JP5659758B2 - TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability - Google Patents

TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability Download PDF

Info

Publication number
JP5659758B2
JP5659758B2 JP2010275298A JP2010275298A JP5659758B2 JP 5659758 B2 JP5659758 B2 JP 5659758B2 JP 2010275298 A JP2010275298 A JP 2010275298A JP 2010275298 A JP2010275298 A JP 2010275298A JP 5659758 B2 JP5659758 B2 JP 5659758B2
Authority
JP
Japan
Prior art keywords
pwht
less
weldability
temperature
tmcp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010275298A
Other languages
Japanese (ja)
Other versions
JP2012122111A (en
Inventor
木村 達己
達己 木村
浩文 大坪
浩文 大坪
三田尾 眞司
眞司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010275298A priority Critical patent/JP5659758B2/en
Publication of JP2012122111A publication Critical patent/JP2012122111A/en
Application granted granted Critical
Publication of JP5659758B2 publication Critical patent/JP5659758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、原子炉格納容器、圧力容器、蒸気発生器あるいは各種反応容器などPWHT後に優れた落重特性が要求される用途に適した高強度厚鋼板の製造方法に関し、特にスラブ製造段階での優れた生産性と現地工事での優れた溶接性とを兼ね備える、引張強さ(TS):580MPa超級のTMCP−Temper型高強度厚鋼板の製造方法に関する。なお、本発明は、板厚6mm〜80mmの鋼板の製造方法を対象とする。   The present invention relates to a method for producing a high-strength thick steel plate suitable for applications requiring excellent drop weight characteristics after PWHT, such as a reactor containment vessel, a pressure vessel, a steam generator, or various reaction vessels, particularly in the slab production stage. The present invention relates to a method for producing a TMCP-Temper type high-strength thick steel plate having a tensile strength (TS) of over 580 MPa, which has both excellent productivity and excellent weldability in local construction. The present invention is directed to a method for manufacturing a steel plate having a thickness of 6 mm to 80 mm.

近年、エネルギー需要の拡大、地球温暖化防止の観点から、世界的に原子力発電所建造のニーズが高まり、適用鋼材の開発が強く要望されている。   In recent years, from the viewpoint of expansion of energy demand and prevention of global warming, there is a strong demand for the construction of nuclear power plants worldwide, and the development of applicable steel materials is strongly demanded.

原子力発電所や化学プラントの圧力容器や反応容器に用いられる鋼板は厚肉材が多く、高強度、高靭性であることに加えて、良好な溶接性なども要求される。   Steel plates used for pressure vessels and reaction vessels in nuclear power plants and chemical plants are often thick, and are required to have good weldability in addition to high strength and toughness.

従来、この種の用途に適した圧力容器用鋼板としては、C−Si−Mn系を主成分としたJIS G3155のSPV系などの鋼材が主に用いられてきた。しかしながら、これらの厚鋼板では、鋼材成分が炭素量が質量%で0.08〜0.16%程度のいわゆる中炭素成分になるため、連続鋳造時の包晶凝固に起因したスラブ表面割れが発生し、スラブ手入れ負荷が高く、原子力発電所の建造数の急増に伴う、旺盛な鋼板ニーズに応えることが困難になりつつある。   Conventionally, as a steel plate for a pressure vessel suitable for this kind of application, steel materials such as SPV type of JIS G3155 mainly composed of C-Si-Mn type have been used. However, in these thick steel plates, the steel material component is a so-called medium carbon component having a carbon content of about 0.08 to 0.16% by mass%, so slab surface cracks due to peritectic solidification during continuous casting occur. However, the slab maintenance load is high, and it is becoming difficult to meet vigorous steel sheet needs accompanying the rapid increase in the number of nuclear power plants built.

ところで、大型原子炉格納容器や反応容器等の製作では、鋼板の切断、曲げ加工、溶接による組み立て後に、PWHT(Post Weld Heat Treatment:溶接後熱処理、SR処理あるいは応力除去焼鈍とも称する)を施すことが必須であるが、現地での組み立て時の溶接技術の問題や安全性の観点から、従来の条件に比べて、高温かつ長時間の非常に厳しい条件のPWHTを実施することが多くなっている。   By the way, in the manufacture of large reactor containment vessels, reaction vessels, etc., PWHT (Post Weld Heat Treatment: also called post-weld heat treatment, SR treatment or stress relief annealing) is applied after cutting, bending, and welding. Is essential, but from the viewpoint of safety and welding technology at the time of assembly in the field, PWHT is being carried out under extremely severe conditions at high temperatures and for a long time compared to conventional conditions. .

このようなPWHTにより強度が低下し、その抑制には、焼戻し軟化を抑制する合金元素の添加が有効であるものの、過剰な合金元素の添加は、溶接性の低下を招き、現地施工で厳格な予熱温度の管理が必要となる。   Although the strength is reduced by such PWHT, the addition of an alloying element that suppresses temper softening is effective for the suppression, but the addition of an excessive alloying element causes a decrease in weldability and is strict in field construction. It is necessary to control the preheating temperature.

一方で、高強度鋼では、PWHTにより溶接熱影響部に割れが発生する。そのため、Cr,Mo,Vなどの析出硬化元素量を制限するSR割れ感受性指数PSR,ΔGが提案されており(たとえば特許文献1)、ΔGの場合、ΔG=Cr+3.3Mo+8.1V−2(但し、各元素記号は含有量(質量%))が負となるように成分設計される。 On the other hand, in high-strength steel, cracks occur in the heat affected zone due to PWHT. Therefore, an SR cracking sensitivity index P SR , ΔG that limits the amount of precipitation hardening elements such as Cr, Mo, V has been proposed (for example, Patent Document 1). In the case of ΔG, ΔG = Cr + 3.3Mo + 8.1V-2 ( However, each element symbol is designed so that the content (mass%) is negative.

特許文献2は、耐応力除去焼鈍特性と溶接性に優れた高強度鋼板に関し、Cr,Mn,Vの添加量の最適化により、セメンタイトの粗大化を抑制し、PWHT前後の強度低下が小さく、しかも溶接性にも優れた厚鋼板が提案されている。   Patent Document 2 relates to a high-strength steel sheet excellent in stress-relieving annealing characteristics and weldability, by suppressing the coarsening of cementite by optimizing the addition amount of Cr, Mn, and V, and the strength decrease before and after PWHT is small. Moreover, a thick steel plate excellent in weldability has been proposed.

特許文献3は、溶接性及び歪時効後の靭性に優れた60キロ級高張力鋼の製造方法に関し、溶接性の向上を目的としてC量を下げた分の強度補償として、Nb炭窒化物の析出強化を利用した、溶接性と歪時効特性に優れた厚鋼板が提案されている。   Patent document 3 relates to a method for producing a 60 kg class high-strength steel excellent in weldability and toughness after strain aging. As a strength compensation for reducing the amount of C for the purpose of improving weldability, Nb carbonitride is used. A thick steel plate that uses precipitation strengthening and has excellent weldability and strain aging characteristics has been proposed.

また、原子炉格納容器や蒸気発生器などの安全性が重要視される部位に使用される厚鋼板では、材料の耐脆性破壊特性に関する指標であるNDT温度(ASTM E208規定NRL落重試験による)を指標とする落重特性に優れることが求められるが、PWHTを施す場合、冷却過程での結晶粒界へのPの偏析により、低温靱性、特に落重特性が著しく低下する。   In addition, for thick steel plates used in parts where safety is important, such as reactor containment vessels and steam generators, NDT temperature is an index related to the brittle fracture resistance of materials (according to ASTM E208 regulation NRL drop weight test). However, when PWHT is applied, the segregation of P to the grain boundaries during the cooling process significantly lowers the low temperature toughness, particularly the drop weight characteristic.

