JP6024928B2 - Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same - Google Patents
Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same Download PDFInfo
- Publication number
- JP6024928B2 JP6024928B2 JP2014265118A JP2014265118A JP6024928B2 JP 6024928 B2 JP6024928 B2 JP 6024928B2 JP 2014265118 A JP2014265118 A JP 2014265118A JP 2014265118 A JP2014265118 A JP 2014265118A JP 6024928 B2 JP6024928 B2 JP 6024928B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- less
- mpa
- marine
- steel plate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 98
- 239000010959 steel Substances 0.000 title claims description 98
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims description 21
- 229910052742 iron Inorganic materials 0.000 title claims description 10
- 238000000034 method Methods 0.000 title claims description 8
- 238000010791 quenching Methods 0.000 claims description 26
- 230000000171 quenching effect Effects 0.000 claims description 26
- 238000005496 tempering Methods 0.000 claims description 24
- 229910001563 bainite Inorganic materials 0.000 claims description 23
- 238000012360 testing method Methods 0.000 claims description 22
- 230000009466 transformation Effects 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 20
- 229910000734 martensite Inorganic materials 0.000 claims description 20
- 229910001566 austenite Inorganic materials 0.000 claims description 19
- 239000000203 mixture Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 238000003303 reheating Methods 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 3
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 description 15
- 238000010438 heat treatment Methods 0.000 description 13
- 230000007704 transition Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 8
- 239000010953 base metal Substances 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- 238000005096 rolling process Methods 0.000 description 7
- 238000005336 cracking Methods 0.000 description 5
- 238000005098 hot rolling Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000009864 tensile test Methods 0.000 description 4
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052758 niobium Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 229910052720 vanadium Inorganic materials 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000859 α-Fe Inorganic materials 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Description
本発明は、船舶や海洋構造物、水圧鉄管等に用いられる、引張強さが570MPa以上、720MPa以下で、脆性亀裂伝播停止特性、特にNRL落重試験における無延性遷移温度(TNDT)に優れる厚鋼板とその製造方法に関するものである。なお、本発明の「厚鋼板」とは、板厚が6mm以上100mm以下の熱延鋼板をいう。 The present invention is used for ships, offshore structures, hydraulic iron pipes, etc., and has a tensile strength of 570 MPa or more and 720 MPa or less, and is excellent in brittle crack propagation stop characteristics, particularly in the non-ductile transition temperature (T NDT ) in the NRL drop weight test. The present invention relates to a thick steel plate and a manufacturing method thereof. In addition, the “thick steel plate” of the present invention refers to a hot rolled steel plate having a thickness of 6 mm or more and 100 mm or less.
船舶や海洋構造物、水圧鉄管等に用いられる鋼板には、強度特性や低温靱性に優れることの他に、良好な溶接性を有することが要求される。特に近年では、エネルギー需要の拡大等によって、従来よりも低温環境で使用されるようになってきており、上記特性に優れる材料の開発が強く望まれるようになってきている。 Steel sheets used for ships, offshore structures, hydraulic iron pipes and the like are required to have good weldability in addition to excellent strength characteristics and low temperature toughness. Particularly in recent years, due to the expansion of energy demand and the like, it has come to be used in a lower temperature environment than before, and development of a material having excellent characteristics has been strongly desired.
上記低温靭性の評価基準としては、一般的にはシャルピー衝撃試験が用いられているが、ASTMでは、さらに脆性亀裂伝播停止特性を評価する基準として、NRL落重試験が規定されている。特に近年では、使用温度の低温化に伴い、上記NRL落重試験における要求温度の低温化が進んでおり、鋼板に対するNRL落重特性改善要求も高まってきている。 The Charpy impact test is generally used as the evaluation standard for the low temperature toughness, but the NRL drop weight test is specified as a standard for further evaluating the brittle crack propagation stop characteristic in ASTM. Particularly in recent years, as the service temperature is lowered, the required temperature in the NRL drop weight test has been lowered, and the demand for improving the NRL drop weight characteristic for steel sheets has also increased.
ところで、低温靭性を改善するには、従来からNiの添加が有効であることが知られている。しかし、Niは高価な元素であり、原料コストの上昇を招くため、Ni添加量をできるだけ低く抑えた上で、必要なNRL落重特性を満たすことが望まれている。 By the way, in order to improve the low-temperature toughness, it has been conventionally known that addition of Ni is effective. However, since Ni is an expensive element and causes an increase in raw material cost, it is desired to satisfy the necessary NRL drop weight characteristics while keeping the amount of Ni added as low as possible.
引張強さTSが570MPa以上、720MPa以下で、かつ、Niを多量に含まない、NRL落重特性に優れた調質型高強度鋼板としては、例えば、特許文献1には、C:0.08〜0.16mass%、Ni:0.15〜0.60mass%、NbおよびBを必須添加元素とし、ミクロ組織を下部ベイナイト組織とすることで、NRL落重特性を向上させた板厚40mm〜80mmの鋼板が開示されている。
As a tempered high-strength steel sheet having a tensile strength TS of 570 MPa or more and 720 MPa or less and not containing a large amount of Ni and having excellent NRL drop weight characteristics, for example, Patent Document 1 discloses C: 0.08. ~ 0.16 mass%, Ni: 0.15 to 0.60 mass%, Nb and B are essential additive elements, and the microstructure is a lower bainite structure, thereby improving the NRL
また、特許文献2には、C:0.04〜0.08mass%、Ni:0.05〜0.60mass%、NbおよびBを実質的に無添加とした調質型600MPa級鋼板において、ミクロ組織を焼戻しベイナイトおよび/または焼戻しマルテンサイトとすることで、応力除去焼鈍(PWHT:Post Weld Heat Treatment)後の落重特性を向上させた板厚80mm以下の鋼板が開示されている。 In Patent Document 2, C: 0.04 to 0.08 mass%, Ni: 0.05 to 0.60 mass%, a tempered 600 MPa grade steel plate substantially free of Nb and B, A steel sheet having a thickness of 80 mm or less is disclosed in which the drop weight characteristic after post-weld heat treatment (PWHT) is improved by using tempered bainite and / or tempered martensite as the structure.
また、特許文献3には、C:0.1〜0.16mass%、Ni:0.6mass%以下、B:0.0005〜0.002mass%を添加し、F=9.4×[Mo]+8.1×[V]+4.7×[Cr]からなるF値を3.20以上4.50以下とし、15°以上の大角粒界で囲まれた結晶粒の平均円相当径が4μm以下の焼戻しベイナイト組織とすることで落重特性を向上させた板厚80mm以上の鋼板が開示されている。 Further, Patent Document 3 includes C: 0.1 to 0.16 mass%, Ni: 0.6 mass% or less, and B: 0.0005 to 0.002 mass%, and F = 9.4 × [Mo]. The F value consisting of + 8.1 × [V] + 4.7 × [Cr] is 3.20 or more and 4.50 or less, and the average equivalent circle diameter of crystal grains surrounded by a large-angle grain boundary of 15 ° or more is 4 μm or less. A steel sheet having a thickness of 80 mm or more with improved drop weight characteristics by using a tempered bainite structure is disclosed.
また、特許文献4には、C:0.03〜0.150mass%、Ni:2mass%以下を含有し、ミクロ組織を、ベイナイトの面積率が90%以上で、ベイナイトのラス幅の平均値が3.5μm以下、ベイナイト中の島状マルテンサイトの円相当径の最大値が3.0μm以下とすることで、落重特性を向上させた板厚50mm以上の鋼板が開示されている。 Patent Document 4 contains C: 0.03 to 0.150 mass%, Ni: 2 mass% or less, and has a microstructure with an area ratio of bainite of 90% or more and an average value of bainite lath width. A steel sheet having a thickness of 50 mm or more with improved drop weight characteristics is disclosed by setting the maximum equivalent circle diameter of island martensite in bainite to 3.5 μm or less and 3.0 μm or less.
しかしながら、上記特許文献1および2に開示の技術は、記載されている落重特性TNDTは、−30℃〜−50℃程度であり、近年の低温化したNRL落重特性に対する要求(TNDT≦−55℃)を満足することはできない。また、特許文献3に開示の技術は、板厚80mm以上の厚肉材を対象としており、焼入時の冷却速度が遅い厚肉材においては、良好な落重特性が得られるが、C含有量が0.10mass%以上と高いために、板厚40〜60mm程度の鋼板に適用した場合には、マルテンサイト主体の組織となり、落重特性の低下が懸念される。また、特許文献4に開示の技術は、板厚50mm以上、特に100mmの鋼板を対象としていることから、鋼板のミクロ組織は島状マルテンサイトを含む上部ベイナイト組織を主体とした組織となるため、その上部ベイナイト中の島状マルテンサイトを小さくするために、焼戻しを2回実施することが必須となっているため、製造コストが高いという問題がある。 However, in the techniques disclosed in Patent Documents 1 and 2, the drop weight characteristic T NDT described is about −30 ° C. to −50 ° C., and the recent demand for NRL drop weight characteristics (T NDT) ≦ −55 ° C.) cannot be satisfied. In addition, the technique disclosed in Patent Document 3 is intended for thick materials with a plate thickness of 80 mm or more, and in thick materials with a slow cooling rate during quenching, good drop weight characteristics can be obtained. Since the amount is as high as 0.10 mass% or more, when it is applied to a steel plate having a thickness of about 40 to 60 mm, it becomes a martensite-based structure, and there is a concern that the drop weight characteristic may be deteriorated. In addition, since the technique disclosed in Patent Document 4 is intended for a steel sheet having a thickness of 50 mm or more, particularly 100 mm, the microstructure of the steel sheet is a structure mainly composed of an upper bainite structure including island martensite. In order to reduce the island-like martensite in the upper bainite, it is essential to perform tempering twice, so that there is a problem that the manufacturing cost is high.
