JP5267048B2 - Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction - Google Patents

Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction Download PDF

Info

Publication number
JP5267048B2
JP5267048B2 JP2008277842A JP2008277842A JP5267048B2 JP 5267048 B2 JP5267048 B2 JP 5267048B2 JP 2008277842 A JP2008277842 A JP 2008277842A JP 2008277842 A JP2008277842 A JP 2008277842A JP 5267048 B2 JP5267048 B2 JP 5267048B2
Authority
JP
Japan
Prior art keywords
ductility
thickness direction
less
weldability
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008277842A
Other languages
Japanese (ja)
Other versions
JP2010106298A (en
Inventor
圭治 植田
伸一 鈴木
伸夫 鹿内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008277842A priority Critical patent/JP5267048B2/en
Publication of JP2010106298A publication Critical patent/JP2010106298A/en
Application granted granted Critical
Publication of JP5267048B2 publication Critical patent/JP5267048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thick steel plate excellent in a weldability and a ductility in the plate thickness direction, used to a building, bridging, ship-building, offshore structure, tank, etc. <P>SOLUTION: After reheating at 1,000-1,350&deg;C a steel material having the steel composition composed by mass% of 0.01-0.20% C, 0.05-0.50% Si, 0.3-3.0% Mn, &le;0.03% P, &le;0.005% S, &le;0.1% Al, &le;0.02% N, and if necessary, one or more elements selected from Cu, Ni, Cr, Mo, Nb, V, Ti, B, REM and Mg, and the balance Fe with inevitable impurities, a hot-working, desirably a hot-forging is applied with 0.05-3/s strain speed at &ge;1,000&deg;C and &ge;15% accumulated pressing-reduction ratio, and further, a hot-rolling and a heat-treatment are suitably applied according to the desirable plate thickness and mechanical characteristics. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、建築、橋梁、造船、海洋構造物、タンク等に用いられる溶接性と板厚方向の延性に優れた厚鋼板の製造方法に関し、特に、板厚60mm以上の厚鋼板の製造方法として好適なものに関する。   The present invention relates to a method for producing a thick steel plate having excellent weldability and ductility in the thickness direction used for buildings, bridges, shipbuilding, offshore structures, tanks, etc., and particularly as a method for producing a thick steel plate having a thickness of 60 mm or more. It relates to a suitable one.

建築,橋梁、造船、海洋構造物、タンク等の各分野で鋼材が使用される場合には、鋼構造物の形状に応じて、溶接接合によって所望形状に仕上げられる。近年、鋼構造物の大型化や、形状が多様化しており、使用される鋼材の高強度化や厚肉化が進んでいる。   When steel materials are used in various fields such as architecture, bridges, shipbuilding, offshore structures, tanks, etc., they are finished to a desired shape by welding according to the shape of the steel structure. In recent years, steel structures are becoming larger and their shapes are diversified, and the strength and thickness of steel materials used are increasing.

鋼材が高強度化するに従って、添加される合金元素量が増加することが一般的であり、溶接部の低温割れ性の劣化を招くことが知られている。   It is known that the amount of alloying elements to be added generally increases as the strength of steel materials increases, and this causes deterioration in cold cracking properties of welds.

特に、使用される鋼材が厚肉化すると、溶接部に負荷される引張応力が増大するだけでなく、合金元素の濃化した中心偏析部が鋼材に残存し、見かけ上の合金元素量が増加した中心偏析部に溶接熱サイクルが付与された場合には、焼入れ硬化性が顕著に増大することにより、溶接部の低温割れ性が劣化することが問題となる。   In particular, when the steel material used is thickened, not only the tensile stress applied to the welded portion increases, but also the central segregation portion where the alloy elements are concentrated remains in the steel material, and the apparent amount of alloying elements increases. When the welded heat cycle is applied to the center segregated portion, the quench hardenability is remarkably increased, so that the low temperature cracking property of the welded portion is deteriorated.

また、複雑な形状に溶接施工された鋼構造物においては,鋼材の板厚方向に対して引張応力が作用することがあり、安全性の観点から,使用される鋼材の板幅方向や板長手方向の機械的特性は勿論のこと,板厚方向の機械的特性についても優れることが要求される。   In addition, in steel structures welded to complex shapes, tensile stress may act in the thickness direction of the steel material. From the viewpoint of safety, the width direction and length of the steel material used It is required to have excellent mechanical properties in the thickness direction as well as mechanical properties in the direction.

特に、鋼構造物の破壊防止の観点から、板厚方向への引張荷重に対する延性が重要である。   In particular, ductility with respect to a tensile load in the plate thickness direction is important from the viewpoint of preventing destruction of the steel structure.

しかしながら、鋼材が厚肉化した場合には、鋼素材の段階で生成したセンターポロシティーや凝固偏析が、最終製品にまで残存し、板厚方向の延性低下を招くことがある。   However, when the steel material is thickened, the center porosity and solidification segregation generated at the stage of the steel material may remain in the final product, leading to a reduction in ductility in the thickness direction.

鋼材が高強度化するにしたがって、添加される合金元素量が増加すると、合金元素の偏析や介在物の生成が増大し、板厚方向の延性を確保することがより困難となるため、溶接性と板厚方向の延性に優れた厚鋼板が要望されている。   As steel materials increase in strength, the amount of alloying elements added increases segregation of alloying elements and formation of inclusions, making it more difficult to ensure ductility in the thickness direction. There is a demand for a thick steel plate having excellent ductility in the thickness direction.

特許文献1は500N/mm級鋼の板厚方向の引張および圧縮変形性能の改善手法として、鋼素材を連続鋳造する際に、電磁攪拌するとともに、鋳片をバルジングさせ、さらに未凝固部を含む鋳片を圧下する連続鋳造方法が記載されている。 In Patent Document 1, as a technique for improving the tensile and compressive deformation performance in the thickness direction of 500 N / mm grade 2 steel, when continuously casting a steel material, electromagnetic stirring is performed, and the slab is bulged, and the unsolidified portion is further removed. A continuous casting method for rolling down a slab containing is described.

特許文献2は、連鋳スラブにクロス鍛造を実施した後、成形圧延することにより、センターポロシティーと中心偏析の改善を達成することが記載されている。特許文献3は、鋼素材の溶体化熱処理を実施した後、圧延および熱処理を実施し、強度と靭性に優れた鋼板の製造方法が記載されている。
特開2005−103604号公報 特開2000−263103号公報 特開平2−205629号公報
Patent Document 2 describes that the center porosity and the center segregation are improved by carrying out cross forging on a continuous cast slab and then forming and rolling. Patent Document 3 describes a method for producing a steel sheet that is excellent in strength and toughness by carrying out solution heat treatment of a steel material and then rolling and heat treatment.
Japanese Patent Laid-Open No. 2005-103604 JP 2000-263103 A Japanese Patent Laid-Open No. 2-205629


しかしながら、特許文献1に記載された製造方法では、圧下量や歪速度制御の制約が大きく、極厚の高強度鋼では溶接性や板厚方向の延性向上効果が十分に得られず、更に処理能力が連続鋳造の引き抜き速度に律速されるため、製造効率が低下することが懸念される。

However, in the manufacturing method described in Patent Document 1, there are large restrictions on the amount of reduction and strain rate control, and the effect of improving weldability and ductility in the plate thickness direction cannot be sufficiently obtained with extremely thick high-strength steel. Since the capacity is limited by the drawing speed of continuous casting, there is a concern that the production efficiency is lowered.