特許文献4は、落重特性に優れた原子炉圧力容器用鋼に関し、成分組成においてC量、P量を低減するとともに、N量を高めることで落重特性を向上させる技術が開示されている。   Patent Document 4 relates to a steel for a reactor pressure vessel excellent in drop weight characteristics, and discloses a technique for improving the drop weight characteristics by reducing the amount of C and P in the component composition and increasing the amount of N. .

特開昭61−126978号公報JP-A 61-126978 特開2008−150656号公報JP 2008-150656 A 特開2001−64724号公報JP 2001-64724 A 特開平2−93044号公報JP-A-2-93044

しかしながら、特許文献2記載の鋼板はPWHT後の強度レベルが引張強さ580MPa以下であり、PWHT後においても580MPa超級の引張強さが得られるものではない。   However, the steel sheet described in Patent Document 2 has a strength level after PWHT of not more than 580 MPa, and even after PWHT, a tensile strength exceeding 580 MPa cannot be obtained.

特許文献3記載の鋼板は、溶接熱履歴を受けた際に一旦固溶したNbが、高温・長時間のPWHTを施された場合に、Nb炭窒化物として析出し、HAZ靭性の低下を招くことが懸念される。特許文献4記載の鋼板は、N量を高めるため、連続鋳造プロセスでスラブを製造する場合において、スラブ表面割れなどが発生しやすく、生産性の低下が懸念される。   In the steel sheet described in Patent Document 3, Nb once dissolved when subjected to welding heat history is precipitated as Nb carbonitride when PWHT is applied at a high temperature for a long time, resulting in a decrease in HAZ toughness. There is concern. Since the steel sheet described in Patent Document 4 increases the N amount, when manufacturing a slab by a continuous casting process, a slab surface crack or the like is likely to occur, and there is a concern about a decrease in productivity.

また、従来技術は、熱間圧延により得られた鋼板を再加熱してから焼き入れする技術が大半であり、これよりも製造時間の面で有利な直接焼入れ法や圧延に引き続いて加速冷却を行う方法を活用した製造方法の開発が望まれている。ここで、特許文献2には鋼板を圧延後に所定の冷却速度にて加速冷却する技術が記載されているが、前述のとおり、本発明で目標とされる580MPa超級の引張強さを達成できていないため、新たな製造技術の開発が望まれていた。   In addition, most of the conventional techniques involve reheating the steel sheet obtained by hot rolling, followed by quenching. Accelerated cooling is performed following direct quenching and rolling, which are more advantageous in terms of manufacturing time, and rolling. Development of a manufacturing method utilizing the method to be performed is desired. Here, Patent Document 2 describes a technique for accelerating and cooling a steel sheet at a predetermined cooling rate after rolling, but as described above, the tensile strength exceeding 580 MPa targeted in the present invention has been achieved. Therefore, the development of new manufacturing technology has been desired.

そこで、本発明は上記課題を解決する、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法を提供する。ここで、TMCPは、thermo−mechanical control process(加工熱処理、熱加工制御)の略称である。本発明において、TMCP−Temper型高強度厚鋼板とは、TMCPの二大要素技術である制御圧延技術と制御冷却(加速冷却技術)とを活用して製造される鋼板、たとえば、制御圧延された鋼板をそのまま加速冷却して得られる鋼板を、その後、焼き戻して製造される高強度厚鋼板を指すものとする。   Then, this invention provides the manufacturing method of the TMCP-Temper type high-strength thick steel plate which was excellent in the drop weight characteristic after PWHT which has the outstanding productivity and weldability which solves the said subject. Here, TMCP is an abbreviation for thermo-mechanical control process (processing heat treatment, thermal processing control). In the present invention, a TMCP-Temper type high-strength thick steel plate is a steel plate manufactured by utilizing control rolling technology and controlled cooling (accelerated cooling technology), which are two major element technologies of TMCP, for example, controlled rolling. A high-strength thick steel plate manufactured by tempering a steel plate obtained by accelerating cooling of the steel plate as it is is meant.

発明者らは、上記課題を解決すべく鋭意研究を重ね、以下の知見を得た。
1.スラブ製造段階での優れた生産性と現地工事での優れた溶接性とを兼ね備えるためには、成分設計において、C量を亜包晶域よりも低減し、かつ、Pcmを0.22%以下とすることが有効である。
2.Cr,Mo,V含有量を、パラメータ式:Cr+2Mo+10V(但し、各元素記号は含有量(質量%))で規定される値が1.00〜1.50となるように調整した鋼にTMCP−Temperを施すと、高温・長時間のPWHT後にもTS580MPa超えの強度が確保されるとともに、連続鋳造スラブ製造時のV炭窒化物の析出によるスラブ割れも低減でき、生産性を向上させることが可能である。
3.圧延条件の調整による、オーステナイトの微細化および加工歪導入により、圧延に引き続いて実施される加速冷却時に変態生成するベイナイトまたはマルテンサイトのパケットやブロックサイズを微細化すると、PWHT後で優れた落重特性を確保することが可能である。
Inventors repeated earnest research in order to solve the said subject, and acquired the following knowledge.
1. In order to combine excellent productivity at the slab manufacturing stage with excellent weldability at the site construction, in the component design, C content is reduced from the subperitectic region and Pcm is 0.22% or less Is effective.
2. TMCP- is a steel whose Cr, Mo, V content is adjusted so that the value specified by the parameter formula: Cr + 2Mo + 10V (where each element symbol is the content (mass%)) is 1.00-1.50. When Temper is applied, strength exceeding TS580MPa is secured even after high-temperature and long-time PWHT, and slab cracking due to precipitation of V carbonitride during continuous cast slab manufacturing can be reduced, improving productivity. It is.
3. By reducing the austenite refinement by adjusting the rolling conditions and introducing processing strain, if the bainite or martensite packet or block size that is transformed during the accelerated cooling that follows the rolling process is refined, excellent weight loss after PWHT is achieved. It is possible to ensure the characteristics.

本発明は得られた知見をもとに更に検討を加えてなされたもので、その要旨は次の通りである。   The present invention has been made by further study based on the obtained knowledge, and the gist thereof is as follows.

