KR101353858B1 - Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same - Google Patents

Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same Download PDF

Info

Publication number
KR101353858B1
KR101353858B1 KR1020110145206A KR20110145206A KR101353858B1 KR 101353858 B1 KR101353858 B1 KR 101353858B1 KR 1020110145206 A KR1020110145206 A KR 1020110145206A KR 20110145206 A KR20110145206 A KR 20110145206A KR 101353858 B1 KR101353858 B1 KR 101353858B1
Authority
KR
South Korea
Prior art keywords
less
heat treatment
pressure vessel
steel plate
steel sheet
Prior art date
Application number
KR1020110145206A
Other languages
Korean (ko)
Other versions
KR20130077906A (en
Inventor
홍순택
김대우
장성호
박재현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020110145206A priority Critical patent/KR101353858B1/en
Publication of KR20130077906A publication Critical patent/KR20130077906A/en
Application granted granted Critical
Publication of KR101353858B1 publication Critical patent/KR101353858B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

본 발명의 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고 그 조직은 페라이트와 베이나이틱 페라이트(Bainitic Ferrite: Acicular Ferrite + Bainite)의 혼합조직으로 이루어져 있다.
본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0`1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃의 온도범위로 가열하는 단계, 상기 가열된 강 슬라브를 Tnr~Ar3변태점의 온도범위에서 열간압연하는 단계, 상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 2~30℃/sec의 냉각속도로 냉각하는 단계 및 상기 냉각된 강판을 590~640℃의 온도범위에서 50시간 이하 동안 유지하는 용접 후 열처리 단계를 포함한다.
The pressure vessel steel plate excellent in heat treatment resistance after welding, which is one aspect of the present invention, is C: 0.05 to 0.15%, Si: 0.15 to 0.5%, Mn: 1.0 to 1.6%, P: 0.03% or less, and S: 0.03% or less, Al: 0.015 to 0.05%, Cr: 0.01 to 0.25%, Mo: 0.005 to 0.3%, V: 0.005 to 0.06%, Nb: 0.005 to 0.03%, Ti: 0.001 to 0.05%, Ni: 0.05 to 0.05 0.6%, Cu: 0.01-0.35%, Cu + Ni + Cr + Mo: 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, residual Fe and unavoidable impurities and the structure is ferrite It consists of a mixed tissue of Bainitic Ferrite (Acicular Ferrite + Bainite).
Another aspect of the present invention is a method for producing a pressure vessel steel plate having excellent heat treatment resistance after welding, in weight%, C: 0.05 to 0.15%, Si: 0.15 to 0.5%, Mn: 1.0`1.6%, P: 0.03% S: 0.03% or less, Al: 0.015 to 0.05%, Cr: 0.01 to 0.25%, Mo: 0.005 to 0.3%, V: 0.005 to 0.06%, Nb: 0.005 to 0.03%, Ti: 0.001 to 0.05%, Ni: 0.05 to 0.6%, Cu: 0.01 to 0.35%, Cu + Ni + Cr + Mo: 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, including residual Fe and unavoidable impurities Heating the steel slab to a temperature range of 1050 to 1250 ° C., hot rolling the heated steel slab at a temperature range of a Tnr to Ar3 transformation point, and forming the hot rolled hot rolled steel sheet to 1 / 4T (T: thickness of the steel sheet). Based on the cooling rate of), the step of cooling at a cooling rate of 2 ~ 30 ℃ / sec and the post-weld heat treatment step of maintaining the cooled steel sheet for 50 hours or less in the temperature range of 590 ~ 640 ℃.

Description

용접 후 열처리 저항성이 우수한 압력용기용 강판 및 그 제조 방법 {PRESSURE VESSEL STEEL PLATE HAVING EXCELLENT RESUSTANCE PROPERTY AFTER POST WELD HEAT TREATMENT AND MANUFACTURING METHOD OF THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a steel plate for pressure vessels,

본 발명은 석유화학 제조설비, 저장탱크, 열교환기, 반응로 및 응축기 등과 같은 압력이 작용하는 압력용기에 사용되는 강판 및 그 제조방법에 관한 것으로서, 보다 상세하게는 용접 후 열처리(PWHT: Post Weld Heat Treatment)후에도 강도와 인성이 우수한 강판 및 그 제조방법에 관한 것이다. The present invention relates to a steel sheet used in pressure vessels under pressure such as petrochemical manufacturing equipment, storage tanks, heat exchangers, reactors and condensers, and a method of manufacturing the same, and more particularly, to post-weld heat treatment (PWHT). It relates to a steel sheet excellent in strength and toughness even after heat treatment and a method of manufacturing the same.

최근 석유의 품귀 현상 및 고유가 시대를 맞이하여 열악한 환경의 유전이 활발하게 개발되는 추세에 따라 원유의 정제 및 저장용 강재에 대하여 후물화가 이루어지고 있다.
In recent years, due to the scarcity of petroleum and the trend of active development of harsh environment oilfields in response to the era of high oil prices, the refining and storage steel of crude oil are being refined.

상기와 같은 강재의 후물화 이외에도 강재를 용접한 경우에 용접 후 구조물의 변형을 방지하고, 형상 및 치수를 안정시키기 위한 목적으로, 용접시 발생된 응력을 제거하기 위하여, 용접 후 열처리(PWHT, Post Weld Heat Treatment)를 행하게 된다. 그러나 장시간의 PWHT 공정을 행한 강판은 그 조직의 조대화로 인하여 강판의 인장강도가 저하되는 문제가 있다.
In addition to the thickening of steel as described above, in order to prevent deformation of the structure after welding and to stabilize shape and dimensions when steel is welded, in order to remove stress generated during welding, heat treatment after welding (PWHT, Post Weld Heat Treatment). However, the steel sheet subjected to the PWHT process for a long time has a problem that the tensile strength of the steel sheet is lowered due to the coarsening of the structure.

즉, 장시간 PWHT 후에는 기지조직(Matrix) 및 결정립계의 연화, 결정립 성장, 탄화물의 조대화 등에 따라 강도 및 인성이 동시에 저하되는 현상을 초래하게 된다.
That is, after a long time PWHT, the strength and toughness are simultaneously decreased due to softening of matrix and grain boundaries, grain growth, and coarsening of carbides.

상기 장시간 PWHT 열처리에 따른 물성의 저하를 방지하기 위한 수단으로 특허문헌 1은 중량%로,C: 0.05∼0.20%,Si: 0.02∼0.5%,Mn: 0.2∼2.0%,Al: 0.005∼0.10%,필요에 따라 Cu,Ni,Cr,Mo,V,Nb,Ti,B,Ca,희토류 원소 중 1 종 또는 2종 이상을 함유하고,잔부가 철 및 불가피한 불순물로 된 슬래브를 가열 및 열간 압연을 행한 후,실온에서 공냉하고,Ac1∼Ac3 변태점에서 가열하고 서냉하는 공정에 의해, PWHT 보증시간을 16시간까지 가능하게 하였다.
As a means for preventing the deterioration of physical properties due to the long-time PWHT heat treatment, Patent Document 1 discloses a steel containing 0.05 to 0.20% of C, 0.02 to 0.5% of Si, 0.2 to 2.0% of Mn, 0.005 to 0.10% , A slab containing at least one of Cu, Ni, Cr, Mo, V, Nb, Ti, B, Ca and rare earth elements and at least one of iron and unavoidable impurities is heated and hot rolled After air cooling at room temperature, heating at the Ac1 to Ac3 transformation point and gradual cooling, the PWHT assurance time was made possible up to 16 hours.