特許文献2に記載された技術では、溶接性や板厚方向の延性向上効果が十分に得られず、更に、鍛造工程を2工程に分ける必要があるため、製造効率の低下と製造コストの上昇が懸念される。   In the technique described in Patent Document 2, weldability and ductility improvement effect in the plate thickness direction cannot be sufficiently obtained, and further, the forging process needs to be divided into two processes, so that the production efficiency is lowered and the production cost is raised. Is concerned.

特許文献3に記載された技術では、圧延前に高温長時間の溶体化熱処理が必要であるため、製造効率の低下と製造コストの上昇が懸念されるとともに、溶接性および板厚方向の延性向上効果が十分に得られない。   The technique described in Patent Document 3 requires a solution heat treatment for a long time at high temperature before rolling, so there is concern about a decrease in manufacturing efficiency and an increase in manufacturing cost, and an improvement in weldability and ductility in the plate thickness direction. The effect cannot be obtained sufficiently.

そこで、本発明は、優れた溶接性を満足するとともに、板厚方向の引張荷重に対して優れた延性を安定して達成する厚鋼板の製造方法を提供することを目的とする。   Accordingly, an object of the present invention is to provide a method for producing a thick steel plate that satisfies excellent weldability and stably achieves excellent ductility with respect to a tensile load in the plate thickness direction.

本発明者らは、上記課題を達成するため,厚鋼板を対象に、板厚中心部における溶接低温割れ性と板厚方向の延性を決定する各種要因のうち、鋼板内部のミクロ組織制御因子について鋭意研究を行い、以下の知見を得た。
1.鋼材の優れた溶接性を達成するためには、鋼組成を適切に選定して厳格に管理することが必要である。
2.溶接部の低温割れを助長する水素の集積サイトを極力抑制するとともに、厚鋼板の板厚方向引張試験において優れた延性を安定して達成するためには、鋼素材中央部に生成するMnSを極力抑制することが不可欠である。MnSを完全に抑制できない場合には、Caの添加量を厳格に調整して、板厚中央部における硫化物を微細に制御することが重要である。
3.更に、優れた溶接施工性と板厚方向の延性を達成するためには、熱間加工の総圧下量の下限と、加工温度の下限を厳格に管理して、センターポロシティーを完全に消失することが重要である。
4.更に、優れた溶接性と板厚方向の延性を達成するためには、熱間加工の総圧下量と加工温度の管理とともに、歪速度を厳格に調整して,鋼素材中央部の中心偏析を解消することが最も重要である。
In order to achieve the above-mentioned problems, the present inventors have studied the microstructure control factor inside the steel plate among various factors that determine the weld cold cracking property and the ductility in the plate thickness direction at the center of the plate thickness for the thick steel plate. We conducted intensive research and obtained the following knowledge.
1. In order to achieve excellent weldability of the steel material, it is necessary to appropriately select and strictly control the steel composition.
2. In order to suppress hydrogen accumulation sites that promote cold cracking of welds as much as possible, and to stably achieve excellent ductility in the thickness direction tensile test of thick steel plates, MnS generated in the center of the steel material is as much as possible It is essential to suppress it. When MnS cannot be completely suppressed, it is important to finely control the sulfide in the central portion of the plate thickness by strictly adjusting the amount of Ca added.
3. Furthermore, in order to achieve excellent weldability and ductility in the thickness direction, the lower limit of the total hot rolling reduction and the lower limit of the processing temperature are strictly controlled, and the center porosity disappears completely. This is very important.
4). Furthermore, in order to achieve excellent weldability and ductility in the plate thickness direction, the total segregation amount of hot working and the processing temperature are controlled, and the strain rate is adjusted strictly to reduce the center segregation at the center of the steel material. It is most important to eliminate it.

加工温度、加工量および歪速度を厳格に管理することにより、熱間加工中にオーステナイトの動的再結晶を発現させて、結晶粒界の移動を促進することにより、Fe中に固溶した各種合金元素を効率的に拡散させて、偏析の無い均一な組成の鋼板を得ることができる。   By strictly controlling the processing temperature, processing amount and strain rate, various dynamics of austenite are expressed during hot processing, and the movement of grain boundaries is promoted. A steel plate having a uniform composition without segregation can be obtained by efficiently diffusing the alloy elements.

上記の組み合わせにより、厚鋼板の板厚中央部に、センターポロシティー、粗大なMnS等の非金属介在物および中心偏析の存在しない鋼板が得られ、優れた、溶接性と板厚方向の延性を安定して達成することができる。
5.熱間加工後の金属組織の平均結晶粒径が300μmを超えると、靭性の低下を招くとともに、熱間加工中の動的再結晶が不十分となるため、偏析が解消しない。その結果、引張試験時には、結晶粒界への応力が集中しやすくなるため、空隙の発生起点となり、顕著な延性低下を招く。従って、熱間加工後の金属組織の平均結晶粒径が300m以下となるようにすることが望ましい。
By the above combination, a steel plate free from center metal porosity, coarse non-metallic inclusions such as MnS and center segregation is obtained in the center of the plate thickness of the thick steel plate, and has excellent weldability and ductility in the thickness direction. It can be achieved stably.
5. When the average crystal grain size of the metal structure after hot working exceeds 300 μm, the toughness is lowered and dynamic recrystallization during hot working becomes insufficient, so that segregation is not eliminated. As a result, during the tensile test, stress on the crystal grain boundary is likely to concentrate, which becomes a starting point of voids and causes a significant decrease in ductility. Therefore, it is desirable that the average crystal grain size of the metal structure after hot working be 300 m or less.

