JPWO2019050010A1 - Steel sheet and manufacturing method thereof - Google Patents

Steel sheet and manufacturing method thereof Download PDF

Info

Publication number
JPWO2019050010A1
JPWO2019050010A1 JP2019502269A JP2019502269A JPWO2019050010A1 JP WO2019050010 A1 JPWO2019050010 A1 JP WO2019050010A1 JP 2019502269 A JP2019502269 A JP 2019502269A JP 2019502269 A JP2019502269 A JP 2019502269A JP WO2019050010 A1 JPWO2019050010 A1 JP WO2019050010A1
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel
mass
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019502269A
Other languages
Japanese (ja)
Other versions
JP6795083B2 (en
Inventor
茂樹 木津谷
克行 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2019050010A1 publication Critical patent/JPWO2019050010A1/en
Application granted granted Critical
Publication of JP6795083B2 publication Critical patent/JP6795083B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Abstract

鋼板内部だけでなく鋼板表層についても、靭性に優れた高強度の鋼板を安定的に製造する。質量%で、C:0.080%以上0.200%以下、Si:0.40%以下、Mn:0.50%以上5.00%以下、P:0.015%以下、S:0.0050%以下、Cr:3.00%以下、Ni:5.00%以下、Al:0.080%以下、N:0.0070%以下およびB:0.0030%以下を含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼板であって、炭素当量CeqIIWが0.57%以上であり、表層のベイナイト面積分率が10%以上であり、降伏強度が620MPa以上である。A high-strength steel sheet having excellent toughness is stably produced not only inside the steel sheet but also on the steel sheet surface layer. In mass%, C: 0.080% to 0.200%, Si: 0.40% or less, Mn: 0.50% to 5.00%, P: 0.015% or less, S: 0.0050% or less, Cr: 3.00% or less, Ni: 5.00% Hereafter, Al: 0.080% or less, N: 0.0070% or less and B: 0.0030% or less, the balance is a steel plate having a component composition of Fe and inevitable impurities, the carbon equivalent CeqIIW is 0.57% or more, The surface layer has a bainite area fraction of 10% or more and a yield strength of 620 MPa or more.

Description

本発明は、建築、橋梁、造船、海洋構造物、建産機、タンク、ペンストックなどの鋼製構造物等に用いられる鋼板、中でも板厚100mm以上の厚鋼板およびその製造方法に関する。   The present invention relates to a steel plate used for steel structures such as buildings, bridges, shipbuilding, marine structures, construction machinery, tanks, penstocks, etc., and more particularly to a steel plate having a thickness of 100 mm or more and a method for manufacturing the same.

建築、橋梁、造船、海洋構造物、建産機、タンク、ペンストックなどの構造物に、鋼材が使用される場合は、当該構造物の形状に対応して、鋼材を溶接により接合して所望の形状に仕上げられる。近年、かような鋼製構造物の大型化が著しく、使用される鋼材の高強度化や厚肉化も進められている。例えば、非特許文献1には、ジャッキアップリグのラック用に開発された、板厚210mmの極めて厚い鋼板について報告されている。この非特許文献1には、厚鋼板の板厚中心部の靭性を確保するための、成分組成や製造条件が記載されている。   When steel materials are used for structures such as buildings, bridges, shipbuilding, offshore structures, construction machinery, tanks, penstocks, etc., the steel materials are joined by welding according to the shape of the structure. Finished in the shape of In recent years, the size of such steel structures has been remarkably increased, and the strength and thickness of steel materials used have been increased. For example, Non-Patent Document 1 reports a very thick steel plate having a thickness of 210 mm, which was developed for a rack of a jack-up rig. This non-patent document 1 describes a component composition and manufacturing conditions for ensuring the toughness of the plate thickness center portion of the thick steel plate.

大谷幸三郎、他4名、「ジャッキアップリグのラック用極厚(210mm)800N/mm2級鋼板の開発」、新日鉄技報、1993年、第348号、p.10-16Kosaburo Otani and four others, "Development of extra-thickness (210mm) 800N / mm2 grade steel plate for racks of jack-up rigs", Nippon Steel Technical Report, 1993, No. 348, p.10-16

板厚が100mm以上の高強度鋼板は、熱間圧延後に焼入れ焼もどしを施すことによって、高強度に加えて高靭性を付与して製造されるのが通例である。このようにして厚鋼板を製造する際、熱間圧延後の焼入れ工程における冷却速度は、鋼板表層よりも該表層の内側の鋼板内部で低下するため、鋼板内部ではフェライトなど比較的低強度の組織が形成されやすくなる。鋼板内部でこのような低強度の組織が生成されることを抑制するには、多量の合金元素の添加が必要となる。
ここで、鋼板の表層とは、鋼板の表裏面からそれぞれ板厚方向へ1/4t(tは板厚を表す)の位置を境とする、表面側および裏面側の各領域を指し、この表層より内側(1/4tを含む)を鋼板の内部とする。
A high-strength steel sheet having a thickness of 100 mm or more is usually manufactured by imparting high toughness in addition to high strength by quenching and tempering after hot rolling. Thus, when producing a thick steel plate, the cooling rate in the quenching process after hot rolling is lower in the steel plate inside the surface layer than the steel plate surface layer, so a relatively low strength structure such as ferrite inside the steel plate. Is easily formed. In order to suppress the formation of such a low-strength structure inside the steel plate, it is necessary to add a large amount of alloy elements.
Here, the surface layer of the steel sheet refers to each region on the front surface side and the back surface side with a position of 1/4 t (t represents the plate thickness) from the front and back surfaces of the steel sheet in the thickness direction. The inner side (including 1 / 4t) is the inside of the steel plate.

特に、厚鋼板内部の強度と靭性を満足させるためには、焼入れ時にベイナイトまたはベイナイトとマルテンサイトの混合組織を鋼板内部に生成させることが重要であり、Mn、Ni、Cr、Mo等の合金元素を多量に添加する必要がある。   In particular, in order to satisfy the strength and toughness inside the thick steel plate, it is important to generate bainite or a mixed structure of bainite and martensite inside the steel plate during quenching, and alloy elements such as Mn, Ni, Cr, Mo, etc. Need to be added in large quantities.

一方で、上記のような合金元素を多量に添加した場合、焼入れ時の冷却速度が鋼板内部に比べて速い鋼板表層では、靭性に劣るマルテンサイト組織が形成されるため、焼もどしした後でも鋼板内部に比べ鋼板表層の靭性が低下する。   On the other hand, when a large amount of the above alloying elements is added, the steel sheet surface layer, which has a faster cooling rate than the inside of the steel sheet, forms a martensite structure that is inferior in toughness, so even after tempering. Compared to the inside, the toughness of the steel sheet surface layer decreases.

しかしながら、上記した冷却の速い鋼板表層における靭性低下について、非特許文献1に触れられていないように、これまで検討がなされてこなかった。   However, as described in Non-Patent Document 1, no consideration has been made so far on the toughness reduction in the steel sheet surface layer that is rapidly cooled.

本発明は上記の事情に鑑みてなされたものであって、鋼板内部は勿論、鋼板表層についても、靭性に優れた高強度の鋼板を安定的に製造することを目的とする。   This invention is made | formed in view of said situation, Comprising: It aims at manufacturing stably the high strength steel plate excellent in toughness not only about the inside of a steel plate but also about the steel plate surface layer.

本発明者らは、上記課題を解決するため、降伏強度620MPa以上かつ板厚100mm以上の厚鋼板を対象に、鋼板表層における靭性および鋼板内部における強度の低下を抑制するためのミクロ組織制御因子について鋭意究明したところ、以下I〜IIIの知見を得た。   In order to solve the above-mentioned problems, the present inventors have targeted a thick steel plate with a yield strength of 620 MPa or more and a plate thickness of 100 mm or more, with respect to a microstructure control factor for suppressing toughness in the steel sheet surface layer and strength reduction in the steel plate. As a result of earnest investigation, the following findings I to III were obtained.

I.焼入れ時に鋼板表層に比べて著しく冷却速度が低下する鋼板内部において良好な靭性を維持したまま高い強度を得るためには、冷却速度の低い焼入れであってもミクロ組織をマルテンサイトおよび/またはベイナイト組織とすることが重要であり、そのためには、成分組成を適切に選定し、かつ炭素当量を0.57%以上とする必要がある。   I. In order to obtain high strength while maintaining good toughness inside the steel sheet where the cooling rate is significantly lower than the steel sheet surface layer during quenching, the microstructure is martensite and / or bainite structure even when quenching at a low cooling rate. For this purpose, it is necessary to appropriately select the component composition and to make the carbon equivalent 0.57% or more.

