300.30 0.0100.010 0.00150.0015 0.050.05 0.200.20 0.050.05 0.120.12 0.0050.005 0.0150.015 0.00200.0020 bb 0.180.18 1.051.05 0.250.25 0.0800.080 0.00120.0012 -- 0.150.15 0.100.10 0.100.10 0.0100.010 0.0140.014 0.00250.0025 비교재Comparative material cc 0.170.17 1.051.05 0.280.28 0.0100.010 0.00170.0017 0.200.20 0.180.18 0.150.15 0.080.08 0.0100.010 0.0100.010 0.00250.0025 dd 0.140.14 1.151.15 0.290.29 0.0120.012 0.00140.0014 0.180.18 0.150.15 0.200.20 0.150.15 0.0090.009 0.0120.012 0.00230.0023

구분division 강판 두께 (mm)Steel plate thickness (mm) 슬라브 가열 온도 (℃)Slab heating temperature (℃) 재결정제어압연누적압하량(%)Recrystallization Control Rolling Accumulated Loading Capacity (%) 노멀라이징 온도 (℃)Normalizing Temperature (℃) 노멀라이징 시간 (분)Normalizing time (minutes) PWHT 온도 (℃)PWHT temperature (℃) PWHT 시간 (hr)PWHT hours (hr) BandingBanding IndexIndex YS (Mpa)YS (Mpa) TS (Mpa)TS (Mpa) -50℃ 충 격 인 성 (J)-50 ℃ impact toughness (J) CLR (%)CLR (%) 발명재  Invention a  a 1313 12001200 6060 890890 5050 620620 33 0.200.20 380380 545 545 203203 0.10.1 2525 11801180 7575 900900 6060 620620 33 0.120.12 375375 540 540 197197 0.00.0 5050 11201120 5555 890890 8080 610610 66 0.180.18 360360 535 535 213213 0.00.0 5050 11201120 7070 900900 8585 610610 66 0.130.13 359359 537 537 186186 0.00.0 b b 7070 11001100 8080 910910 110110 610610 99 0.120.12 355355 532 532 173173 0.00.0 7575 11001100 8585 910910 120120 610610 99 0.110.11 354354 530 530 180180 0.00.0 8080 11001100 6060 890890 120120 610610 1212 0.130.13 350350 528 528 175175 0.00.0 비교재Comparative material cc 2020 12001200 2020 900900 6060 620620 33 0.370.37 370370 539 539 186186 5555 2525 11501150 3030 900900 5050 620620 33 0.300.30 365365 530 530 175175 6060 dd 5050 11001100 4040 900900 8080 620620 66 0.350.35 358358 520 520 190190 3535

상기 표 2에 나타난 바와 같이 항복 강도 및 인장 강도, 저온 인성은 발명재와 비교재가 거의 동등한 수준을 보이고 있으나, H2S(sour gas)가스 분위기 하에서의 저항성을 나타내는 CLR(Crack Length Ratio, %)은 발명재가 월등히 우수함을 알 수 있다.As shown in Table 2, the yield strength, tensile strength, and low temperature toughness of the invention and the comparative material showed almost the same level, but the CLR (Crack Length Ratio,%) indicating the resistance under H 2 S (sour gas) gas atmosphere is It can be seen that the invention material is excellent.

이와 같이, 발명재가 CLR에 있어서 우수한 이유는 페라이트 + 퍼얼라이트로 구성되는 미세 조직의 균질화 정도를 나타내는 Banded Index가 0.25 이하로 낮게 제어됨에 기인한 것임을 본 실시예를 통해 알 수 있다.As described above, it can be seen from the present embodiment that the invention is excellent in the CLR because the banded index indicating the homogenization degree of the microstructure composed of ferrite + pearlite is controlled to be 0.25 or less.

본 발명에 의해 인장 강도 500MPa급을 만족하면서, H2S(sour gas)가스 분위기에서도 안정적으로 사용이 가능한 내수소유기균열성이 우수한 압력용기용 후강판이 제공될 수 있다.According to the present invention, while satisfying the tensile strength of 500MPa class, it can be provided a thick steel plate for pressure vessels excellent in hydrogen-organic crack resistance that can be used stably even in H 2 S (sour gas) gas atmosphere.