本発明は、得られた知見に、さらに検討を加えてなされたもので、すなわち、本発明は、
1.鋼組成が、質量%で、
C:0.01〜0.20%
Si:0.05〜0.50%
Mn:0.3〜3.0%
P:0.03%以下
S:0.005%以下
Al:0.1%以下
N:0.02%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、1100〜1350℃に再加熱後、1000℃以上における歪速度を0.05〜3/s、累積圧下量15%以上とする熱間加工を施すことを特徴とする溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
2.1に記載した鋼組成に、質量%でさらに、
Ca:0.005%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、1100〜1350℃に再加熱後、1000℃以上における歪速度を0.05〜3/s、累積圧下量15%以上とする熱間加工を施すことを特徴とする溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
3.1または2に記載した鋼組成に、質量%でさらに、
Cu:0.01〜2.0%
Ni:0.01〜3.0%
Cr:0.01〜3.0%
Mo:0.01〜3.0%
Nb:0.1%以下、
V:0.1%以下、
Ti:0.05%以下、
B:0.005%以下
REM:0.02%以下
Mg:0.005%以下
の一種または二種以上を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、1100〜1350℃に再加熱後、1000℃以上における熱間加工の歪速度を0.05〜3/s、累積圧下量15%以上とすることを特徴とする溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
4.熱間加工後、更に400〜650℃で焼戻すことを特徴とする1乃至3のいずれか一つに記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
5.熱間加工後、更に1000〜1250℃に再加熱することを特徴とする1乃至3のいずれか一つに記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
6.再加熱後、更に400〜650℃で焼戻すことを特徴とする5記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
7.熱間加工後、更に1000〜1250℃に再加熱し、圧延終了温度が750℃以上となる熱間圧延を行うことを特徴とする1乃至3のいずれか一つに記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
8.熱間圧延後、更にAc変態点以上に再加熱することを特徴とする7記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
9.再加熱後、更に400〜650℃で焼戻すことを特徴とする8記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
The present invention has been made by further studying the obtained knowledge, that is, the present invention
1. Steel composition is mass%,
C: 0.01 to 0.20%
Si: 0.05 to 0.50%
Mn: 0.3 to 3.0%
P: 0.03% or less S: 0.005% or less Al: 0.1% or less N: 0.02% or less, the steel material consisting of Fe and unavoidable impurities in the balance, 1100 to 1350 ° C. Thick steel plate with excellent weldability and ductility in the plate thickness direction, which is subjected to hot working after reheating to a strain rate at 1000 ° C. or higher of 0.05 to 3 / s and a cumulative reduction amount of 15% or higher. Manufacturing method.
In steel composition described in 2.1, in mass%,
Ca: A steel material containing 0.005% or less and the balance consisting of Fe and inevitable impurities is reheated to 1100 to 1350 ° C., and then the strain rate at 1000 ° C. or higher is 0.05 to 3 / s, cumulative reduction A method for producing a thick steel plate excellent in weldability and ductility in the thickness direction, characterized by performing hot working to an amount of 15% or more.
3.1 In addition to the steel composition described in 2 or 2 by mass%,
Cu: 0.01 to 2.0%
Ni: 0.01-3.0%
Cr: 0.01 to 3.0%
Mo: 0.01 to 3.0%
Nb: 0.1% or less,
V: 0.1% or less,
Ti: 0.05% or less,
B: 0.005% or less REM: 0.02% or less Mg: 0.005% or less One or two or more steel materials, the balance being Fe and inevitable impurities are re-used at 1100 to 1350 ° C. After heating, the strain rate of hot working at 1000 ° C. or higher is 0.05 to 3 / s, and the cumulative reduction amount is 15% or more. Production of a thick steel plate excellent in weldability and ductility in the plate thickness direction Method.
4). The method for producing a thick steel plate having excellent weldability and ductility in the plate thickness direction according to any one of 1 to 3, further comprising tempering at 400 to 650 ° C after hot working.
5. The method for producing a thick steel plate having excellent weldability and ductility in the plate thickness direction according to any one of 1 to 3, wherein the steel plate is further reheated to 1000 to 1250 ° C after hot working.
6). 6. The method for producing a thick steel plate having excellent weldability and ductility in the thickness direction according to 5, wherein the steel is further tempered at 400 to 650 ° C. after reheating.
7). After the hot working, it is further reheated to 1000 to 1250 ° C., and hot rolling is performed so that the rolling end temperature is 750 ° C. or more. A method for producing thick steel plates with excellent ductility in the direction.
8). After hot rolling, further Ac 3 weldability and the plate thickness direction of the manufacturing method of excellent steel plate ductility 7, wherein the reheating above transformation point.
9. 9. The method for producing a thick steel plate having excellent weldability and ductility in the thickness direction according to 8, wherein the steel plate is further tempered at 400 to 650 ° C. after reheating.

本発明によれば、溶接性と板厚方向の延性に優れた板厚60mm以上の厚鋼板の製造方法が得られ、鋼構造物の大型化、鋼構造物の安全性の向上および施工効率の向上に大きく寄与し、産業上格段の効果を奏する。   According to the present invention, a method for producing a thick steel plate having a thickness of 60 mm or more excellent in weldability and ductility in the plate thickness direction is obtained, and the steel structure is increased in size, the safety of the steel structure is improved, and the construction efficiency is improved. It greatly contributes to improvement and has a remarkable industrial effect.

本発明では成分組成、製造条件を規定する。
[成分組成]説明において%は質量%とする。
C:0.01〜0.16%
Cは、鋼の強度を増加させ、構造用鋼材として必要な強度を確保するために必要な元素で、その効果を得るためには、0.01%以上の含有を必要とする。
In this invention, a component composition and manufacturing conditions are prescribed | regulated.
[Ingredient composition] In the description, “%” means “mass%”.
C: 0.01 to 0.16%
C is an element necessary for increasing the strength of the steel and ensuring the strength required as a structural steel material. To obtain the effect, C is required to be contained in an amount of 0.01% or more.

一方、0.16%を超える含有は、母材および溶接部の靭性を顕著に劣化させる。また,溶接部の低温割れ性を劣化させるため、0.01〜0.16%の範囲に限定する。好ましくは、0.02〜0.15%である。   On the other hand, the content exceeding 0.16% significantly deteriorates the toughness of the base material and the welded portion. Moreover, in order to degrade the low temperature cracking property of a welding part, it limits to 0.01 to 0.16% of range. Preferably, it is 0.02 to 0.15%.

Si:0.05〜0.50%
Siは、脱酸材として作用し、製鋼上、少なくとも0.05%必要であるが、0.50%を超えて含有すると、母材および溶接部の靭性を劣化するだけでなく、溶接部の低温割れ性が劣化するため、0.05〜0.50%の範囲に限定する。好ましくは、0.10〜0.40%である。
Si: 0.05 to 0.50%
Si acts as a deoxidizer and needs to be at least 0.05% for steelmaking. However, if it contains more than 0.50%, not only the toughness of the base metal and the welded portion is deteriorated, but also the welded portion. Since low temperature cracking property deteriorates, it limits to 0.05 to 0.50% of range. Preferably, it is 0.10 to 0.40%.

Mn:0.3〜3.0%
Mnは、鋼の強度を増加させる効果を有しており、0.3%以上の含有を必要とする。一方、3.0%を超えて含有すると、母材の靭性が劣化するだけでなく、溶接部の低温割れ性が著しく劣化するとともに、中心偏析が顕著になり板厚方向の延性を劣化させるため、0.3〜3.0%の範囲に限定する。好ましくは、0.4〜1.8%である。
Mn: 0.3 to 3.0%
Mn has the effect of increasing the strength of the steel and needs to contain 0.3% or more. On the other hand, if the content exceeds 3.0%, not only the toughness of the base material deteriorates, but also the low temperature cracking property of the welded portion significantly deteriorates, and the center segregation becomes prominent and the ductility in the thickness direction is deteriorated. , Limited to the range of 0.3-3.0%. Preferably, it is 0.4 to 1.8%.

P:0.03%以下
Pは、鋼の強度を増加させ靭性を劣化させる元素であるだけでなく、中心偏析により板厚方向の延性を劣化させるので、0.03%を上限とし、可能なかぎり低減することが望ましい。尚、過度のP低減は精錬コストを高騰させ経済的に不利となるため、0.001%以上とすることが望ましい。
P: 0.03% or less P is not only an element that increases the strength of steel and deteriorates toughness, but also deteriorates ductility in the thickness direction due to center segregation. It is desirable to reduce as much as possible. In addition, since excessive P reduction raises refining cost and becomes economically disadvantageous, it is desirable to set it as 0.001% or more.