II.上記のように選定された成分組成を有する鋼板を焼入れるときに、焼入れ時の冷却速度が速くなる鋼板表層においては、靭性確保に不利なマルテンサイト組織が形成され、焼もどし後においても一旦形成されたブロックやパケットと呼ばれるマルテンサイト組織の組織単位は変化しないことから、安定的な靭性の確保が難しくなる。   II. When quenching a steel sheet having the component composition selected as described above, a martensite structure that is disadvantageous for securing toughness is formed in the steel sheet surface layer where the cooling rate at the time of quenching is fast, and once formed even after tempering Since the organizational unit of the martensite structure called a block or packet is not changed, it is difficult to ensure stable toughness.

III.靭性に不利な焼もどしマルテンサイト単相組織の形成を抑制するためには、鋼板表層および鋼板内部が(Ar3変態点+50)℃以上(Ar3変態点-20)℃以下の温度域にある
ときの平均冷却速度を0.2〜10℃/sの範囲に制御することにより、鋼板表層に所定割合以上のベイナイトを形成させることが重要である。
III. In order to suppress the formation of a tempered martensite single-phase structure that is disadvantageous to toughness, the steel sheet surface layer and the inside of the steel sheet are in a temperature range of (Ar3 transformation point +50) ° C or higher (Ar3 transformation point -20) ° C or lower. It is important to form bainite at a predetermined ratio or more on the steel sheet surface layer by controlling the average cooling rate in the range of 0.2 to 10 ° C./s.

本発明は、上記の新規な知見に立脚するものであり、その要旨構成は、以下のとおりである。   The present invention is based on the above-described novel findings, and the gist of the present invention is as follows.

1.質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:3.00%以下、
Ni:5.00%以下、
Al:0.080%以下、
N:0.0070%以下および
B:0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼板であって、
該鋼板の表層にベイナイト面積分率が10%以上の組織を有し、該表層より内側の鋼板内部の降伏強度が620MPa以上である鋼板。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
1. % By mass
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% to 5.00%,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 3.00% or less,
Ni: 5.00% or less,
Al: 0.080% or less,
N: 0.0070% or less and B: 0.0030% or less in a range satisfying the following formula (1), the balance being a steel plate having a component composition of Fe and inevitable impurities,
A steel sheet having a structure having a bainite area fraction of 10% or more on a surface layer of the steel sheet, and a yield strength inside the steel sheet inside the surface layer of 620 MPa or more.
[C] + [Mn] / 6 + [Ni] / 15 + [Cr] /15≧0.57 (1)
here,
[] Is the content (% by mass) of the element in [].

2.前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、上記1に記載の鋼板。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
2. The component composition further includes:
% By mass
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: The steel plate according to 1, wherein one or two or more selected from 0.005% or more and 0.020% or less are contained in a range satisfying the following formula (2) instead of the formula (1).
[C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57 (2)
here,
[] Is the content (% by mass) of the element in [].

3.前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、上記1または2に記載の鋼板。
3. The component composition further includes:
% By mass
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The steel plate according to 1 or 2 above, containing one or more selected from 0.0005% to 0.0200%.

4.質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:3.00%以下、
Ni:5.00%以下、
Al:0.080%以下、
N:0.0070%以下および
B:0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼素材に、熱間圧延を施して熱延鋼板とし、
該熱延鋼板を冷却した後に、Ac3変態点以上1050℃以下の温度域に加熱した後、
(Ar3変態点+50)℃以上(Ar3変態点−20)℃以下の温度域における平均冷却速度が0.2〜10℃/sである冷却処理を施して350℃以下まで冷却する鋼板の製造方法。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
4). % By mass
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% to 5.00%,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 3.00% or less,
Ni: 5.00% or less,
Al: 0.080% or less,
N: 0.0070% or less and B: 0.0030% or less in a range satisfying the following formula (1), with the balance being hot rolled on a steel material having a component composition of Fe and inevitable impurities A rolled steel sheet,
After cooling the hot-rolled steel sheet, after heating to a temperature range of Ac 3 transformation point or more and 1050 ° C. or less,
(Ar 3 transformation point +50) A method for producing a steel sheet that is cooled to 350 ° C. or less by performing a cooling treatment with an average cooling rate of 0.2 to 10 ° C./s in a temperature range of (Ar 3 transformation point −20) ° C. or less. .
[C] + [Mn] / 6 + [Ni] / 15 + [Cr] /15≧0.57 (1)
here,
[] Is the content (% by mass) of the element in [].

5.前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、上記4に記載の鋼板の製造方法。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
5). The component composition further includes:
% By mass
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: Manufacture of the steel plate of said 4 containing 1 type or 2 types or more chosen from 0.005% or more and 0.020% or less in the range which satisfies the following formula (2) instead of the said formula (1) Method.
[C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57 (2)
here,
[] Is the content (% by mass) of the element in [].

6.前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、上記4または5に記載の鋼板の製造方法。
6). The component composition further includes:
% By mass
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The manufacturing method of the steel plate of said 4 or 5 containing 1 type, or 2 or more types chosen from 0.0005% or more and 0.0200% or less.

本発明によれば、鋼板内部だけでなく鋼板表層についても靭性に優れた、高強度の鋼板を安定的に製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high strength steel plate excellent in toughness not only about the inside of a steel plate but about the steel plate surface layer can be manufactured stably.

[成分組成]
以下、本発明の一実施形態に係る鋼板の製造条件について説明する。まず、鋼の成分組成の限定理由について述べる。なお、本明細書において、各成分元素の含有量を表す「%」は、特に断らない限り「質量%」を意味する。
[Ingredient composition]
Hereinafter, the manufacturing conditions of the steel plate concerning one embodiment of the present invention are explained. First, the reasons for limiting the component composition of steel will be described. In the present specification, “%” representing the content of each component element means “% by mass” unless otherwise specified.

C:0.080%以上0.200%以下
Cは、構造用鋼に求められる強度を安価に得るために有用な元素であり、その効果を得るために0.080%以上の添加が必要である。一方、0.200%を超えて含有すると、母材および溶接部の靭性を顕著に劣化させるため、上限を0.200%とする。好ましくは0.080%以上0.140%以下とする。
C: 0.080% or more and 0.200% or less C is an element useful for obtaining the strength required for structural steel at a low cost, and in order to obtain the effect, addition of 0.080% or more is necessary. On the other hand, if the content exceeds 0.200%, the toughness of the base metal and the welded portion is remarkably deteriorated, so the upper limit is made 0.200%. Preferably it is 0.080% or more and 0.140% or less.

Si:0.40%以下
Siは脱酸のために、好ましくは0.05%以上で添加するが、0.40%を超えて添加すると母材および溶接熱影響部の靭性が顕著に低下するため、Si量は0.40%以下とする。好ましくは0.05%以上0.30%以下とする。より好ましくは0.05%以上0.25%以下とする。
Si: 0.40% or less
Si is preferably added in an amount of 0.05% or more for deoxidation, but if added over 0.40%, the toughness of the base metal and the weld heat-affected zone is remarkably reduced, so the Si content is 0.40% or less. Preferably it is 0.05% or more and 0.30% or less. More preferably, it is 0.05% or more and 0.25% or less.

Mn:0.50%以上5.00%以下
Mnは母材強度を確保する観点から添加するが、0.50%未満の添加ではその効果が十分ではない。一方、5.00%を超えて添加すると、母材の靭性が劣化するだけではなく、中心偏析を助長するため上限を5.00%とする。好ましくは0.60%以上2.00%以下とする。より好ましくは0.60%以上1.60%以下とする。
Mn: 0.50% to 5.00%
Mn is added from the viewpoint of securing the strength of the base material, but if it is added less than 0.50%, the effect is not sufficient. On the other hand, if added over 5.00%, not only does the toughness of the base material deteriorate, but also promotes center segregation, so the upper limit is made 5.00%. Preferably it is 0.60% or more and 2.00% or less. More preferably, it is 0.60% or more and 1.60% or less.