1.成分組成が、質量%で、C:0.04〜0.08%、Si:0.05〜0.6%、Mn:1.2〜2.0%、P:0.003〜0.020%、S:0.003%以下、Al:0.01〜0.05%、Cu:0.01〜0.50%、Ni:0.05〜0.60%、Cr:0.01〜0.50%、Mo:0.05〜0.40%、V:0.01〜0.1%、N:0.0010〜0.0040%、Pcm:0.22%以下、焼入れ性指数(DI値):40〜100、残部Feおよび不可避的不純物の連続鋳造スラブを、表面手入れを行うことなく、1000〜1250℃に再加熱し、900℃以下での累積圧下率:50%以上、圧延仕上温度:900℃未満の熱間圧延を行って板厚80mm以下とし、引き続き、平均冷却速度3℃/s以上の冷却速度で500℃以下の温度まで加速冷却を行った後、600〜750℃の温度域で焼戻し処理を行うことを特徴とする、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。
Pcm(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(各元素記号は含有量(質量%)とする。)
焼入れ性指数(DI)=8√C×(1+0.64Si)×(1+4.1Mn)×(1+0.27Cu)×(1+0.52Ni)×(1+2.33Cr)×(1+3.14Mo)、(但し、各元素記号は含有量(質量%)とする。)
2.更に、成分組成が下式の値(Y値)として1.00〜1.50を満足することを特徴とする、1記載の優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。
Y=Cr+2Mo+10V
但し、各元素記号は含有量(質量%)とする。
3.更に、成分組成が質量%で、Ti:0.004〜0.010%,Ca:0.0005〜0.0015%,REM:0.001〜0.010%の1種または2種以上を含有することを特徴とする、1または2記載の、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。
4.更に、成分組成において不可避的不純物とされるNbとBが、質量%で、Nb:0.003%以下、B:0.0003%以下であることを特徴とする、1乃至3のいずれか一つに記載の、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。
1. Component composition is mass%, C: 0.04-0.08%, Si: 0.05-0.6%, Mn: 1.2-2.0%, P: 0.003-0.020 %, S: 0.003% or less, Al: 0.01 to 0.05%, Cu: 0.01 to 0.50%, Ni: 0.05 to 0.60%, Cr: 0.01 to 0 50%, Mo: 0.05-0.40%, V: 0.01-0.1%, N: 0.0010-0.0040%, Pcm: 0.22% or less, hardenability index (DI Value): 40 to 100, the remaining cast iron and inevitable impurities continuously cast slabs are reheated to 1000 to 1250 ° C. without surface care, and the cumulative rolling reduction at 900 ° C. or less is 50% or more, rolling finish Temperature: Hot rolling at less than 900 ° C. to a sheet thickness of 80 mm or less, followed by a cooling rate with an average cooling rate of 3 ° C./s or more. Accelerated cooling to a temperature of 500 ° C or lower, and then tempering in the temperature range of 600 to 750 ° C, with excellent productivity and weldability, and excellent weight loss characteristics after PWHT TMCP-Temper type high strength thick steel plate manufacturing method.
Pcm (%) = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (Each element symbol is a content (mass%).)
Hardenability index (DI) = 8√C × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 0.27Cu) × (1 + 0.52Ni) × (1 + 2.33Cr) × (1 + 3.14Mo) (however, (Each element symbol is the content (% by mass).)
2. Furthermore, the component composition satisfies 1.00 to 1.50 as a value of the following formula (Y value), and the drop weight characteristic after PWHT having excellent productivity and weldability according to 1. Method of TMCP-Temper type high-strength thick steel plate with excellent resistance.
Y = Cr + 2Mo + 10V
However, each element symbol is a content (% by mass).
3. Furthermore, the component composition is 1% or more of Ti: 0.004-0.010%, Ca: 0.0005-0.0015%, REM: 0.001-0.010% in mass%. A method for producing a TMCP-Temper type high-strength thick steel plate having excellent productivity and weldability according to 1 or 2 and having excellent drop weight characteristics after PWHT.
4). Further, Nb and B, which are inevitable impurities in the component composition, are mass%, Nb: 0.003% or less, and B: 0.0003% or less, any one of 1 to 3 The TMCP-Temper type high-strength thick steel sheet having excellent drop weight characteristics after PWHT, which has excellent productivity and weldability.

本発明によれば、原子炉格納容器などPWHT後に優れた落重特性が要求される用途に適した、スラブ製造段階での優れた生産性と現地工事において優れた溶接性を兼ね備える、TS:580MPa超級のTMCP−Temper型高強度厚鋼板の製造することができ、産業上極めて有用である。   According to the present invention, TS: 580 MPa, which combines excellent productivity at the slab manufacturing stage and excellent weldability in field construction, suitable for applications requiring excellent drop weight characteristics after PWHT, such as a reactor containment vessel. Super-class TMCP-Temper type high-strength thick steel sheets can be manufactured, which is extremely useful industrially.

[成分組成]説明において%は質量%とする。PWHTは最高加熱温度600℃を超え、かつ、600℃を超える温度で累積10時間以上加熱して行われるものとする。
C:0.04〜0.08%
Cは、所定の強度を確保するために必要な元素で、580MPa以上の強度を確保するため0.04%以上を含有させることが必要である。一方、0.08%を超えて含有すると、包晶凝固を伴うことから、溶製して連続鋳造にて鋳込んだ際に素材表面が割れ易くなる。素材表面に割れが発生した場合には、圧延後の製品の表面品質劣化を防ぐためには、素材表面の割れ発生部分をホットスカーフやコールドスカーフなどのスカーフィングにより除去することが必要で、生産性を極めて阻害する。このため、0.04〜0.08%とする。なお、好ましくは、0.04〜0.07%である。
[Ingredient composition] In the description, “%” means “mass%”. PWHT is performed by heating at a temperature exceeding the maximum heating temperature of 600 ° C. and exceeding 600 ° C. for a cumulative period of 10 hours or more.
C: 0.04 to 0.08%
C is an element necessary for ensuring a predetermined strength, and it is necessary to contain 0.04% or more in order to ensure a strength of 580 MPa or more. On the other hand, when the content exceeds 0.08%, peritectic solidification is accompanied, so that the surface of the material is easily cracked when melted and cast by continuous casting. If cracks occur on the surface of the material, it is necessary to remove the cracked part of the surface of the material by scarfing such as a hot scarf or cold scarf in order to prevent deterioration of the surface quality of the product after rolling. Is extremely disturbed. For this reason, it is made into 0.04 to 0.08%. In addition, Preferably, it is 0.04 to 0.07%.

Si:0.05〜0.6%
Siは、鋼の脱酸に寄与するだけでなく、鋼中に固溶し、鋼材の強度を高めるのに有効な元素であり、その効果を得るためには、0.05%以上含有させることが必要である。しかし、0.6%を超えて含有すると溶接熱影響部の靭性が低下するため、0.05〜0.6%とする。なお、好ましくは0.1〜0.5%である。
Si: 0.05-0.6%
Si is an element that not only contributes to deoxidation of steel, but also dissolves in steel and is effective in increasing the strength of steel. To obtain the effect, Si should be contained in an amount of 0.05% or more. is necessary. However, if the content exceeds 0.6%, the toughness of the weld heat affected zone decreases, so 0.05 to 0.6%. In addition, Preferably it is 0.1 to 0.5%.

Mn:1.2〜2.0%
Mnは、鋼の脱酸に寄与するだけでなく、焼入れ性を向上させる有用な元素であり、高強度を得るためには1.2%以上含有させることが必要である。一方、2.0%を超えて含有すると、溶接性や溶接熱影響部靭性を低下させることから、1.2〜2.0%とする。なお、好ましくは、1.2〜1.8%である。
Mn: 1.2 to 2.0%
Mn not only contributes to deoxidation of steel, but is a useful element that improves hardenability, and in order to obtain high strength, it is necessary to contain 1.2% or more. On the other hand, if the content exceeds 2.0%, weldability and weld heat affected zone toughness are lowered, so the content is set to 1.2 to 2.0%. In addition, Preferably, it is 1.2 to 1.8%.

P:0.003〜0.020%以下
Pは鋼中に不可避的に混入し、溶接後の応力除去焼鈍(PWHT)の徐冷過程において、旧オーステナイト粒界に偏析して、粒界脆化を助長し、落重特性を低下させる。そのため、Pは極力低いことが望ましい。しかし、後述する熱間圧延−加速冷却プロセスでは、調質熱処理材と比べてミクロ組織を微細化することができるので、0.020%を上限として含有することが可能である。一方、0.003%未満とするためには、溶製時のスラグ改質処理や原料の厳選、脱P処理時間の増加など、製造コストの面で多くの課題があるので下限を0.003%とする。なお、好ましくは、0.005〜0.015%である。
P: 0.003 to 0.020% or less P is inevitably mixed in the steel and segregates at the prior austenite grain boundaries in the slow cooling process of post-weld stress relief annealing (PWHT), resulting in grain boundary embrittlement. To reduce the drop weight characteristics. Therefore, it is desirable that P is as low as possible. However, in the hot rolling-accelerated cooling process to be described later, the microstructure can be refined as compared with the tempered heat treatment material, so that it can be contained up to 0.020%. On the other hand, in order to make it less than 0.003%, since there are many problems in terms of manufacturing cost such as slag reforming treatment at the time of melting, careful selection of raw materials, and increase in de-P treatment time, the lower limit is set to 0.003. %. In addition, Preferably, it is 0.005-0.015%.

S:0.003%以下
Sは、鋼中でMnSなどの介在物として存在し、靱性を低下させる元素であり、極力低いことが望ましい。0.003%を超えて含有すると落重特性を低下させるため、上限を0.003%とする。なお、好ましくは、0.002%以下である。
S: 0.003% or less S is an element that exists as inclusions such as MnS in steel and lowers toughness, and is desirably as low as possible. If the content exceeds 0.003%, the falling weight characteristic is lowered, so the upper limit is made 0.003%. In addition, Preferably, it is 0.002% or less.