S:0.005%以下
Sは母材の低温靭性を劣化させるだけでなく、MnSを生成して板厚方向の延性を劣化させるため、0.005%を上限として可能なかぎり低減することが望ましい。
S: 0.005% or less S not only deteriorates the low temperature toughness of the base material, but also produces MnS and deteriorates the ductility in the thickness direction. Therefore, 0.005% can be reduced as much as possible. desirable.

Al:0.1%以下
Alは、脱酸剤として作用し、高張力鋼の溶鋼脱酸プロセスに於いて、もっとも汎用的に使われる。また、鋼中のNをAlNとして固定し、母材の靭性向上に寄与するが、0.1%を超える含有は、母材の靭性が低下するとともに、溶接時に溶接金属部に混入して、靭性を劣化させるため、0.1%以下に限定した。
Al: 0.1% or less Al acts as a deoxidizer, and is most commonly used in the molten steel deoxidation process of high-strength steel. In addition, N in the steel is fixed as AlN and contributes to the improvement of the toughness of the base metal. However, if the content exceeds 0.1%, the toughness of the base material decreases, and the weld metal part is mixed during welding, In order to deteriorate the toughness, the content is limited to 0.1% or less.

N:0.02%以下
Nは不可避的不純物として鋼中に含まれ、0.02%を超えて含有すると、母材および溶接部靭性が著しく低下するため、0.02%以下に限定する。
N: 0.02% or less N is contained in steel as an unavoidable impurity, and if it exceeds 0.02%, the toughness of the base metal and the welded portion is remarkably reduced, so it is limited to 0.02% or less.

本発明では、更に、特性を向上させる場合、上記基本成分系に加えて、Ca、Cu、Ni、Cr、Mo、Nb、V、Ti、B、REM、Mgの一種または二種以上を含有することができる。   In the present invention, when further improving the characteristics, in addition to the basic component system, one or more of Ca, Cu, Ni, Cr, Mo, Nb, V, Ti, B, REM, and Mg are contained. be able to.

Ca:0.005%以下
Caは、酸硫化物の形態制御に有効であり、延性に悪影響を及ぼす粗大なMnS等の生成を抑制して、微細なCa酸硫化物を形成するとともに靭性を向上させる有用な元素である。
Ca: 0.005% or less Ca is effective in controlling the form of oxysulfide, suppresses the formation of coarse MnS and the like that adversely affects ductility, forms fine Ca oxysulfide and improves toughness It is a useful element.

0.005%を越えると、Ca酸硫化物が粗大化し靭性に悪影響を及ぼすため、0.005%以下に限定する。上記効果を得るため、0.0005%以上を添加することが好ましく、0.0005〜0.0045%とすることが好ましい。   If it exceeds 0.005%, Ca oxysulfide becomes coarse and adversely affects toughness, so it is limited to 0.005% or less. In order to acquire the said effect, it is preferable to add 0.0005% or more, and it is preferable to set it as 0.0005 to 0.0045%.

Cu:0.01〜2.0%、Ni:0.01〜3.0%の1種または2種以上
CuおよびNiは、高靭性を保ちつつ強度を増加させることが可能な元素であり、HAZ靭性への影響も小さいため、高強度化のために有用な元素であり、必要に応じ選択して含有できる。
One or more of Cu: 0.01 to 2.0%, Ni: 0.01 to 3.0% Cu and Ni are elements that can increase strength while maintaining high toughness, Since the influence on the HAZ toughness is small, it is an element useful for increasing the strength, and can be selected and contained as necessary.

Cuを添加する場合は、0.01%以上含有することが好ましいが、2.0%を超えて含有すると熱間脆性を生じて鋼板の表面性状を劣化させるため、0.01〜2.0%とする。尚、好ましくは、0.05〜0.7%である.
Niを添加する場合は、0.01%以上含有することが好ましいが、3.0%を超えて含有しても、効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利になるため、0.01〜3.0%とする。尚、好ましくは0.05〜1.7%である。
When adding Cu, it is preferable to contain 0.01% or more, but if it exceeds 2.0%, it causes hot brittleness and deteriorates the surface properties of the steel sheet. %. In addition, Preferably, it is 0.05 to 0.7%.
When adding Ni, it is preferable to contain 0.01% or more, but even if it contains more than 3.0%, the effect is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. Therefore, the content is made 0.01 to 3.0%. In addition, Preferably it is 0.05 to 1.7%.

Cr:0.01〜3.0%、Mo:0.01〜3.0%、Nb:0.1%以下、V:0.1%以下、Ti:0.05%以下、B:0.005%以下の一種または二種以上
Cr、Mo、Nb、V、Ti、Bは、いずれも鋼の強度向上に寄与する元素であり、所望する強度に応じて一種または二種以上を含有できる。
Cr: 0.01-3.0%, Mo: 0.01-3.0%, Nb: 0.1% or less, V: 0.1% or less, Ti: 0.05% or less, B: 0.0. One or more of 005% or less, Cr, Mo, Nb, V, Ti, and B are elements that contribute to improving the strength of the steel, and can contain one or more of them depending on the desired strength.

Crを添加する場合は、0.01%以上含有することが好ましいが、3.0%を超えて含有すると、溶接部の低温割れ性およびHAZ靭性を劣化させるため、0.01〜3.0%に限定することが望ましい。   When adding Cr, it is preferable to contain 0.01% or more, but when it exceeds 3.0%, the low temperature cracking property and HAZ toughness of the welded portion are deteriorated. It is desirable to limit it to%.

Moを添加する場合は、0.01%以上含有することが好ましいが、3.0%を超えて含有すると、溶接部の低温割れ性、母材靭性およびHAZ靭性に悪影響を及ぼすため、0.01〜3.0%に限定することが望ましい。   When Mo is added, the content is preferably 0.01% or more. However, when the content exceeds 3.0%, the low temperature cracking property, the base metal toughness, and the HAZ toughness of the weld are adversely affected. It is desirable to limit to 01 to 3.0%.

Nbを添加する場合は、0.005%以上含有することが好ましいが、0.1%を超えて含有すると、母材靭性およびHAZ靭性を劣化させるため、0.1%以下に限定することが望ましい。   When Nb is added, it is preferably contained in an amount of 0.005% or more. However, if it exceeds 0.1%, the base material toughness and the HAZ toughness are deteriorated. desirable.

Vを添加する場合は、0.01%以上含有することが好ましいが、0.1%を超えて含有すると、HAZ靭性を劣化させるため、0.1%以下に限定することが望ましい。   When V is added, it is preferably contained in an amount of 0.01% or more, but if it exceeds 0.1%, the HAZ toughness is deteriorated, so it is desirable to limit it to 0.1% or less.

Tiは、強度向上に寄与し、また、Nとの親和力が強く凝固時にTiNとして析出し、HAZでのオーステナイト粒の粗大化抑制してHAZの高靭化に寄与するが0.05%を超えて含有すると、母材靭性を劣化させるため、添加する場合、0.05%以下に限定することが望ましい。上記効果を得るためには、0.005%以上含有させる。   Ti contributes to strength improvement, and has a strong affinity with N, and precipitates as TiN during solidification, thereby suppressing the austenite grain coarsening in HAZ and contributing to the toughness of HAZ, but it exceeds 0.05%. If added, the base material toughness is deteriorated. Therefore, when added, the content is preferably limited to 0.05% or less. In order to acquire the said effect, it contains 0.005% or more.