Claims (5)

삭제delete 중량 %로, C: 0.1~ 0.30%, Si: 0.15~0.40%, Mn : 0.6~1.2%, P : 0.035% 이하, S : 0.020% 이하, Al : 0.001~0.05%, Cr : 0.35% 이하, Ni : 0.5% 이하, Cu : 0.5% 이하, Mo :0.2% 이하, V: 0.05%이하, Nb :0.05% 이하, Ca: 0.0005~0.005, 나머지는 불가피한 불순물 및 Fe로 구성되며;By weight%, C: 0.1-0.30%, Si: 0.15-0.40%, Mn: 0.6-1.2%, P: 0.035% or less, S: 0.020% or less, Al: 0.001-0.05%, Cr: 0.35% or less, Ni: 0.5% or less, Cu: 0.5% or less, Mo: 0.2% or less, V: 0.05% or less, Nb: 0.05% or less, Ca: 0.0005 to 0.005, and the remainder are composed of inevitable impurities and Fe; 성분 제약식으로 Ingredients (1) Cu + Ni + Cr + Mo < 1.5%, (1) Cu + Ni + Cr + Mo <1.5%, (2) Cr + Mo < 0.4% (2) Cr + Mo <0.4% (3) V + Nb < 0.1%(3) V + Nb <0.1% (4) Ca / S > 1.0 (4) Ca / S> 1.0 을 만족하는 강판을 미세 조직의 Banding Index(ASTM E-1268에 따라 측정)가 0.25 이하가 되도록,The steel sheet satisfies the following requirements so that the banding index (measured according to ASTM E-1268) of the microstructure is 0.25 or less. 1050 ~ 1250℃에서 재가열 하는 재가열 단계;Reheating step reheating at 1050 ~ 1250 ℃; 하기 식(1)로 정의되는 미재결정역 온도(Tnr) 이상에서 열간 압연하는 재결정 제어 압연 단계; 및A recrystallization controlled rolling step of hot rolling at an unrecrystallized zone temperature (T nr ) or more defined by the following formula (1); And
Figure 112008003363906-pat00004
Figure 112008003363906-pat00004
(단, 합금원소의 단위는 중량%) (However, the unit of the alloy element is weight%) 850 ~ 950℃에서 1.3×t + (10~30분) (단, t는 강재의 두께(mm)를 의미)의 조건으로 열처리하는 노멀라이징 단계Normalizing step of heat treatment under conditions of 1.3 × t + (10 ~ 30 minutes) (t means thickness of steel (mm)) at 850 ~ 950 ℃ 를 포함하는 것을 특징으로 하는 수소유기균열 저항성이 우수한 인장 강도 500MPa급 강판의 제조 방법. Method for producing a tensile strength 500MPa grade steel sheet having excellent hydrogen organic crack resistance, characterized in that it comprises a.
제2항에 있어서, 상기 강판의 제조 방법은 600 ~ 640℃의 온도에서 열처리하는 PWHT(Post Welding Heat Treatment)단계를 추가적으로 포함하는 것을 특징으로 하는 수소유기균열 저항성이 우수한 인장 강도 500MPa급 강판의 제조 방법.The method of claim 2, wherein the steel sheet manufacturing method further comprises a post-weld heat treatment (PWHT) step of heat-treating at a temperature of 600 ~ 640 ℃ hydrogen nanocrack resistance excellent tensile strength production of 500MPa grade steel sheet Way. 제2항에 있어서, 상기 재결정 제어 압연은 Tnr ~ Tnr+100℃의 온도 범위 구간에서 각 압연 패스당 10% 이상의 압하율을 가하여 누적 압하량 50% 이상으로 수행하는 것을 특징으로 하는 수소유기균열 저항성이 우수한 인장 강도 500MPa급 강판의 제조 방법.According to claim 2, The recrystallized controlled rolling is hydrogen organic, characterized in that the cumulative reduction of 50% or more by applying a reduction ratio of 10% or more per each rolling pass in the temperature range of T nr ~ T nr +100 ℃ Manufacturing method of tensile strength 500MPa grade steel sheet with excellent crack resistance. 삭제delete
KR1020060127481A 2006-12-13 2006-12-13 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof KR100833070B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020060127481A KR100833070B1 (en) 2006-12-13 2006-12-13 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060127481A KR100833070B1 (en) 2006-12-13 2006-12-13 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR100833070B1 true KR100833070B1 (en) 2008-05-27