P:0.015%以下
Pは、0.015%を超えて含有すると、母材および溶接熱影響部の靭性を著しく低下させる。そのため、0.015%以下に制限する。好ましくは、0.010%以下とする。なお、0.001%未満とするのは工業的規模の製造では難しいため、0.001%以上の含有は許容される。
P: 0.015% or less When P exceeds 0.015%, the toughness of the base metal and the weld heat-affected zone is remarkably lowered. Therefore, it is limited to 0.015% or less. Preferably, it is 0.010% or less. In addition, since it is difficult to make it less than 0.001% in industrial scale production, the content of 0.001% or more is allowed.

S:0.0050%以下
Sは、0.0050%を超えて含有すると、母材および溶接熱影響部の靭性を顕著に低下させる。そのため、Sは0.0050%以下とする。好ましくは、0.0010%以下とする。なお、0.0001%未満とするのは工業的規模の製造では難しいため、0.0001%以上の含有は許容される。
S: 0.0050% or less When S exceeds 0.0050%, the toughness of the base metal and the weld heat-affected zone is significantly reduced. Therefore, S is 0.0050% or less. Preferably, it is 0.0010% or less. In addition, since it is difficult to manufacture less than 0.0001% in industrial scale production, the content of 0.0001% or more is allowed.

Cr:3.00%以下
Crは、母材の高強度化に有効な元素であり、好ましくは0.10%以上で添加するが、多量に添加すると溶接性を低下させる。そのため、Crは3.00%以下とする。好ましくは、0.10%以上2.00%以下とする。
Cr: 3.00% or less
Cr is an element effective for increasing the strength of the base metal, and is preferably added at 0.10% or more, but if added in a large amount, the weldability is lowered. Therefore, Cr is 3.00% or less. Preferably, the content is 0.10% or more and 2.00% or less.

Ni:5.00%以下
Niは、鋼の強度および溶接熱影響部の靭性を向上させる有益な元素であり、好ましくは0.50%以上で添加するが、5.00%を超えて添加すると、経済性が著しく低下する。そのため、Niは5.00%以下とする。好ましくは、0.50%以上4.00%以下とする。
Ni: 5.00% or less
Ni is a beneficial element that improves the strength of the steel and the toughness of the heat affected zone, and is preferably added in an amount of 0.50% or more, but if added over 5.00%, the economic efficiency is significantly reduced. Therefore, Ni is 5.00% or less. Preferably, it is 0.50% or more and 4.00% or less.

Al:0.080%以下
Alは、溶鋼を十分に脱酸するために添加されるが、0.080%を超えて添加すると母材中に固溶するAl量が多くなり、母材靭性を低下させる。そのため、Alは0.080%以下とする。好ましくは、0.030%以上0.080%以下とする。より好ましくは、0.030%以上0.060%以下とする。
Al: 0.080% or less
Al is added to sufficiently deoxidize the molten steel, but if added over 0.080%, the amount of Al dissolved in the base metal increases and the base metal toughness is reduced. Therefore, Al is made 0.080% or less. Preferably, it is 0.030% or more and 0.080% or less. More preferably, it is 0.030% or more and 0.060% or less.

N:0.0070%以下
Nは、Alなどと窒化物を形成することによって組織を微細化し、母材および溶接熱影響部の靭性を向上させる効果を有するため、好ましくは0.0020%以上のNを添加してもよい。しかしながら、0.0070%を超えて添加すると、母材中に析出する窒化物量が増加し、母材靭性が著しく低下し、さらに溶接熱影響部においても粗大な炭窒化物を形成し靭性を低下させる。そのため、Nは0.0070%以下とする。好ましくは、0.0050%以下とし、より好ましくは0.0040%以下とする。なお、Nは0%であってもよい。
N: 0.0070% or less N has an effect of refining the structure by forming a nitride with Al or the like and improving the toughness of the base material and the weld heat affected zone, so 0.0020% or more of N is preferably added. May be. However, if added over 0.0070%, the amount of nitride precipitated in the base material increases, the base material toughness is remarkably reduced, and coarse carbonitrides are also formed in the weld heat affected zone to reduce the toughness. Therefore, N is made 0.0070% or less. Preferably, it is 0.0050% or less, more preferably 0.0040% or less. N may be 0%.

B:0.0030%以下
Bは、オーステナイト粒界に偏析することで粒界からのフェライト変態を抑制し、焼入性を高める効果を有するため、好ましくは0.0003%以上で添加する。一方、0.0030%を超えて添加すると、炭窒化物として析出し焼入性を低下させ靭性低下を引き起こす。そのため、Bは0.0030%以下とする。好ましくは、0.0003%以上0.0030%以下とする。より好ましくは0.0005%以上0.0020%以下とする。
B: 0.0030% or less B is preferably added in an amount of 0.0003% or more because B has the effect of suppressing the ferrite transformation from the grain boundary by segregating at the austenite grain boundary and improving the hardenability. On the other hand, if added over 0.0030%, it precipitates as carbonitride, lowers the hardenability and causes a decrease in toughness. Therefore, B is 0.0030% or less. Preferably, it is 0.0003% or more and 0.0030% or less. More preferably, it is 0.0005% or more and 0.0020% or less.

炭素当量CeqIIW
本発明では、特に板厚100mm以上の鋼板の内部において降伏強度で620MPa以上の強度と良好な靭性を確保するために、適切な成分組成の設計が必要であり、炭素当量CeqIIWに関する下記式(1)を満足する範囲に成分組成を調整する必要がある。なぜなら、炭素等量が下記式(1)を満足しない場合、強度に劣るフェライトなどが形成されやすく、安定的に所望の強度を確保することが難しくなるためである。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)での含有量である。
Carbon equivalent CeqIIW
In the present invention, in order to ensure a yield strength of 620 MPa or more and good toughness particularly in a steel plate having a thickness of 100 mm or more, it is necessary to design an appropriate component composition, and the following equation (1 for carbon equivalent CeqIIW) It is necessary to adjust the component composition within a range satisfying This is because, if the carbon equivalent does not satisfy the following formula (1), ferrite having inferior strength is likely to be formed, and it becomes difficult to ensure a desired strength stably.
[C] + [Mn] / 6 + [Ni] / 15 + [Cr] /15≧0.57 (1)
here,
[] Is the content (% by mass) of the element in [].

以上、本発明の基本成分について説明した。上記成分以外の残部はFeおよび不可避的不純物であるが、本発明では、その他の元素についても必要に応じて適宜含有させることができる。   The basic components of the present invention have been described above. The balance other than the above components is Fe and inevitable impurities, but in the present invention, other elements can be appropriately contained as necessary.

具体的には、さらに強度および靭性を高める目的で、Cu:0.50%以下、Mo:1.50%以下、Nb:0.100%以下、V:0.200%以下およびTi:0.005%以上0.020%以下、のうちから選ばれる1種または2種以上を含有させることができる。
この場合には、炭素当量CeqIIWについて、上記式(1)に代えて下記式(2)を満足する範囲に成分組成を調整する。
[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)での含有量である。
Specifically, in order to further increase the strength and toughness, Cu: 0.50% or less, Mo: 1.50% or less, Nb: 0.100% or less, V: 0.200% or less, and Ti: 0.005% or more and 0.020% or less One kind or two or more kinds selected can be contained.
In this case, regarding the carbon equivalent CeqIIW, the component composition is adjusted in a range satisfying the following formula (2) instead of the above formula (1).
[C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57 (2)
here,
[] Is the content (% by mass) of the element in [].

Cu:0.50%以下
Cuは、靭性を損なうことなく鋼の強度の向上が図れるが、0.50%より多く添加すると熱間加工時に鋼板表層に割れを生じる。そのため、Cuを含有させる場合は0.50%以下とする。好ましくは、0.03%以上0.40%以下とする。
Cu: 0.50% or less
Cu can improve the strength of the steel without impairing the toughness, but if added over 0.50%, it will cause cracks in the steel sheet surface layer during hot working. Therefore, when it contains Cu, it is 0.50% or less. Preferably, it is 0.03% or more and 0.40% or less.

Mo:1.50%以下
Moは、母材の高強度化に有効な元素であるが、1.50%を超えて添加すると合金炭化物の析出により硬度を上昇させ靭性を低下させる。そのため、Moを含有させる場合は、1.50%以下とする。好ましくは、0.02%以上0.80%以下とする。
Mo: 1.50% or less
Mo is an element effective for increasing the strength of the base material, but if added over 1.50%, it increases hardness and decreases toughness due to precipitation of alloy carbides. Therefore, when Mo is contained, the content is made 1.50% or less. Preferably, the content is 0.02% or more and 0.80% or less.