また、近年では、設計温度の低温化により、NRL落重試験のTNDTとして、安全代を考慮し−55℃以下が要求されるようになってきている。そのため、従来技術では、焼入−焼戻処理を施す調質型600MPa級で、板厚100mm以下の厚鋼板において、多量のNi添加を必要とすることなく、脆性亀裂伝播停止特性、即ち、NRL落重試験のTNDTを−55℃以下とすることは難しいのが実情であった。
In recent years, by lowering the design temperature, as T NDT of NRL drop weight test, have come to consider the safety margin is -55 ° C. or less is required. Therefore, in the prior art, a
本発明は、従来技術が抱える上記問題点に鑑みてなされたものであり、その目的は、Niを多量に添加することなく、引張強さTSが570MPa以上、720MPa以下、かつ、NRL落重試験のTNDTが−55℃以下で、板厚100mm以下の厚鋼板を提供するとともに、その有利な製造方法を提案することにある。 The present invention has been made in view of the above-described problems of the prior art, and the purpose thereof is to add a large amount of Ni, and have a tensile strength TS of 570 MPa or more and 720 MPa or less, and an NRL drop weight test. In addition to providing a thick steel plate having a TNDT of −55 ° C. or less and a plate thickness of 100 mm or less, an advantageous manufacturing method thereof is proposed.
発明者らは、上記課題の解決に向けて鋭意研究を重ねた。その結果、所定の成分組成を有する鋼素材(スラブ)を、適正条件下で100mm以下に熱間圧延した後、焼入れ−焼戻し処理して厚鋼板を製造する際、焼入後の引張強さTSを850MPa以上、1100MPa以下に制御した後、適切な温度で焼戻し、ミクロ組織を焼戻し下部ベイナイトおよび焼戻しマルテンサイトとすることで、引張強さTSが570MPa以上、720MPa以下で、かつ、NRL落重試験のTNDTが−55℃以下の脆性亀裂伝播停止特性に優れた厚鋼板を得ることができることを見出し、本発明を開発するに至った。 The inventors have intensively studied to solve the above problems. As a result, when a steel material (slab) having a predetermined component composition is hot-rolled to 100 mm or less under appropriate conditions and then quenched and tempered to produce a thick steel plate, the tensile strength TS after quenching Is controlled to 850 MPa or more and 1100 MPa or less, then tempered at an appropriate temperature, and the microstructure is tempered lower bainite and tempered martensite, so that the tensile strength TS is 570 MPa or more and 720 MPa or less, and the NRL drop weight test As a result, it was found that a thick steel plate excellent in brittle crack propagation stopping characteristics having a TNDT of −55 ° C. or lower can be obtained, and the present invention has been developed.
上記知見に基づく本発明は、C:0.05〜0.15mass%、Si:0.05〜0.60mass%、Mn:0.8〜1.8mass%、P:0.020mass%以下、S:0.005mass%以下、Al:0.005〜0.080mass%、N:0.0005〜0.0050mass%を含有し、さらに、Cu:0.50mass%以下、Ni:1.50mass%以下、Cr:0.50mass%以下、Mo:0.40mass%以下、V:0.07mass%以下およびB:0.0003〜0.0020mass%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、下記(1)式;
Ceq(mass%)=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
で定義されるC当量Ceq(mass%)が0.36〜0.55で、下記(2)式;
DI*=8.2×(C)0.5×(0.7Si+1)×fMn×(0.35Cu+1)×(0.36Ni+1)×(2.16Cr+1)×(3.00Mo+1)×(1.75V+1)×fB ・・・(2)
ただし、fMn=3.33Mn+1 (Mn≦1.2mass%の場合)
fMn=(Mn−1.2)×5.1+5 (Mn>1.2mass%の場合)
fB=1.3 (B≧0.0003mass%の場合)
fB=1.0 (B<0.0003mass%の場合)
で定義されるDI*値が65以上であり、さらに、板厚1/4位置におけるミクロ組織が焼戻し下部ベイナイトおよび焼戻しマルテンサイト組織からなり、かつ、引張強さが570MPa以上、720MPa以下で、板厚1/4位置におけるNRL落重試験のTNDTが−55℃以下であることを特徴とする船舶用、海洋構造物用および水圧鉄管用厚鋼板である。
Based on the above findings, the present invention provides C: 0.05 to 0.15 mass%, Si: 0.05 to 0.60 mass%, Mn: 0.8 to 1.8 mass%, P: 0.020 mass% or less, S : 0.005 mass% or less, Al: 0.005 to 0.080 mass%, N: 0.0005 to 0.0050 mass%, Cu: 0.50 mass% or less, Ni: 1.50 mass% or less, Cr: 0.50 mass% or less, Mo: 0.40 mass% or less, V: 0.07 mass% or less, and B: 0.0003 to 0.0020 mass%, or one or more selected from the balance, and the balance Has a component composition consisting of Fe and inevitable impurities, the following formula (1):
C eq (mass%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
The C equivalent C eq (mass%) defined by the formula is 0.36 to 0.55, and the following formula (2):
DI * = 8.2 × (C) 0.5 × (0.7Si + 1) × fMn × (0.35Cu + 1) × (0.36Ni + 1) × (2.16Cr + 1) × (3.00Mo + 1) × (1.75V + 1) ) × fB (2)
However, fMn = 3.33Mn + 1 (when Mn ≦ 1.2 mass%)
fMn = (Mn−1.2) × 5.1 + 5 (in the case of Mn> 1.2 mass%)
fB = 1.3 (when B ≧ 0.0003 mass%)
fB = 1.0 (when B <0.0003 mass%)
The DI * value defined by the above is 65 or more, and the microstructure at the ¼ thickness position is composed of tempered lower bainite and tempered martensite structure, and the tensile strength is 570 MPa or more and 720 MPa or less, marine where T NDT of NRL drop weight test at a thickness 1/4 position, characterized in that at -55 ° C. or less, a steel plate for use and penstock marine structure.
本発明の上記厚鋼板は、上記成分組成に加えてさらに、Nb:0.030mass%以下、Ti:0.030mass%以下、Ca:0.0040mass%以下、REM:0.010mass%以下、W:0.40mass%以下、Co:0.50mass%以下、Mg:0.005mass%以下およびZr:0.02mass%以下のうちから選ばれる1種または2種以上を含有することを特徴とする。 In addition to the above component composition, the thick steel plate of the present invention further includes Nb: 0.030 mass% or less, Ti: 0.030 mass% or less, Ca: 0.0040 mass% or less, REM: 0.010 mass% or less, W: It contains one or more selected from 0.40 mass% or less, Co: 0.50 mass% or less, Mg: 0.005 mass% or less, and Zr: 0.02 mass% or less.
また、本発明の上記厚鋼板は、板厚1/4位置における方位差角が15度以上の大角粒界で囲まれた結晶粒の円相当径の平均値が5μm以下であり、旧オーステナイト粒の平均粒径が30μm以下で、そのバラツキσが15μm以下であることを特徴とする。 In the thick steel plate of the present invention, the average equivalent circle diameter of crystal grains surrounded by a large-angle grain boundary having a misorientation angle of 15 degrees or more at a 1/4 thickness position is 5 μm or less, and prior austenite grains The average particle size of the material is 30 μm or less, and the variation σ is 15 μm or less.
また、本発明は、上記に記載の成分組成からなるスラブを熱間圧延し、その後、再加熱時のAc1変態点〜Ac3変態点までの温度域での板厚1/4t位置での加熱速度が1〜30℃/minで加熱し、Ac3変態点〜(Ac3変態点+70℃)の温度に再加熱後、焼入れする焼入処理を1回以上施した後、550〜700℃の温度で焼戻処理を施して、板厚1/4位置におけるミクロ組織が焼戻し下部ベイナイトおよび焼戻しマルテンサイト組織からなり、かつ、引張強さが570MPa以上、720MPa以下、板厚1/4位置におけるNRL落重試験のT NDT が−55℃以下の厚鋼板を得ることを特徴とする船舶用、海洋構造物用および水圧鉄管用厚鋼板の製造方法を提案する。 Further, the present invention is a slab formed from a component composition according to the hot-rolled, then, in the thickness 1 / 4t position in the temperature range up to Ac 1 transformation point to Ac 3 transformation point at the time of re-heating After heating at a heating rate of 1 to 30 ° C./min and reheating to a temperature of Ac 3 transformation point to (Ac 3 transformation point + 70 ° C.), quenching is performed at least once, and then 550 to 700 ° C. provide Reinforced tempered at a temperature, the microstructure in the sheet thickness 1/4 position consists tempered lower bainite and tempered martensite structure, and a tensile strength of more than 570 MPa, 720 MPa or less, the sheet thickness 1/4 position T NDT of NRL drop weight test in proposes a marine manufacturing method of offshore structures and for penstock for steel plate, characterized in that to obtain the following steel plate -55 ° C..
本発明の上記厚鋼板の製造方法は、板厚1/4位置における焼入れままの引張強さを850MPa以上1100MPa以下とすることを特徴とする。 The method for producing a thick steel plate according to the present invention is characterized in that the tensile strength as-quenched at a ¼ position of the plate thickness is 850 MPa to 1100 MPa.