그러나, 상기 기술에 나타난 PWHT 보증 시간은 후물화 및 용접부 조건이 가혹한 경우에는 매우 부족하며, 그 이상의 장시간 PWHT의 적용은 불가능한 문제점을 갖고 있다.
However, the PWHT guarantee time shown in the above technique is very insufficient when the materialization and welding conditions are severe, and there is a problem that the application of the PWHT for a long time is impossible.

따라서, 강재의 후물화 및 용접부 조건의 가혹화에 동반되어, 장시간의 PWHT 후에도 강도와 인성이 저하되지 않는 PWHT에 대한 저항성이 큰 강재가 요구되고 있다.
Therefore, there is a demand for a steel material having high resistance to PWHT which does not deteriorate in strength and toughness even after PWHT for a long time, accompanied by post-sintering of the steel material and severe welding conditions.

일본 공개번호 1997-256037호Japanese Publication No. 1997-256037

본 발명은 강판의 장시간의 PWHT후에도 강도와 인성이 저하되지 않는 저항성이 우수한 압력용기용 강판 및 그 제조방법을 제공하고자 한다. The present invention is to provide a pressure vessel steel sheet excellent in resistance and toughness that does not decrease even after a long time PWHT of the steel sheet and a method of manufacturing the same.

본 발명의 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고 그 조직은 페라이트와 베이나이틱 페라이트(Bainitic Ferrite: Acicular Ferrite + Bainite)의 혼합조직으로 이루어져 있다.
The pressure vessel steel plate excellent in heat treatment resistance after welding, which is one aspect of the present invention, is C: 0.05 to 0.15%, Si: 0.15 to 0.5%, Mn: 1.0 to 1.6%, P: 0.03% or less, and S: 0.03% or less, Al: 0.015 to 0.05%, Cr: 0.01 to 0.25%, Mo: 0.005 to 0.3%, V: 0.005 to 0.06%, Nb: 0.005 to 0.03%, Ti: 0.001 to 0.05%, Ni: 0.05 to 0.05 0.6%, Cu: 0.01-0.35%, Cu + Ni + Cr + Mo: 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, residual Fe and unavoidable impurities and the structure is ferrite It consists of a mixed tissue of Bainitic Ferrite (Acicular Ferrite + Bainite).

본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃의 온도범위로 가열하는 단계, 상기 가열된 강 슬라브를 Tnr~Ar3변태점의 온도범위에서 열간압연하는 단계, 상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 2~30℃/sec의 냉각속도로 냉각하는 단계 및 상기 냉각된 강판을 590~640℃의 온도범위에서 50시간 이하 동안 유지하는 용접 후 열처리 단계를 포함한다.
Another aspect of the present invention is a method for producing a pressure vessel steel plate having excellent heat treatment resistance after welding, in weight%, C: 0.05 to 0.15%, Si: 0.15 to 0.5%, Mn: 1.0 to 1.6%, P: 0.03% S: 0.03% or less, Al: 0.015 to 0.05%, Cr: 0.01 to 0.25%, Mo: 0.005 to 0.3%, V: 0.005 to 0.06%, Nb: 0.005 to 0.03%, Ti: 0.001 to 0.05%, Ni: 0.05 to 0.6%, Cu: 0.01 to 0.35%, Cu + Ni + Cr + Mo: 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, including residual Fe and unavoidable impurities Heating the steel slab to a temperature range of 1050 to 1250 ° C., hot rolling the heated steel slab at a temperature range of a Tnr to Ar3 transformation point, and forming the hot rolled hot rolled steel sheet to 1 / 4T (T: thickness of the steel sheet). Based on the cooling rate of), the step of cooling at a cooling rate of 2 ~ 30 ℃ / sec and the post-weld heat treatment step of maintaining the cooled steel sheet for 50 hours or less in the temperature range of 590 ~ 640 ℃.

덧붙여 상기한 과제의 해결수단은, 본 발명의 특징을 모두 열거한 것은 아니다. 본 발명의 다양한 특징과 그에 따른 장점과 효과는 아래의 구체적인 실시형태를 참조하여 보다 상세하게 이해될 수 있을 것이다.In addition, the solution of the above-mentioned problems does not list all the features of the present invention. The various features of the present invention and the advantages and effects thereof will be more fully understood by reference to the following specific embodiments.

본 발명에 의하면 부피분율이 25~60%인 베이나이틱 페라이트 및 잔부 페라이트인 미세조직을 가지며, 50㎚이하의 미세한 탄질화물을 갖는 강판을 제공할 수 있다. 이와 같은 조직강의 제조를 통해, 550MPa 이상의 인장강도를 가지면서, 50시간 이하 동안 용접 후 열처리에도 강도 및 인성이 열화되지 않는다. According to the present invention, it is possible to provide a steel sheet having a fine structure of bainitic ferrite and a residual ferrite having a volume fraction of 25 to 60% and having fine carbonitride of 50 nm or less. Through the production of such a steel structure, while having a tensile strength of 550MPa or more, strength and toughness does not deteriorate even after heat treatment after welding for 50 hours or less.

본 발명자들은 용접 후 열처리 저항성이 우수한 강판을 도출해내기 위하여 연구를 행한 결과, 강판의 성분계와 제조조건을 적절히 제어하여, 강판의 미세조직을 페라이트와 베이나이틱 페라이트의 혼합조직으로 제어함으로써, 강판의 후물화 및 장시간의 PWHT 후에도 강도와 인성이 저하되지 않는 PWHT에 대한 저항성이 큰 강판을 생산할 수 있음을 확인하고 본 발명에 이르게 되었다.
The present inventors conducted a study to derive a steel sheet excellent in heat treatment resistance after welding. As a result, the inventors controlled the component system and manufacturing conditions of the steel sheet appropriately and controlled the microstructure of the steel sheet by a mixed structure of ferrite and bainitic ferrite. It was confirmed that the steel sheet having a high resistance to PWHT can be produced after the materialization and the PWHT for a long time does not lower the strength and toughness, and thus led to the present invention.

이하, 본 발명의 일측면인 용접 후 열처리 저항성이 우수한 강판에 대하여 상세히 설명한다.
Hereinafter, a steel sheet excellent in post-weld heat treatment resistance, which is one side of the present invention, will be described in detail.

본 발명의 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고 그 조직은 페라이트와 베이나이틱 페라이트(Bainitic Ferrite: Acicular Ferrite + Bainite)의 혼합조직으로 이루어져 있다.
The pressure vessel steel plate excellent in heat treatment resistance after welding, which is one aspect of the present invention, is C: 0.05 to 0.15%, Si: 0.15 to 0.5%, Mn: 1.0 to 1.6%, P: 0.03% or less, and S: 0.03% or less, Al: 0.015 to 0.05%, Cr: 0.01 to 0.25%, Mo: 0.005 to 0.3%, V: 0.005 to 0.06%, Nb: 0.005 to 0.03%, Ti: 0.001 to 0.05%, Ni: 0.05 to 0.05 0.6%, Cu: 0.01-0.35%, Cu + Ni + Cr + Mo: 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, residual Fe and unavoidable impurities and the structure is ferrite It consists of a mixed tissue of Bainitic Ferrite (Acicular Ferrite + Bainite).

탄소(C): 0.05~0.15중량%Carbon (C): 0.05 to 0.15 wt%

탄소는 강을 강화시키는데 가장 효과적인 원소이나, 다량 첨가되는 경우 용접성 및 저온인성을 저하시키는 원소이다. C의 함량이 0.05중량%미만인 경우에는 기지 상의 자체적인 강도가 저하된다. 반면에, C의 함량이 0.15중량%를 초과하는 경우에는 용접성 및 저온인성이 열화되기 때문에 바람직하지 않다. 따라서, 상기 탄소는 0.05~0.15중량%로 포함되는 것이 바람직하다.
Carbon is the most effective element for reinforcing steel, but it is an element that degrades weldability and low temperature toughness when added in large amounts. When the content of C is less than 0.05% by weight, the strength of the matrix itself decreases. On the other hand, when the content of C exceeds 0.15% by weight, it is not preferable because the weldability and low temperature toughness deteriorate. Therefore, it is preferable that the carbon is contained in an amount of 0.05 to 0.15% by weight.