Nb:0.100%以下
Nbは、母材の強度の向上に効果があるため有効であるが、0.100%を超える添加は母材の靭性を顕著に低下させる。そのため、Nbを含有させる場合は、上限を0.100%とする。好ましくは、0.025%以下とする。なお、0.003%未満とすると特性の向上効果が得られないため、添加する場合は0.003%以上とする。
Nb: 0.100% or less
Nb is effective because it is effective in improving the strength of the base material, but addition over 0.100% significantly reduces the toughness of the base material. Therefore, when Nb is contained, the upper limit is made 0.100%. Preferably, it is 0.025% or less. If the content is less than 0.003%, the effect of improving the characteristics cannot be obtained. Therefore, when added, the content should be 0.003% or more.

V:0.200%以下
Vは、母材の強度・靭性の向上に効果があり、また、VNとして析出することで固溶Nの低下に有効であるが、0.200%を超えて添加すると硬質なVCの析出により靭性が低下する。そのため、Vを含有させる場合は、0.200%以下とする。好ましくは、0.010%以上0.100%以下とする。
V: 0.200% or less V is effective in improving the strength and toughness of the base metal, and is effective in reducing solid solution N by precipitating as VN, but if added over 0.200%, hard VC The toughness is reduced by the precipitation of. Therefore, when V is contained, the content is made 0.200% or less. Preferably, the content is 0.010% or more and 0.100% or less.

Ti:0.005%以上0.020%以下
Tiは、加熱時にTiNを生成し、オーステナイトの粗大化を効果的に抑制し、母材および溶接熱影響部の靭性を向上させる。しかし、0.020%を超えて添加すると、Ti窒化物が粗大化し母材の靭性を低下させる。そのため、Tiを含有させる場合は、0.005%以上0.020%以下とする。好ましくは、0.008%以上0.015%以下とする。
Ti: 0.005% to 0.020%
Ti generates TiN during heating, effectively suppresses coarsening of austenite and improves the toughness of the base material and the weld heat affected zone. However, if added over 0.020%, the Ti nitride becomes coarse and the toughness of the base material is lowered. Therefore, when Ti is contained, the content is made 0.005% or more and 0.020% or less. Preferably, the content is 0.008% or more and 0.015% or less.

また、さらに材質を改善する目的で、Mg:0.0005%以上0.0100%以下、Ta:0.010%以上0.200%以下、Zr:0.0050%以上0.1000%以下、Y:0.001%以上0.010%以下、Ca:0.0005%以上0.0050%以下およびREM:0.0005%以上0.0200%以下のうちから選ばれる1種または2種以上を含有させることができる。   In order to further improve the material, Mg: 0.0005% to 0.0100%, Ta: 0.010% to 0.200%, Zr: 0.0050% to 0.1000%, Y: 0.001% to 0.010%, Ca: 0.0005% One or more selected from the group consisting of 0.0050% or less and REM: 0.0005% or more and 0.0200% or less can be contained.

Mg:0.0005%以上0.0100%以下
Mgは、高温で安定な酸化物を形成し、溶接熱影響部の旧γ粒の粗大化を効果的に抑制し、溶接部の靭性を向上させるのに有効な元素である。しかし、添加量が0.0005%未満の場合では明瞭な効果が得られず、0.0100%を超えて添加すると、介在物量が増加し靭性が低下する。そのため、Mgを含有させる場合は、0.0005%以上0.0100%以下とする。好ましくは、0.0005%以上0.0050%以下とする。
Mg: 0.0005% to 0.0100%
Mg is an effective element for forming a stable oxide at a high temperature, effectively suppressing the coarsening of old γ grains in the weld heat affected zone, and improving the toughness of the weld zone. However, when the addition amount is less than 0.0005%, a clear effect cannot be obtained. When the addition amount exceeds 0.0100%, the amount of inclusions increases and the toughness decreases. Therefore, when Mg is contained, the content is made 0.0005% or more and 0.0100% or less. Preferably, the content is 0.0005% or more and 0.0050% or less.

Ta:0.010%以上0.200%以下
Taは、強度向上に有効である。しかし、添加量が0.010%未満の場合では明瞭な効果が得られず、0.200%を超える場合は析出物生成により靭性が低下する。そのため、Taを含有させる場合は、0.010%以上0.200%以下とする。
Ta: 0.010% to 0.200%
Ta is effective for improving the strength. However, when the addition amount is less than 0.010%, a clear effect cannot be obtained, and when it exceeds 0.200%, the toughness decreases due to precipitate formation. Therefore, when Ta is contained, the content is made 0.010% or more and 0.200% or less.

Zr:0.0050%以上0.1000%以下
Zrは、強度上昇に有効な元素であるが、添加量が0.0050%未満の場合は顕著な効果が得られず、また、0.1000%を超える場合には粗大な析出物を生成し靭性が低下する。そのため、Zrを含有させる場合は、0.0050%以上0.1000%以下とする。
Zr: 0.0050% or more and 0.1000% or less
Zr is an element effective in increasing the strength, but if the added amount is less than 0.0050%, a remarkable effect cannot be obtained, and if it exceeds 0.1000%, coarse precipitates are formed and the toughness decreases. . Therefore, when Zr is contained, the content is made 0.0050% or more and 0.1000% or less.

Y:0.001%以上0.010%以下
Yは、高温で安定な酸化物を形成し、溶接熱影響部の旧γ粒の粗大化を効果的に抑制し、溶接部の靭性を向上させるのに有効な元素である。しかし、0.001%未満の添加では効果が得られず、0.010%を超えて添加すると、介在物量が増加し靭性が低下する。そのため、Yを含有させる場合は、0.001%以上0.010%以下とする。
Y: 0.001% or more and 0.010% or less Y is effective in forming a stable oxide at high temperature, effectively suppressing the coarsening of old γ grains in the heat affected zone of the weld and improving the toughness of the weld. It is an element. However, if the addition is less than 0.001%, the effect cannot be obtained. If the addition exceeds 0.010%, the amount of inclusions increases and the toughness decreases. Therefore, when Y is contained, the content is made 0.001% or more and 0.010% or less.

Ca:0.0005%以上0.0050%以下
Caは、硫化物系介在物の形態制御に有用な元素であり、その効果を発揮させるためには、0.0005%以上の添加が必要である。しかし、0.0050%を超えて添加すると、清浄度の低下を招き靭性を劣化させる。そのため、Caを含有させる場合は、0.0005%以上0.0050%以下とする。好ましくは0.0005%以上0.0025%以下とする。
Ca: 0.0005% or more and 0.0050% or less
Ca is an element useful for controlling the morphology of sulfide inclusions, and 0.0005% or more must be added to exert its effect. However, if added over 0.0050%, the cleanliness is lowered and the toughness is deteriorated. Therefore, when Ca is contained, the content is made 0.0005% or more and 0.0050% or less. Preferably it is 0.0005% or more and 0.0025% or less.

REM:0.0005%以上0.0200%以下
REM(希土類金属)もCaと同様に鋼中で酸化物および硫化物を形成して材質を改善する効果があり、その効果を得るためには0.0005%以上の添加が必要である。しかし、0.0200%を超えて添加しても、その効果が飽和する。そのため、REMを含有させる場合は、0.0005%以上0.0200%以下とする。好ましくは0.0005%以上0.0050%以下とする。
REM: 0.0005% or more and 0.0200% or less
REM (rare earth metal) also has the effect of improving the quality of the material by forming oxides and sulfides in the steel, like Ca, and 0.0005% or more must be added to obtain this effect. However, even if added over 0.0200%, the effect is saturated. Therefore, when it contains REM, it is 0.0005% or more and 0.0200% or less. Preferably it is 0.0005% or more and 0.0050% or less.

[組織]
本発明では、鋼板表層におけるベイナイト面積分率を10%以上とすることが肝要である。鋼板表層がこのような組織を有することにより、鋼板表層についても優れた靭性を得ることができる。鋼板表層のベイナイト面積分率は、好ましくは20%以上である。残部は焼もどしマルテンサイト、フェライト等である。
[Organization]
In the present invention, it is important that the bainite area fraction in the surface layer of the steel sheet is 10% or more. When the steel sheet surface layer has such a structure, excellent toughness can be obtained for the steel sheet surface layer. The bainite area fraction of the steel sheet surface layer is preferably 20% or more. The balance is tempered martensite, ferrite and the like.