本発明によれば、引張強さが570MPa以上、720MPa以下の高い強度を有するとともに、NRL落重試験におけるTNDTが−55℃以下の脆性亀裂伝播停止特性に優れる船舶用、海洋構造物用および水圧鉄管用の厚鋼板を安定して供給することが可能となる。 According to the present invention, the tensile strength of more than 570 MPa, which has the following high strength 720 MPa, for vessels T NDT in NRL drop weight test is excellent in brittle crack propagation stop characteristics of -55 ° C. or less, and for marine structures It is possible to stably supply a thick steel plate for a hydraulic iron pipe.
まず、本発明が開発目標とする厚鋼板について説明する。
本発明は、調質型600MPa級鋼に対応する、引張強さTSが570MPa以上、720MPa以下で、かつ、船級規格などで求められる昨今における設計温度の低温化に対応し、NRL落重試験における無延性遷移温度TNDTが−55℃以下の低温靭性特性(脆性亀裂伝播停止特性)を有する厚鋼板の開発を目標とする。ここで、本発明における上記TNDTとは、ASTM E208に規定されたNRL落重試験における無延性遷移温度(NDT温度:nil-ductility transition temperature)のことを意味する。
First, the thick steel plate that is the development target of the present invention will be described.
The present invention corresponds to a tempered 600 MPa class steel, has a tensile strength TS of 570 MPa or more and 720 MPa or less, and corresponds to the recent lowering of the design temperature required by ship class standards, etc. The goal is to develop a thick steel plate having low-temperature toughness characteristics (brittle crack propagation stopping characteristics) with a non-ductile transition temperature T NDT of −55 ° C. or less. Here, the above-mentioned T NDT in the present invention, non-ductile transition temperature in NRL drop weight test as specified in ASTM E208 (NDT Temperature: nil-ductility transition temperature) means that.
次に、本発明を開発するに至った実験について説明する。
発明者らは、上記の高強度で優れた脆性亀裂伝播停止特性を有する鋼を開発するため、C:0.04〜0.20mass%、Ni:1.50mass%以下を含有する鋼に、さらに、Si,Mn,Cu,Cr,MoおよびVを添加し、下記(1)式;
Ceq(mass%)=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
で定義されるC当量Ceq(mass%)を、0.35〜0.55mass%の範囲に揃えた各種成分組成の鋼を実験室的に溶製し、熱間圧延して厚さが25mmの厚鋼板とした後、再加熱し、2℃/s以上の種々の冷却速度で焼入れ処理した。この焼入後の鋼板について、引張試験を行い、引張強さTSを測定するとともに、光学顕微鏡および走査型電子顕微鏡を用いてミクロ組織を観察した。
次いで、上記焼入後の厚鋼板を、550〜700℃の温度で焼き戻し処理し、焼き戻し後の引張強さTSが570〜720MPaの調質型600MPa級厚鋼板を得た。
斯くして得た厚鋼板について、ASTM規格 A370に準拠し、C方向に試験片を採取し、A370に準拠してシャルピー衝撃試験を行い、破面遷移温度vTrsを測定するとともに、ASTM E208に準拠して、P−3試験片(厚さ16mm×幅50mm×長さ130mm)をC方向に採取し、落重試験を行い、無延性遷移温度TNDTを求めた。
Next, the experiment that led to the development of the present invention will be described.
In order to develop a steel having the above-described high strength and excellent brittle crack propagation stopping characteristics, the inventors further added a steel containing C: 0.04 to 0.20 mass%, Ni: 1.50 mass% or less, , Si, Mn, Cu, Cr, Mo and V are added, and the following formula (1):
C eq (mass%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
C equivalent C eq (mass%) defined in the above is melted in a laboratory with steel having various component compositions in the range of 0.35 to 0.55 mass%, and the thickness is 25 mm by hot rolling. Then, the steel plate was reheated and quenched at various cooling rates of 2 ° C./s or higher. The quenched steel sheet was subjected to a tensile test to measure the tensile strength TS, and the microstructure was observed using an optical microscope and a scanning electron microscope.
Subsequently, the quenched steel plate was tempered at a temperature of 550 to 700 ° C. to obtain a tempered 600 MPa class thick steel plate having a tensile strength TS of 570 to 720 MPa after tempering.
About the thick steel plate thus obtained, in accordance with ASTM standard A370, a test piece is taken in the C direction, a Charpy impact test is performed in accordance with A370, the fracture surface transition temperature vTrs is measured, and in accordance with ASTM E208. Then, a P-3 test piece (thickness 16 mm × width 50 mm × length 130 mm) was sampled in the C direction, a drop weight test was performed, and a non-ductile transition temperature T NDT was obtained.
図1は、焼入れ後の引張強さTSおよびミクロ組織と、焼き戻し後の落重試験におけるTNDTとの関係を模式的に示したものである。この図から、焼き入れ性を高めて焼入れ後の引張強さTSを850MPa以上、1100MPa以下、鋼のミクロ組織を下部ベイナイトおよびマルテンサイトとした後、焼戻して引張強さTSを570MPa以上、720MPa以下とした場合にのみ、焼戻し後の落重試験における無延性遷移温度TNDTを−55℃以下にすることができることがわかる。
本発明は、上記の新規な知見に基づいて開発したものである。
Figure 1 differs from that of the tensile strength TS and microstructure after quenching, the relationship between T NDT in drop weight test after tempering is shown schematically. From this figure, the hardenability is increased to a tensile strength TS after quenching of 850 MPa or more and 1100 MPa or less, and the steel microstructure is changed to lower bainite and martensite, and then tempered to obtain a tensile strength TS of 570 MPa or more and 720 MPa or less. It can be seen that only in this case, the non-ductile transition temperature T NDT in the drop weight test after tempering can be set to −55 ° C. or lower.
The present invention has been developed based on the above novel findings.
次に、本発明の厚鋼板の成分組成を限定する理由について説明する。
C:0.05〜0.15mass%
Cは、鋼の焼入性および強度を確保するために必須の元素であり、Ceqが0.50以下の成分組成で、焼入後の引張強さを850MPa以上とするためには、0.05mass%以上含有させる必要がある。一方、0.15mass%を超えて添加すると、母材と溶接熱影響部の靭性低下、および、溶接性の低下を招く。よって、Cの含有量は0.05〜0.15mass%の範囲とする。好ましくは0.055〜0.12mass%の範囲であり、より好ましくは0.075〜0.10mass%の範囲である。
Next, the reason which limits the component composition of the thick steel plate of this invention is demonstrated.
C: 0.05-0.15 mass%
C is an essential element for ensuring the hardenability and strength of the steel. The component composition of C eq is 0.50 or less, and in order to set the tensile strength after quenching to 850 MPa or more, 0 .05 mass% or more must be contained. On the other hand, if added in excess of 0.15 mass%, the toughness of the base metal and the weld heat-affected zone and the weldability are reduced. Therefore, the C content is in the range of 0.05 to 0.15 mass%. Preferably it is the range of 0.055-0.12 mass%, More preferably, it is the range of 0.075-0.10 mass%.
Si:0.05〜0.60mass%
Siは、鋼の脱酸剤として添加される元素である。また、固溶強化によって鋼の強度を高めるのに有効な元素でもある。上記の効果を得るためには、0.05mass%以上含有させる必要がある。一方、0.60mass%を超えて添加すると、溶接熱影響部の靭性が低下する。よって、Siの含有量は0.05〜0.60mass%の範囲とする。好ましくは0.10〜0.40mass%の範囲である。
Si: 0.05-0.60 mass%
Si is an element added as a deoxidizer for steel. It is also an effective element for increasing the strength of steel by solid solution strengthening. In order to acquire said effect, it is necessary to contain 0.05 mass% or more. On the other hand, if added over 0.60 mass%, the toughness of the weld heat affected zone decreases. Therefore, the Si content is in the range of 0.05 to 0.60 mass%. Preferably it is the range of 0.10-0.40 mass%.
Mn:0.8〜1.8mass%
Mnは、鋼の脱酸剤として添加される元素である。また、鋼の焼入れ性を向上し、強度を高めるのに有効な元素でもある。上記効果を得るためには、0.8mass%以上含有させる必要がある。一方、1.8mass%を超えて添加すると、溶接性や溶接熱影響部の靭性を低下させる。よって、Mnの含有量は0.8〜1.8mass%の範囲とする。好ましくは1.2〜1.6mass%の範囲である。
Mn: 0.8 to 1.8 mass%
Mn is an element added as a deoxidizer for steel. It is also an element effective in improving the hardenability of steel and increasing its strength. In order to acquire the said effect, it is necessary to make it contain 0.8 mass% or more. On the other hand, if added over 1.8 mass%, the weldability and the toughness of the heat affected zone are reduced. Therefore, the Mn content is in the range of 0.8 to 1.8 mass%. Preferably it is the range of 1.2-1.6 mass%.
P:0.020mass%以下
Pは、鋼中に不可避的に混入し、焼戻し後の冷却中や、溶接後の応力除去焼鈍(PWHT)の徐冷過程で、旧オーステナイト粒界に偏析して粒界脆化を助長し、落重特性を低下させる。そのため、Pの含有量は極力低減することが望ましいが、0.020mass%以下であれば、粒界脆化を防止することができる。よって、本発明では、Pの含有量を0.020mass%以下に制限する。好ましくは0.015mass%以下である。より好ましくは0.010mass%以下である。
P: 0.020 mass% or less P is inevitably mixed in steel and segregates in the prior austenite grain boundaries during cooling after tempering or in the annealing process of stress relief annealing (PWHT) after welding. It promotes interfacial embrittlement and reduces the falling weight characteristics. Therefore, it is desirable to reduce the content of P as much as possible, but if it is 0.020 mass% or less, grain boundary embrittlement can be prevented. Therefore, in the present invention, the P content is limited to 0.020 mass% or less. Preferably it is 0.015 mass% or less. More preferably, it is 0.010 mass% or less.