실리콘(Si): 0.15~0.5 중량%Silicon (Si): 0.15-0.5 wt%

실리콘은 탈산제로 사용되고, 고용강화에 의한 강도 향상 및 충격 천이 온도 상승효과를 위하여 첨가되는 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여, 0.15중량%이상 포함되는 것이 바람직하다. 그러나, 실리콘의 함량이 0.5중량%를 초과하는 경우에는 용접성이 저하되고, 강판 표면에 산화 피막이 심하게 형성되는 문제점이 있다. 따라서, 상기 실리콘은 0.15~0.5중량%로 포함되는 것이 바람직하다.
Silicon is used as a deoxidizing agent and is an element added for strength enhancement by solid solution strengthening and effect of increasing impact transition temperature. In order to exhibit such an effect in the present invention, it is preferable that 0.15% by weight or more is contained. However, when the content of silicon exceeds 0.5% by weight, the weldability is deteriorated, and there is a problem that an oxide film is formed on the surface of the steel sheet. Accordingly, it is preferable that the silicon is contained in an amount of 0.15 to 0.5% by weight.

망간(Mn): 1.0~1.6 중량%Manganese (Mn): 1.0 to 1.6 wt%

망간은 강을 고용강화시키는데 효과적인 원소이다. 황(S)과 함께 연신된 비금속 개재물인 MnS를 형성하여 상온 연신율 및 저온인성을 저하시키므로 1.6중량%이하로 관리하는 것이 바람직하다. 그러나, 본 발명의 특성상 Mn이 1.0중량%미만인 경우에는 적절한 강도를 확보하기 어려운 문제점이 있다. 따라서, 상기 망간은 1.0~1.6중량%로 포함되는 것이 바람직하다.
Manganese is an effective element in enhancing the employment of steel. It is preferable to manage at 1.6 wt% or less because MnS, which is a non-metallic inclusion drawn together with sulfur (S), is formed to lower normal temperature elongation and low temperature toughness. However, when Mn is less than 1.0% by weight, it is difficult to secure appropriate strength. Accordingly, it is preferable that the manganese is contained in an amount of 1.0 to 1.6% by weight.

알루미늄(Al): 0.015~0.05중량%,Aluminum (Al): 0.015 to 0.05% by weight,

알루미늄은 제강시 Si과 함께 탈산제로 첨가되며, 고용강화 효과가 있다. 상기 알루미늄의 함량이 0.015중량% 미만인 경우에는 본 발명에서 의도하고자 하는 탈산효과를 확보할 수 없다. 반면에, 0.05중량%를 초과하는 경우에는 탈산효과가 포화되고, 제조원가가 상승하는 문제점이 있다. 따라서, 상기 알루미늄은 0.015~0.05중량%로 포함되는 것이 바람직하다.
Aluminum is added as a deoxidizer along with Si in steelmaking and has a solid solution strengthening effect. When the content of aluminum is less than 0.015% by weight, it is impossible to ensure the deoxidation effect intended for the present invention. On the other hand, if it exceeds 0.05% by weight, the effect of deoxidation is saturated and the production cost increases. Accordingly, it is preferable that the aluminum is contained in an amount of 0.015 to 0.05% by weight.

크롬(Cr): 0.01~0.25중량%Cr (Cr): 0.01 to 0.25 wt%

크롬은 강도를 증가시키는 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여 0.01중량% 이상 포함되는 것이 바람직하다. 그러나, 고가의 원소인 크롬이 0.25중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 크롬은 0.01~0.25중량%로 포함되는 것이 바람직하다.Chromium is an element that increases strength. In order to exhibit such an effect in the present invention, it is preferable that it is contained in an amount of 0.01 wt% or more. However, when chromium, which is an expensive element, is added in an amount exceeding 0.25 wt%, the manufacturing cost is increased. Therefore, it is preferable that the chromium is contained in an amount of 0.01 to 0.25% by weight.

몰리브덴(Mo): 0.005~0.3중량%Molybdenum (Mo): 0.005 to 0.3 wt%

몰리브덴은 Cr과 마찬가지로, 소재의 강도를 강화시키는 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여 0.005중량% 이상 포함되는 것이 바람직하다. 그러나, 고가의 원소인 몰리브덴이 0.3중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 몰리브덴은 0.005~0.3중량%로 포함되는 것이 바람직하다.
Molybdenum, like Cr, is an element that strengthens the strength of the material. In order to exhibit such an effect in the present invention, it is preferable that it is contained in an amount of 0.005% by weight or more. However, when molybdenum, which is an expensive element, is added in an amount exceeding 0.3% by weight, the manufacturing cost increases. Accordingly, it is preferable that the molybdenum is included in an amount of 0.005 to 0.3% by weight.

바나듐(V): 0.005~0.06중량%Vanadium (V): 0.005 to 0.06 wt%

바나듐은 Cr 및 Mo과 같이 강도의 증대에 효과적인 원소이다. 본 발명에서 이러한 효과를 나타내기 위하여 0.005중량% 이상 포함되는 것이 바람직하다. 그러나 고가의 원소인 바나듐이 0.06중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 바나듐은 0.005~0.06중량%로 포함되는 것이 바람직하다.
Vanadium is an effective element for increasing the strength such as Cr and Mo. In order to exhibit such an effect in the present invention, it is preferable that it is contained in an amount of 0.005% by weight or more. However, when vanadium, which is an expensive element, is added in an amount exceeding 0.06 wt%, the manufacturing cost is increased. Accordingly, it is preferable that the vanadium is contained in an amount of 0.005 to 0.06% by weight.

니오븀(Nb): 0.005~0.03중량%Niobium (Nb): 0.005 to 0.03 wt%

니오븀은 열간압연시 오스테나이트 결정립을 미세화시키는데 아주 효과적이며 동시에 기지(Matrix)와 정합을 이루는 탄질화물(Nb(C,N))로 석출됨으로써, 강도를 증가시키는 중요한 원소이다. 본 발명에서 의도하고자 하는 효과를 나타내기 위하여 0.005중량% 이상 포함되는 것이 바람직하다. 니오븀은 함량이 증대할수록 연주 과정에서 조대한 석출물로 나타나 인성저하를 가져올 수 있으므로, 그 상한은 0.03중량%로 한정하는 것이 바람직하다. 따라서, 상기 니오븀은 0.005~0.03중량%로 포함되는 것이 바람직하다.
Niobium is an important element to increase the strength by being very effective in miniaturizing austenite grains during hot rolling and at the same time precipitated as carbonitrides (Nb (C, N)) matching with matrix. In order to exhibit the effect intended in the present invention, it is preferable that 0.005% by weight or more are included. As the content of niobium increases, it may appear as a coarse precipitate in the performance process, resulting in deterioration of toughness. Therefore, the upper limit is preferably limited to 0.03 wt%. Accordingly, it is preferable that the niobium is contained in an amount of 0.005 to 0.03% by weight.