Bは、焼入れ性を向上させて、鋼の強度を増加させる作用を有するが、0.005%を超えて含有すると、焼入れ性を著しく増加させ、溶接部の低温割れ性、母材の靭性および延性の劣化をもたらすため、含有させる場合は0.005%以下とする。   B has the effect of improving the hardenability and increasing the strength of the steel, but if contained over 0.005%, the hardenability is remarkably increased, the cold cracking property of the weld zone, the toughness of the base metal and In order to cause deterioration of ductility, the content is made 0.005% or less.

REM:0.02%以下、Mg:0.005%以下の一種または二種
REM、Mgは、いずれも靭性向上に寄与し、所望する特性に応じて添加する。REMを添加する場合、0.02%を超えても効果が飽和するため、0.02%を上限とする。上記効果を得るため、0.002%以上とすることが好ましい。
One or two types of REM: 0.02% or less and Mg: 0.005% or less REM and Mg both contribute to improvement of toughness, and are added according to desired properties. When adding REM, even if it exceeds 0.02%, the effect is saturated, so 0.02% is made the upper limit. In order to acquire the said effect, it is preferable to set it as 0.002% or more.

Mgを添加する場合、0.005%を超えても効果が飽和するため、0.005%を上限とする。上記効果を得るため、0.001%以上とすることが好ましい。上記した成分以外の残部は、Feおよび不可避的不純物である。   When adding Mg, the effect is saturated even if it exceeds 0.005%, so 0.005% is made the upper limit. In order to acquire the said effect, it is preferable to set it as 0.001% or more. The balance other than the above components is Fe and inevitable impurities.

[製造条件]
説明において、温度「℃」は、板厚の1/2における温度を意味するものとする。
本発明に係る厚鋼板の製造方法では、鋼素材中のセンターポロシティーなどの鋳造欠陥を消失させるため、鋼素材に熱間加工を施すことを必須とする。
[Production conditions]
In the description, the temperature “° C.” means a temperature at half the plate thickness.
In the method for producing a thick steel plate according to the present invention, it is essential to subject the steel material to hot working in order to eliminate casting defects such as center porosity in the steel material.

1.鋼素材の熱間加工条件
加熱温度:1100℃〜1350℃
上述した組成の鋳片または鋼片の鋼素材を転炉,電気炉,真空溶解炉等,通常公知の方法による溶鋼から作成し、1100℃〜1350℃に再加熱する。再加熱温度が1100℃未満では,所定の熱間加工の累積圧下量と温度下限を確保できず、熱間加工での変形抵抗が高く,1パス当たりの圧下量を十分取れない。
1. Hot working conditions for steel materials Heating temperature: 1100 ° C to 1350 ° C
A steel material of a slab or steel slab having the composition described above is prepared from molten steel by a generally known method such as a converter, electric furnace, vacuum melting furnace, etc., and reheated to 1100 ° C to 1350 ° C. If the reheating temperature is less than 1100 ° C., the predetermined hot working cumulative rolling amount and the lower temperature limit cannot be secured, the deformation resistance in hot working is high, and the rolling amount per pass cannot be taken sufficiently.

その結果、パス数が増加し,製造能率の低下を招くとともに,鋼素材中のセンターポロシティーなどの鋳造欠陥を圧着することができないので、1100℃以上とする。   As a result, the number of passes increases, the production efficiency decreases, and casting defects such as center porosity in the steel material cannot be pressure-bonded.

一方,再加熱温度が1350℃を超えると,加熱時のスケールによって表面疵が生じやすく,熱間加工後の手入れ負荷が増大するため,1100〜1350℃とする。   On the other hand, if the reheating temperature exceeds 1350 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after hot working increases, so the temperature is set to 1100 to 1350 ° C.

熱間加工の加工温度:1000℃以上
熱間加工の加工温度が1000℃未満の場合,熱間加工中のオーステナイトの動的再結晶による合金元素の拡散効果が十分に得られないため、中心偏析が解消されず、溶接部の低温割れ性、および板厚方向の延性低下を招く。また、変形抵抗が高くなるため,負荷すべき荷重が増大し,熱間加工機への負担が大きくなるため、1000℃以上とする。
Hot working temperature: 1000 ° C or higher If the hot working temperature is less than 1000 ° C, the diffusion effect of alloying elements due to the dynamic recrystallization of austenite during hot working cannot be sufficiently obtained. Is not eliminated, and the cold cracking property of the welded portion and the ductility decrease in the thickness direction are caused. Further, since the deformation resistance is increased, the load to be applied is increased and the burden on the hot working machine is increased, so that the temperature is set to 1000 ° C. or higher.

熱間加工の累積圧下量:15%以上
熱間加工の累積圧下量が15%未満の場合、鋼素材中のセンターポロシティーなどの鋳造欠陥を圧着することができない。さらに、熱間加工中のオーステナイトの動的再結晶による合金元素の拡散効果が十分に得られないため、中心偏析が解消されず、溶接部の低温割れ性、板厚方向の延性低下を招く。
Cumulative reduction amount of hot working: 15% or more When the cumulative reduction amount of hot working is less than 15%, casting defects such as center porosity in the steel material cannot be crimped. Furthermore, since the diffusion effect of the alloy element due to the dynamic recrystallization of austenite during hot working cannot be sufficiently obtained, the center segregation is not eliminated, and the cold cracking property of the welded portion and the ductility reduction in the plate thickness direction are caused.

なお,板厚が80mmを超える極厚鋼板の場合には、センターポロシティー圧着のために1パスあたりの圧下率が5%以上となるパスを少なくとも1パス以上確保することが望ましい。   In the case of an extremely thick steel plate having a thickness exceeding 80 mm, it is desirable to secure at least one pass with a reduction rate of 5% or more per pass for center porosity pressure bonding.

熱間加工の歪速度:0.05〜3/s
熱間加工の歪速度が0.05/s未満では、熱間加工中の温度低下により、所定の累積圧下量と温度下限を確保できず、さらに、製造能率の低下を招く。
Hot working strain rate: 0.05-3 / s
When the strain rate of hot working is less than 0.05 / s, due to the temperature drop during hot working, the predetermined cumulative reduction amount and the lower temperature limit cannot be secured, and the production efficiency is lowered.

一方、3/sを超えると、熱間加工中のオーステナイトの動的再結晶による合金元素の拡散効果が十分に得られないため、中心偏析が解消されず、溶接部の低温割れ性、板厚方向の延性低下を招くため、熱間加工の歪速度は0.05〜3/sとする。   On the other hand, if it exceeds 3 / s, the diffusion effect of the alloy element due to dynamic recrystallization of austenite during hot working cannot be sufficiently obtained, so that center segregation is not eliminated and cold cracking property of the welded portion, plate thickness In order to reduce the ductility in the direction, the strain rate of hot working is set to 0.05 to 3 / s.