Al:0.01〜0.05%
Alは、脱酸元素として有用な元素であり、かつ、加速冷却時にAlNによる結晶粒微細化を通じて靭性向上に有用である。これらの効果を発揮するために、0.01〜0.05%とする。なお、好ましくは、0.015〜0.04%である。
Al: 0.01 to 0.05%
Al is an element useful as a deoxidizing element, and is useful for improving toughness through crystal grain refinement with AlN during accelerated cooling. In order to exert these effects, the content is made 0.01 to 0.05%. In addition, Preferably, it is 0.015-0.04%.

Cu:0.01〜0.50%
Cuは、鋼中へ固溶し、固溶強化元素として有用な元素であり、高強度を得るためには0.01%以上含有させることが必要であるが、0.50%を超えて含有すると、熱間圧延時のCu割れの懸念が高まるため、0.01〜0.50%とする。なお、好ましくは、0.01〜0.40%以下である。
Cu: 0.01 to 0.50%
Cu is an element useful as a solid solution strengthening element by dissolving in steel, and it is necessary to contain 0.01% or more in order to obtain high strength, but it contains more than 0.50%. Then, since concern about Cu cracking at the time of hot rolling is increased, the content is made 0.01 to 0.50%. In addition, Preferably, it is 0.01 to 0.40% or less.

Ni:0.05〜0.60%
Niは、Cu同様に鋼中へ固溶し、固溶強化元素として、また、低温靱性の向上にも有用な元素である。その効果を得るためには、0.05%以上含有させることが必要である。しかし、0.60%を超えて含有すると、鋼材コストが上昇し、また、スラブ割れの発生頻度が高まり、生産性を阻害するようになるため、0.05〜0.60%とする。なお、好ましくは、0.10〜0.50%である。
Ni: 0.05-0.60%
Ni, like Cu, is a solid solution in steel, and is an element useful as a solid solution strengthening element and also for improving low temperature toughness. In order to acquire the effect, it is necessary to make it contain 0.05% or more. However, if the content exceeds 0.60%, the steel material cost increases, the frequency of occurrence of slab cracks increases, and the productivity is hindered, so 0.05 to 0.60%. In addition, Preferably, it is 0.10 to 0.50%.

Cr:0.01〜0.50%
Crは、焼入れ性を向上させる有用な元素で、PWHT後の強度確保に重要な元素であり、その効果を得るためには、0.01%以上含有させることが必要である。しかし、0.50%を超えて含有すると、溶接性を劣化させるとともに、PWHT後の靱性の低下を著しくするため、0.01〜0.50%とする。なお、好ましくは、0.10〜0.50%である。
Cr: 0.01 to 0.50%
Cr is a useful element that improves hardenability and is an important element for securing strength after PWHT. In order to obtain the effect, it is necessary to contain 0.01% or more. However, if the content exceeds 0.50%, the weldability is deteriorated and the toughness is lowered significantly after PWHT, so the content is made 0.01 to 0.50%. In addition, Preferably, it is 0.10 to 0.50%.

Mo:0.05〜0.40%
Moは、焼入れ性を向上させ、強度を高めるとともに、靱性確保にも有用な元素である。また、Crと同様に、PWHT後の強度確保に重要な元素であり、その効果を得るためには、0.05%以上含有させることが必要である。しかし、0.40%を超えて含有すると、溶接性を劣化させるとともに、高価な元素のため鋼材コストの上昇を招くため、0.05〜0.40%とする。なお、好ましくは、0.10〜0.30%である。
Mo: 0.05-0.40%
Mo is an element that improves hardenability, increases strength, and is useful for securing toughness. Moreover, like Cr, it is an element important for ensuring the strength after PWHT, and in order to obtain the effect, it is necessary to contain 0.05% or more. However, if the content exceeds 0.40%, the weldability is deteriorated and the cost of the steel material is increased due to the expensive elements, so the content is made 0.05 to 0.40%. In addition, Preferably, it is 0.10 to 0.30%.

V:0.01〜0.1%
Vは、焼入れ性を向上させ、C,Nと炭窒化物を形成し、PWHT後の強度の確保に重要な元素である。その効果を得るためには、0.01%以上含有させることが必要であるが、0.1%を超えて含有すると、溶接性を劣化させるとともに、炭窒化物の析出による靱性低下を招くため、0.01〜0.1%とする。なお、好ましい含有量は、0.01〜0.07%である。
V: 0.01 to 0.1%
V is an element that improves hardenability, forms carbonitrides with C and N, and is important for securing strength after PWHT. In order to acquire the effect, it is necessary to make it contain 0.01% or more. However, if it contains more than 0.1%, the weldability is deteriorated and the toughness is reduced due to precipitation of carbonitride. 0.01 to 0.1%. In addition, preferable content is 0.01 to 0.07%.

N:0.0010〜0.0040%
Nは、Cと同様に、Vと炭窒化物を形成し、強度を高めるのに有用な元素である。また、熱間圧延時や加速冷却時にAlNを形成し、オーステナイトの微細化を通じて靱性向上に寄与する。その効果を得るためには、0.0010%以上含有することが必要であるが、0.0040%を超えて含有すると、スラブ割れの懸念が高まり、生産性を阻害するとともに、溶接部の靱性低下も招くため、0.0010〜0.0040%とする。
N: 0.0010 to 0.0040%
N, like C, forms a carbonitride with V and is an element useful for increasing the strength. Also, AlN is formed during hot rolling or accelerated cooling, contributing to improved toughness through austenite refinement. In order to acquire the effect, it is necessary to contain 0.0010% or more, but when it contains more than 0.0040%, concern about a slab crack will increase and productivity will be inhibited, and toughness of a welded part Since it also causes a decrease, the content is made 0.0010 to 0.0040%.

Pcm:0.22%以下
Pcmは溶接割れ感受性組成で、Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5Bとする(各元素記号は含有量(質量%))。Pcmが0.22%を超えると、予熱無しで溶接する場合に低温割れが発生することから、厳格な予熱温度管理が必要となるため、上限を0.22%とする。これにより、予熱温度を室温以下にすることができる。本発明では、Pcmを0.22%以下とするためにC量を低減するので、亜包晶域が回避されてスラブ表面割れが減少し、生産性の向上が可能となる。
Pcm: 0.22% or less Pcm is a weld cracking sensitive composition, and Pcm = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (each element symbol is a content (mass%)). If Pcm exceeds 0.22%, cold cracking occurs when welding without preheating, so strict preheating temperature control is required, so the upper limit is made 0.22%. Thereby, preheating temperature can be made into room temperature or less. In the present invention, the amount of C is reduced in order to make Pcm 0.22% or less, so a subperitectic region is avoided, slab surface cracks are reduced, and productivity can be improved.

焼入れ性指数(DI):40〜100
板厚80mm程度まで所望の強度を確保するには、焼入れ性指数(DI)を適正な範囲に制限する必要がある。焼入れ性指数(DI)が40未満では、板厚40mm以上の厚物材で、板厚中心部の強度不足が懸念され、一方、100を超えると、合金元素添加量が増加し、溶接性が著しく低下することから、40〜100とする。なお、焼入れ性指数(DI)は8√C×(1+0.64Si)×(1+4.1Mn)×(1+0.27Cu)×(1+0.52Ni)×(1+2.33Cr)×(1+3.14Mo)、(但し、各元素記号は含有量(質量%))とする。
Hardenability index (DI): 40-100
In order to secure a desired strength up to a plate thickness of about 80 mm, it is necessary to limit the hardenability index (DI) to an appropriate range. When the hardenability index (DI) is less than 40, there is a concern about insufficient strength at the center of the plate thickness with a thick material having a plate thickness of 40 mm or more. On the other hand, when it exceeds 100, the alloying element addition amount increases and weldability increases. Since it falls remarkably, it is set to 40-100. The hardenability index (DI) is 8√C × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 0.27Cu) × (1 + 0.52Ni) × (1 + 2.33Cr) × (1 + 3.14Mo), ( However, each element symbol is a content (mass%).