티타늄(Ti): 0.001~0.05중량%Titanium (Ti): 0.001 to 0.05 wt%

티타늄은 Nb과 같이 탄질화물(Ti(C,N))을 형성하여 슬라브의 가열 및 열간압연 과정에서 오스케나이트 결정립 성장을 억제하여 최종 조직 입도를 미세화시킴으로써 강의 인성을 향상시키는데 큰 역할을 하는 원소이다. 이러한 효과를 나타내기 위하여, 0.001중량% 이상 포함하는게 바람직하다. 그러나, 티타늄의 함량이 증대할수록 연주 과정에서 조대한 석출물로 나타나 인성저하를 가져올 수 있으므로, 그 상한은 0.05중량%로 한정하는 것이 바람직하다. 따라서, 상기 티타늄은 0.001~0.05중량%로 포함되는 것이 바람직하다.
Titanium is an element that plays a role in improving the toughness of steel by forming carbonitrides (Ti (C, N)) like Nb and suppressing the growth of austenite grains during slab heating and hot rolling to refine the final grain size. . In order to exhibit such an effect, it is preferable to contain 0.001 wt% or more. However, as the content of titanium increases, the toughness may appear as a coarse precipitate during the performance process, and therefore, the upper limit is preferably limited to 0.05 wt%. Accordingly, the titanium is preferably contained in an amount of 0.001 to 0.05 wt%.

니켈(Ni): 0.05~0.6중량%Nickel (Ni): 0.05 to 0.6 wt%

니켈은 강도와 인성을 동시에 향상시키는 원소로서, 본 발명에서도 후물재의 강도 확보 및 취성파괴 정지 특성을 향상시키는데 중요한 역할을 할 수 있다. 이러한 효과를 나타내기 위하여, 0.05중량% 이상 포함하는게 바람직하다. 니켈은 첨가량이 증대할수록 강도와 인성이 향상되나, 고가이며 첨가량 증대에 따라 강도와 인성이 비례적으로 증가하지는 않으므로 그 상한은 0.6중량%로 한정하는 것이 바람직하다. 따라서, 상기 니켈은 0.05~0.6중량%로 포함되는 것이 바람직하다.
Nickel is an element that improves strength and toughness at the same time. In the present invention, nickel may play an important role in securing the strength of the thick material and improving the brittle fracture stopping property. In order to exhibit such an effect, it is preferable to contain 0.05 wt% or more. The strength and toughness of nickel are increased as the amount of nickel is increased. However, since the strength and toughness do not increase proportionally as the amount of nickel is increased, the upper limit is preferably limited to 0.6 wt%. Therefore, it is preferable that the nickel is included in an amount of 0.05 to 0.6% by weight.

구리(Cu): 0.01~0.35중량%Copper (Cu): 0.01 to 0.35 wt%

구리는 고용강화 원소로 작용하여 강도상승에 기여한다. 본 발명에서 이러한 효과를 나타내기 위하여 0.01중량% 이상 포함하는게 바람직하다. 그러나, 고가의 원소인 구리가 0.35중량%를 초과하여 첨가하는 경우에는 제조원가가 상승하는 문제점이 있다. 따라서, 상기 구리는 0.01~0.35중량%로 포함되는 것이 바람직하다.
Copper serves as an employment strengthening element and contributes to the strength increase. In order to exhibit such effects in the present invention, it is preferable to contain 0.01 wt% or more. However, when copper, which is an expensive element, is added in an amount exceeding 0.35% by weight, the manufacturing cost is increased. Accordingly, the copper is preferably contained in an amount of 0.01 to 0.35% by weight.

본 발명의 강재는 압력용기용 강재로 사용할 수 있으므로 이를 고려할 경우 하기 Cu, Ni, Cr, Mo, V, Nb 등의 원소들의 함량은 다음의 관계를 만족하는 것이 바람직하다.
The steel material of the present invention can be used as a steel material for a pressure vessel. Therefore, it is preferable that the content of elements such as Cu, Ni, Cr, Mo, V, and Nb satisfy the following relationship.

Cu + Ni + Cr + Mo: 1.0중량% 이하Cu + Ni + Cr + Mo: 1.0% or less

Cr + Mo: 0.4중량% 이하Cr + Mo: 0.4% or less

V + Nb: 0.1중량% 이하V + Nb: 0.1% by weight or less

즉, Cu + Ni + Cr + Mo, Cr + Mo 및 V + Nb의 관계는 압력용기용 강재의 기본 규격(ASTM A20)에서 각각 제한하고 있는 수치로서, 이에 따라 Cu + Ni + Cr + Mo함량은 1.0중량% 이하로, Cr + Mo함량은 0.4중량% 이하로, 그리고 V +Nb함량은 0.1중량% 이하로 제한한다. 다만, 본 발명의 실시태양에 따라 포함되지 않은 합금 원소는 0으로 계산할 수 있다.
That is, the relationship between Cu + Ni + Cr + Mo, Cr + Mo and V + Nb is a numerical value limited by the basic standard (ASTM A20) 1.0 wt% or less, Cr + Mo content is 0.4 wt% or less, and V + Nb content is 0.1 wt% or less. However, alloying elements not included according to embodiments of the present invention may be calculated as zero.

본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.
The remainder of the present invention is iron (Fe). However, in the ordinary manufacturing process, impurities which are not intended from the raw material or the surrounding environment may be inevitably incorporated, so that it can not be excluded. These impurities are not specifically mentioned in this specification, as they are known to any person skilled in the art of manufacturing.

다만, 그 중 인 및 황은 일반적으로 많이 언급되는 불순물이기 때문에 이에 대하여 간략히 설명하면 다음과 같다.
However, since phosphorus and sulfur are generally referred to as impurities, a brief description thereof is as follows.

인(P): 0.03중량% 이하Phosphorus (P): 0.03% by weight or less

상기 인은 불가피하게 함유되는 불순물로써,The phosphorus is an impurity inevitably contained,

주로 강판의 중심부에 편석되어 인성을 저하하기 때문에 후물재의 중심부 저온충격인성을 확보하기 위해서는 가능한 한 낮게 제어하는 것이 바람직하다.
It is desirably controlled to be as low as possible in order to secure the low-temperature impact toughness of the center portion of the post-material because it is segregated mainly in the center portion of the steel sheet to lower the toughness.

이론상 인의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서는 상기 인 함량의 상한은 0.03중량%로 한정하는 것이 바람직하다.
Theoretically, it is preferable to limit the phosphorus content to 0%, but it is inevitably contained inevitably in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the phosphorus content is preferably limited to 0.03 wt%.

황(S): 0.03중량% 이하 Sulfur (S): 0.03 wt% or less

황은 불가피하게 함유되는 불순물로써,Sulfur is an inevitable impurity,

Mn등과 결합하여 비금속개재물을 형성하며 이에 따라 강의 저온충격인성에 크게 손상시키기 때문에 그 함량을 최대한 억제하는 것이 바람직하다.
Mn and the like to form a nonmetallic inclusions, thereby greatly impairing the low-temperature impact toughness of the steel. Therefore, it is desirable to suppress the content to the maximum.

이론상 황의 함량은 0%로 제한하는 것이 유리하나, 제조공정상 필연적으로 함유될 수 밖에 없다. 따라서, 상한을 관리하는 것이 중요하며, 본 발명에서 상기 황 함량의 상한은 0.03중량%로 한정하는 것이 바람직하다.
Theoretically, it is advantageous to limit the content of sulfur to 0%, but it is inevitably contained inevitably in the manufacturing process. Therefore, it is important to manage the upper limit, and in the present invention, the upper limit of the sulfur content is preferably limited to 0.03% by weight.

본 발명의 일 측면에 따르면, 상기 성분계를 만족함으로서, 용접 후 열처리 저항성이 우수한 압력용기용 강판을 제공할 수 있다. 상기 강판의 미세조직은 페라이트와 베이나이틱 페라이트(Bainitic Ferrite: Acicular Ferrite + Bainite)의 혼합조직을 포함할 수 있다. 상기 베이나이틱 페라이트의 분율은 부피분율로, 25~60%인 것이 바람직하다.
According to an aspect of the present invention, by satisfying the component system, it is possible to provide a pressure vessel steel plate excellent in heat treatment resistance after welding. The microstructure of the steel sheet may include a mixed structure of ferrite and bainitic ferrite (Acicular Ferrite + Bainite). The bainitic ferrite fraction is preferably 25 to 60% by volume.