尚、溶鋼から鋼素材を製造する際の鋳造条件は、金属組織中の粗大な非金属介在物は、溶接部の低温割れ性および板厚方向の延性低下を招くため、極力低減することが好ましく、面積分率で5%以下、最大円相当径100μm以下となるように調整することが望ましい。   In addition, it is preferable to reduce the casting conditions when manufacturing the steel material from the molten steel as much as possible because coarse non-metallic inclusions in the metal structure cause low-temperature crackability of the welded portion and reduced ductility in the plate thickness direction. It is desirable to adjust so that the area fraction is 5% or less and the maximum equivalent circle diameter is 100 μm or less.

なお、熱間加工には熱間鍛造、熱間圧延等、通常公知の方法を利用できるが、経済性、制御性等を考慮すると、熱間鍛造が好ましい。   In addition, although a publicly known method, such as hot forging and hot rolling, can be used for hot working, hot forging is preferable in consideration of economy, controllability, and the like.

熱間加工後、所望する機械的特性に応じて再加熱処理や焼戻しを単独または組み合わせて実施する。再加熱処理を行う場合は、Ac変態点以上の温度域に加熱する。加熱温度の上限については規定しないが,1100℃超えになると鋼板表面性状が劣化するため,好ましくは1100℃以下とする。 After hot working, reheating treatment or tempering is carried out alone or in combination depending on the desired mechanical properties. When the reheating treatment is performed, heating is performed to a temperature range equal to or higher than the Ac 3 transformation point. The upper limit of the heating temperature is not specified, but if it exceeds 1100 ° C., the surface properties of the steel sheet deteriorate, so the upper limit is preferably set to 1100 ° C. or less.

また,保持時間についても規定しないが,1hr超えになるとオーステナイト粒の粗大化により,母材の靭性が劣化するので1hr以内が望ましく,熱処理炉内の均熱が良ければ,短時間の保持でも良い。なお、Ac点(℃)は、化学組成との相関が概ね以下の式で整理できる。
Ac点(℃)=854−180C+44Si−14Mn−17.8Ni−1.7Cr
(ただし,C,Si,Mn,Ni,Cr:各合金元素の含有量(mass%))
熱間加工後、または再加熱後に焼もどし処理を施す場合は、400℃以上650℃以下に加熱する。母材の靭性および延性を向上させる効果を得るため,加熱温度は400℃以上とし、650℃を超えると母材強度が大幅に低下するため、400℃以上650℃以下とする。
Also, the holding time is not specified, but if it exceeds 1 hr, the toughness of the base material deteriorates due to coarsening of austenite grains, so that it is preferably within 1 hr. . Note that the Ac 3 point (° C.) can be roughly correlated with the chemical composition by the following equation.
Ac 3 points (° C.) = 854-180C + 44Si-14Mn-17.8Ni-1.7Cr
(However, C, Si, Mn, Ni, Cr: content of each alloy element (mass%))
When tempering is performed after hot working or after reheating, heating is performed at 400 ° C. or more and 650 ° C. or less. In order to obtain the effect of improving the toughness and ductility of the base material, the heating temperature is set to 400 ° C. or higher, and if it exceeds 650 ° C., the strength of the base material is greatly reduced.

尚、熱間加工終了後の冷却は、所望する機械的特性に応じて,空冷、加速冷却、水冷など、適宜選定する。   The cooling after the hot working is appropriately selected according to the desired mechanical characteristics, such as air cooling, accelerated cooling, and water cooling.

本発明では,熱間加工後に熱間圧延して所望の板厚の鋼板とし、得られた鋼板は所望する機械的性質に応じて、熱間圧延ままとしたり、再加熱処理や焼戻し処理を単独または組み合わせて施すことが可能である。   In the present invention, hot rolling is performed after hot working to obtain a steel plate having a desired thickness, and the obtained steel plate is kept in hot rolling or subjected to reheating treatment or tempering treatment alone depending on the desired mechanical properties. Or they can be applied in combination.

2.熱間圧延条件
再加熱温度:1000℃〜1250℃
熱間圧延のため、熱間加工後に1000℃〜1250℃で再加熱する。再加熱温度が1000℃未満では,熱間圧延での変形抵抗が高く,1パス当たりの圧下量が大きく取れなくなることから,圧延パス数が増加し,圧延能率の低下を招くとともに,鋼素材(スラブ)中の鋳造欠陥を圧着することができない場合が生じる。
2. Hot rolling conditions Reheating temperature: 1000 ° C to 1250 ° C
For hot rolling, reheating is performed at 1000 ° C. to 1250 ° C. after hot working. If the reheating temperature is less than 1000 ° C, the deformation resistance in hot rolling is high, and the amount of rolling reduction per pass cannot be increased. Therefore, the number of rolling passes increases and the rolling efficiency decreases, and the steel material ( In some cases, the casting defect in the slab cannot be crimped.

一方,再加熱温度が1250℃を超えると,加熱時のスケールによって表面疵が生じやすく,圧延後の手入れ負荷が増大するため,1000〜1250℃とする。   On the other hand, if the reheating temperature exceeds 1250 ° C., surface flaws are likely to occur due to the scale during heating, and the maintenance load after rolling increases, so the temperature is set to 1000 to 1250 ° C.

圧延終了温度:750℃以上
圧延終了温度が750℃未満の場合,変形抵抗が高くなるため,圧延荷重が増大し,圧延機への負担が大きくなる。また,厚肉材を750℃未満の圧延温度まで低下させるためには,圧延途中で待機する必要があり,生産性を大きく阻害する。このため,圧延終了温度を750℃以上とする。
Rolling end temperature: 750 ° C. or higher When the rolling end temperature is lower than 750 ° C., the deformation resistance increases, so the rolling load increases and the burden on the rolling mill increases. Moreover, in order to reduce the thick material to a rolling temperature of less than 750 ° C., it is necessary to wait in the middle of rolling, which greatly impedes productivity. For this reason, rolling end temperature shall be 750 degreeC or more.

圧延ままとする場合、圧延終了後の冷却速度が60℃/sを超えると,鋼板位置による温度制御が困難となり,材質ばらつきが生じやすくなるため、60℃/s未満とすることが望ましい。冷却速度は板厚方向の各位置における冷却速度を平均した平均冷却速度とする。
3.熱処理条件
圧延終了後の熱処理は、1.Ac変態点以上の温度域に再加熱後、焼きならし、2.Ac変態点以上の温度域に再加熱後、焼入れ、または、3.圧延終了後の直接焼入れのいずれかとする。これらのいずれかの熱処理後、熱間加工後の焼戻し条件に準じて、適宜焼戻しを行う。
When the rolling is left as it is, if the cooling rate after the rolling is over 60 ° C./s, it becomes difficult to control the temperature depending on the position of the steel sheet, and material variations tend to occur. The cooling rate is an average cooling rate obtained by averaging the cooling rates at the respective positions in the thickness direction.
3. Heat treatment conditions
The heat treatment after rolling is as follows: 1. Reheat to temperature range above Ac 3 transformation point and normalize. 2. Reheating to a temperature range above the Ac 3 transformation point and quenching, or Either direct quenching after the end of rolling. After any of these heat treatments, appropriate tempering is performed according to the tempering conditions after hot working.