S:0.005mass%以下
Sは、鋼中に不可避的に混入し、鋼中にMnSなどの硫化物系介在物として存在し、靱性を低下させる元素であるため、極力低減することが望ましい。そこで、本発明においては、落重特性を確保するため、Sの含有量を0.005mass%以下に制限する。好ましくは0.003mass%以下、より好ましくは0.002mass%以下、さらに好ましくは0.001mass%以下である。
である。
S: 0.005 mass% or less S is an element that is inevitably mixed in steel and exists as sulfide inclusions such as MnS in the steel, and is an element that lowers toughness. Therefore, it is desirable to reduce it as much as possible. Therefore, in the present invention, the S content is limited to 0.005 mass% or less in order to ensure the falling weight characteristic. Preferably it is 0.003 mass% or less, More preferably, it is 0.002 mass% or less, More preferably, it is 0.001 mass% or less.
It is.
Al:0.005〜0.080mass%
Alは、脱酸元素として添加される元素であり、また、AlNによる焼入れ加熱時の結晶粒の微細化を通じて靭性向上に寄与する有用な元素である。これらの効果を発現させるためには、0.005mass%以上含有させる必要がある。一方、0.080mass%を超えて添加すると、AlNの粗大化による結晶粒粗大化に起因した母材靭性低下や溶接熱部の靭性低下という問題を引き起こす。よって、Alの含有量は0.005〜0.080mass%の範囲とする。好ましくは0.020〜0.060mass%の範囲である。
Al: 0.005-0.080 mass%
Al is an element added as a deoxidizing element, and is a useful element that contributes to improving toughness through refinement of crystal grains during quenching heating with AlN. In order to express these effects, it is necessary to contain 0.005 mass% or more. On the other hand, if it is added in excess of 0.080 mass%, it causes a problem that the base metal toughness is reduced due to the coarsening of the crystal grains due to the coarsening of AlN and the toughness of the welded hot zone is reduced. Therefore, the Al content is in the range of 0.005 to 0.080 mass%. Preferably it is the range of 0.020-0.060mass%.
N:0.0005〜0.0050mass%
Nは、AlとAlNを形成し、焼入れ加熱時のオーステナイト粒を微細化することによって、鋼の靱性向上に有効に寄与する。上記効果を得るためには0.0005mass%以上含有させることが必要である。しかし、0.0050mass%を超えて添加すると、溶接部の靱性低下を招く。よって、Nの含有量は0.0005〜0.0050mass%の範囲とする。好ましくは0.0010〜0.0040mass%の範囲である。
N: 0.0005 to 0.0050 mass%
N contributes effectively to improving the toughness of the steel by forming Al and AlN and refining the austenite grains during quenching heating. In order to acquire the said effect, it is necessary to contain 0.0005 mass% or more. However, if added over 0.0050 mass%, the toughness of the welded portion is reduced. Therefore, the N content is in the range of 0.0005 to 0.0050 mass%. Preferably it is the range of 0.0010-0.0040 mass%.
本発明の厚鋼板は、上記の成分に加えて、下記Cu,Ni,Cr,Mo,VおよびBのうちから選ばれる1種または2種以上の含有を必要とする。
Cu:0.50mass%以下
Cuは、固溶強化により鋼の強度を高めるのに有用な元素である。しかし、0.50mass%を超えて添加すると、熱間圧延時のCu割れを起こすおそれがある。よって、Cuの含有量は0.50mass%以下とする。好ましくは0.01〜0.40mass%の範囲である。
In addition to the above components, the thick steel plate of the present invention needs to contain one or more selected from the following Cu, Ni, Cr, Mo, V and B.
Cu: 0.50 mass% or less Cu is an element useful for increasing the strength of steel by solid solution strengthening. However, if added over 0.50 mass%, Cu cracks may occur during hot rolling. Therefore, the Cu content is 0.50 mass% or less. Preferably it is the range of 0.01-0.40 mass%.
Ni:1.50mass%以下
Niは、Cuと同様、固溶強化元素として有用な元素である他、低温靱性の向上にも有用な元素である。しかし、1.50mass%を超えて添加すると、原料コストの上昇を招いたり、スラブ割れを起こして生産性を阻害したりする。よって、Niの含有量は1.50mass%以下とする。好ましくは0.01〜1.20mass%、より好ましくは0.01〜1.00mass%の範囲である。
Ni: 1.50 mass% or less Ni, as well as Cu, is an element useful as a solid solution strengthening element and an element useful for improving low-temperature toughness. However, if it is added in excess of 1.50 mass%, the raw material cost is increased, or slab cracking is caused to hinder productivity. Therefore, the Ni content is 1.50 mass% or less. Preferably it is 0.01-1.20 mass%, More preferably, it is the range of 0.01-1.00 mass%.
Cr:0.50mass%以下
Crは、焼入れ性を向上して鋼の強度を高めるとともに、焼戻しやPWHT後の強度を確保するために有用な元素である。しかし、0.50mass%を超えて添加すると、溶接性を低下させるとともに、PWHT後の靱性が著しく低下する。よって、Crの含有量は0.50mass%以下の範囲とする。好ましくは0.01〜0.30mass%の範囲である。
Cr: 0.50 mass% or less Cr is an element useful for improving the hardenability and increasing the strength of the steel, and for ensuring the strength after tempering or PWHT. However, if added over 0.50 mass%, the weldability is lowered and the toughness after PWHT is significantly lowered. Therefore, the Cr content is set to a range of 0.50 mass% or less. Preferably it is the range of 0.01-0.30 mass%.
Mo:0.40mass%以下
Moは、焼入れ性を向上して鋼の強度を高めるとともに、靱性を確保するのに有用な元素である。また、Crと同様、焼戻しやPWHT後の強度確保に有用な元素である。しかし、0.40mass%を超えて添加すると、溶接性を低下させるとともに、原料コストの上昇を招く。よって、Moの含有量は0.40mass%以下の範囲とする。好ましくは0.01〜0.30mass%の範囲である。
Mo: 0.40 mass% or less Mo is an element useful for improving the hardenability and increasing the strength of the steel and ensuring toughness. Moreover, like Cr, it is an element useful for ensuring the strength after tempering or PWHT. However, if added over 0.40 mass%, the weldability is lowered and the raw material cost is increased. Therefore, the Mo content is set to a range of 0.40 mass% or less. Preferably it is the range of 0.01-0.30 mass%.
V:0.07mass%以下
Vは、鋼の焼入れ性を向上させる他、C,Nと炭窒化物を形成し、焼戻しやPWHT後の強度の確保に有用な元素である。しかし、0.07mass%を超えて添加すると、溶接性を低下させるとともに、炭窒化物析出による母材靱性の低下を招く。よって、Vの含有量は0.07mass%とする。好ましくは0.003〜0.06mass%の範囲である。
V: 0.07 mass% or less V is an element useful for improving the hardenability of steel, forming carbon and nitrides with C, N, and ensuring strength after tempering and PWHT. However, if added over 0.07 mass%, the weldability is lowered and the base material toughness is lowered due to carbonitride precipitation. Therefore, the content of V is set to 0.07 mass%. Preferably it is the range of 0.003-0.06 mass%.
B:0.0003〜0.0020mass%
Bは、極微量の添加量で焼入れ性を高め、ミクロ組織を下部ベイナイトやマルテンサイト組織にして、鋼の強度向上に有効に寄与する元素である。上記焼入れ性の向上効果を得るためには、0.0003mass%以上の添加を必要とする。一方、0.0020mass%を超えて添加しても、上記効果は飽和するだけである。よって、Bは0.0003〜0.0020mass%の範囲で添加する。好ましくは0.0005〜0.0015mass%の範囲である。
B: 0.0003 to 0.0020 mass%
B is an element that enhances the hardenability with a very small amount of addition and makes the microstructure lower bainite or martensite structure and contributes effectively to improving the strength of steel. In order to obtain the effect of improving the hardenability, addition of 0.0003 mass% or more is required. On the other hand, even if added over 0.0020 mass%, the above effect is only saturated. Therefore, B is added in the range of 0.0003 to 0.0020 mass%. Preferably it is the range of 0.0005-0.0015 mass%.
また、本発明の厚鋼板は、上記の成分組成を満たすことに加えて、下記(1)式;
Ceq(mass%)=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
で定義されるC当量Ceq(mass%)が、0.36〜0.55mass%の範囲であることが必要である。
Ceqが、0.36mass%以下では、焼入時の焼入性を確保できない上に、焼戻し後に600MPa級の強度を得ることが困難となる。一方、0.55mass%を超えると、母材および溶接熱影響部の靭性低下を招くからである。好ましくは0.40〜0.53mass%の範囲である。
Moreover, in addition to satisfy | filling said component composition, the thick steel plate of this invention has the following (1) formula;
C eq (mass%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
The C equivalent C eq (mass%) defined by the above is required to be in the range of 0.36 to 0.55 mass%.
When C eq is 0.36 mass% or less, hardenability at the time of quenching cannot be secured and it becomes difficult to obtain a strength of 600 MPa after tempering. On the other hand, if it exceeds 0.55 mass%, the toughness of the base metal and the weld heat affected zone will be reduced. Preferably it is the range of 0.40-0.53 mass%.