조직을 상술한 형태로 제어하는 이유는 본 발명에서 대상으로 하는 용접 후 열처리 저항성이 우수하고 적절한 강도와 인성을 가지도록 하기 위함이다.
The reason why the structure is controlled in the above-described manner is that the post-weld heat treatment resistance of the present invention is excellent and the steel has appropriate strength and toughness.

또한, 상기 미세조직의 결정립 내부에는 50㎚이하의 미세한 M1(C,N)+ M2(C,N)(단, M1=[Ti, Nb, V], M2=[Mo, Cr])형 탄질화물이 존재하는 것이 바람직하다. 더불어, 상기 탄질화물은 부피분율로 0.05%이상으로 존재하는 것이 바람직하다. 상기 탄질화물의 부피분율은 0.05~5%로 존재하는 것이 보다 바람직하다.
Further, inside the grains of the microstructure, fine M1 (C, N) + M2 (C, N) (M1 = [Ti, Nb, V], M2 = [Mo, Cr]) type carbonaceous materials of 50 nm or less It is preferred that the cargo be present. In addition, the carbonitride is preferably present in 0.05% or more by volume fraction. The volume fraction of the carbonitride is more preferably present at 0.05 to 5%.

상기 강판은 50시간 이하 동안 용접후 열처리(Post Weld Heat Treatment, PWHT)시, 인장강도가 550MPa 이상이고, -60℃에서의 샤르피 충격 에너지 값이 50J이상인 것이 바람직하다.
When the steel sheet is post-weld heat treatment (PWHT) for 50 hours or less, the tensile strength is preferably 550 MPa or more and the Charpy impact energy value at -60 ° C is 50 J or more.

이하, 본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method for manufacturing a steel sheet for a pressure vessel excellent in post-weld heat treatment resistance, which is another aspect of the present invention, will be described in detail.

본 발명의 다른 일측면인 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법은 중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0`1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃의 온도범위로 가열하는 단계, 상기 가열된 강 슬라브를 Tnr~Ar3변태점의 온도범위에서 열간압연하는 단계, 상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 2~30℃/sec의 냉각속도로 냉각하는 단계 및 상기 냉각된 강판을 590~640℃의 온도범위에서 50시간 이하 동안 유지하는 용접 후 열처리 단계를 포함한다.
Another aspect of the present invention is a method for producing a pressure vessel steel plate having excellent heat treatment resistance after welding, in weight%, C: 0.05 to 0.15%, Si: 0.15 to 0.5%, Mn: 1.0`1.6%, P: 0.03% S: 0.03% or less, Al: 0.015 to 0.05%, Cr: 0.01 to 0.25%, Mo: 0.005 to 0.3%, V: 0.005 to 0.06%, Nb: 0.005 to 0.03%, Ti: 0.001 to 0.05%, Ni: 0.05 to 0.6%, Cu: 0.01 to 0.35%, Cu + Ni + Cr + Mo: 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, including residual Fe and unavoidable impurities Heating the steel slab to a temperature range of 1050 to 1250 ° C., hot rolling the heated steel slab at a temperature range of a Tnr to Ar3 transformation point, and forming the hot rolled hot rolled steel sheet to 1 / 4T (T: thickness of the steel sheet). Based on the cooling rate of), the step of cooling at a cooling rate of 2 ~ 30 ℃ / sec and the post-weld heat treatment step of maintaining the cooled steel sheet for 50 hours or less in the temperature range of 590 ~ 640 ℃.

가열단계Heating stage

상술한 성분계를 만족하는 슬라브를 1050~1250℃에서 가열하는 것이 바람직하다. 본 발명은 용접 후 열처리 저항성이 우수하면서 높은 강도 및 인성을 갖는 페라이트와 베이나이틱 페라이트 혼합조직강을 구현하는 것이다. 가열온도가 1050℃미만인 경우에는 용질원자의 고용이 어렵다. 반면에, 가열온도가 1250℃를 초과하는 경우에는 조대 TiN 석출로 인하여 오스케나이트가 조대화되거나 혼립 오스테나이트 조직이 생성될 수 있으며, 이러한 조대 오스테나이트는 조압연시 재결정되기 어려우며, 주로 연신된 상태로 남아있게 되어, 강판의 성질을 해친다. 그러므로 슬라브의 가열온도는 1050~1250℃로 한정하는 것이 바람직하다.
It is preferable to heat the slab satisfying the above-mentioned component system at 1050 to 1250 占 폚. The present invention is to realize a ferritic and bainite ferrite mixed structure steel having high strength and toughness with excellent heat treatment resistance after welding. When the heating temperature is lower than 1050 占 폚, solid solute hardness is difficult. On the other hand, when the heating temperature exceeds 1250 DEG C, coarse austenite structure may be formed due to coarse TiN precipitation due to coarse TiN precipitation, and such coarse austenite is difficult to recrystallize during rough rolling, , Thereby deteriorating the properties of the steel sheet. Therefore, the heating temperature of the slab is preferably limited to 1050 to 1250 ° C.

열간압연단계Hot rolling step

상기와 같이 가열된 슬라브를 열간압연을 실시할 수 있다. 이때, 압연은 미재결정 압연이고, Tnr~Ar3 변태점(약 750℃)로 한정하는 것이 바람직하다. Tnr(오스테나이트 미재결정역과 재결졍액의 경계온도)미만인 경우에는 부분 재결정 발생으로 인하여 조대한 오스테나이트가 발생하고 이는 냉각 후 조대한 저온변태 조직의 형성으로 이어지고, 이러한 조직은 저항성 열화의 원인이 된다. Ar3 변태점을 초과하는 경우에는 압연 중에 연신된 변형 페라이트 조직 또는 변형 유기 페라이트가 발달하여 항복비가 현저히 높아진다.
The heated slab may be subjected to hot rolling. At this time, rolling is uncrystallized rolling and it is preferable to limit to Tnr-Ar3 transformation point (about 750 degreeC). If Tnr is less than the boundary temperature of the austenite unrecrystallized zone and the recrystallization solution, coarse austenite occurs due to partial recrystallization, which leads to the formation of coarse low-temperature metamorphic tissue after cooling, which causes resistance degradation. . When the Ar3 transformation point is exceeded, the strained ferrite structure or strained organic ferrite drawn during rolling develops and the yield ratio is significantly increased.

따라서, 미재결정 온도역 Tnr~Ar3 변태점(약 750℃)에서 압연을 실시하면 오스테나이트가 미세한 페라이트 결정립의 핵생성 장소를 제공해 주며, 이와 같은 결정립 미세화는 강도와 인성의 증가를 동시에 부여할 수 있다.
Therefore, rolling at the unrecrystallized temperature range Tnr ~ Ar3 transformation point (about 750 ° C.) provides austenite nucleation sites for fine ferrite grains, and such grain refinement can simultaneously increase strength and toughness. .

상기 미재결정 온도인 Tnr은 하기식으로부터 계산이 가능하다. The non-recrystallization temperature Tnr can be calculated from the following equation.