Y値:1.00〜1.50
Y値はパラメータ式:Cr+2Mo+10V、各元素記号は含有量(質量%)の値で、焼戻し時の焼戻し軟化抵抗の度合いを示す指標である。Y値が1.00未満では、焼戻し及びPWHT後の鋼板強度の低下が大きく、所定の強度を達成することが困難である。
Y value: 1.00-1.50
Y value is a parameter formula: Cr + 2Mo + 10V, and each element symbol is a content (mass%) value, which is an index indicating the degree of temper softening resistance during tempering. If the Y value is less than 1.00, the steel sheet strength after tempering and PWHT is greatly reduced, and it is difficult to achieve a predetermined strength.

一方、Y値が1.50を超える場合は、過剰にCr,Mo,Vを添加することになり、溶接性の低下が著しくなるとともに、Cr,Mo,Vを含んだ析出物による析出強化が顕著になり、PWHT後の靭性が著しく低下する。   On the other hand, when the Y value exceeds 1.50, Cr, Mo, V is excessively added, so that the weldability is significantly lowered, and precipitation strengthening due to precipitates containing Cr, Mo, V is caused. It becomes remarkable and the toughness after PWHT is remarkably lowered.

また、Y値が1.50を超える場合には、特にスラブ製造時のV炭窒化物の析出によるスラブ割れなどが顕著となり、生産性も阻害するため、Y値は1.00〜1.50とする。   In addition, when the Y value exceeds 1.50, slab cracking due to precipitation of V carbonitride particularly at the time of slab production becomes prominent and the productivity is hindered, so the Y value is 1.00 to 1.50. And

以上が、本発明の基本成分組成で、本発明では、更に、特性を向上させるため、以下の元素を選択的に含有することが可能である。   The above is the basic component composition of the present invention. In the present invention, the following elements can be selectively contained in order to further improve the characteristics.

Ti:0.004〜0.010%、Ca:0.0005〜0.0015%、REM:0.001〜0.010%の1種または2種以上
Tiは、Nと窒化物を形成し、熱間圧延時や溶接時のオーステナイト粒の微細化を通じた靭性向上に寄与する有用な元素である。0.004%未満の含有では、その効果は十分ではなく、一方、0.010%を超えるとPWHT後の靭性が著しく低下するため、含有させる場合は、0.004〜0.010%とする。
One or more of Ti: 0.004 to 0.010%, Ca: 0.0005 to 0.0015%, REM: 0.001 to 0.010% Ti forms a nitride with N, It is a useful element that contributes to improved toughness through refinement of austenite grains during hot rolling and welding. If the content is less than 0.004%, the effect is not sufficient. On the other hand, if it exceeds 0.010%, the toughness after PWHT is remarkably lowered. .

CaおよびREMは、鋼中のSと硫化物を形成し、熱間圧延時や溶接時のオーステナイト粒微細化を通じた靭性向上に寄与するため、Ca:0.0005%以上、REM:0.001%以上を含有することができる。しかし、過剰に含有すると、硫化物増加による清浄度低下を招くため、含有する場合の上限は、Ca:0.0015%、REM:0.010%とする。   Ca and REM form S and sulfides in steel and contribute to the improvement of toughness through refinement of austenite grains during hot rolling and welding. Therefore, Ca: 0.0005% or more, REM: 0.001 % Or more can be contained. However, excessive content causes a decrease in cleanliness due to an increase in sulfides. Therefore, the upper limit of the content is set to Ca: 0.0015% and REM: 0.010%.

なお、不可避的不純物であるNbおよびBの含有量は、Nb:0.003%以下、B:0.0003%以下とすることが好ましい。   The contents of Nb and B, which are inevitable impurities, are preferably Nb: 0.003% or less and B: 0.0003% or less.

Nbは、Vと同様に、CおよびNとともに炭窒化物を形成し、強度を高める元素である。しかしながら、本発明が対象とするような、高温・長時間のPWHTを施す場合には、Nb炭窒化物の析出による脆化が著しく、特に溶接熱影響部の靭性低下が大きいため、実質的に含有しないようにすることが好ましい。不可避的不純物として含有する場合でも、その量は0.003%以下に制限することが好ましい。   Nb, like V, is an element that forms carbonitrides with C and N and increases the strength. However, when performing PWHT at a high temperature and for a long time as the object of the present invention, the embrittlement due to precipitation of Nb carbonitride is remarkable, and particularly the toughness of the weld heat affected zone is greatly reduced. It is preferable not to contain. Even when contained as an inevitable impurity, the amount is preferably limited to 0.003% or less.

また、Bは、極微量の添加量で焼入れ性を高め、強度向上に寄与する元素であるが、微量の含有でも、溶接後の溶接熱影響部の硬さを急激に上昇させ、溶接割れ感受性を高め、溶接性を著しく劣化させるとともに、靭性低下も招くため、実質的に含有しないようにすることが好ましい。また、含有する場合でもその上限を0.0003%と制限することが好ましい。
[製造条件]
本発明において規定される鋼の温度条件は、鋼片あるいは鋼板の板厚方向平均温度を指すものとする。
B is an element that contributes to improving the hardenability and improving the strength by adding a very small amount, but even if contained in a very small amount, the hardness of the weld heat-affected zone after welding is suddenly increased and weld cracking susceptibility is increased. The weldability is significantly deteriorated and the toughness is lowered. Moreover, even if it contains, it is preferable to restrict | limit the upper limit with 0.0003%.
[Production conditions]
The temperature condition of steel defined in the present invention refers to the average temperature in the plate thickness direction of a steel piece or a steel plate.

まず、常法により、本発明範囲の組成を有する溶湯から連続鋳造により熱間圧延素材となるスラブを製造する。   First, a slab to be a hot rolled material is manufactured by continuous casting from a molten metal having a composition within the range of the present invention by a conventional method.

本発明では、C量を0.04〜0.08%に制限することで、亜包晶凝固が回避されるため、スラブ表面の割れが低減する。このため、ホットスカーフやコールドスカーフなどのスラブ表面手入れが不要となり、これら作業が省略可能となる。   In the present invention, by limiting the amount of C to 0.04 to 0.08%, subperitectic solidification is avoided, so that cracks on the slab surface are reduced. For this reason, slab surface maintenance such as a hot scarf and a cold scarf becomes unnecessary, and these operations can be omitted.