また、本発明の厚鋼板は、上記成分組成を満たすことに加えて、下記(2)式;
DI*=8.2×(C)0.5×(0.7Si+1)×fMn×(0.35Cu+1)×(0.36Ni+1)×(2.16Cr+1)×(3.00Mo+1)×(1.75V+1)×fB ・・・(2)
ただし、fMn=3.33Mn+1 (Mn≦1.2mass%の場合)
fMn=(Mn−1.2)×5.1+5 (Mn>1.2mass%の場合)
fB=1.3 (B≧0.0003mass%の場合)
fB=1.0 (B<0.0003mass%の場合)
で定義されるDI*値が65以上であることが必要である。
ここで、上記DI*値は、C当量Ceqと同様、焼入性を表す指標であり、文献(例えば、熱処理;vol.27,No.3,p.136)に記載されているDI式を用いて、実験結果から係数をフィッティングして求めた。DI*値が65未満では、焼入性を確保できないため、焼入後の引張強さが850MPa以上とならない上に、所望の下部ベイナイトおよびマルテンサイト組織とすることができないからである。
Moreover, in addition to satisfy | filling the said component composition, the thick steel plate of this invention has the following (2) formula;
DI * = 8.2 × (C) 0.5 × (0.7Si + 1) × fMn × (0.35Cu + 1) × (0.36Ni + 1) × (2.16Cr + 1) × (3.00Mo + 1) × (1.75V + 1) ) × fB (2)
However, fMn = 3.33Mn + 1 (when Mn ≦ 1.2 mass%)
fMn = (Mn−1.2) × 5.1 + 5 (in the case of Mn> 1.2 mass%)
fB = 1.3 (when B ≧ 0.0003 mass%)
fB = 1.0 (when B <0.0003 mass%)
It is necessary that the DI * value defined by is 65 or more.
Here, the above DI * value is an index representing hardenability like the C equivalent C eq, and the DI formula described in the literature (for example, heat treatment; vol. 27, No. 3, p. 136). Was used by fitting the coefficient from the experimental result. If the DI * value is less than 65, the hardenability cannot be ensured, the tensile strength after quenching does not become 850 MPa or more, and the desired lower bainite and martensite structure cannot be obtained.
本発明の厚鋼板は、上述した必須とする成分以外の残部は、Feおよび不可避的不純物であるが、鋼の強度や低温靭性を高めるため、上記成分に加えて、Nb,Ti,Ca,REM,W,Co,MgおよびZrのうちから選ばれる1種または2種以上を含有することができる。
Nb:0.030mass%以下
Nbは、Vと同様、C,Nと炭窒化物を形成し、鋼の強度を高める元素である。また、焼入れ時のオーステナイト粒微細化を通じて靭性の向上にも有効に寄与する元素でもある。しかし、PWHTを施す場合には、Nb炭窒化物の析出による脆化が大きく、特に溶接熱影響部の靭性低下が著しいため、0.030mass%を上限として添加するのが好ましい。
In the thick steel plate of the present invention, the balance other than the essential components described above is Fe and inevitable impurities, but in order to increase the strength and low temperature toughness of the steel, in addition to the above components, Nb, Ti, Ca, REM , W, Co, Mg, and Zr can be included.
Nb: 0.030 mass% or less Nb, like V, is an element that forms carbonitrides with C and N and increases the strength of steel. It is also an element that contributes effectively to improving toughness through austenite grain refinement during quenching. However, when PWHT is applied, embrittlement due to precipitation of Nb carbonitride is large, and particularly the toughness of the weld heat-affected zone is markedly reduced. Therefore, it is preferable to add 0.030 mass% as the upper limit.
Ti:0.030mass%以下
Tiは、C,Nと炭窒化物を形成し、オーステナイト粒の微細化を通じて靭性を向上するのに有効な元素であるので添加することができる。しかし、0.030mass%を超えて添加すると、析出脆化を起こすようになるため、0.030mass%以下として添加するのが好ましい。
Ti: 0.030 mass% or less Ti is an element that forms carbonitride with C and N, and is effective in improving toughness through refinement of austenite grains, and therefore can be added. However, if added over 0.030 mass%, precipitation embrittlement occurs. Therefore, it is preferable to add 0.030 mass% or less.
Ca:0.0040mass%以下
Caは、硫化物(MnS)の形態を制御し、母材の低温靱性や異方性の改善、耐水素誘起割れ性の向上ならびに再熱割れ(応力除去焼鈍時に発生する割れ)の抑制に効果を発揮する有用な元素である。しかし、0.0040mass%を超える添加は、Caオキシサルファイド(介在物)を生成し、低温靱性や清浄度を害するようになる。よって、Caの含有量は0.0040mass%以下の範囲で添加するのが好ましい。
Ca: 0.0040 mass% or less Ca controls the form of sulfide (MnS), improves the low-temperature toughness and anisotropy of the base material, improves resistance to hydrogen-induced cracking, and reheat cracking (occurs during stress relief annealing) It is a useful element that is effective in suppressing cracking. However, addition exceeding 0.0040 mass% produces Ca oxysulfide (inclusions), and harms low temperature toughness and cleanliness. Therefore, the Ca content is preferably added in the range of 0.0040 mass% or less.
REM:0.010mass%
REMは、Caと同様、硫化物(MnS)の形態制御、母材の低温靱性や異方性の改善、耐水素誘起割れ性の向上ならびに再熱割れ抑制に有効な元素である。しかし、0.010mass%を超えて添加すると、低温靱性や清浄度が低下する。よって、REMの添加量は0.010mass%以下とするのが好ましい。
REM: 0.010 mass%
REM, like Ca, is an element effective for controlling the form of sulfide (MnS), improving low-temperature toughness and anisotropy of the base material, improving hydrogen-induced crack resistance, and suppressing reheat cracking. However, if added over 0.010 mass%, the low temperature toughness and cleanliness are reduced. Therefore, the amount of REM added is preferably 0.010 mass% or less.
W:0.40mass%以下
Wは、焼入れ性を向上して鋼の強度を高める元素であるが、0.40mass%を超えて添加すると、母材靭性を低下させる。よって、Wの添加量は0.40mass%以下とするのが好ましい。
W: 0.40 mass% or less W is an element that improves the hardenability and increases the strength of the steel, but if added over 0.40 mass%, the base metal toughness is reduced. Therefore, the amount of W added is preferably 0.40 mass% or less.
Co:0.50mass%以下
Coは、焼入れ性を向上して鋼の強度を高める元素であるが、0.50mass%を超えて添加すると母材靭性を低下させる。よって、Coの添加量は0.50mass%以下とするのが好ましい。
Co: 0.50 mass% or less Co is an element that improves the hardenability and increases the strength of the steel, but if added in excess of 0.50 mass%, the base metal toughness is reduced. Therefore, the amount of Co added is preferably 0.50 mass% or less.
Mg:0.005mass%以下
Mgは、酸化物が分散することによって、溶接熱影響部の靭性改善に寄与する元素であるが、0.005mass%を超えて添加すると、却って母材靭性や溶接熱影響部靭性を低下させる。よって、Mgの添加量は0.005mass%以下とするのが好ましい。
Mg: 0.005 mass% or less Mg is an element that contributes to improving the toughness of the weld heat-affected zone by dispersing the oxide. However, if added over 0.005 mass%, the base metal toughness and welding heat are conversely added. Reduces affected area toughness. Therefore, the amount of Mg added is preferably 0.005 mass% or less.
Zr:0.02mass%以下
Zrは、酸化物が分散することによって、溶接熱影響部の靭性改善に寄与する元素であるが、0.02mass%を超えて添加すると、却って母材靭性や溶接熱影響部靭性を低下させる。よって、Zrの添加量は0.02mass%以下とするのが好ましい。
Zr: 0.02 mass% or less Zr is an element that contributes to the improvement of toughness of the weld heat affected zone due to the dispersion of oxides, but if added over 0.02 mass%, the base metal toughness and welding heat Reduces affected area toughness. Therefore, the amount of Zr added is preferably 0.02 mass% or less.
次に、本発明の厚鋼板の焼入れ−焼戻し後のミクロ組織について説明する。
本発明の厚鋼板の焼入れ−焼戻し後のミクロ組織は、焼戻し下部ベイナイトおよび焼戻しマルテンサイトであることが必要である。上記ミクロ組織とする理由は、低温靭性、特に、NRL落重特性を向上させるためには、脆性亀裂伝播における亀裂進展の抵抗となる有効結晶粒径(劈開破壊の破面単位)を微細化することが重要であるからである。なお、上記焼戻し下部ベイナイトおよび焼戻しマルテンサイト以外の他の組織は、本発明の作用効果を損なわない範囲、具体的には、10vol%以下であれば混在しても構わない。また、焼戻し後の本発明の厚鋼板では、島状マルテンサイトはセメンタイトに分解するため、基本的には存在してないが、0.5vol%以下であれば許容できる。
Next, the microstructure after quenching and tempering of the thick steel plate of the present invention will be described.
The microstructure after quenching and tempering of the thick steel plate of the present invention needs to be tempered lower bainite and tempered martensite. The reason for the microstructure is to refine the effective crystal grain size (fracture surface unit of cleavage fracture) that becomes resistance to crack propagation in brittle crack propagation in order to improve low-temperature toughness, especially NRL drop weight characteristics. Because it is important. In addition, the structure other than the tempered lower bainite and the tempered martensite may be mixed so long as the effect of the present invention is not impaired, specifically, 10 vol% or less. Moreover, in the thick steel plate of the present invention after tempering, island-like martensite is decomposed into cementite, and thus basically does not exist, but it is acceptable if it is 0.5 vol% or less.