尚、熱間加工後に熱間圧延して得られた鋼板のミクロ組織は、所望する機械的特性に応じて施した熱処理によって,フェライト、パーライト、ベイナイトおよびマルテンサイト等のいずれか、あるいは複相の混合組織が得られる。   Note that the microstructure of the steel sheet obtained by hot rolling after hot working is either a ferrite, pearlite, bainite, martensite, or the like, or a multiphase by heat treatment performed according to the desired mechanical properties. A mixed tissue is obtained.

転炉-取鍋精錬-連続鋳造法で、種々の成分組成に調製した厚さ310mmの鋼スラブ(鋼素材)を,種々の条件で熱間鍛造して鋼板とし、一部の鋼板には、熱間鍛造後、熱間圧延および/または熱処理を施した。表1に鋼板の成分組成を、表2に熱間鍛造、熱間圧延および熱処理条件を示す。   A steel slab (steel material) with a thickness of 310 mm prepared in various components by the converter-ladder refining-continuous casting method is hot-forged under various conditions to form a steel plate. After hot forging, hot rolling and / or heat treatment was performed. Table 1 shows the component composition of the steel sheet, and Table 2 shows the hot forging, hot rolling and heat treatment conditions.

得られた鋼板の板厚1/2位置のC方向から,JIS4号引張試験片を採取し,JIS Z 2241(1998年)の既定に準拠して引張試験を実施し、引張特性を調査した。   A JIS No. 4 tensile test piece was sampled from the C direction at a thickness of 1/2 of the obtained steel sheet, and a tensile test was performed in accordance with the default of JIS Z 2241 (1998) to investigate the tensile properties.

母材靭性は各鋼板の板厚1/4位置のC方向から,JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠してシャルピー衝撃試験を実施し、0℃における吸収エネルギー(vE)を求めて評価した。 For base metal toughness, V-notch specimens were collected from the C direction at a thickness of 1/4 of each steel plate according to JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Then, a Charpy impact test was carried out, and the absorbed energy (vE 0 ) at 0 ° C. was obtained and evaluated.

板厚方向の延性は各鋼板の板厚方向から,JIS G 3199(1992年)の規定に準拠して厚さ方向引張試験片(タイプb)を採取し、JIS Z 2241(1998年)の規定に準拠して引張試験を実施し、絞り値(R.A.)を求めて評価した。   The ductility in the plate thickness direction is determined from the plate thickness direction of each steel plate in accordance with JIS G 3199 (1992) by collecting a thickness direction tensile test piece (type b), and JIS Z 2241 (1998). Was subjected to a tensile test, and a drawing value (RA) was obtained and evaluated.

さらに、各鋼板について,JIS Z 3158(1993年)に準拠して,y形溶接割れ試験を実施し,室温(25℃)におけるルート部割れ発生率を求めて溶接性を評価した。なお,供給ワイヤは,JIS Z 3212相当を使用した。   Furthermore, each steel plate was subjected to a y-type weld cracking test in accordance with JIS Z 3158 (1993), and the weldability was evaluated by obtaining the root crack generation rate at room temperature (25 ° C.). The supply wire used was JIS Z 3212 equivalent.

得られた結果を、表3に示す。発明例はいずれも,0℃でのシャルピー衝撃試験による吸収エネルギーが100J以上の高い靭性、板厚方向引張試験による絞り値がいずれも60%以上の高い延性が得られることが認められる。さらに、y形溶接割れ試験において,ルート部での割れは発生しない.
一方、本発明の範囲を外れる比較例は、靭性、あるいは板厚方向の延性が目標値を満足しないか、y形溶接割れ試験において,ルート部で割れが発生する。
The results obtained are shown in Table 3. In all of the inventive examples, it is recognized that high toughness with an absorbed energy of 100 J or more by a Charpy impact test at 0 ° C. and high ductility of 60% or more by a drawing value by a sheet thickness direction tensile test are obtained. Furthermore, in the y-type weld crack test, cracks at the root do not occur.
On the other hand, in the comparative example outside the scope of the present invention, the toughness or the ductility in the thickness direction does not satisfy the target value, or cracks occur at the root portion in the y-type weld crack test.

Figure 0005267048
Figure 0005267048

Figure 0005267048
Figure 0005267048

Figure 0005267048
Figure 0005267048

Claims (9)

鋼組成が、質量%で、
C:0.01〜0.20%
Si:0.05〜0.50%
Mn:0.3〜3.0%
P:0.03%以下
S:0.005%以下
Al:0.1%以下
N:0.02%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、1100〜1350℃に再加熱後、1000℃以上における歪速度を0.05〜3/s、累積圧下量15%以上とする熱間加工を施すことを特徴とする溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
Steel composition is mass%,
C: 0.01 to 0.20%
Si: 0.05 to 0.50%
Mn: 0.3 to 3.0%
P: 0.03% or less S: 0.005% or less Al: 0.1% or less N: 0.02% or less, the steel material consisting of Fe and unavoidable impurities in the balance, 1100 to 1350 ° C. Thick steel plate with excellent weldability and ductility in the plate thickness direction, which is subjected to hot working after reheating to a strain rate at 1000 ° C. or higher of 0.05 to 3 / s and a cumulative reduction amount of 15% or higher. Manufacturing method.
請求項1に記載した鋼組成に、質量%でさらに、
Ca:0.005%以下
を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、1100〜1350℃に再加熱後、1000℃以上における歪速度を0.05〜3/s、累積圧下量15%以上とする熱間加工を施すことを特徴とする溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
The steel composition according to claim 1, further in mass%,
Ca: A steel material containing 0.005% or less and the balance consisting of Fe and inevitable impurities is reheated to 1100 to 1350 ° C., and then the strain rate at 1000 ° C. or higher is 0.05 to 3 / s, cumulative reduction A method for producing a thick steel plate excellent in weldability and ductility in the thickness direction, characterized by performing hot working to an amount of 15% or more.
請求項1または2に記載した鋼組成に、質量%でさらに、
Cu:0.01〜2.0%
Ni:0.01〜3.0%
Cr:0.01〜3.0%
Mo:0.01〜3.0%
Nb:0.1%以下、
V:0.1%以下、
Ti:0.05%以下、
B:0.005%以下
REM:0.02%以下
Mg:0.005%以下
の一種または二種以上を含有し、残部がFeおよび不可避的不純物からなる鋼素材を、1100〜1350℃に再加熱後、1000℃以上における熱間加工の歪速度を0.05〜3/s、累積圧下量15%以上とすることを特徴とする溶接性と板厚方向の延性に優れた厚鋼板の製造方法。
In the steel composition according to claim 1 or 2, further in mass%,
Cu: 0.01 to 2.0%
Ni: 0.01-3.0%
Cr: 0.01 to 3.0%
Mo: 0.01 to 3.0%
Nb: 0.1% or less,
V: 0.1% or less,
Ti: 0.05% or less,
B: 0.005% or less REM: 0.02% or less Mg: 0.005% or less One or two or more steel materials, the balance being Fe and inevitable impurities are re-used at 1100 to 1350 ° C. After heating, the strain rate of hot working at 1000 ° C. or higher is 0.05 to 3 / s, and the cumulative reduction amount is 15% or more. Production of a thick steel plate excellent in weldability and ductility in the plate thickness direction Method.
熱間加工後、更に400〜650℃で焼戻すことを特徴とする請求項1乃至3のいずれか一つに記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。   The method for producing a thick steel plate excellent in weldability and ductility in the plate thickness direction according to any one of claims 1 to 3, further comprising tempering at 400 to 650 ° C after hot working. 熱間加工後、更に1000〜1250℃に再加熱することを特徴とする請求項1乃至3のいずれか一つに記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。   The method for producing a thick steel plate excellent in weldability and ductility in the plate thickness direction according to any one of claims 1 to 3, further comprising reheating to 1000 to 1250 ° C after hot working. 再加熱後、更に400〜650℃で焼戻すことを特徴とする請求項5記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。   6. The method for producing a thick steel plate excellent in weldability and ductility in the plate thickness direction according to claim 5, further comprising tempering at 400 to 650 ° C. after reheating. 熱間加工後、更に1000〜1250℃に再加熱し、圧延終了温度が750℃以上となる熱間圧延を行うことを特徴とする請求項1乃至3のいずれか一つに記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。   The weldability according to any one of claims 1 to 3, wherein after hot working, the steel is further reheated to 1000 to 1250 ° C, and hot rolling is performed so that the rolling end temperature is 750 ° C or higher. A method for producing a thick steel plate having excellent ductility in the thickness direction. 熱間圧延後、更にAc変態点以上に再加熱することを特徴とする請求項7記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。 The method for producing a thick steel plate excellent in weldability and ductility in the plate thickness direction according to claim 7, wherein after the hot rolling, reheating is further performed to an Ac 3 transformation point or higher. 再加熱後、更に400〜650℃で焼戻すことを特徴とする請求項8記載の溶接性と板厚方向の延性に優れた厚鋼板の製造方法。   The method for producing a thick steel plate excellent in weldability and ductility in the plate thickness direction according to claim 8, further tempered at 400 to 650 ° C. after reheating.
JP2008277842A 2008-10-29 2008-10-29 Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction Active JP5267048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277842A JP5267048B2 (en) 2008-10-29 2008-10-29 Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277842A JP5267048B2 (en) 2008-10-29 2008-10-29 Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction

Publications (2)

Publication Number Publication Date
JP2010106298A JP2010106298A (en) 2010-05-13
JP5267048B2 true JP5267048B2 (en) 2013-08-21

Family

ID=42296038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277842A Active JP5267048B2 (en) 2008-10-29 2008-10-29 Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction

Country Status (1)

Country Link
JP (1) JP5267048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020397A (en) * 2020-01-16 2020-04-17 五矿营口中板有限责任公司 High-strength high-toughness normalizing Q370 bridge steel plate with good welding performance and production method thereof

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102127719B (en) * 2011-03-10 2012-11-14 东北大学 Thick steel plate for ocean platform structure with yield strength of 500MPa grade and manufacture method thereof
JP5687946B2 (en) * 2011-04-12 2015-03-25 株式会社神戸製鋼所 High strength thick steel plate with excellent toughness
JP5958113B2 (en) * 2012-06-25 2016-07-27 Jfeスチール株式会社 Manufacturing method of thick steel plate with excellent scale adhesion
CA2899570C (en) * 2013-03-15 2019-04-30 Jfe Steel Corporation Thick, tough, high tensile strength steel plate and production method therefor
JP6086086B2 (en) * 2014-03-19 2017-03-01 Jfeスチール株式会社 Ultra-thick steel plate with excellent HIC resistance and manufacturing method thereof
US10443110B2 (en) 2014-03-20 2019-10-15 Jfe Steel Corporation High toughness and high tensile strength thick steel plate and production method therefor
KR101892839B1 (en) * 2014-04-24 2018-08-28 제이에프이 스틸 가부시키가이샤 Steel plate and method of producing same
EP3222744B1 (en) * 2014-11-18 2020-09-16 JFE Steel Corporation High toughness and high tensile strenght thick steel plate with excellent material homogeneity
KR101899682B1 (en) * 2016-12-22 2018-09-17 주식회사 포스코 Steel having high strength and low-temperature impact toughness and method for manufacturing the same
US11299798B2 (en) 2017-05-22 2022-04-12 Jfe Steel Corporation Steel plate and method of producing same
CN109182916B (en) * 2018-11-06 2020-02-18 鞍钢股份有限公司 High-performance super-thick steel plate for wind power and production method thereof
CN109338219B (en) * 2018-11-06 2020-01-07 鞍钢股份有限公司 Super-thick steel plate for wind power flange and production method thereof
CN111500926B (en) * 2020-04-24 2021-07-13 建龙北满特殊钢有限责任公司 Steel material for ships and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3462922B2 (en) * 1995-02-16 2003-11-05 新日本製鐵株式会社 Manufacturing method of high strength steel sheet with excellent strength and toughness
JP3383148B2 (en) * 1996-04-10 2003-03-04 新日本製鐵株式会社 Manufacturing method of high strength steel with excellent toughness
JP2001081516A (en) * 1999-09-17 2001-03-27 Nkk Corp METHOD FOR HOT-ROLLING Ni-CONTAINING STEEL EXCELLENT IN SURFACE CHARACTERISTIC

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020397A (en) * 2020-01-16 2020-04-17 五矿营口中板有限责任公司 High-strength high-toughness normalizing Q370 bridge steel plate with good welding performance and production method thereof

Also Published As

Publication number Publication date
JP2010106298A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP5267048B2 (en) Manufacturing method of thick steel plate with excellent weldability and ductility in the thickness direction
JP5928654B2 (en) Thick and high toughness high strength steel sheet and method for producing the same
JP5655984B2 (en) H-section steel and its manufacturing method
JP5573265B2 (en) High strength thick steel plate excellent in ductility with a tensile strength of 590 MPa or more and method for producing the same
JP5476763B2 (en) High tensile steel plate with excellent ductility and method for producing the same
JP5130796B2 (en) Low yield ratio high strength thick steel plate with excellent high heat input weld heat affected zone toughness and method for producing the same
JP6149368B2 (en) Manufacturing method of high-tensile steel plate with excellent delayed fracture resistance
JP4730088B2 (en) Low yield ratio high strength thick steel plate and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
WO2018199145A1 (en) HIGH-Mn STEEL AND PRODUCTION METHOD THEREFOR
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP6183545B2 (en) H-section steel and its manufacturing method
JPWO2015093321A1 (en) H-section steel and its manufacturing method
CN111172464A (en) 690 MPa-level fire-resistant weather-resistant steel plate for building structure and manufacturing method thereof
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
JP5200600B2 (en) Manufacturing method of high strength and low yield ratio steel
JP2013108168A (en) Method of producing high strength steel plate of tensile strength of 780 mpa or greater, excellent in weldability and delayed fracture resistance
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP4924047B2 (en) Manufacturing method of steel material having excellent fatigue crack propagation characteristics with absolute value of surface residual stress of 150 N / mm 2 or less
JP5477457B2 (en) High-strength, low-yield ratio steel for steel structures with a thickness of 40 mm or less
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP5360185B2 (en) Manufacturing method of steel material with excellent fatigue crack propagation resistance
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP4144123B2 (en) Non-tempered high-tensile steel with excellent base material and weld heat-affected zone toughness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110824

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250