さらに、スラブの表面手入れが不要になると、ホットチャージ(連続鋳造後の高温の状態のスラブをそのまま圧延する、あるいは、数百℃の温度から再加熱して圧延すること)にて厚板圧延を行うことが可能で、生産能率の向上およびエネルギー効率の向上に大いに寄与する。
[スラブ加熱温度]
このようにして得られた素材(スラブ)について、1000〜1250℃に再加熱後、熱間圧延を行うが、再加熱温度が1000℃未満では溶体化が不十分で強度が低下し、一方、1250℃を超えての加熱は靭性(落重特性)の低下を招くことから、再加熱温度は1000〜1250℃とした。なお、上述のホットチャージを適用する場合のうち、数百℃の温度から再加熱して圧延する場合の再加熱温度も、上記の条件に従えばよい。また、連続鋳造後の高温の状態のスラブをそのまま圧延する場合には、再加熱に関する当該条件は無視してかまわない。
[熱間圧延条件]
次に、熱間圧延において板厚80mm以下の厚鋼板とする場合の圧延条件について述べる。900℃以下での累積圧下率を50%以上、圧延仕上温度を900℃未満とする。焼戻しベイナイトおよび/またはマルテンサイトにおいて、EBSPにより測定した15°以上の大傾角粒界で囲まれたパケットの平均粒径を15μm以下にするために必須の条件であり、落重特性を飛躍的に向上させるために必要である。なお、後述の冷却開始温度がAr温度以上であることが好ましいので、これに対応して、圧延仕上温度もAr温度以上であることが好ましい。
[冷却条件]
圧延後、鋼板は、平均冷却速度3℃/s以上の冷却速度で500℃以下の温度まで、圧延に引き続いて加速冷却を行う必要がある。冷却速度が3℃/s未満では、ベイナイトおよび/またはマルテンサイト変態が十分ではなく、フェライトが析出することで強度が低下する。
Furthermore, when surface treatment of the slab is no longer necessary, thick plate rolling can be performed by hot charging (rolling the high-temperature slab after continuous casting as it is, or rolling it by reheating from a temperature of several hundred degrees Celsius). It can be done and contributes greatly to improving production efficiency and energy efficiency.
[Slab heating temperature]
About the raw material (slab) obtained in this way, after reheating to 1000 to 1250 ° C., hot rolling is performed. However, when the reheating temperature is less than 1000 ° C., solutionization is insufficient and the strength decreases, Since heating exceeding 1250 ° C. causes a decrease in toughness (falling weight characteristics), the reheating temperature is set to 1000 to 1250 ° C. In addition, among the cases where the above-described hot charge is applied, the reheating temperature in the case of rolling by reheating from a temperature of several hundred degrees Celsius may also follow the above conditions. Moreover, when rolling the slab of the high temperature state after continuous casting as it is, the said conditions regarding reheating may be disregarded.
[Hot rolling conditions]
Next, the rolling conditions in the case of forming a thick steel plate having a thickness of 80 mm or less in hot rolling will be described. The cumulative rolling reduction at 900 ° C. or less is 50% or more, and the rolling finishing temperature is less than 900 ° C. In tempered bainite and / or martensite, it is an indispensable condition for making the average particle size of the packets surrounded by the large tilt grain boundaries of 15 ° or more measured by EBSP 15 μm or less, and drastically reduces falling weight characteristics. It is necessary to improve. Since it is preferable cooling start temperature below is Ar 3 temperature or above and, correspondingly, it is preferable finishing rolling temperature is Ar 3 temperature or above.
[Cooling conditions]
After rolling, the steel sheet needs to be subjected to accelerated cooling subsequent to rolling to a temperature of 500 ° C. or lower at an average cooling rate of 3 ° C./s or higher. When the cooling rate is less than 3 ° C./s, the bainite and / or martensite transformation is not sufficient, and the strength is lowered by precipitation of ferrite.

冷却停止温度が500℃超えでは、MoやV炭窒化物が加速冷却後の空冷過程で析出するため、PWHT後の焼もどし軟化抵抗を低下させる。そのため、冷却速度は3℃/s以上、冷却停止温度は500℃以下とした。   When the cooling stop temperature exceeds 500 ° C., Mo and V carbonitride precipitate in the air cooling process after accelerated cooling, so that the tempering softening resistance after PWHT is lowered. Therefore, the cooling rate is 3 ° C./s or more, and the cooling stop temperature is 500 ° C. or less.

なお、冷却開始温度については特に規定しないが、Ar温度以上でかつ、圧延が終了して速やかに冷却を開始することが望ましい。圧延に引き続いて加速冷却された鋼板は、その後、600〜750℃の温度域で焼戻し処理を行うことで強靱化の調整を行う。 Although the cooling start temperature is not particularly defined, it is desirable that the cooling is not less than the Ar 3 temperature and the cooling is started immediately after the rolling is completed. The steel sheet accelerated and cooled following the rolling is then subjected to tempering treatment in a temperature range of 600 to 750 ° C. to adjust toughening.

焼もどし温度が600℃未満では、PWHT後の材質変化が大きくなる。一方、750℃を超えての焼もどしは強度が低下し、TS580MPa超えが確保できない。好ましくは、650℃から700℃である。   When the tempering temperature is less than 600 ° C., the material change after PWHT becomes large. On the other hand, tempering exceeding 750 ° C. decreases in strength and cannot exceed TS580 MPa. Preferably, it is 650 degreeC to 700 degreeC.

上述した成分組成と製造条件により、本発明鋼のミクロ組織は焼戻しベイナイトおよび/または焼戻しマルテンサイトで、EBSPにより測定した15度以上の大傾角粒界で囲まれた結晶粒(パケット)の平均粒径が15μm以下である。   According to the above-described component composition and production conditions, the microstructure of the steel of the present invention is tempered bainite and / or tempered martensite, and is an average grain of crystal grains (packets) surrounded by a large-angle grain boundary of 15 degrees or more measured by EBSP. The diameter is 15 μm or less.

加速冷却後のミクロ組織をベイナイトおよび/またはマルテンサイトとし、焼戻し後、焼戻しベイナイトおよび/または焼戻しマルテンサイトとすると、焼戻し後、および高温長時間のPWHT後で、TS:580MPa超えの強度が確保される。   When the microstructure after accelerated cooling is bainite and / or martensite, and after tempering, tempering bainite and / or tempered martensite, strength exceeding TS: 580 MPa is ensured after tempering and after PWHT at high temperature for a long time. The

焼戻しベイナイトおよび/または焼戻しマルテンサイトにおいて、EBSPにより測定した15°以上の大傾角粒界で囲まれたパケットの平均粒径が小さいほど、結晶粒界への応力集中が低減されて破壊に対する抵抗が高まり、低温靭性や落重特性が向上する。   In tempered bainite and / or tempered martensite, the smaller the average grain size of the packets surrounded by the large-angle grain boundaries of 15 ° or more measured by EBSP, the lower the stress concentration at the crystal grain boundaries, and the greater the resistance to fracture. Increases low temperature toughness and drop weight characteristics.

その結果として、PWHTによる粒界脆化を防止するための低P化を緩和することが可能となる。パケットの平均粒径を15μm以下にすることで、P量が比較的に高い0.020%においても優れた落重特性(TNDT<−25℃)が得られる。一方、15μmを超えるとPの低減が必要となる。TNDTは、ASTM E208−95aに記載されたNRL落重試験を実施した場合において規定される無延性遷移温度を意味する。 As a result, it is possible to mitigate the decrease in P for preventing grain boundary embrittlement due to PWHT. By setting the average particle size of the packets to 15 μm or less, excellent drop weight characteristics (T NDT <−25 ° C.) can be obtained even at 0.020% where the amount of P is relatively high. On the other hand, if it exceeds 15 μm, P must be reduced. T NDT means the non-ductile transition temperature defined when performing the NRL drop weight test described in ASTM E208-95a.

また、15°以上の大傾角粒界とは、EBSP(Electron BackScattering Patern)により測定した方位差マッピンッグを基に、隣り合った結晶粒の粒界方位差が15°以上の粒界を意味する。また、この粒界をトレースし、画像解析により平均結晶粒径を算出することができる。   Further, the large tilt grain boundary of 15 ° or more means a grain boundary in which the grain boundary orientation difference between adjacent crystal grains is 15 ° or more based on the orientation difference mapping measured by EBSP (Electron Back Scattering Pattern). Further, this grain boundary can be traced, and the average crystal grain size can be calculated by image analysis.

このようにして製造されたTMCP−Temper型厚鋼板には、溶接施工後に、少なくとも600℃を超える温度で累積10hr以上のPWHTが施される。圧力容器等の製作過程では、溶接施工後の残留応力低減を目的として、通常PWHTが複数回施される事が多く、累積10hr以上とは、PWHTを複数回に分けて行う場合の合計の時間が10hr以上のことを意味する。   The TMCP-Temper type thick steel plate manufactured in this way is subjected to PWHT of 10 hours or more at a temperature exceeding 600 ° C. after welding. In the manufacturing process of pressure vessels, etc., the PWHT is often applied multiple times for the purpose of reducing residual stress after welding. The cumulative time of 10 hours or more is the total time when the PWHT is divided into multiple times. Means 10 hours or more.