また、本発明の厚鋼板の焼入れ−焼戻し後のミクロ組織は、電子後方散乱パターン(EBSP)で測定した15度以上の大角粒界で囲まれた結晶粒の円相当径の平均値が5μm以下であることが好ましい。ここで、上記15度以上の大角粒界とは、EBSPにより測定した方位差マッピンッグを基に、隣り合った結晶粒の粒界の方位差角を求め、その値が15度以上の粒界を意味する。EBSPで測定した15度以上の大角粒界で囲まれた結晶粒が小さいほど、結晶粒界への応力集中を低減することができるので、破壊に対する抵抗が高まり、低温靭性や落重特性が向上する。すなわち、上記15度以上の大角粒界で囲まれた結晶粒の平均粒径が5μmを超えると、粗大な粒を起点として破壊が生じ、靭性が低下するが、5μm以下にすることで、優れた落重特性(TNDT≦−55℃)が得られる。 Further, the microstructure after quenching and tempering of the thick steel plate of the present invention has an average equivalent circle diameter of 5 μm or less of crystal grains surrounded by large-angle grain boundaries of 15 degrees or more as measured by an electron backscattering pattern (EBSP). It is preferable that Here, the above-mentioned large-angle grain boundary of 15 degrees or more is based on the orientation mapping measured by EBSP, and the grain boundary angle between adjacent crystal grains is obtained, and the grain boundary whose value is 15 degrees or more is obtained. means. The smaller the crystal grain surrounded by a large-angle grain boundary of 15 degrees or more measured by EBSP, the more the stress concentration at the crystal grain boundary can be reduced, so the resistance to fracture increases and the low-temperature toughness and drop weight characteristics improve. To do. That is, when the average grain size of the crystal grains surrounded by the large-angle grain boundaries of 15 degrees or more exceeds 5 μm, breakage occurs starting from coarse grains and the toughness is reduced. The falling weight characteristic (T NDT ≦ −55 ° C.) is obtained.
さらに、旧オーステナイト粒径は、平均粒径を30μm以下とし、かつ、そのバラツキσを15μm以下とすることが必要である。旧オーステナイト粒径を30μmよりも小さくすることによって、下部ベイナイトおよびマルテンサイト組織のEBSPで測定した方位差角が15度以上の大角粒界で囲まれた結晶粒径を微細化することができ、落重特性が向上する。さらに、旧オーステナイト粒径のバラツキσを15μm以下にして粗大な粒を低減することにより、落重特性をより安定的に向上させることが可能となる。しかし、旧オーステナイト粒径が30μmを超える、または、そのバラツキが15μmを超えると、粗大なオーステナイト粒から変態した下部ベイナイトやマルテンサイトが粗大となり、それに伴って、有効結晶粒径も粗大となるので、落重特性が低下する。 Further, the prior austenite particle size needs to have an average particle size of 30 μm or less and a variation σ of 15 μm or less. By making the prior austenite grain size smaller than 30 μm, it is possible to refine the crystal grain size surrounded by large-angle grain boundaries with a misorientation angle measured by EBSP of the lower bainite and martensite structure of 15 degrees or more, Drop weight characteristics are improved. Furthermore, by reducing the coarse grain by setting the variation σ of the prior austenite grain size to 15 μm or less, it is possible to improve the falling weight characteristic more stably. However, if the prior austenite grain size exceeds 30 μm, or the variation exceeds 15 μm, the lower bainite and martensite transformed from coarse austenite grains become coarse, and the effective crystal grain size becomes coarse accordingly. , The falling weight characteristic is reduced.
ここで、上記粒界で囲まれた結晶粒の円相当径とは、上記粒界をトレースし、画像解析して求めた結晶粒の円相当径をいう。
また、旧オーステナイト粒径は、適切な腐食液を用いて、粒界を現出した組織を光学顕微鏡にて撮影した後、粒界をトレースし、画像解析して求めた円相当径をいい、画像解析により結晶粒の分布を統計的に解析して算出する。また、そのバラツキσは、標準偏差のことを意味する。
Here, the equivalent circle diameter of the crystal grain surrounded by the grain boundary means the equivalent circle diameter of the crystal grain obtained by tracing the grain boundary and analyzing the image.
In addition, the prior austenite grain size refers to the equivalent circle diameter obtained by tracing the grain boundary and analyzing the image after imaging the structure where the grain boundary appeared using an appropriate microscope using an optical microscope, The crystal grain distribution is statistically analyzed and calculated by image analysis. The variation σ means a standard deviation.
次に、本発明の厚鋼板の製造方法について説明する。
本発明の厚鋼板は、成分組成を前述した範囲に調整した鋼を溶製し、連続鋳造し、または、造塊後、分塊圧延して鋼素材(スラブ)とした後、再加熱し、熱間圧延して厚さが6〜100mmの厚鋼板とし、その後、焼入れ−焼戻し処理を施して製造する。
ここで、上記熱間圧延は、常法に準じて行えばよく、特に制限はない。例えば、スラブを1000〜1200℃の温度に再加熱した後、通常の熱間圧延を行えばよい。圧延後の冷却は、特に制限する必要はなく、空冷でも構わない。
Next, the manufacturing method of the thick steel plate of this invention is demonstrated.
The steel plate of the present invention is a steel material (slab) that has been prepared by melting steel whose component composition has been adjusted to the above-mentioned range, continuously casting, or ingoting, and then rolling it into a steel material (slab), and then reheating, Hot rolled to obtain a thick steel plate having a thickness of 6 to 100 mm, and then subjected to quenching-tempering treatment.
Here, the said hot rolling should just be performed according to a conventional method, and there is no restriction | limiting in particular. For example, after reheating the slab to a temperature of 1000 to 1200 ° C., normal hot rolling may be performed. The cooling after rolling need not be particularly limited, and may be air-cooled.
上記熱間圧延して得た厚鋼板は、その後、板厚1/4位置におけるAc1変態点〜Ac3変態点までの温度域を加熱速度で1〜30℃/minで加熱し、Ac3変態点〜(Ac3変態点+70℃)の温度域に再加熱した後、焼入れする焼入処理を1回以上施すことが必要である。
Ac1変態点〜Ac3変態点までの(フェライト+オーステナイト)2相域への加熱速度を30℃/min以下にする理由は、加熱速度が30℃/minを超えると、オーステナイトへの逆変態時に、オーステナイト粒径のバラツキが生じやすくなり、母材靭性低下に繋がるからである。一方、1℃/min未満では、昇温に要する時間が長くなり、生産性や製造コスト面で不利となる。
また、焼入れ温度が、Ac3変態点未満では、再加熱時に(オーステナイト+フェライト)の2相域になる上、オーステナイト粒径が小さくなって、焼入れが不十分となるため、所定の強度が得られない。一方、(Ac3変態点+70℃)を超えて加熱すると、オーステナイト粒径が粗大化して母材の靭性低下が著しくなり、落重特性も低下するからである。
The thick steel plate obtained by the above hot rolling is then heated at a heating rate of 1 to 30 ° C./min in the temperature range from the Ac 1 transformation point to the Ac 3 transformation point at the ¼ thickness position, and Ac 3 after reheating to a temperature range of transformation point ~ (Ac 3 transformation point + 70 ° C.), is a hardening process for hardening must be applied more than once.
The reason why the heating rate of the two-phase region from the Ac 1 transformation point to the Ac 3 transformation point is 30 ° C./min or less is that when the heating rate exceeds 30 ° C./min, reverse transformation to austenite is performed. This is because sometimes the austenite grain size is likely to vary, leading to a reduction in the base material toughness. On the other hand, when the temperature is less than 1 ° C./min, the time required for temperature increase becomes long, which is disadvantageous in terms of productivity and manufacturing cost.
If the quenching temperature is less than the Ac 3 transformation point, a two-phase region of (austenite + ferrite) is obtained during reheating, and the austenite grain size becomes small and quenching becomes insufficient. I can't. On the other hand, if the heating exceeds (Ac 3 transformation point + 70 ° C.), the austenite grain size becomes coarse, the toughness of the base material decreases significantly, and the drop weight characteristic also decreases.
なお、上記Ac1変態点、Ac3変態点の温度は、実測して求めてもよいが、次式で計算した値を用いることができる。
Ac1(℃)=751−27×C+18×Si−12×Mn−169×Al−23×Cu−23×Ni+24×Cr+23×Mo−40×V+233×Nb−6×Ti−895×B
Ac3(℃)=937−477×C+56×Si−20×Mn+198×Al−16×Cu−27×Ni−5×Cr+38×Mo+125×V−19×Nb+136×Ti+3315×B
(ただし、上記式中の各元素記号は、それぞれの元素の含有量(mass%))
Incidentally, the Ac 1 transformation point, the temperature of the Ac 3 transformation point can be determined by actually measuring it, it is possible to use a value determined by the following equation.