また、鋼板表層だけでなく、鋼板内部におけるベイナイト面積分率を10%以上とすることが好ましい。鋼板内部もこのような組織を有することにより、鋼板表層と鋼板内部との特性の差が小さい鋼板を得ることができる。鋼板内部のベイナイト面積分率は、より好ましくは20%以上である。   In addition to the steel sheet surface layer, the bainite area fraction in the steel sheet is preferably 10% or more. By having such a structure in the steel plate, a steel plate having a small difference in characteristics between the steel plate surface layer and the steel plate can be obtained. The bainite area fraction inside the steel plate is more preferably 20% or more.

なお、鋼板表層および鋼板内部の組織の面積分率の評価は、焼入れままの鋼材の圧延方向断面のサンプルを採取し、ナイタール腐食液で組織を現出させて、200倍の光学顕微鏡で5視野以上観察し、画像解析によりベイナイト等各組織の面積分率を求めることにより、行うことができる。鋼板表層については、板厚1/8tの位置を中心として、厚さ15mmの圧延方向断面のサンプルを採取する。鋼板内部については、板厚3/8tの位置を中心として、厚さ15mmの圧延方向断面のサンプルを採取する。   In addition, the evaluation of the area fraction of the steel sheet surface layer and the structure inside the steel sheet was made by taking a sample of the cross-section in the rolling direction of the as-quenched steel material, revealing the structure with a nital corrosive solution, and viewing it with a 200 × optical microscope for 5 fields of view. It can carry out by observing above and calculating | requiring the area fraction of each structure | tissue, such as a bainite, by image analysis. As for the steel sheet surface layer, a sample of a cross section in the rolling direction having a thickness of 15 mm is collected centering on the position of the plate thickness 1 / 8t. About the inside of a steel plate, the sample of a 15-mm-thickness rolling direction cross section is extract | collected centering on the position of plate thickness 3 / 8t.

少なくとも鋼板表層のベイナイト面積分率が10%以上である組織を得るためには、上記の範囲に成分組成を調整した鋼素材に熱間圧延を施して得た、熱延鋼板を冷却した後に、Ac3変態点以上1050℃以下の温度域に加熱した後、(Ar3変態点+50)℃以上(Ar3変態点−20)℃以下の温度域における平均冷却速度が0.2〜10℃/sである冷却処理を施して350℃以下まで冷却する、必要がある。ここで規定される温度条件は、熱延鋼板の表層および鋼板内部が共に満足していることが肝要である。詳細は、後述する。In order to obtain a structure in which the bainite area fraction of the steel sheet surface layer is at least 10%, after cooling the hot-rolled steel sheet obtained by hot rolling the steel material having the component composition adjusted to the above range, After heating to a temperature range of Ac 3 transformation point to 1050 ° C, the average cooling rate in the temperature range of (Ar 3 transformation point +50) ° C to (Ar 3 transformation point -20) ° C is 0.2 to 10 ° C / s. It needs to be cooled to 350 ° C or below by applying some cooling treatment. It is important that the temperature conditions specified here satisfy both the surface layer of the hot-rolled steel sheet and the inside of the steel sheet. Details will be described later.

[靭性]
鋼板表層の靭性はこれまで着目されてこなかったが、構造物の安全性向上要求の高まりを受け、鋼板内部と同等のレベルを要求されつつある。本発明の鋼板では、鋼板表層面と鋼板内部との靭性差を、延性−脆性破面遷移温度(vTrs)により評価すると、vTrsでの差が20℃以内であることが好ましい。これにより、鋼板表面と鋼板内部とで実質的に同一の靭性が得られていると評価できるためである。ここで、vTrsは、JIS Z2242に記載の方法で評価した。vTrsの差で20℃以内とするのは、靭性のvTrsによる評価は、同じ靭性レベルであったとしても、脆性破面率の測定誤差によりその値が最大で20℃程度生じる場合があるため、実質同等と考えられる20℃以内とした。
[Toughness]
The toughness of the steel sheet surface layer has not been noticed so far, but in response to the increasing demand for improving the safety of structures, a level equivalent to that inside the steel sheet is being demanded. In the steel sheet of the present invention, when the difference in toughness between the steel sheet surface and the inside of the steel sheet is evaluated by the ductile-brittle fracture surface transition temperature (vTrs), the difference in vTrs is preferably within 20 ° C. This is because it can be evaluated that substantially the same toughness is obtained on the steel sheet surface and the steel sheet interior. Here, vTrs was evaluated by the method described in JIS Z2242. The difference in vTrs should be within 20 ° C because even if the toughness evaluation by vTrs is the same toughness level, the value may occur up to about 20 ° C due to measurement error of the brittle fracture surface ratio. The temperature was within 20 ° C, which is considered to be substantially equivalent.

[降伏強度]
本発明では、鋼板の内部における降伏強度が620MPa以上であることとする。その理由は、構造物の大型化に寄与させるには620MPa以上の降伏強度を必要とするからである。
[Yield strength]
In the present invention, the yield strength inside the steel sheet is 620 MPa or more. The reason is that a yield strength of 620 MPa or more is required to contribute to an increase in the size of the structure.

次に、本発明の鋼板の製造方法について説明する。以下の説明における温度は、特に断らない限り、板厚中心部(1/2t)における温度を意味するものとする。
[鋼素材]
上記成分組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の方法で溶製し、連続鋳造法または造塊法等の通常の鋳造方法でスラブ、ビレットなどの鋼素材とする。また、圧延機の荷重等の制約がある場合には、鋼素材にさらに鍛造または分塊圧延を行い、鋼素材の板厚みを小さくしても良い。
Next, the manufacturing method of the steel plate of this invention is demonstrated. Unless otherwise specified, the temperature in the following description means the temperature at the thickness center portion (1/2 t).
[Steel material]
Molten steel having the above component composition is melted by an ordinary method such as a converter, an electric furnace, a vacuum melting furnace or the like, and is made into a steel material such as a slab or billet by an ordinary casting method such as a continuous casting method or an ingot forming method. Moreover, when there are restrictions such as the load of the rolling mill, the steel material may be further forged or split rolled to reduce the plate thickness of the steel material.

[熱間圧延]
上記鋼素材に対して熱間圧延を施す。鋼板表層における靭性と鋼板内部における強度および靭性とを両立するためには、熱間圧延時に、γ域での再結晶を促進し、旧γ粒径の微細化を図ることが有効である。このため、熱間圧延では、圧延終了温度をAr3点以上とすることが好ましい。
なお、Ar3変態点は、後述の式(4)により計算される値を用いることができる。
[Hot rolling]
Hot rolling is performed on the steel material. In order to achieve both the toughness in the steel sheet surface layer and the strength and toughness in the steel sheet, it is effective to promote recrystallization in the γ region and to refine the old γ grain size during hot rolling. For this reason, in hot rolling, it is preferable that the rolling end temperature is Ar 3 point or higher.
As the Ar 3 transformation point, a value calculated by equation (4) described later can be used.

[熱間圧延後の冷却]
上記熱間圧延後の鋼板を空冷または加速冷却する。特に、靱性の向上を図る場合には加速冷却が有効である。加速冷却することで、空冷に比べて高温域での滞留時間が短くなり、結晶粒径の微細化や析出物の粗大化を抑制できるためである。そのため、加速冷却する場合はAr3点未満までとする。加速冷却時の冷却は水冷、衝風により行い、いずれの場合も、鋼板表面において0.1℃/s以上の冷却速度とすることが好ましい。
[Cooling after hot rolling]
The steel sheet after the hot rolling is air cooled or accelerated cooled. In particular, accelerated cooling is effective in improving toughness. This is because accelerated cooling shortens the residence time in a high temperature range as compared with air cooling, and can suppress refinement of crystal grain size and coarsening of precipitates. Therefore, when accelerating cooling, it should be less than Ar 3 point. Cooling at the time of accelerated cooling is performed by water cooling or blast, and in either case, it is preferable to set a cooling rate of 0.1 ° C./s or more on the steel sheet surface.