本発明鋼は、最高加熱温度が600℃以上で、累積10hr以上の高温、長時間PWHTを実施した後に、TS:580MPa以上、落重特性(TNDT<−25℃)が得られ、落重特性が要求される原子炉格納容器や、圧力容器、蒸気発生器あるいは各種反応容器に好適である。 The steel according to the present invention has a maximum heating temperature of 600 ° C. or higher, a high temperature of cumulative 10 hours or more, and PWHT for a long time, and TS: 580 MPa or more, drop weight characteristics (T NDT <−25 ° C.) are obtained. It is suitable for a reactor containment vessel, a pressure vessel, a steam generator, or various reaction vessels that require characteristics.

表1に示す化学組成の溶鋼を、連続鋳造し、310mm厚の連続鋳造スラブを製造し、圧延、冷却および焼もどし処理を行い、厚鋼板を製造した。その後、圧力容器等の製作過程のPWHTを模擬した熱処理として、所定の温度、時間にて加熱保持後に、55℃/hrの冷却速度にて炉冷を行い、試験片採取用の鋼板を準備した。   The molten steel having the chemical composition shown in Table 1 was continuously cast to produce a 310 mm-thick continuous cast slab, which was subjected to rolling, cooling and tempering treatment to produce a thick steel plate. Then, as a heat treatment simulating PWHT in the manufacturing process of a pressure vessel or the like, after heating and holding at a predetermined temperature and time, furnace cooling was performed at a cooling rate of 55 ° C./hr to prepare a steel plate for collecting specimens. .

鋼板のミクロ組織は、PWHTを実施した後の鋼板の板厚1/4部から採取したサンプルを用いて、3%ナイタールで腐食し、組織観察を行った。また、結晶粒径は、EBSP(Electron BackScattering Patern)により測定した方位差マッピンッグを基に、隣り合った結晶粒の方位差が15度以上の結晶粒の粒界をトレースし、画像解析により平均結晶粒径(円相当径)を算出した。   The microstructure of the steel plate was corroded with 3% nital using a sample taken from a 1/4 thickness of the steel plate after PWHT, and the structure was observed. The crystal grain size is based on the orientation difference mapping measured by EBSP (Electron Back Scattering Pattern), and the grain boundaries of crystal grains having an orientation difference of 15 degrees or more between adjacent grains are traced, and the average crystal is analyzed by image analysis. The particle size (equivalent circle diameter) was calculated.

これらのPWHTを実施した後の鋼板の板厚の1/2部から、引張方向が圧延方向に直角な方向となるようにJIS4号の引張試験を採取し、JIS Z 2241の規定に準拠した引張試験を実施し、降伏強度0.2%YS、引張強さTSを求めた。   A tensile test of JIS No. 4 was taken from 1/2 part of the plate thickness of the steel plate after the PWHT so that the tensile direction was a direction perpendicular to the rolling direction, and the tensile test was in accordance with the provisions of JIS Z 2241. A test was conducted to determine a yield strength of 0.2% YS and a tensile strength TS.

再現HAZ靭性の評価は、PWHTを実施前の鋼板の板厚1/4部付近から採取した、板厚15mm、幅80mm、長さ75mmの試験片を用いて、高周波誘導加熱により、入熱50kJ/cmに相当する溶接熱サイクルを付与した後に、所定のPWHTを実施し、その試験片から2mmVノッチシャルピー試験片を採取し、試験片温度0℃においてシャルピー衝撃試験を行った場合の吸収エネルギーにより評価した。   Reproduction HAZ toughness was evaluated by high-frequency induction heating using a test piece with a plate thickness of 15 mm, a width of 80 mm, and a length of 75 mm, which was taken from the vicinity of a quarter thickness of the steel plate before the PWHT was performed. After applying a welding heat cycle corresponding to / cm, a predetermined PWHT is carried out, a 2 mmV notch Charpy test piece is taken from the test piece, and the absorbed energy when a Charpy impact test is performed at a test piece temperature of 0 ° C. evaluated.

また、落重試験は、ASTM E208−95aに準拠して、鋼板の板厚1/4部からP−3試験片(厚さ15.9mm、幅51mm、長さ127mm)を採取し、実施した。その落重試験の結果から、無延性遷移温度TNDTを求めた。 In addition, the drop weight test was carried out by collecting P-3 test pieces (thickness 15.9 mm, width 51 mm, length 127 mm) from a quarter thickness of the steel sheet in accordance with ASTM E208-95a. . From the result of the drop test, the non-ductile transition temperature T NDT was determined.

さらに、溶接性の評価試験として、JIS Z3158に準拠してy形溶接割れ試験を実施した。溶接条件としては、温度30℃、相対湿度80%の雰囲気中で、被覆アーク溶接棒(LB−62UL)を用いて溶接を行った。試験片は、全厚にて採取し溶接線が圧延方向に直角な方向になるように溶接を実施した。割れ阻止温度は、ルート割れ率が0%になる最低の予熱温度を持って決定した。   Furthermore, as a weldability evaluation test, a y-type weld cracking test was performed in accordance with JIS Z3158. As welding conditions, welding was performed using a coated arc welding rod (LB-62UL) in an atmosphere of a temperature of 30 ° C. and a relative humidity of 80%. The test piece was sampled in full thickness and welded so that the weld line was perpendicular to the rolling direction. The crack prevention temperature was determined with the lowest preheating temperature at which the root crack rate was 0%.

表2に連続鋳造材の割れ発生状況、手入れの有無、製造条件(熱間圧延条件、冷却条件、焼戻し条件およびPWHT条件)、得られた鋼板のミクロ組織を、表3に試験結果を示す。本発明範囲内の成分および製造条件で製造された鋼板では、PWHT後での引張強度が580MPa超えを有し、かつ比較的P量が高いにもかかわらず落重特性はTNDT<−25℃を満足する良好な低温靭性を有している。また、y形割れ試験の結果も、割れ停止温度が30℃以下であり、優れた溶接性を有していることが確認された。 Table 2 shows the occurrence of cracks in the continuously cast material, the presence or absence of care, manufacturing conditions (hot rolling conditions, cooling conditions, tempering conditions, and PWHT conditions), and the microstructure of the obtained steel sheet. Table 3 shows the test results. Steel sheets produced with components and production conditions within the scope of the present invention have a tensile strength after PWHT exceeding 580 MPa and a drop weight characteristic of T NDT <−25 ° C. despite a relatively high amount of P. Has good low temperature toughness. Moreover, the result of the y-type crack test also showed that the crack stop temperature was 30 ° C. or lower, and it had excellent weldability.

Figure 0005659758
Figure 0005659758

Figure 0005659758
Figure 0005659758

Figure 0005659758
Figure 0005659758

Claims (3)