Tnr(℃) = 887+464×C+890×Ti+363×Al-357×Si+(6445×Nb-644×Nb1/2) + (732×V-230×V1 /2)
Tnr (℃) = 887 + 464 × C + 890 × Ti + 363 × Al-357 × Si + (6445 × Nb-644 × Nb1 / 2) + (732 × V-230 × V 1/2)

또한, 압하율은 패스당 10% 이상을 가지며, 누적압하량은 30% 이상으로 제어하는 것이 바람직하다. 미재결정 압연은 압연방향으로 오스테나이트 조직을 연신시키면서 내부에 변형대를 형성하여 미세 페라이트와 베이나이틱 페라이트를 형성하기 위하여 실시한다. 그러므로, 누적압하율이 30% 미만인 경우에는 오스테나이트가 압연방향으로 연신 및 내부 변형대 분율이 낮아지면서, 미세한 페라이트 및 베이나이틱 페라이트의 핵생성 장소가 부족하여 약 25㎛이상의 페라이트 결정립이 생길 수 있다.
In addition, the reduction ratio has 10% or more per pass, and the cumulative reduction amount is preferably controlled to 30% or more. The non-recrystallized rolling is carried out in order to form micro-ferrite and bainite ferrite by forming a deformation band inside while stretching the austenite structure in the rolling direction. Therefore, when the cumulative reduction ratio is less than 30%, the austenite is stretched in the rolling direction and the internal strain band fraction is low, and there is a lack of nucleation sites of fine ferrite and bainitic ferrite, which may result in ferrite grains of about 25 μm or more. have.

냉각단계Cooling stage

상기와 같이 압연된 강판은 냉각하는 것이 바람직하다. 상기 압연된 강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 2~30℃/sec의 냉각속도로 450~580℃의 온도범위까지 냉각하는 것이 바람직하다. 상기 냉각속도가 2℃/sec미만인 경우에는 냉각 중 페라이트 결정립 조대화가 발생될 수 있다. 반면에, 30℃/sec를 초과하는 경우에는 과대한 제2상(Acicular Ferrite + Bainite의 분율이 60% 이상)이 발생할 가능성이 높아진다.
The rolled steel sheet is preferably cooled. The rolled steel sheet is preferably cooled to a temperature range of 450 to 580 ° C. at a cooling rate of 2 to 30 ° C./sec based on a cooling rate of 1 / 4T (T: thickness of the steel sheet). If the cooling rate is less than 2 ° C / sec may be the ferrite grain coarsening during cooling. On the other hand, when it exceeds 30 ° C / sec, there is a high possibility that an excessive second phase (a fraction of Acicular Ferrite + Bainite is 60% or more) occurs.

용접 후 열처리 단계Heat treatment step after welding

상기와 같이 냉각된 강판은 압력용기의 제작시 부가되는 용접공정에 의해 잔류응력의 제거 등을 위하여 PWHT 처리가 필요하다. 일반적으로 장시간 PWHT 열처리 이후에는 강도 및 인성의 열화가 발생되는데, 상기 본 발명에 의해 제조된 강판은 통상적인 PWHT 온도 조건인 590 ~ 640℃에서 장시간(50시간 이하) 실시하여도 강도 및 인성의 큰 저하 없이 용접시공이 가능하다는 장점을 가지고 있다. 특히, 본 발명의 강판은 50시간의 PWHT 후에도 550MPa 이상의 인장강도를 갖고, -60℃에서의 샤르피 충격 에너지값이 50J 이상을 만족한다.
The PWHT treatment is required to remove the residual stress by the welding process added at the time of manufacturing the pressure vessel. In general, deterioration of strength and toughness occurs after a long time PWHT heat treatment, the steel sheet produced by the present invention is a large strength and toughness even if carried out for a long time (50 hours or less) at 590 ~ 640 ℃, a typical PWHT temperature condition It has the advantage that welding construction is possible without deterioration. In particular, the steel sheet of the present invention has a tensile strength of 550 MPa or more even after 50 hours of PWHT, and the Charpy impact energy value at −60 ° C. satisfies 50 J or more.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.

(실시예)(Example)

하기 표 1에는 발명예 1 내지 4와 비교예1 및 2의 성분을 각각 나타낸 것이다. 표 1과 같은 조성을 갖는 강 슬라브를 표 2의 강판 두께, 가열 온도, 제어압연, 제어냉각, 행하여 강판을 제조하였고, 상기 조건으로 제조된 강판에 대하여 PWHT 등을 하기 표 2와 같은 조건으로 실시한 후 항복강도, 인장강도, 저온 인성을 평가하여 그 결과를 하기 표 2에 나타내었다. 강도 및 인성은 강판의 두께방향 1/4T(T: Thickness, ㎜)지점에서 인장 및 충격 시험편을 채취하여 평가한 것이다. (단, 표 2의 탄질화물 M1(C,N)+ M2(C,N)(단, M1=[Ti, Nb, V], M2=[Mo, Cr])형 탄화물의 분율을 나타내었다.)
Table 1 shows the components of Inventive Examples 1 to 4 and Comparative Examples 1 and 2, respectively. Steel slabs having the composition shown in Table 1 were prepared by steel sheet thickness, heating temperature, controlled rolling, controlled cooling, and steel sheet shown in Table 2, and PWHT was performed on the steel sheets prepared under the above conditions under the conditions shown in Table 2 below. Yield strength, tensile strength and low temperature toughness were evaluated and the results are shown in Table 2 below. Strength and toughness were evaluated by taking tensile and impact specimens at 1 / 4T (T: Thickness, mm) thickness direction of the steel sheet. (However, the fraction of carbonitride M1 (C, N) + M2 (C, N) (wherein M1 = [Ti, Nb, V], M2 = [Mo, Cr]) type carbide of Table 2 is shown. )

단, 저온 인성은 -60℃에서 V노치를 갖는 시편을 샤르피 충격 시험을 행하여 얻은 샤르피 충격 에너지값으로 평가한 것이다.
However, low temperature toughness is evaluated by the Charpy impact energy value obtained by carrying out the Charpy impact test of the specimen which has a V notch at -60 degreeC.

구분division CC MnMn SiSi PP SS CuCu NiNi CrCr MoMo VV NbNb TiTi AlAl 발명예 1Inventory 1 0.080.08 1.451.45 0.280.28 0.0070.007 0.00130.0013 0.150.15 0.210.21 0.150.15 0.150.15 0.0200.020 0.0150.015 0.0150.015 0.0290.029 발명예 2Inventory 2 0.070.07 1.291.29 0.300.30 0.0080.008 0.00150.0015 0.200.20 0.180.18 0.120.12 0.210.21 0.0250.025 0.0200.020 0.0120.012 0.0310.031 발명예 3Inventory 3 0.120.12 1.151.15 0.310.31 0.0100.010 0.00160.0016 0.100.10 0.190.19 0.090.09 0.100.10 0.0150.015 0.0250.025 0.0250.025 0.0250.025 발명예 4Honorable 4 0.100.10 1.501.50 0.290.29 0.0090.009 0.00110.0011 0.180.18 0.150.15 0.110.11 0.140.14 0.0170.017 0.0210.021 0.0220.022 0.0300.030 비교예 1Comparative Example 1 0.130.13 1.251.25 0.250.25 0.0050.005 0.00100.0010 0.100.10 0.200.20 0.150.15 0.080.08 0.0100.010 0.0100.010 0.0100.010 0.0280.028 비교예 2Comparative Example 2 0.100.10 1.151.15 0.280.28 0.0120.012 0.00140.0014 0.150.15 0.150.15 0.200.20 0.150.15 0.0090.009 0.0120.012 0.0120.012 0.0320.032