[熱間圧延後加熱温度:Ac3変態点以上1050℃以下]
上記冷却後の熱延鋼板を、Ac3変態点以上1050℃以下に加熱する。Ac3変態点以上に加熱するのは、鋼をオーステナイト単相に均一化するためである。再加熱温度を1050℃以下とするのは、1050℃を超える高温の再加熱ではオーステナイト粒の粗大化による母材靭性の低下が著しく低下するためである。好ましくは、Ac3変態点以上1000℃以下とする。さらに、Ac3変態点以上950℃以下がより好ましい。
[Heating temperature after hot rolling: Ac 3 transformation point or higher and 1050 ° C or lower]
The cooled hot-rolled steel sheet is heated to an Ac 3 transformation point or higher and 1050 ° C. or lower. The reason for heating above the Ac 3 transformation point is to homogenize the steel into an austenite single phase. The reason why the reheating temperature is set to 1050 ° C. or lower is that, when reheating at a high temperature exceeding 1050 ° C., the reduction in the base material toughness due to coarsening of austenite grains is significantly reduced. Preferably, it is set to Ac 3 transformation point or higher and 1000 ° C. or lower. Furthermore, the Ac 3 transformation point or higher and 950 ° C. or lower is more preferable.

なお、Ac3変態点は、下記式(3)により計算される値を用いる。
Ac3=937.2−476.5[C]+56[Si]−19.7[Mn]−16.3[Cu]−26.6[Ni]−4.9[Cr]+38.1[Mo]+124.8[V]+136.3[Ti]+198.4[Al]+3315[B]… (3)
ここで、式(3)における各元素記号は、それぞれの成分組成の鋼素材中の含有量(質量%)を示し、含有しないものは0として計算する。
The Ac 3 transformation point uses a value calculated by the following formula (3).
Ac 3 = 937.2−476.5 [C] +56 [Si] −19.7 [Mn] −16.3 [Cu] −26.6 [Ni] −4.9 [Cr] +38.1 [Mo] +124.8 [V] +136.3 [Ti ] + 198.4 [Al] + 3315 [B] (3)
Here, each element symbol in the formula (3) indicates the content (mass%) in the steel material having the respective component composition, and those not contained are calculated as zero.

[冷却処理:(Ar3変態点+50)℃以上(Ar3-20)℃以下の範囲における平均冷却速度が0.2〜10℃/s]
上記加熱後に冷却処理を施す。この冷却処理は、鋼板表層および鋼板内部を350℃以下まで冷却するにあたり、鋼板表層および鋼板内部のそれぞれにおける、(Ar3変態点+50)℃以上(Ar3変態点−20)℃以下の温度域での平均冷却速度が0.2〜10℃/sとなるように冷却処理を施すことが重要である。このような冷却を行うことで、鋼板表層にベイナイト面積分率が10%以上の組織を形成させることができ、鋼板表層の靭性を著しく向上させることができる。同様に、鋼板内部においても、ベイナイトが10%以上の組織を形成させることができる。
[Cooling treatment: (Ar 3 transformation point +50) ° C to (Ar 3 -20) ° C, the average cooling rate is 0.2 to 10 ° C / s]
A cooling process is performed after the said heating. In this cooling treatment, when the steel sheet surface layer and the inside of the steel sheet are cooled to 350 ° C. or less, the temperature range of (Ar 3 transformation point +50) ° C. or more (Ar 3 transformation point −20) ° C. or less in each of the steel sheet surface layer and the inside of the steel plate It is important to perform the cooling treatment so that the average cooling rate at 0.2 to 10 ° C./s. By performing such cooling, a structure having a bainite area fraction of 10% or more can be formed on the steel sheet surface layer, and the toughness of the steel sheet surface layer can be remarkably improved. Similarly, a structure in which bainite is 10% or more can be formed inside the steel plate.

冷却速度の制御は、水の流量を調整する、間欠的に冷却を行う、衝風により冷却を行うなどの方法により行うことができる。
具体的には、鋼板表層および鋼板内部における平均冷却速度の制御は、所望の冷却速度となるように冷却方法、水量調整、間欠条件をシミュレーション等により導出して行う。
The cooling rate can be controlled by methods such as adjusting the flow rate of water, intermittently cooling, and cooling by blast.
Specifically, control of the average cooling rate in the steel sheet surface layer and inside the steel plate is performed by deriving a cooling method, water amount adjustment, and intermittent conditions by simulation or the like so as to obtain a desired cooling rate.

鋼板表層および鋼板内部の温度は、板厚、表面温度および冷却条件等から、シミュレーション計算等により求めることができる。例えば、差分法を用い、板厚方向の温度分布を計算することにより、鋼板表層から鋼板内部までの温度を求めることができる。   The steel plate surface layer and the temperature inside the steel plate can be obtained by simulation calculation or the like from the plate thickness, surface temperature, cooling conditions, and the like. For example, the temperature from the steel sheet surface layer to the inside of the steel sheet can be obtained by calculating the temperature distribution in the sheet thickness direction using the difference method.

なお、Ar3変態点は、下記式(4)により計算される値を用いる。
Ar3=910−310[C]−80[Mn]−20[Cu]−15[Cr]−55[Ni]−80[Mo]… (4)
ここで、式(4)における各元素記号は、それぞれの成分組成の鋼素材中の含有量(質量%)を示し、含有しないものは0として計算する。
The Ar 3 transformation point uses a value calculated by the following formula (4).
Ar 3 = 910−310 [C] −80 [Mn] −20 [Cu] −15 [Cr] −55 [Ni] −80 [Mo] (4)
Here, each element symbol in the formula (4) indicates the content (mass%) in the steel material having the respective component composition, and those not contained are calculated as zero.

[冷却停止温度:350℃以下]
上記冷却の停止温度を350℃以下とする。350℃以下まで冷却すれば、鋼板全体において変態が完了し、均一な組織が得られるためである。
冷却の方法は、工業的には水冷とすることが一般的であるが、冷却方法は水冷以外でも良く、例えば、ガス冷却などの方法もある。
[Cooling stop temperature: 350 ℃ or less]
The cooling stop temperature is 350 ° C. or lower. This is because if the temperature is lowered to 350 ° C. or lower, transformation is completed in the entire steel sheet, and a uniform structure is obtained.
The cooling method is generally industrially water-cooled, but the cooling method may be other than water-cooling, for example, there is a method such as gas cooling.

[焼もどし]
上記のような急冷を行った後に、必要に応じて、450℃以上700℃以下の温度範囲で焼もどしを行う。450℃未満では残留応力の除去効果が少なく、一方、700℃を超えると、種々の炭化物が析出するとともに、母材の組織が粗大化し、強度、靭性が大幅に低下するためである。
[Tempering]
After the rapid cooling as described above, tempering is performed in a temperature range of 450 ° C. to 700 ° C. as necessary. When the temperature is lower than 450 ° C., the residual stress removal effect is small. On the other hand, when the temperature exceeds 700 ° C., various carbides are precipitated, the microstructure of the base material is coarsened, and the strength and toughness are greatly reduced.

なお、工業的には、鋼の強靭化を目的に繰返し焼入れする場合があるが、本発明においても繰り返し焼入れしても良い。ただし、最終の焼入れの際に、鋼板表層および鋼板内部が(Ar3変態点+50)℃以上(Ar3変態点−20)℃以下の温度域における平均冷却速度が0.2℃/s 以上10℃/s以下である冷却を施し、その後、350℃以下まで冷却を行い、450℃以上700℃以下で焼もどすことが好ましい。In addition, industrially, there is a case where the steel is repeatedly hardened for the purpose of strengthening the steel, but it may be repeatedly hardened in the present invention. However, at the time of final quenching, the average cooling rate in the temperature range of (Ar 3 transformation point +50) ° C to (Ar 3 transformation point -20) ° C is 0.2 ° C / s to 10 ° C / It is preferable to perform cooling that is s or less, then cool to 350 ° C. or less, and temper at 450 ° C. or more and 700 ° C. or less.

表1に示した鋼No.1〜31の鋼を溶製し、スラブとした後、表2に示した製造条件により板厚が100mm以上240mm以下の鋼板とし、その後、冷却処理、焼もどし処理を行い、試料No.1〜37の厚鋼板を製造し、下記の試験に供した。   After the steel No. 1-31 shown in Table 1 was melted and made into slabs, the steel plate with a thickness of 100 mm or more and 240 mm or less was manufactured according to the manufacturing conditions shown in Table 2, followed by cooling treatment and tempering treatment. The thick steel plates of Sample Nos. 1 to 37 were manufactured and subjected to the following tests.

Figure 2019050010
Figure 2019050010

[引張試験]
各鋼板の板厚1/8t部および板厚1/4t部からΦ12.5mm丸棒引張試験片を圧延方向と直角方向に長さ50mmにて採取し、降伏強度(YS)、引張強度(TS)を測定した。降伏強度(YS)および引張強度(TS)は、JIS Z2241に準拠して測定した。
[Tensile test]
Φ12.5mm round bar tensile test specimens were taken at a length of 50mm in the direction perpendicular to the rolling direction from the 1 / 8t and 1 / 4t thicknesses of each steel plate, yield strength (YS), tensile strength (TS ) Was measured. Yield strength (YS) and tensile strength (TS) were measured according to JIS Z2241.

[シャルピー衝撃試験]
各鋼板の鋼板表層下2mmおよび板厚1/4t部から圧延方向を長手方向とする2mmVノッチシャルピー試験片を各15本ずつ採取し、各試験片についてvTrs(延性‐脆性破面遷移温度)をJIS Z 2242に準拠して評価した。
[Charpy impact test]
Take 15 mm 2mm V-notch Charpy specimens with the rolling direction as the longitudinal direction from 2mm below the steel sheet surface layer and 1 / 4t part of each steel sheet. Evaluation was performed in accordance with JIS Z 2242.

上記の試験結果を表2に示す。この結果から、鋼の成分組成および組織が本発明に適合する発明例の鋼板(試料No.1〜22)は、いずれも1/4t部のYSが620MPa以上、TSが720MPa以上、鋼板表層および1/4t部の靭性(vTrs)が−30℃より低温であり、vTrsの差が20℃以内となっており、母材の強度および鋼板表層と鋼板内部の靭性差が小さく、鋼板表層から鋼板内部まで、板厚方向にわたって靭性に優れていることがわかる。   The test results are shown in Table 2. From these results, the steel composition (sample Nos. 1 to 22) of the invention examples in which the component composition and structure of the steel are suitable for the present invention are all 1/4 t part YS is 620 MPa or more, TS is 720 MPa or more, steel sheet surface layer and 1 / 4t part toughness (vTrs) is lower than -30 ° C, vTrs difference is within 20 ° C, strength of base metal and difference in toughness between steel plate surface and steel plate is small. It can be seen that the toughness is excellent in the thickness direction up to the inside.

Figure 2019050010
Figure 2019050010

これに対して、本発明の成分組成または組織を外れる比較例の鋼板(試料No.23〜32)は、鋼板内部のYSが620MPa未満、TSが720MPa未満、または、鋼板表層および1/4t部の靭性(vTrs )が−30℃以上、もしくは、vTrs 差が20℃を超えており、上記のいずれかの特性が劣っている。   On the other hand, in the steel plate of the comparative example (sample No. 23 to 32) that deviates from the component composition or structure of the present invention, YS inside the steel plate is less than 620 MPa, TS is less than 720 MPa, or the steel sheet surface layer and 1/4 t part Has a toughness (vTrs) of −30 ° C. or higher, or a vTrs difference of more than 20 ° C., and any of the above properties is inferior.

また、試料No.33〜37に示すように、鋼の成分組成が本発明に適合する鋼板であっても、製造条件が本発明に適合していない場合、YS、TS、靭性、靭性差のいずれか1つ以上の特性が劣っていることがわかる。   In addition, as shown in Sample Nos. 33 to 37, even if the steel component composition is a steel sheet that conforms to the present invention, if the manufacturing conditions do not conform to the present invention, the difference in YS, TS, toughness, and toughness It can be seen that any one or more characteristics are inferior.

本発明によれば、母材の降伏強度が620MPa以上の強度であるとともに、鋼板表層の靭性、鋼板内部の強度および靭性、並びに製造安定性に優れた100mm以上の厚鋼板を得ることができ、鋼構造物の大型化、鋼構造物の安全性の向上に大きく寄与する。   According to the present invention, the yield strength of the base material is a strength of 620 MPa or more, and a steel plate surface layer toughness, strength and toughness inside the steel plate, and a thick steel plate of 100 mm or more excellent in production stability can be obtained, Greatly contributes to increasing the size of steel structures and improving the safety of steel structures.

Claims (6)

質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:3.00%以下、
Ni:5.00%以下、
Al:0.080%以下、
N:0.0070%以下および
B:0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼板であって、
該鋼板の表層にベイナイト面積分率が10%以上の組織を有し、該表層より内側の鋼板内部の降伏強度が620MPa以上である鋼板。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
% By mass
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% to 5.00%,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 3.00% or less,
Ni: 5.00% or less,
Al: 0.080% or less,
N: 0.0070% or less and B: 0.0030% or less in a range satisfying the following formula (1), the balance being a steel plate having a component composition of Fe and inevitable impurities,
A steel sheet having a structure having a bainite area fraction of 10% or more on a surface layer of the steel sheet, and a yield strength inside the steel sheet inside the surface layer of 620 MPa or more.
[C] + [Mn] / 6 + [Ni] / 15 + [Cr] /15≧0.57 (1)
here,
[] Is the content (% by mass) of the element in [].
前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、請求項1に記載の鋼板。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
The component composition further includes:
% By mass
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: The steel plate of Claim 1 which contains 1 type, or 2 or more types chosen from 0.005% or more and 0.020% or less in the range which replaces the said Formula (1) and satisfies following formula (2).
[C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57 (2)
here,
[] Is the content (% by mass) of the element in [].
前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の鋼板。
The component composition further includes:
% By mass
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The steel plate of Claim 1 or 2 containing 1 type, or 2 or more types chosen from 0.0005% or more and 0.0200% or less.
質量%で、
C:0.080%以上0.200%以下、
Si:0.40%以下、
Mn:0.50%以上5.00%以下、
P:0.015%以下、
S:0.0050%以下、
Cr:3.00%以下、
Ni:5.00%以下、
Al:0.080%以下、
N:0.0070%以下および
B:0.0030%以下
を、下記式(1)を満足する範囲にて含有し、残部はFeおよび不可避的不純物の成分組成を有する鋼素材に、熱間圧延を施して熱延鋼板とし、
該熱延鋼板を冷却した後に、Ac3変態点以上1050℃以下の温度域に加熱した後、
(Ar3変態点+50)℃以上(Ar3変態点−20)℃以下の温度域における平均冷却速度が0.2〜10℃/sである冷却処理を施して350℃以下まで冷却する鋼板の製造方法。

[C]+[Mn]/6+[Ni]/15+[Cr]/15≧0.57 … (1)
ここで、
[]は、該[]内元素の含有量(質量%)である。
% By mass
C: 0.080% or more and 0.200% or less,
Si: 0.40% or less,
Mn: 0.50% to 5.00%,
P: 0.015% or less,
S: 0.0050% or less,
Cr: 3.00% or less,
Ni: 5.00% or less,
Al: 0.080% or less,
N: 0.0070% or less and B: 0.0030% or less in a range satisfying the following formula (1), with the balance being hot rolled on a steel material having a component composition of Fe and inevitable impurities A rolled steel sheet,
After cooling the hot-rolled steel sheet, after heating to a temperature range of Ac 3 transformation point or more and 1050 ° C. or less,
(Ar 3 transformation point +50) A method for producing a steel sheet that is cooled to 350 ° C. or less by performing a cooling treatment with an average cooling rate of 0.2 to 10 ° C./s in a temperature range of (Ar 3 transformation point −20) ° C. or less. .
[C] + [Mn] / 6 + [Ni] / 15 + [Cr] /15≧0.57 (1)
here,
[] Is the content (% by mass) of the element in [].
前記成分組成は、さらに、
質量%で、
Cu:0.50%以下、
Mo:1.50%以下、
Nb:0.100%以下、
V:0.200%以下および
Ti:0.005%以上0.020%以下
のうちから選ばれる1種または2種以上を前記式(1)に代えて下記式(2)を満足する範囲にて含有する、請求項4に記載の鋼板の製造方法。