成分組成が、質量%で、C:0.04〜0.08%、Si:0.05〜0.6%、Mn:1.2〜2.0%、P:0.003〜0.020%、S:0.003%以下、Al:0.01〜0.05%、Cu:0.01〜0.50%、Ni:0.05〜0.60%、Cr:0.01〜0.50%、Mo:0.05〜0.40%、V:0.01〜0.1%、N:0.0010〜0.0040%、Pcm:0.22%以下、下式の値(Y値)として1.00〜1.50を満足し、焼入れ性指数(DI値):40〜100、残部Feおよび不可避的不純物の連続鋳造スラブを、表面手入れを行うことなく、1000〜1250℃に再加熱し、900℃以下での累積圧下率:50%以上、圧延仕上温度:900℃未満の熱間圧延を行って板厚80mm以下とし、引き続き、平均冷却速度3℃/s以上の冷却速度で500℃以下の温度まで加速冷却を行った後、600〜750℃の温度域で焼戻し処理を行うことを特徴とする、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。
Pcm(%)=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B(各元素記号は含有量(質量%)とする。)
Y=Cr+2Mo+10V(但し、各元素記号は含有量(質量%)とする。)
焼入れ性指数(DI)=8√C×(1+0.64Si)×(1+4.1Mn)×(1+0.27Cu)×(1+0.52Ni)×(1+2.33Cr)×(1+3.14Mo)、(但し、各元素記号は含有量(質量%)とする。)
Component composition is mass%, C: 0.04-0.08%, Si: 0.05-0.6%, Mn: 1.2-2.0%, P: 0.003-0.020 %, S: 0.003% or less, Al: 0.01 to 0.05%, Cu: 0.01 to 0.50%, Ni: 0.05 to 0.60%, Cr: 0.01 to 0 .50%, Mo: 0.05-0.40%, V: 0.01-0.1%, N: 0.0010-0.0040%, Pcm: 0.22% or less, the value of the following formula ( Y value) satisfying 1.00 to 1.50, hardenability index (DI value): 40 to 100, continuous cast slab of remaining Fe and unavoidable impurities, 1000 to 1250 ° C. without surface care To a thickness of 80 mm or less by performing hot rolling at a rolling reduction temperature of less than 900 ° C. Then, after performing accelerated cooling to a temperature of 500 ° C. or less at a cooling rate of 3 ° C./s or more at an average cooling rate, excellent production characterized by performing a tempering treatment in a temperature range of 600 to 750 ° C. Of TMCP-Temper type high-strength thick steel plate having excellent weight drop characteristics after PWHT, which has both heat resistance and weldability.
Pcm (%) = C + Si / 30 + Mn / 20 + Cu / 20 + Ni / 60 + Cr / 20 + Mo / 15 + V / 10 + 5B (Each element symbol is a content (mass%).)
Y = Cr + 2Mo + 10V (however, each element symbol is a content (mass%))
Hardenability index (DI) = 8√C × (1 + 0.64Si) × (1 + 4.1Mn) × (1 + 0.27Cu) × (1 + 0.52Ni) × (1 + 2.33Cr) × (1 + 3.14Mo) (however, (Each element symbol is the content (% by mass).)
更に、成分組成が質量%で、Ti:0.004〜0.010%,Ca:0.0005〜0.0015%,REM:0.001〜0.010%の1種または2種以上を含有することを特徴とする、請求項1記載の、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。 Furthermore, the component composition is 1% or more of Ti: 0.004-0.010%, Ca: 0.0005-0.0015%, REM: 0.001-0.010% in mass%. characterized by, according to claim 1 Symbol placement, excellent productivity and combines weldability, TMCP-Temper type high strength steel plate manufacturing method excellent in drop weight characteristics after PWHT. 更に、成分組成において不可避的不純物とされるNbとBが、Nb:0.003%以下、B:0.0003%以下であることを特徴とする、請求項1または2記載の、優れた生産性と溶接性を兼ね備えた、PWHT後の落重特性に優れたTMCP−Temper型高強度厚鋼板の製造方法。 The excellent production according to claim 1 or 2 , wherein Nb and B, which are inevitable impurities in the component composition, are Nb: 0.003% or less and B: 0.0003% or less. Of TMCP-Temper type high-strength thick steel plate having excellent weight drop characteristics after PWHT, which has both heat resistance and weldability.
JP2010275298A 2010-12-10 2010-12-10 TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability Active JP5659758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010275298A JP5659758B2 (en) 2010-12-10 2010-12-10 TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010275298A JP5659758B2 (en) 2010-12-10 2010-12-10 TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability

Publications (2)

Publication Number Publication Date
JP2012122111A JP2012122111A (en) 2012-06-28
JP5659758B2 true JP5659758B2 (en) 2015-01-28

Family

ID=46503869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010275298A Active JP5659758B2 (en) 2010-12-10 2010-12-10 TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability

Country Status (1)

Country Link
JP (1) JP5659758B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004358A (en) * 2019-03-29 2019-07-12 山东钢铁集团日照有限公司 A kind of low big thickness of Pcm value easily welds marine worker steel plate and its production method

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5942916B2 (en) * 2013-04-09 2016-06-29 Jfeスチール株式会社 Thick-walled steel plate with excellent low-temperature toughness at the center of plate thickness after PWHT and method for producing the same
KR101568504B1 (en) 2013-12-20 2015-11-11 주식회사 포스코 Steel plate for pressure vessel having excellent strength and toughness after post welding heat treatment and method for manufacturing the same
JP6024928B2 (en) * 2013-12-27 2016-11-16 Jfeスチール株式会社 Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP6108116B2 (en) * 2014-03-26 2017-04-05 Jfeスチール株式会社 Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
CN105200329A (en) * 2015-09-11 2015-12-30 武汉钢铁(集团)公司 Tensile strength-700MPa level easy-to-weld low-internal-stress structural steel plate and manufacturing method thereof
KR101778398B1 (en) * 2015-12-17 2017-09-14 주식회사 포스코 Pressure vessel steel plate having excellent property after post weld heat treatment and method for manufacturing the same
CN109136756B (en) * 2018-09-04 2020-07-17 鞍钢股份有限公司 NbC nanoparticle reinforced X90 plastic pipe steel plate and manufacturing method thereof
CN110004359B (en) * 2019-03-29 2021-03-16 山东钢铁集团日照有限公司 High-uniformity longitudinal and transverse toughness wide steel plate and TMCP (thermal mechanical control processing) process production method thereof
CN114395733B (en) * 2021-12-28 2022-11-15 南阳汉冶特钢有限公司 Production method of low-cost low-temperature high-strength steel 07MnNiVDR for container

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10306316A (en) * 1997-04-28 1998-11-17 Nippon Steel Corp Production of low yield ratio high tensile-strength steel excellent in low temperature toughness
JP2001064725A (en) * 1999-08-26 2001-03-13 Nkk Corp Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP4000049B2 (en) * 2002-11-11 2007-10-31 新日本製鐵株式会社 Manufacturing method of steel plate with excellent fatigue crack propagation resistance
JP2007197823A (en) * 2005-12-28 2007-08-09 Jfe Steel Kk LOW YIELD RATIO OF 550 MPa CLASS HIGH-TENSILE STEEL PLATE, AND ITS MANUFACTURING METHOD
JP5509654B2 (en) * 2009-03-30 2014-06-04 Jfeスチール株式会社 High-strength steel sheet excellent in PWHT resistance and uniform elongation characteristics and method for producing the same
JP5425702B2 (en) * 2010-02-05 2014-02-26 株式会社神戸製鋼所 High-strength thick steel plate with excellent drop weight characteristics

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110004358A (en) * 2019-03-29 2019-07-12 山东钢铁集团日照有限公司 A kind of low big thickness of Pcm value easily welds marine worker steel plate and its production method

Also Published As

Publication number Publication date
JP2012122111A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
US10604817B2 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
JP5277648B2 (en) High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5439973B2 (en) High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP4718866B2 (en) High-strength refractory steel excellent in weldability and gas-cutting property and method for producing the same
JP4696570B2 (en) Manufacturing method of high-tensile steel material with excellent hydrogen embrittlement resistance
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP5477089B2 (en) Manufacturing method of high strength and high toughness steel
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2008075107A (en) Method for manufacturing high-strength/high-toughness steel
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP4310591B2 (en) Method for producing high-strength steel sheet with excellent weldability
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP5130472B2 (en) Method for producing high-tensile steel material with excellent weld crack resistance
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JPWO2019050010A1 (en) Steel sheet and manufacturing method thereof
JP4469353B2 (en) Method for producing high strength steel material having tensile strength of 570 MPa class excellent in toughness of weld heat affected zone
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
KR101443445B1 (en) Non-heated type high strength hot-rolled steel sheet and method of manufacturing the same
JP2007302978A (en) Method for manufacturing high-strength steel of tensile strength of 780 mpa class having excellent toughness of weld heat affected zone
JP3956634B2 (en) Steel sheet with excellent toughness and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141117

R150 Certificate of patent or registration of utility model

Ref document number: 5659758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250