구분division 강판
두께
(mm)
Steel plate
thickness
(mm)
재가열
온도
(℃)
Reheating
Temperature
(℃)
누적압하량
(%)
Cumulative pressure drop
(%)
냉각속도
(℃/초)
Cooling rate
(° C / sec)
냉각종료온도(℃)Cooling end temperature (℃) PWHT 온도
(℃)
PWHT temperature
(℃)
PWHT시간
(Hr)
PWHT time
(Hr)
베이나이틱 페라이트 분율(%)Bainitic ferrite fraction (%) M1(C,N) + M2(C,N)
분율(%)
M1 (C, N) + M2 (C, N)
Fraction (%)
YS
(MPa)
YS
(MPa)
TS
(MPa)
TS
(MPa)
-60℃
충격인성
(J)
-60 ℃
Impact toughness
(J)
발명예 1Inventory 1 5050 11501150 7575 7.57.5 520520 620620 2525 3838 0.110.11 505505 609609 230230 6060 11001100 7070 6.56.5 500500 620620 5050 3535 0.120.12 509509 603603 215215 8080 11801180 5555 4.84.8 480480 610610 2525 3232 0.100.10 492492 597597 199199 100100 12001200 4040 3.53.5 475475 610610 5050 3030 0.090.09 493493 595595 143143 발명예 2Inventory 2 5050 11001100 7575 7.57.5 520520 620620 2525 3636 0.130.13 502502 615615 278278 6060 11501150 7070 6.56.5 506506 620620 5050 3535 0.120.12 496496 613613 203203 8080 12001200 5555 4.84.8 480480 610610 2525 3030 0.110.11 499499 610610 156156 100100 12001200 4040 3.53.5 475475 610610 5050 2929 0.120.12 489489 607607 121121 발명예 3Inventory 3 5050 11001100 7575 7.57.5 520520 620620 2525 4040 0.080.08 489489 599599 243243 6060 11501150 7070 6.56.5 500500 620620 5050 3838 0.090.09 485485 589589 218218 8080 12001200 5555 4.84.8 480480 610610 2525 3535 0.070.07 486486 586586 157157 100100 12001200 4040 3.53.5 475475 610610 5050 3232 0.080.08 483483 579579 102102 발명예 4Honorable 4 5050 11001100 6060 7.57.5 520520 620620 2525 3737 0.100.10 497497 603603 223223 6060 11501150 5555 6.56.5 500500 620620 5050 3535 0.110.11 495495 601601 199199 8080 12001200 6060 4.84.8 480480 610610 2525 3232 0.090.09 490490 598598 186186 100100 12001200 4545 3.53.5 475475 610610 5050 3030 0.080.08 487487 596596 133133 비교예 1Comparative Example 1 5050 12001200 -- 5.05.0 600600 620620 2020 1212 0.020.02 490490 556556 4848 8080 11501150 1010 3.03.0 600600 620620 2525 1010 0.010.01 486486 561561 2121 100100 11001100 1010 2.52.5 600600 620620 5050 55 0.020.02 479479 547547 2020 비교예 2Comparative Example 2 5050 11001100 -- 공냉Air cooling -- 620620 2020 00 -- 480480 565565 4747 8080 11001100 -- 공냉Air cooling -- 620620 2525 00 -- 476476 568568 2323 100100 11801180 -- 공냉Air cooling -- 620620 5050 00 -- 468468 540540 1818

상기 표 2의 비교예 2는 압연 후 열연강판을 910℃의 온도범위에서 1.3×t + (10~30분) (단, t는 강재의 두께(㎜)를 의미)의 조건으로 노말라이징 열처리하였다.
In Comparative Example 2 of Table 2, the hot-rolled steel sheet after rolling was subjected to normal heat treatment under conditions of 1.3 × t + (10 to 30 minutes) (where t denotes the thickness of the steel (mm)) at a temperature range of 910 ° C. .

상기 표 1 및 표 2의 결과에서 알 수 있는 바와 같이, 본 발명의 조성 및 제조조건을 만족하는 발명예 1 내지 4는 PWHT 시간이 25시간 이상 50시간에 이르게 되어도, 강도와 인성이 크게 저하되지 않는 것에 비해, 비교예 1 및 2는 조성은 미세조직이 상이하고, 제조조건을 벗어나는 것으로서, 발명예1 내지 4와 비교할 때, 강도와 인성이 현저히 열화되는 것을 확인할 수 있었다. 이는 본 발명의 제조조건에 의해 탄질화물 M1(C,N)+ M2(C,N)(단, M1=[Ti, Nb, V], M2=[Mo, Cr])형 미세 탄화물의 석출을 조장시켜 탄질화물의 분율이 큰 영향을 미친 것으로 사료된다. M1(C,N)+ M2(C,N)(단, M1=[Ti, Nb, V], M2=[Mo, Cr])형 탄질화물은 장시간의 PWHT시에도 크게 성장하지 않으므로, MC계 탄화물의 형성에 의해 장시간 PWHT 후에도 강도와 인성의 하락을 방지할 수 있는 효과를 확인할 수 있었다.
As can be seen from the results of Table 1 and Table 2, Inventive Examples 1 to 4 satisfying the composition and manufacturing conditions of the present invention, even if the PWHT time reaches 25 hours or more to 50 hours, strength and toughness do not significantly decrease In contrast, Comparative Examples 1 and 2 are different in their microstructures and deviate from the manufacturing conditions, and compared with Inventive Examples 1 to 4, the strength and toughness were significantly deteriorated. According to the production conditions of the present invention, the precipitation of carbonitride M1 (C, N) + M2 (C, N) (wherein M1 = [Ti, Nb, V], M2 = [Mo, Cr]) type fine carbide It is thought that the fraction of carbonitride has a great effect. M1 (C, N) + M2 (C, N) (M1 = [Ti, Nb, V], M2 = [Mo, Cr]) type carbonitrides do not grow significantly even during prolonged PWHT. The formation of carbides could confirm the effect of preventing the drop in strength and toughness even after long time PWHT.

특히, 발명예 1 내지 4에서는 50시간의 PWHT후에도 저온 인성값의 저하가 크지 않음에 비해, 비교에 1 및 2에서는 저온인성 값의 저하가 심한 것을 알 수 있다.
In particular, in Examples 1 to 4, the low temperature toughness value is not significantly decreased even after 50 hours of PWHT, whereas the low temperature toughness value is severely reduced in 1 and 2 in comparison.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined in the appended claims. It will be possible.

Claims (7)