Family

ID=39665461

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060127481A KR100833070B1 (en) 2006-12-13 2006-12-13 Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR100833070B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101359109B1 (en) * 2011-12-28 2014-02-06 주식회사 포스코 Pressure vessel steel with excellent sulfide stress cracking resistance and low temperature toughness and manufacturing method thereof
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
EP2520680B1 (en) 2009-12-28 2016-10-26 Posco High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
WO2018117449A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Heavy-walled steel material having 450mpa-grade tensile strength and excellent resistance to hydrogen induced crack and method for manufacturing same
US10801092B2 (en) 2015-12-21 2020-10-13 Posco Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748621A (en) * 1992-12-29 1995-02-21 Kawasaki Steel Corp Production of steel for pressure vessel excellent in ssc resistance and hic resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0748621A (en) * 1992-12-29 1995-02-21 Kawasaki Steel Corp Production of steel for pressure vessel excellent in ssc resistance and hic resistance

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2520680B1 (en) 2009-12-28 2016-10-26 Posco High strength steel sheet having excellent resistance to post weld heat treatment and method for manufacturing same
KR101359109B1 (en) * 2011-12-28 2014-02-06 주식회사 포스코 Pressure vessel steel with excellent sulfide stress cracking resistance and low temperature toughness and manufacturing method thereof
US20160214203A1 (en) * 2013-09-30 2016-07-28 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US10005151B2 (en) * 2013-09-30 2018-06-26 Jfe Steel Corporation Friction stir welding method for steel sheets and method of manufacturing joint
US10801092B2 (en) 2015-12-21 2020-10-13 Posco Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance, and method for manufacturing same
WO2018117449A1 (en) 2016-12-22 2018-06-28 주식회사 포스코 Heavy-walled steel material having 450mpa-grade tensile strength and excellent resistance to hydrogen induced crack and method for manufacturing same

Similar Documents

Publication Publication Date Title
KR100833069B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
KR100833071B1 (en) Steel plate for pressure vessel with ts 600mpa grade and excellent hic resistance and manufacturing method thereof
JP6691219B2 (en) Steel for pressure vessel having excellent hydrogen induced cracking (HIC) resistance and method for producing the same
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR101271954B1 (en) Pressure vessel steel plate with excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR101998991B1 (en) Steel plate for pressure vessel having excellent tensile strength and low temperature impact toughness and method of manufacturing the same
KR101322067B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR101091306B1 (en) High Strength Steel Plate for Containment Vessel of Atomic Plant and Manufacturing Method Thereof
KR101417231B1 (en) Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
KR101359109B1 (en) Pressure vessel steel with excellent sulfide stress cracking resistance and low temperature toughness and manufacturing method thereof
KR20100076727A (en) High strength steel sheet for pressure vessel with excellent hic and fatigue resist properties and manufacturing method thereof
KR101867701B1 (en) Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
KR20190065040A (en) Steel material having exellent hydrogen induced crack resistance and low temperature impact toughness and method of manufacturing the same
KR20190077830A (en) Steel plate having excellent HIC resistance and manufacturing method for the same
KR101091398B1 (en) High Strength Steel Sheet with Excellent Low-Temperature Toughness for Pressure Vessel and Manufacturing Method Thereof
KR100833070B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof
KR102164116B1 (en) Steel plate having excellent hic resistance and manufacturing method for thereof
KR101253888B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
KR20170074319A (en) Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
KR101353858B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR101271990B1 (en) High strength steel sheet and method for manufacturing the same
JP7197699B2 (en) Steel material for pressure vessel excellent in resistance to hydrogen-induced cracking and its manufacturing method
KR102031450B1 (en) High strength steel sheet and manufacturing method for the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130502

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20140521

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20150519

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20160523

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180521

Year of fee payment: 11