Ac 1 (° C.) = 751-27 × C + 18 × Si-12 × Mn-169 × Al-23 × Cu-23 × Ni + 24 × Cr + 23 × Mo-40 × V + 233 × Nb-6 × Ti-895 × B
Ac 3 (° C.) = 937-477 × C + 56 × Si-20 × Mn + 198 × Al-16 × Cu-27 × Ni-5 × Cr + 38 × Mo + 125 × V-19 × Nb + 136 × Ti + 3315 × B
(However, each element symbol in the above formula is the content of each element (mass%))
また、上記温度に再加熱した後の焼入れ条件は、板厚によって変化するが、2℃/s以上の冷却速度で水冷するのが好ましい。冷却速度が2℃/s未満では、焼入性が確保できず、所望の下部ベイナイトおよびマルテンサイト組織とすることができず、落重特性が低下するためである。
さらに、焼入れ処理の回数については、通常は1回で十分であるが、2回以上行い、オーステナイトへの変態とフェライトへの変態を繰り返すことで、焼入れ時のオーステナイト粒径が細粒化、整粒化するので、母材靭性を向上させる効果を得ることができるので好ましい。
Moreover, although the quenching conditions after reheating to the said temperature change with board thickness, it is preferable to water-cool with a cooling rate of 2 degrees C / s or more. When the cooling rate is less than 2 ° C./s, hardenability cannot be ensured, the desired lower bainite and martensite structure cannot be obtained, and the drop weight characteristic is lowered.
Furthermore, the number of times of quenching is usually sufficient, but it is performed twice or more, and by repeating the transformation to austenite and transformation to ferrite, the austenite grain size at the time of quenching is refined and adjusted. Since it granulates, since the effect which improves a base material toughness can be acquired, it is preferable.
上記焼入処理を施した厚鋼板は、その後、PWHTを実施する場合の強度低下を極力抑えることを考慮し、比較的高温の550〜700℃の温度で焼戻処理を施すことが必要である。焼戻し温度が550℃未満では、550℃以上温度でPWHTを行う場合の強度低下が大きく、所望の強度(TS:570MPa以上、720MPa以下)を安定して確保することができない。一方、700℃超えでは、焼戻し後に、上記所望の強度を確保することが難しくなるからである。なお、焼戻処理後の冷却は、空冷でも構わない。 The steel plate subjected to the above quenching treatment needs to be subjected to a tempering treatment at a relatively high temperature of 550 to 700 ° C. in consideration of minimizing the strength reduction when PWHT is performed thereafter. . When the tempering temperature is less than 550 ° C., the strength is greatly reduced when PWHT is performed at a temperature of 550 ° C. or higher, and a desired strength (TS: 570 MPa or higher, 720 MPa or lower) cannot be secured stably. On the other hand, when the temperature exceeds 700 ° C., it is difficult to ensure the desired strength after tempering. The cooling after the tempering process may be air cooling.
ここで、本発明において重要なことは、焼入れままの鋼板の板厚1/4位置での引張強さを850MPa以上、1100MPa以下に制御することである。上述した成分組成を有する板厚100mm以下の鋼板において、焼入後の板厚1/4位置の組織を下部ベイナイトおよびマルテンサイト組織とし、有効結晶粒径の微細化を通じて、落重特性を向上させるためには、焼入後の引張強度を850MPa以上1100MPa以下に制御することが必要である。850MPa未満では、焼入性が不十分で、上部ベイナイトやフェライトなどの組織が混在することになり、母材靭性、特に、落重特性が大きく低下する。一方、1100MPaを超えると落重特性が劣化するからである。焼入れままの引張強さは、より好ましくは900〜1050MPaの範囲である。 Here, what is important in the present invention is to control the tensile strength at ¼ position of the thickness of the as-quenched steel sheet to 850 MPa or more and 1100 MPa or less. In a steel sheet having a thickness of 100 mm or less having the above-described component composition, the structure at the quarter thickness position after quenching is the lower bainite and martensite structure, and the drop weight characteristics are improved through refinement of the effective crystal grain size. Therefore, it is necessary to control the tensile strength after quenching to 850 MPa or more and 1100 MPa or less. If it is less than 850 MPa, hardenability is inadequate and structures, such as an upper bainite and a ferrite, will be mixed, and base material toughness, especially a drop weight characteristic will fall large. On the other hand, when the pressure exceeds 1100 MPa, the drop weight characteristic deteriorates. The tensile strength as quenched is more preferably in the range of 900 to 1050 MPa.
なお、本発明は、板厚100mm以下の厚鋼板を適用の対象としているが、特に船舶や、海洋構造物、水圧鉄管等に用いられる厚鋼板の主要板厚である30〜80mm、中でも板厚が40〜70mmの厚鋼板において、優れた効果が得られる。 In addition, although this invention makes the object of application the thick steel plate of 100 mm or less in thickness, it is 30-80 mm which is the main plate thickness of the thick steel plate especially used for a ship, a marine structure, a hydraulic iron pipe, etc. In a thick steel plate having a thickness of 40 to 70 mm, an excellent effect is obtained.
表1に示した各種成分組成を有するNo.1〜43の鋼を溶製し、連続鋳造して厚さが310mmの鋼素材(スラブ)とした後、表2に示す種々の条件で熱間圧延(厚板圧延)した後、空冷して表2に示した板厚の厚鋼板(No.1〜48)とした。
次いで、上記厚鋼板を、同じく表2に示す種々の条件で、加熱炉で再加熱した後、水冷して焼入れし、引き続き、加熱炉で再加熱した後、空冷する焼戻し処理を施した。
No. having various component compositions shown in Table 1. Steels 1 to 43 were melted and continuously cast into a steel material (slab) having a thickness of 310 mm, then hot rolled (thick plate rolling) under various conditions shown in Table 2, and then air-cooled. Thick steel plates (Nos. 1 to 48) having the thicknesses shown in Table 2 were used.
Next, the thick steel plate was reheated in a heating furnace under various conditions, which are also shown in Table 2, and then water-cooled and quenched, and then reheated in a heating furnace and then air-cooled.
斯くして得た厚鋼板について、下記の試験に供した。
<ミクロ組織>
上記厚鋼板の圧延方向(L方向)から採取したサンプルの断面を研磨し、ナイタール液で腐食した後、板厚1/4位置において、光学顕微鏡および走査型電子顕微鏡を用いて組織観察を行い、金属組織相を特定した。
また、上記サンプルの同じ板厚1/4位置をEBSPで測定した方位差マッピンッグから、隣り合った結晶粒の粒界方位差が15度以上の粒界によって囲まれた結晶粒の粒界をトレースし、画像解析により円相当径を求め、平均結晶粒径を算出した。
<引張試験>
上記厚鋼板および焼入れ後の鋼板1/4位置から引張方向が圧延方向に直角な方向(C方向)となるようにASTM A370に規定された直径が12.7mm、GLが50.8mmの引張試験片を採取し、A370に準拠して引張試験を行い、降伏応力YSおよび引張強さTSを測定した。
<靭性の評価>
上記厚鋼板の板厚1/4位置から圧延方向に直角(C方向)となるように、ASTM A370に規定された2mmVノッチシャルピー衝撃試験片を採取し、A370に準拠してシャルピー衝撃試験を実施し、破面遷移温度(vTrs)を求めた。
<落重特性>
上記厚鋼板の板厚1/4位置から、ASTM E208に準拠して、圧延方向に直角(C方向)となるようにP−3試験片(厚さ16mm×幅50mm×長さ130mm)を採取し、落重試験を行い、無延性遷移温度TNDTを求めた。
The thick steel plate thus obtained was subjected to the following test.
<Microstructure>
After polishing the cross section of the sample taken from the rolling direction (L direction) of the thick steel plate and corroding with the nital solution, at the position of the plate thickness 1/4, the structure is observed using an optical microscope and a scanning electron microscope, A metallographic phase was identified.
In addition, from the orientation difference mapping measured by EBSP at the same plate thickness 1/4 position of the above sample, the grain boundary of the crystal grain surrounded by the grain boundary where the grain boundary orientation difference between adjacent crystal grains is 15 degrees or more is traced. The equivalent circle diameter was determined by image analysis, and the average crystal grain size was calculated.
<Tensile test>
Tensile test in which the diameter specified in ASTM A370 is 12.7 mm and GL is 50.8 mm so that the tensile direction is perpendicular to the rolling direction (C direction) from 1/4 position of the thick steel plate and the quenched steel plate. Pieces were collected and subjected to a tensile test according to A370, and the yield stress YS and the tensile strength TS were measured.
<Evaluation of toughness>
A 2 mm V notch Charpy impact test piece specified in ASTM A370 is sampled so that it is perpendicular to the rolling direction (C direction) from the thickness 1/4 position of the steel plate, and a Charpy impact test is performed in accordance with A370. The fracture surface transition temperature (vTrs) was obtained.
<Drop weight characteristics>
A P-3 specimen (thickness 16 mm x width 50 mm x length 130 mm) is taken from the position of 1/4 of the thickness of the steel plate so as to be perpendicular to the rolling direction (C direction) in accordance with ASTM E208. and performs drop weight test was determined no ductile transition temperature T NDT.
上記測定の結果を表2に併記した。これらの結果から、本発明に適合するNo.1〜24の厚鋼板は、焼入後の引張強さが850MPa以上、1100MPa以下であり、焼戻し後の引張強さTSが570〜720MPaの範囲にあり、かつ、落重試験におけるTNDTが−55℃以下という優れた靭性特性を有していることがわかる。
これに対して、本発明の条件を満たさないNo.25〜48の厚鋼板は、引張強さTSおよび落重試験におけるTNDTのいずれか1つ以上の特性が、上記条件を満たしていない。
なお、参考として、図1に示した焼入れ後の引張強さと焼戻し後の無延性遷移温度TNDTとの関係図の上に、上記発明例および比較例の結果をプロットした結果を、図2に示した。
The results of the above measurements are also shown in Table 2. From these results, No. 1 suitable for the present invention. Steel plate of 1 to 24 is tempered tensile strength of after turning at least 850 MPa, or less 1100 MPa, tensile strength TS after tempering is in the range of 570~720MPa, and the T NDT in drop weight test - It turns out that it has the outstanding toughness characteristic of 55 degrees C or less.