중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0~1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하고 그 조직은 페라이트와 베이나이틱 페라이트(Bainitic Ferrite: Acicular Ferrite + Bainite)의 혼합조직으로 이루어져 있고, 상기 혼합조직의 결정립 내부에는 50㎚이하의 미세한 M1(C,N)+ M2(C,N)(단, M1=[Ti, Nb, V], M2=[Mo, Cr])형 탄질화물이 존재하며, 상기 탄질화물은 부피분율로 0.05% 이상인 용접 후 열처리 저항성이 우수한 압력용기용 강판.
By weight%, C: 0.05-0.15%, Si: 0.15-0.5%, Mn: 1.0-1.6%, P: 0.03% or less, S: 0.03% or less, Al: 0.015-0.05%, Cr: 0.01-0.25% , Mo: 0.005-0.3%, V: 0.005-0.06%, Nb: 0.005-0.03%, Ti: 0.001-0.05%, Ni: 0.05-0.6%, Cu: 0.01-0.35%, Cu + Ni + Cr + Mo : 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, including residual Fe and unavoidable impurities, and the structure is a mixed structure of ferrite and bainitic ferrite (acicular ferrite + bainite) In the grains of the mixed structure, fine M1 (C, N) + M2 (C, N) of 50 nm or less (where, M1 = [Ti, Nb, V], M2 = [Mo, Cr]) Type carbonitride is present, the carbonitride is a pressure vessel steel plate excellent in heat treatment resistance after welding is 0.05% or more by volume fraction.
제 1항에 있어서,
상기 베이나이틱 페라이트의 분율은 부피분율로, 25~60%인 용접 후 열처리 저항성이 우수한 압력용기용 강판.
The method of claim 1,
The bainitic ferrite fraction is a volume fraction, 25 ~ 60% of the pressure vessel steel plate excellent in heat treatment resistance after welding.
삭제delete 제 1항에 있어서,
상기 강판은 50시간 이하 동안 용접후 열처리(Post Weld Heat Treatment, PWHT)시, 인장강도가 550MPa 이상이고, -60℃에서의 샤르피 충격 에너지 값이 50J이상인 용접 후 열처리 저항성이 우수한 압력용기용 강판.
The method of claim 1,
The steel sheet is a pressure vessel steel plate excellent in post-weld heat treatment (PWHT) for 50 hours or less, the tensile strength is 550MPa or more, the Charpy impact energy value at -60 ℃ more than 50J after welding heat treatment resistance excellent.
중량%로, C: 0.05~0.15%, Si: 0.15~0.5%, Mn: 1.0`1.6%, P: 0.03% 이하, S: 0.03% 이하, Al: 0.015~0.05%, Cr: 0.01~0.25%, Mo: 0.005~0.3%, V: 0.005~0.06%, Nb: 0.005~0.03%, Ti: 0.001~0.05%, Ni: 0.05~0.6%, Cu: 0.01~0.35%, Cu + Ni + Cr + Mo: 1.0% 이하, Cr + Mo: 0.4% 이하, V + Nb: 0.1% 이하, 잔부 Fe 및 불가피한 불순물을 포함하는 강 슬라브를 1050~1250℃의 온도범위로 가열하는 단계;
상기 가열된 강 슬라브를 Tnr~Ar3변태점의 온도범위에서 열간압연하는 단계;
상기 열간압연된 열연강판을 1/4T(T: 강판의 두께)의 냉각속도 기준으로, 2~30℃/sec의 냉각속도로 냉각하는 단계; 및
상기 냉각된 강판을 590~640℃의 온도범위에서 50시간 이하 동안 유지하는 용접 후 열처리 단계를 포함하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.
By weight%, C: 0.05-0.15%, Si: 0.15-0.5%, Mn: 1.0`1.6%, P: 0.03% or less, S: 0.03% or less, Al: 0.015-0.05%, Cr: 0.01-0.25% , Mo: 0.005-0.3%, V: 0.005-0.06%, Nb: 0.005-0.03%, Ti: 0.001-0.05%, Ni: 0.05-0.6%, Cu: 0.01-0.35%, Cu + Ni + Cr + Mo : 1.0% or less, Cr + Mo: 0.4% or less, V + Nb: 0.1% or less, heating a steel slab containing residual Fe and unavoidable impurities to a temperature range of 1050 to 1250 ° C .;
Hot rolling the heated steel slab in a temperature range of a Tnr to Ar3 transformation point;
Cooling the hot rolled hot rolled steel sheet at a cooling rate of 2 to 30 ° C./sec based on a cooling rate of 1 / 4T (T: thickness of the steel sheet); And
A method for producing a pressure vessel steel plate excellent in post-weld heat treatment resistance, including a post-weld heat treatment step of maintaining the cooled steel sheet for 50 hours or less in a temperature range of 590 to 640 ° C.
제 5항에 있어서,
상기 열간압연단계는 각 압연 패스당 10% 이상의 압하율 및 30% 이상의 누적압하율 조건으로 행하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.
6. The method of claim 5,
The hot rolling step is a method for producing a pressure vessel steel plate excellent in post-weld heat treatment resistance is carried out under the conditions of 10% or more reduction rate and 30% or more cumulative reduction rate per rolling pass.
제 5항에 있어서,
상기 냉각단계에서 냉각은 450~580℃의 온도까지 행하는 것을 특징으로 하는 용접 후 열처리 저항성이 우수한 압력용기용 강판의 제조방법.
6. The method of claim 5,
Cooling in the cooling step is a manufacturing method of the pressure vessel steel plate excellent in heat treatment resistance after welding, characterized in that performed to a temperature of 450 ~ 580 ℃.
KR1020110145206A 2011-12-28 2011-12-28 Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same KR101353858B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020110145206A KR101353858B1 (en) 2011-12-28 2011-12-28 Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110145206A KR101353858B1 (en) 2011-12-28 2011-12-28 Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same

Publications (2)

Publication Number Publication Date
KR20130077906A KR20130077906A (en) 2013-07-09
KR101353858B1 true KR101353858B1 (en) 2014-01-20

Family

ID=48990981

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110145206A KR101353858B1 (en) 2011-12-28 2011-12-28 Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same

Country Status (1)

Country Link
KR (1) KR101353858B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867701B1 (en) 2016-11-11 2018-06-15 주식회사 포스코 Pressure vessel steel plate with excellent hydrogen induced cracking resistance and manufacturing method thereof
KR101908804B1 (en) 2016-12-21 2018-10-16 주식회사 포스코 Steel sheet for pressure vessel having excellent post weld heat treatment resistance and method for manufacturing the same
KR102031499B1 (en) * 2018-08-07 2019-10-11 주식회사 포스코 Steel plate for pressure vessel having excellent strength and impact toughness after post weld heat treatment and method for manufacturing thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131177A (en) * 1997-08-29 1999-05-18 Nippon Steel Corp Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2009041073A (en) * 2007-08-09 2009-02-26 Sumitomo Metal Ind Ltd High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11131177A (en) * 1997-08-29 1999-05-18 Nippon Steel Corp Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP2009041073A (en) * 2007-08-09 2009-02-26 Sumitomo Metal Ind Ltd High-tensile strength steel weld joint having excellent resistivity to generation of ductile crack from weld zone, and method for producing the same

Also Published As

Publication number Publication date
KR20130077906A (en) 2013-07-09

Similar Documents

Publication Publication Date Title
KR100833069B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and haz toughness and manufacturing method thereof
KR101322067B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR101657828B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post weld heat treatment and method for manufacturing the same
KR101417231B1 (en) Ultra heavy steel plate for pressure vessel with excellent low-temperature toughness and tensile property and manufacturing method of the same
CN111465711B (en) Steel sheet for pressure vessel excellent in tensile strength and low-temperature impact toughness, and method for producing same
KR101758497B1 (en) Steel Plate For Pressure Vessel With Excellent PWHT Resistance And Manufacturing Method Thereof
KR101778398B1 (en) Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
KR101568523B1 (en) Pressure vessel steel plate having excellent resistance of temper embrittlement and manufacturing method of the same
CN108474089B (en) Thick steel plate having excellent low-temperature toughness and hydrogen-induced cracking resistance and method for manufacturing same
KR101253888B1 (en) High strength steel sheet having excellent property after post weld heat treatment and method for manufacturing the same
KR20160078624A (en) Hot rolled steel sheet for steel pipe having excellent low-temperature toughness and strength and method for manufacturing the same
KR101353858B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR100833070B1 (en) Steel plate for pressure vessel with ts 500mpa grade and excellent hic resistance and manufacturing method thereof
KR101568504B1 (en) Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
EP3730655B1 (en) High strength steel plate and manufacturing method therefor
KR101271968B1 (en) Steel sheet for high temperature applications having excellent property after post weld heat treatment and method for manufacturing the same
KR101271990B1 (en) High strength steel sheet and method for manufacturing the same
KR101482341B1 (en) Pressure vessel steel plate having excellent resustance property after post weld heat treatment and manufacturing method of the same
KR101585730B1 (en) Thick steel sheet having excellent high temperature yield strength and low-temperature toughness, and method for manufacturing the same
KR101899736B1 (en) Thick steel sheet having excellent low temperature toughness and resistance to hydrogen induced cracking, and method of manufacturing the same
KR102255828B1 (en) Structural steel material and manufacturing method for the same
KR101908804B1 (en) Steel sheet for pressure vessel having excellent post weld heat treatment resistance and method for manufacturing the same
KR101568530B1 (en) Thick steel sheet having excellent high temperature yield strength and low-temperature toughness, and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170110

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180115

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20200115

Year of fee payment: 7