[C]+[Mn]/6+([Cu]+[Ni])/15+([Cr]+[Mo]+[V])/15≧0.57 … (2)
ここで、
[]は、該[]内元素の含有量(質量%)である。
The component composition further includes:
% By mass
Cu: 0.50% or less,
Mo: 1.50% or less,
Nb: 0.100% or less,
V: 0.200% or less and
Ti: The steel plate of Claim 4 which contains 1 type or 2 types or more chosen from 0.005% or more and 0.020% or less in the range which replaces the said Formula (1) and satisfies following formula (2). Production method.
[C] + [Mn] / 6 + ([Cu] + [Ni]) / 15 + ([Cr] + [Mo] + [V]) / 15 ≧ 0.57 (2)
here,
[] Is the content (% by mass) of the element in [].
前記成分組成は、さらに、
質量%で、
Mg:0.0005%以上0.0100%以下、
Ta:0.010%以上0.200%以下、
Zr:0.0050%以上0.1000%以下、
Y:0.001%以上0.010%以下、
Ca:0.0005%以上0.0050%以下および
REM:0.0005%以上0.0200%以下
のうちから選ばれる1種または2種以上を含有する、請求項4または5に記載の鋼板の製造方法。
The component composition further includes:
% By mass
Mg: 0.0005% or more and 0.0100% or less,
Ta: 0.010% or more and 0.200% or less,
Zr: 0.0050% or more and 0.1000% or less,
Y: 0.001% or more and 0.010% or less,
Ca: 0.0005% or more and 0.0050% or less and
REM: The manufacturing method of the steel plate of Claim 4 or 5 containing 1 type, or 2 or more types chosen from 0.0005% or more and 0.0200% or less.
JP2019502269A 2017-09-08 2018-09-07 Steel plate and its manufacturing method Active JP6795083B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017173275 2017-09-08
JP2017173275 2017-09-08
PCT/JP2018/033286 WO2019050010A1 (en) 2017-09-08 2018-09-07 Steel sheet and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2019050010A1 true JPWO2019050010A1 (en) 2019-11-07
JP6795083B2 JP6795083B2 (en) 2020-12-02

Family

ID=65634117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019502269A Active JP6795083B2 (en) 2017-09-08 2018-09-07 Steel plate and its manufacturing method

Country Status (6)

Country Link
EP (1) EP3680358A1 (en)
JP (1) JP6795083B2 (en)
KR (1) KR102339890B1 (en)
CN (2) CN113737103A (en)
SG (1) SG11202001759QA (en)
WO (1) WO2019050010A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024015532A (en) 2020-07-28 2024-02-06 日本製鉄株式会社 wear resistant steel
JP7261364B1 (en) * 2023-01-20 2023-04-19 株式会社神戸製鋼所 steel plate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JP2012062558A (en) * 2010-09-17 2012-03-29 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same
JP2012062561A (en) * 2010-09-17 2012-03-29 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in fatigue resistance and method for producing the same
JP2014177669A (en) * 2013-03-14 2014-09-25 Jfe Steel Corp Non-heat treated low yield ratio high tensile thick steel plate, and manufacturing method therefor
WO2015162939A1 (en) * 2014-04-24 2015-10-29 Jfeスチール株式会社 Thick steel plate and manufacturing method for same
JP2015190008A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
WO2017094593A1 (en) * 2015-12-04 2017-06-08 株式会社神戸製鋼所 Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5368820B2 (en) * 2008-03-27 2013-12-18 株式会社神戸製鋼所 780 MPa class low yield ratio circular steel pipe for building structure having excellent earthquake resistance and method for producing the same
CN101591756A (en) * 2008-05-26 2009-12-02 宝山钢铁股份有限公司 Low-crackle sensitive steel board with yield strength of 620 MPa grade and manufacture method thereof
CN103189537B (en) * 2010-11-05 2016-01-20 新日铁住金株式会社 High tensile steel plate and manufacture method thereof
JP5924058B2 (en) * 2011-10-03 2016-05-25 Jfeスチール株式会社 High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same
KR101806340B1 (en) * 2013-03-15 2017-12-07 제이에프이 스틸 가부시키가이샤 Thick, tough, high tensile strength steel plate and production method therefor
US10060002B2 (en) * 2013-12-16 2018-08-28 Nippon Steel & Sumitomo Metal Corporation H-section steel and method of producing the same
JP6024928B2 (en) * 2013-12-27 2016-11-16 Jfeスチール株式会社 Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
JP6156574B2 (en) * 2014-03-20 2017-07-05 Jfeスチール株式会社 Thick and high toughness high strength steel sheet and method for producing the same
KR101893845B1 (en) * 2014-03-31 2018-08-31 제이에프이 스틸 가부시키가이샤 Steel material for highly deformable line pipes having superior strain aging resistance and superior hic resistance, method for manufacturing same, and welded steel pipe
JP6361278B2 (en) 2014-05-16 2018-07-25 新日鐵住金株式会社 Manufacturing method of rolled steel
CN107208212B (en) * 2015-01-16 2020-01-17 杰富意钢铁株式会社 Thick-walled high-toughness high-strength steel plate and method for producing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62174322A (en) * 1985-10-15 1987-07-31 Kobe Steel Ltd Manufacture of low yield ratio high tension steel plate superior in cold workability
JP2012062558A (en) * 2010-09-17 2012-03-29 Jfe Steel Corp High-strength hot-rolled steel sheet having excellent bending workability and method for producing the same
JP2012062561A (en) * 2010-09-17 2012-03-29 Jfe Steel Corp High-strength hot-rolled steel sheet excellent in fatigue resistance and method for producing the same
JP2014177669A (en) * 2013-03-14 2014-09-25 Jfe Steel Corp Non-heat treated low yield ratio high tensile thick steel plate, and manufacturing method therefor
JP2015190008A (en) * 2014-03-28 2015-11-02 Jfeスチール株式会社 Non-heat treated low yield ratio high tensile thick steel sheet excellent in weld heat-affected zone toughness and production method therefor
WO2015162939A1 (en) * 2014-04-24 2015-10-29 Jfeスチール株式会社 Thick steel plate and manufacturing method for same
WO2017094593A1 (en) * 2015-12-04 2017-06-08 株式会社神戸製鋼所 Non-heat-treated steel sheet having high yield strength in which hardness of a welding-heat-affected zone and degradation of low-temperature toughness of the welding-heat-affected zone are suppressed

Also Published As

Publication number Publication date
KR102339890B1 (en) 2021-12-15
WO2019050010A1 (en) 2019-03-14
SG11202001759QA (en) 2020-03-30
EP3680358A4 (en) 2020-07-15
CN111051555A (en) 2020-04-21
KR20200034770A (en) 2020-03-31
CN113737103A (en) 2021-12-03
EP3680358A1 (en) 2020-07-15
JP6795083B2 (en) 2020-12-02
CN111051555B (en) 2022-01-21

Similar Documents

Publication Publication Date Title
JP5750546B2 (en) Low yield ratio high toughness steel sheet and manufacturing method thereof
JP6048626B1 (en) Thick, high toughness, high strength steel plate and method for producing the same
US10358688B2 (en) Steel plate and method of producing same
US10604817B2 (en) High-strength steel plate for pressure vessel having excellent toughness after post weld heat treatment and manufacturing method thereof
JPWO2014141697A1 (en) Thick and high toughness high strength steel sheet and method for producing the same
JP2012184500A (en) High tensile strength steel sheet having excellent low temperature toughness in weld heat-affected zone, and method for producing the same
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
US10316385B2 (en) High-tensile-strength steel plate and process for producing same
JP2007262477A (en) Low yield-ratio high-strength thick steel plate and its production method
JP6056235B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance and tensile strength of 950 MPa or more
US20210164067A1 (en) High-mn steel and method for manufacturing same
JP5630321B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
JP2022510216A (en) Steel material with excellent toughness of weld heat affected zone and its manufacturing method
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP6795083B2 (en) Steel plate and its manufacturing method
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP6051735B2 (en) Method for producing high-tensile steel sheet with excellent weldability and delayed fracture resistance
JP5151510B2 (en) Manufacturing method of high strength steel with excellent low temperature toughness and crack propagation stop properties
JP2017002349A (en) High tensile steel plate and production method thereof
JP6519025B2 (en) Low alloy high strength seamless steel pipe for oil well
KR101435319B1 (en) Method of manufacturing steel sheet
KR20140003008A (en) High strength steel plate and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200826

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200826

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20200903

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20200908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201026

R150 Certificate of patent or registration of utility model

Ref document number: 6795083

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250