On the other hand, No. which does not satisfy the conditions of the present invention. Steel plate of 25 to 48 may be any one or more characteristics of T NDT in tensile strength TS and drop weight test, it does not satisfy the above condition.
For reference, the results of plotting the results of the above-described invention examples and comparative examples on the relationship diagram between the tensile strength after quenching shown in FIG. 1 and the non-ductile transition temperature T NDT after tempering are shown in FIG. Indicated.
Claims (5)
Si:0.05〜0.60mass%、
Mn:0.8〜1.8mass%、
P:0.020mass%以下、
S:0.005mass%以下、
Al:0.005〜0.080mass%、
N:0.0005〜0.0050mass%を含有し、さらに、
Cu:0.50mass%以下、
Ni:1.50mass%以下、
Cr:0.50mass%以下、
Mo:0.40mass%以下、
V:0.07mass%以下および
B:0.0003〜0.0020mass%のうちから選ばれる1種または2種以上を含有し、残部がFeおよび不可避的不純物からなる成分組成を有し、
下記(1)式で定義されるC当量Ceq(mass%)が0.36〜0.55で、
下記(2)式で定義されるDI*値が65以上であり、さらに、
板厚1/4位置におけるミクロ組織が焼戻し下部ベイナイトおよび焼戻しマルテンサイト組織からなり、かつ、引張強さが570MPa以上、720MPa以下で、板厚1/4位置におけるNRL落重試験のTNDTが−55℃以下であることを特徴とする船舶用、海洋構造物用および水圧鉄管用厚鋼板。
記
Ceq(mass%)=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 ・・・(1)
DI*=8.2×(C)0.5×(0.7Si+1)×fMn×(0.35Cu+1)×(0.36Ni+1)×(2.16Cr+1)×(3.00Mo+1)×(1.75V+1)×fB ・・・(2)
ただし、fMn=3.33Mn+1 (Mn≦1.2mass%の場合)
fMn=(Mn−1.2)×5.1+5 (Mn>1.2mass%の場合)
fB=1.3 (B≧0.0003mass%の場合)
fB=1.0 (B<0.0003mass%の場合) C: 0.05-0.15 mass%,
Si: 0.05-0.60 mass%,
Mn: 0.8 to 1.8 mass%,
P: 0.020 mass% or less,
S: 0.005 mass% or less,
Al: 0.005-0.080 mass%,
N: 0.0005 to 0.0050 mass%,
Cu: 0.50 mass% or less,
Ni: 1.50 mass% or less,
Cr: 0.50 mass% or less,
Mo: 0.40 mass% or less,
V: 0.07 mass% or less and B: One or more selected from 0.0003 to 0.0020 mass%, with the balance being composed of Fe and inevitable impurities,
C equivalent C eq (mass%) defined by the following formula (1) is 0.36 to 0.55,
The DI * value defined by the following formula (2) is 65 or more, and
Microstructure in the sheet thickness 1/4 position consists tempered lower bainite and tempered martensite structure, and a tensile strength of more than 570 MPa, below 720 MPa, the T NDT of NRL drop weight test in the sheet thickness 1/4 position - Thick steel plates for ships, offshore structures and hydraulic iron pipes characterized by being 55 ° C or lower.
C eq (mass%) = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15 (1)
DI * = 8.2 × (C) 0.5 × (0.7Si + 1) × fMn × (0.35Cu + 1) × (0.36Ni + 1) × (2.16Cr + 1) × (3.00Mo + 1) × (1.75V + 1) ) × fB (2)
However, fMn = 3.33Mn + 1 (when Mn ≦ 1.2 mass%)
fMn = (Mn−1.2) × 5.1 + 5 (in the case of Mn> 1.2 mass%)
fB = 1.3 (when B ≧ 0.0003 mass%)
fB = 1.0 (when B <0.0003 mass%)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014265118A JP6024928B2 (en) | 2013-12-27 | 2014-12-26 | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013271728 | 2013-12-27 | ||
JP2013271728 | 2013-12-27 | ||
JP2014265118A JP6024928B2 (en) | 2013-12-27 | 2014-12-26 | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015143398A JP2015143398A (en) | 2015-08-06 |
JP6024928B2 true JP6024928B2 (en) | 2016-11-16 |
Family
ID=53888618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014265118A Active JP6024928B2 (en) | 2013-12-27 | 2014-12-26 | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6024928B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6108116B2 (en) * | 2014-03-26 | 2017-04-05 | Jfeスチール株式会社 | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same |
CN109112429B (en) * | 2017-06-26 | 2019-12-13 | 鞍钢股份有限公司 | FH 550-grade thick plate with excellent low-temperature toughness and manufacturing method thereof |
SG11202001759QA (en) * | 2017-09-08 | 2020-03-30 | Jfe Steel Corp | Steel plate and method of producing same |
KR102031450B1 (en) * | 2017-12-24 | 2019-10-11 | 주식회사 포스코 | High strength steel sheet and manufacturing method for the same |
CN108728743B (en) * | 2018-06-11 | 2019-09-20 | 鞍钢股份有限公司 | Ocean engineering steel with good low-temperature fracture toughness and manufacturing method thereof |
CN109207854B (en) * | 2018-10-08 | 2019-12-13 | 鞍钢股份有限公司 | Super-wide-specification high-strength high-toughness steel for ocean engineering and manufacturing method thereof |
CN116288065A (en) * | 2022-12-14 | 2023-06-23 | 鞍钢股份有限公司 | Steel plate for coating lightweight pile body and production method thereof |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6056019A (en) * | 1983-09-07 | 1985-04-01 | Sumitomo Metal Ind Ltd | Production of strong and tough steel |
JP2671732B2 (en) * | 1992-11-02 | 1997-10-29 | 住友金属工業株式会社 | Manufacturing method of high strength steel with excellent weldability |
JP3817887B2 (en) * | 1997-02-25 | 2006-09-06 | 住友金属工業株式会社 | High toughness high strength steel and method for producing the same |
JP5156453B2 (en) * | 2008-03-28 | 2013-03-06 | 株式会社神戸製鋼所 | High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more |
JP5439973B2 (en) * | 2009-06-22 | 2014-03-12 | Jfeスチール株式会社 | High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same |
JP5462069B2 (en) * | 2009-07-27 | 2014-04-02 | 株式会社神戸製鋼所 | High-strength steel plate with excellent drop weight characteristics and base metal toughness |
JP5425702B2 (en) * | 2010-02-05 | 2014-02-26 | 株式会社神戸製鋼所 | High-strength thick steel plate with excellent drop weight characteristics |
JP5659758B2 (en) * | 2010-12-10 | 2015-01-28 | Jfeスチール株式会社 | TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability |
-
2014
- 2014-12-26 JP JP2014265118A patent/JP6024928B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015143398A (en) | 2015-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6253974B2 (en) | Thick steel plate for reactor containment vessel with excellent brittle crack propagation stopping characteristics | |
JP6344538B1 (en) | Steel pipe and steel plate | |
JP6024928B2 (en) | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same | |
JP6108116B2 (en) | Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same | |
JP5098256B2 (en) | Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same | |
AU2012200696B2 (en) | High strength steel pipes with excellent toughness at low temperature and sulfide stress corrosion cracking resistance | |
EP3395999A1 (en) | Steel material having excellent hydrogen induced cracking (hic) resistance for pressure vessel and manufacturing method therefor | |
JP5924058B2 (en) | High tensile strength steel sheet with excellent low temperature toughness of weld heat affected zone and method for producing the same | |
JP5124988B2 (en) | High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same | |
JP5846311B2 (en) | Thick high-strength steel excellent in welding heat affected zone CTOD characteristics and method for producing the same | |
JP5439973B2 (en) | High-strength thick steel plate having excellent productivity and weldability and excellent drop weight characteristics after PWHT, and method for producing the same | |
JP6883107B2 (en) | High-strength steel with excellent fracture initiation and propagation resistance at low temperatures and its manufacturing method | |
JP5928405B2 (en) | Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same | |
JP5884201B2 (en) | Hot-rolled steel sheet for high-strength line pipe with a tensile strength of 540 MPa or more | |
CN111971407A (en) | Wear-resistant steel and method for producing same | |
JP7339339B2 (en) | Ultra-high-strength steel material with excellent cold workability and SSC resistance, and method for producing the same | |
JP4700740B2 (en) | Manufacturing method of steel plate for sour line pipe | |
WO2017183719A1 (en) | High tensile steel and marine structure | |
WO2016035110A1 (en) | Thick steel sheet having excellent ctod properties in multi-layer welded joints and method for producing same | |
JP5034290B2 (en) | Low yield ratio high strength thick steel plate and method for producing the same | |
KR20190076758A (en) | High strength steel for arctic environment having excellent resistance to fracture in low temperature, and method for manufacturing the same | |
JP2011202214A (en) | Thick high tensile strength steel plate having excellent low temperature toughness in multilayer weld zone and method for producing the same | |
WO2014175122A1 (en) | H-shaped steel and method for producing same | |
JP2022548144A (en) | High-strength extra-thick steel material with excellent low-temperature impact toughness and its manufacturing method | |
JP4547944B2 (en) | Manufacturing method of high strength and high toughness thick steel plate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150727 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20160314 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20160316 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160914 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160927 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6024928 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |