JP5928405B2 - Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same - Google Patents

Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same Download PDF

Info

Publication number
JP5928405B2
JP5928405B2 JP2013099116A JP2013099116A JP5928405B2 JP 5928405 B2 JP5928405 B2 JP 5928405B2 JP 2013099116 A JP2013099116 A JP 2013099116A JP 2013099116 A JP2013099116 A JP 2013099116A JP 5928405 B2 JP5928405 B2 JP 5928405B2
Authority
JP
Japan
Prior art keywords
less
steel sheet
steel plate
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013099116A
Other languages
Japanese (ja)
Other versions
JP2014218707A (en
Inventor
隆男 赤塚
隆男 赤塚
章夫 大森
章夫 大森
石川 信行
信行 石川
友和 田村
友和 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2013099116A priority Critical patent/JP5928405B2/en
Publication of JP2014218707A publication Critical patent/JP2014218707A/en
Application granted granted Critical
Publication of JP5928405B2 publication Critical patent/JP5928405B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐水素誘起割れ性に優れた調質鋼板及びその製造方法に関する。特に、湿潤硫化水素環境下で使用される石油やガスの圧力容器用鋼板や硫化水素を含む石油や天然ガスを輸送するラインパイプ素材として好適な、板厚10mmから60mmの鋼板及びその製造方法に関する。   The present invention relates to a tempered steel plate excellent in hydrogen-induced crack resistance and a method for producing the same. In particular, the present invention relates to a steel plate for a pressure vessel of oil or gas used in a wet hydrogen sulfide environment, a steel plate having a thickness of 10 to 60 mm suitable for a line pipe material for transporting petroleum or natural gas containing hydrogen sulfide, and a method for producing the same. .

湿潤硫化水素環境下で使用される石油やガスの圧力容器用鋼板や硫化水素を含む石油や天然ガスを輸送するラインパイプは、強度、靭性、溶接性の他に、耐水素誘起割れ性(以下耐HIC性と呼ぶ)や耐応力腐食割れ性(以下耐SCC性と呼ぶ)などのいわゆる耐サワー性能が必要とされる。鋼材の水素誘起割れは、腐食反応による水素イオンが鋼材表面に吸着し、原子状の水素として鋼内部に侵入し、鋼中のMnSなどの非金属介在物や硬い第2相組織のまわりに拡散・集積して、その内圧により割れを生ずるものとされている。   Steel pipes for oil and gas pressure vessels used in wet hydrogen sulfide environments, and line pipes that transport oil and natural gas containing hydrogen sulfide, in addition to strength, toughness and weldability, are also resistant to hydrogen-induced cracking (below) So-called sour resistance such as resistance to HIC and stress corrosion cracking resistance (hereinafter referred to as SCC resistance) is required. In hydrogen-induced cracking of steel, hydrogen ions due to corrosion reactions are adsorbed on the steel surface, penetrate into the steel as atomic hydrogen, and diffuse around non-metallic inclusions such as MnS in the steel and hard second-phase structures.・ Accumulated and cracked due to internal pressure.

このような水素誘起割れを防ぐためにいくつかの方法が提案されている。例えば、特許文献1には、鋼中のS含有量を下げるとともに、CaやREMなどを適量添加することにより、長く伸展したMnSの生成を抑制し、微細に分散した球状のCaS介在物に形態を変える技術が開示されている。これにより、硫化物系介在物による応力集中を小さくし、割れの発生・伝播を抑制することによって、耐HIC性を改善するというものである。   Several methods have been proposed to prevent such hydrogen-induced cracking. For example, in Patent Document 1, while lowering the S content in steel and adding an appropriate amount of Ca, REM, or the like, the formation of long extended MnS is suppressed, and a finely dispersed spherical CaS inclusion is formed. A technique for changing the above is disclosed. As a result, the stress concentration due to the sulfide inclusions is reduced, and the generation and propagation of cracks is suppressed, thereby improving the HIC resistance.

また、特許文献2および特許文献3においては、偏析傾向の高い元素(C、Mn、P等)の低減やスラブ加熱段階での均熱処理による偏析の低減、および圧延後の冷却時の変態途中での加速冷却を行う技術が開示されている。これにより、中心偏析部での割れの起点となる島状マルテンサイトの生成、および割れの伝播経路となるマルテンサイトなどの硬化組織の生成を抑制するというものである。   Moreover, in patent document 2 and patent document 3, the reduction | decrease of the segregation by the reduction | decrease of the elements (C, Mn, P, etc.) with a high segregation tendency, the soaking process in a slab heating stage, and the transformation at the time of cooling after rolling are in progress. A technique for accelerating cooling is disclosed. This suppresses the generation of island martensite that becomes the starting point of cracks in the center segregation part and the generation of hardened structures such as martensite that becomes the propagation path of cracks.

特許文献4には、Cuを添加して、鋼材表面に鋼中への水素侵入を抑制する保護膜を形成した鋼板が開示されている。   Patent Document 4 discloses a steel sheet in which Cu is added to form a protective film that suppresses hydrogen intrusion into steel on the steel surface.

最近、X80グレードの高強度鋼板に対して、特許文献5、特許文献6および特許文献7では、低SでCa添加により硫化物系介在物の形態制御を行いつつ、低C−低Mn化により中心偏析を抑制し、それに伴う強度低下をCr,Mo,Ni等の添加と加速冷却により補う方法が開示されている。   Recently, in Patent Document 5, Patent Document 6 and Patent Document 7, with respect to X80 grade high-strength steel sheet, while controlling the form of sulfide inclusions by addition of Ca at low S, low C-low Mn A method is disclosed in which center segregation is suppressed, and the accompanying strength reduction is compensated by addition of Cr, Mo, Ni, etc. and accelerated cooling.

特開昭54−110119号公報Japanese Patent Laid-Open No. 54-110119 特開昭61−60866号公報JP 61-60866 A 特開昭61−165207号公報JP-A-61-165207 特開昭52−111815号公報JP-A-52-111815 特開平5−9575号公報JP-A-5-9575 特開平5−271766号公報JP-A-5-271766 特開平7−173536号公報JP 7-173536 A 特開2003−13138号公報JP 2003-13138 A

しかし、上記した従来技術には次のような問題点がある。   However, the above prior art has the following problems.

特許文献1に開示された技術のように、硫化物系介在物の形態制御のみでは、高強度化に伴い酸化物系介在物に起因する割れの発生が無視できなくなる。   As in the technique disclosed in Patent Document 1, by only controlling the form of sulfide inclusions, the occurrence of cracks due to oxide inclusions cannot be ignored with increasing strength.

特許文献4に開示された技術のように、鋼材表面への水素侵入を抑制する保護膜を形成しても、pHの低い環境ではその効果が期待できない。例えば、低pHであるNACE溶液では、被膜の効果が得られていない。   Even if a protective film that suppresses hydrogen intrusion to the steel surface is formed as in the technique disclosed in Patent Document 4, the effect cannot be expected in an environment having a low pH. For example, a NACE solution having a low pH does not provide a coating effect.

特許文献2、特許文献3、特許文献5、特許文献6および特許文献7に開示された技術は、いずれも中心偏析部が対象となっているが、中心偏析部以外の部分については考慮されていない。加速冷却又は直接焼入れによって製造されるAPI規格X65グレード以上の強度を有する高強度鋼板においては、冷却速度の高い鋼板表面部が内部に比べて硬化するため、表面近傍から水素誘起割れが発生するという問題があり、表面からの割れを防ぐためには、表面硬度を低下させる必要がある。   The techniques disclosed in Patent Literature 2, Patent Literature 3, Patent Literature 5, Patent Literature 6, and Patent Literature 7 are all directed to the center segregation portion, but the portions other than the center segregation portion are considered. Absent. In high-strength steel sheets having strength of API standard X65 grade or higher manufactured by accelerated cooling or direct quenching, the steel plate surface portion with a high cooling rate is hardened compared to the inside, so that hydrogen-induced cracking occurs from the vicinity of the surface. There is a problem, and in order to prevent cracking from the surface, it is necessary to reduce the surface hardness.

また、従来は、表面硬度を低下させるために、ガス燃焼炉により燃焼ガス雰囲気中で鋼板全体を加熱していた。そのため、目的の温度に到達するのに長時間を要するため、鋼板表層部だけでなく、鋼板中央部まで強度が低下してしまい、鋼材の仕様を満たせないという問題があった。   Conventionally, in order to reduce the surface hardness, the entire steel sheet is heated in a combustion gas atmosphere by a gas combustion furnace. Therefore, since it takes a long time to reach the target temperature, there is a problem that the strength is lowered not only to the steel plate surface layer portion but also to the steel plate center portion, and the specification of the steel material cannot be satisfied.

これに対して、特許文献8に開示の技術では、鋼板の焼戻し時の鋼板表面の昇温速度を10℃/sec以上にすることによって、表層部のみを効果的に加熱し、かつ板厚平均の温度上昇を抑制することができているが、誘導加熱装置を用いて加熱する必要があり、通常の熱処理炉では再現することができないという問題がある。
本発明は、上記の問題を解決し、通常の熱処理炉を用いた焼戻しで、鋼板表層部を軟化するが、板厚中央部および板厚1/4部の強度低下は抑制した耐HIC性に優れた降伏強さ:415MPa以上、引張強さ:550MPa以上の調質鋼板とその製造方法を提供することを目的とする。
On the other hand, in the technique disclosed in Patent Document 8, only the surface layer portion is effectively heated by increasing the temperature rising rate of the steel sheet surface during tempering of the steel sheet to 10 ° C./sec or more, and the thickness average is obtained. However, there is a problem that it is necessary to heat using an induction heating device and cannot be reproduced by a normal heat treatment furnace.
The present invention solves the above problems and softens the surface layer of the steel sheet by tempering using a normal heat treatment furnace, but has reduced HIC resistance with reduced strength reduction at the center of the plate thickness and 1/4 part of the plate thickness. An object is to provide a tempered steel sheet having excellent yield strength: 415 MPa or more and tensile strength: 550 MPa or more and a method for producing the same.

本発明者らは上記課題を解決するために、鋼板の成分組成と製造方法、特に圧延後の加速冷却とその後の再加熱プロセスについて鋭意検討した結果、以下の知見を得た。   In order to solve the above-mentioned problems, the present inventors have earnestly studied the component composition and manufacturing method of a steel sheet, particularly accelerated cooling after rolling and a subsequent reheating process. As a result, the following knowledge was obtained.

(a)鋼板表面から板厚方向に1mmまでの範囲の金属組織が焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなること。   (A) The metal structure in the range from the steel sheet surface to 1 mm in the thickness direction is composed of one or two kinds selected from tempered martensite and tempered bainite.

(b)板厚中央から板厚方向に±1mmの範囲の金属組織は焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなる主相が面積分率で80%以上であり、主相以外の残部がフェライト、パーライト、セメンタイト、残留オーステナイトの中から選ばれる1種以上であること。   (B) The metal structure in the range of ± 1 mm from the thickness center to the thickness direction has a main phase composed of one or two kinds selected from tempered martensite and tempered bainite in an area fraction of 80% or more, The balance other than the main phase is at least one selected from ferrite, pearlite, cementite, and retained austenite.

(c)鋼板表面から板厚方向に1mmの位置の硬度がビッカース硬さで250HV以下で、鋼板表面から1mmの位置と板厚中央部との硬度差がビッカース硬さで60HV以下である板厚方向硬さ分布を示すこと。   (C) Thickness where the hardness at the position of 1 mm from the steel sheet surface is 250 HV or less in terms of Vickers hardness, and the difference in hardness between the position of 1 mm from the steel sheet surface and the central part of the thickness is 60 HV or less in terms of Vickers hardness. Show directional hardness distribution.

本発明は、上記の知見に更に検討を加えてなされたもので、その要旨は以下の通りである。
[1]質量%で、C:0.05〜0.30%、Si:0.05〜0.60%、Mn:0.5〜2.0%、P:0.050%以下、S:0.050%以下、Al:0.100%以下を含有し、炭素当量Ceqを0.16〜0.60とし、残部Fe及び不可避的不純物からなり、鋼板表面から板厚方向に1mmまでの範囲の金属組織が、焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなり、板厚中央部から板厚方向に±1mmの範囲の金属組織が、焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなる主相が面積分率で80%以上であり、主相以外の残部がフェライト、パーライト、セメンタイト、残留オーステナイトの中から選ばれる1種以上からなり、さらに、鋼板表面から板厚方向に1mmの位置の硬度がビッカース硬さで250HV以下で、鋼板表面から1mmの位置と板厚中央部との硬度差がビッカース硬さで60HV以下であることを特徴とする耐水素誘起割れ性に優れた調質鋼板。
The present invention has been made by further studying the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.05 to 0.30%, Si: 0.05 to 0.60%, Mn: 0.5 to 2.0%, P: 0.050% or less, S: 0.050% or less, Al: 0.100% or less, carbon equivalent Ceq of 0.16 to 0.60, balance Fe and unavoidable impurities, range from steel plate surface to 1mm in thickness direction The metal structure of tempered martensite and tempered bainite consists of one or two kinds selected from tempered martensite and tempered bainite. The main phase consisting of one or two selected from the above is an area fraction of 80% or more, and the balance other than the main phase consists of one or more selected from ferrite, pearlite, cementite, retained austenite, From steel plate surface to plate The resistance to hydrogen-induced cracking is characterized in that the hardness at a position of 1 mm in the direction is Vickers hardness of 250 HV or less and the difference in hardness between the position of 1 mm from the steel sheet surface and the central part of the plate thickness is 60 HV or less in Vickers hardness. Excellent tempered steel sheet.

[2]さらに、質量%で、Nb:0.05%以下、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.50%以下の中から選ばれる1種以上を含有することを特徴とする前記[1]に記載の耐水素誘起割れ性に優れた調質鋼板。 [2] Further, by mass%, Nb: 0.05% or less, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less, V : The tempered steel sheet having excellent resistance to hydrogen-induced cracking as described in [1] above, containing at least one selected from 0.50% or less.

[3]さらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0050%以下、Mg:0.0050%以下の中から選ばれる1種以上を含有することを特徴とする前記[1]または[2]に記載の耐水素誘起割れ性に優れた調質鋼板。 [3] Further, by mass%, it contains at least one selected from Ca: 0.0005 to 0.0050%, REM: 0.0050% or less, and Mg: 0.0050% or less. The tempered steel sheet having excellent resistance to hydrogen-induced cracking according to [1] or [2].

[4]前記[1]乃至[3]の何れかに記載の成分組成を有する鋼素材を、1050〜1300℃の温度範囲に加熱し、所定の板厚に熱間圧延して鋼板とした後、引続き鋼板をAr変態点以上から直接焼入れし、400℃以下の温度域で冷却停止した後に、500〜800℃の雰囲気温度の加熱炉に装入して鋼板を加熱し、次いで、加熱炉から抽出する直前の鋼板の状態を、鋼板表面温度が500℃以上Ac変態点未満で、かつ、鋼板表面の昇温速度Vsが下記式(1)を満たす状態として、加熱炉から鋼板を抽出し、空冷することを特徴とする耐水素誘起割れ性に優れた調質鋼板の製造方法。
Vs≧−0.0036×t+0.54 ・・・(1)
ただし、Vs:鋼板表面の昇温速度(℃/min)、t:鋼板板厚(mm)
[4] After heating the steel material having the composition according to any one of [1] to [3] to a temperature range of 1050 to 1300 ° C. and hot rolling to a predetermined plate thickness to obtain a steel plate Subsequently, the steel plate was directly quenched from the Ar 3 transformation point or higher, and after cooling was stopped in a temperature range of 400 ° C. or lower, the steel plate was heated in a heating furnace having an ambient temperature of 500 to 800 ° C., and then the heating furnace The steel plate is extracted from the heating furnace with the steel plate surface temperature immediately before extraction from the state where the steel plate surface temperature is 500 ° C. or higher and less than the Ac 1 transformation point and the steel plate surface heating rate Vs satisfies the following formula (1). And a method for producing a tempered steel sheet excellent in resistance to hydrogen-induced cracking, characterized by air cooling.
Vs ≧ −0.0036 × t + 0.54 (1)
However, Vs: Temperature rising rate of steel plate surface (° C./min), t: Steel plate thickness (mm)

[5]前記[1]乃至[3]の何れかに記載の成分組成を有する鋼素材を、1050〜1300℃の温度範囲に加熱し、所定の板厚に熱間圧延して鋼板とした後、鋼板をAc変態点以上の温度に加熱し、引き続きAr変態点以上から水冷により400℃以下の温度まで冷却し、さらに、500〜800℃の雰囲気温度の加熱炉に装入して鋼板を加熱し、次いで、加熱炉から抽出する直前の鋼板の状態を、鋼板表面温度が500℃以上Ac変態点未満で、かつ、鋼板表面の昇温速度Vsが下記式(1)を満たす状態として、加熱炉から鋼板を抽出し、空冷することを特徴とする耐水素誘起割れ性に優れた調質鋼板の製造方法。
Vs≧−0.0036×t+0.54 ・・・(1)
ただし、Vs:鋼板表面の昇温速度(℃/min)、t:鋼板板厚(mm)
[5] After heating the steel material having the composition according to any one of [1] to [3] to a temperature range of 1050 to 1300 ° C. and hot rolling to a predetermined plate thickness to obtain a steel plate The steel plate is heated to a temperature not lower than the Ac 3 transformation point, subsequently cooled from the Ar 3 transformation point to a temperature of 400 ° C. or lower by water cooling, and further charged into a heating furnace having an atmospheric temperature of 500 to 800 ° C. And then the state of the steel plate immediately before extraction from the heating furnace is a state in which the steel plate surface temperature is 500 ° C. or higher and less than the Ac 1 transformation point, and the steel plate surface heating rate Vs satisfies the following formula (1): A method for producing a tempered steel sheet having excellent resistance to hydrogen-induced cracking, wherein the steel sheet is extracted from a heating furnace and air-cooled.
Vs ≧ −0.0036 × t + 0.54 (1)
However, Vs: Temperature rising rate of steel plate surface (° C./min), t: Steel plate thickness (mm)

本発明によれば、焼入れ後の再加熱処理(焼戻し処理)を誘導加熱装置によらないで、通常の熱処理炉を用いて行えるので、耐水素誘起割れ性に優れた調質鋼板を通常の熱処理炉を用いて製造することができる。   According to the present invention, the reheat treatment (tempering treatment) after quenching can be performed by using a normal heat treatment furnace without using an induction heating apparatus, so that a tempered steel sheet having excellent resistance to hydrogen-induced cracking can be subjected to normal heat treatment. It can be manufactured using a furnace.

以下に本発明の各構成要件の限定理由について説明する。   The reasons for limiting the respective constituent requirements of the present invention will be described below.

1.成分組成について
はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
1. About component composition First, the reason which prescribed | regulated the component composition of the steel of this invention is demonstrated. In addition, all component% means the mass%.

C:0.05〜0.30%
Cは、鋼板の強度を確保するために必要であるが、0.05%未満では十分な強度を確保できず、0.30%を超えると強度が高くなりすぎる上、粗大な炭化物を形成しやすくなるため、靭性および耐HIC性を劣化させる。従って、C量は0.05〜0.30%の範囲内とする。好ましくは0.06〜0.16%の範囲である。
C: 0.05-0.30%
C is necessary to ensure the strength of the steel sheet, but if it is less than 0.05%, sufficient strength cannot be secured, and if it exceeds 0.30%, the strength becomes too high and coarse carbides are formed. Since it becomes easy, toughness and HIC resistance are deteriorated. Therefore, the C content is in the range of 0.05 to 0.30%. Preferably it is 0.06 to 0.16% of range.

Si:0.05〜0.60%
Siは脱酸のために添加するが、0.05%未満では脱酸効果が十分ではなく、0.60%を超えると島状マルテンサイトを形成しやすくなるため、靭性や溶接性を劣化させる。従ってSi量は0.05〜0.60%の範囲とする。好ましくは0.10〜0.35%の範囲である。
Si: 0.05-0.60%
Si is added for deoxidation, but if it is less than 0.05%, the deoxidation effect is not sufficient, and if it exceeds 0.60%, island-shaped martensite is likely to be formed, so that toughness and weldability are deteriorated. . Therefore, the Si amount is in the range of 0.05 to 0.60%. Preferably it is 0.10 to 0.35% of range.

Mn:0.5〜2.0%
Mnは鋼の強度および靭性の向上のため添加するが、0.5%未満ではその効果が十分ではなく、2.0%を超えると焼き入れ性が高くなりすぎるため、溶接性と耐HIC性が劣化する。従って、Mn量は0.5〜2.0%の範囲とする。好ましくは1.0〜1.7%の範囲である。
Mn: 0.5 to 2.0%
Mn is added to improve the strength and toughness of the steel, but if it is less than 0.5%, the effect is not sufficient, and if it exceeds 2.0%, the hardenability becomes too high, so that weldability and HIC resistance are increased. Deteriorates. Therefore, the Mn content is in the range of 0.5 to 2.0%. Preferably it is 1.0 to 1.7% of range.

P:0.050%以下
Pは不可避不純物元素であり、溶接性と耐HIC性とを劣化させる。この傾向は0.050%を超えると顕著となる。従って、P量を0.050%以下とする。好ましくは0.020%以下である。
P: 0.050% or less P is an inevitable impurity element, and deteriorates weldability and HIC resistance. This tendency becomes remarkable when it exceeds 0.050%. Therefore, the P content is 0.050% or less. Preferably it is 0.020% or less.

S: 0.0050%以下
Sは、鋼中においては一般にMnS系の介在物となるが、Ca添加によりMnS系からCaS系介在物に形態制御される。しかしSの含有量が多いとCaS系介在物の量も多くなり、高強度材では割れの起点となり得る。この傾向は、S量が0.0050%を超えると顕著となる。従って、S量は0.0050%以下とする。好ましくは0.0020%以下である。
S: 0.0050% or less S is generally an MnS-based inclusion in steel, but its form is controlled from an MnS-based to CaS-based inclusion by addition of Ca. However, if the S content is large, the amount of CaS inclusions also increases, and a high-strength material can be a starting point for cracking. This tendency becomes remarkable when the S amount exceeds 0.0050%. Therefore, the S amount is 0.0050% or less. Preferably it is 0.0020% or less.

Al:0.100%以下
Alは脱酸剤として添加される。この効果を得るためには0.010%以上の添加が好ましい。しかし、0.100%を超えると清浄度の低下により耐HIC性を劣化させる。従って、Al量は0.100%以下とする。好ましくは0.050%以下である。
Al: 0.100% or less Al is added as a deoxidizer. In order to obtain this effect, addition of 0.010% or more is preferable. However, if it exceeds 0.100%, the HIC resistance is deteriorated due to a decrease in cleanliness. Therefore, the Al content is 0.100% or less. Preferably it is 0.050% or less.

炭素当量Ceq:0.16〜0.60
炭素当量Ceqが0.16未満では焼入れ性が低くなりすぎて、鋼板の金属組織が所望ものとならず、目的とする鋼板強度が確保できない。また炭素当量Ceqが0.60を超えると、焼入れ性が高くなりすぎて、焼き戻し後の表面から1mm位置の硬度がビッカース硬さで250HV以下とならなくなり、耐HIC性が低下する。このため、炭素当量Ceqは0.16〜0.60の範囲とする。好ましくは0.30〜0.50、より好ましくは0.35〜0.45の範囲である。
なお、炭素当量Ceqは下記式で定義される。
Ceq=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15
ここで、元素記号は各元素の含有量(質量%)を表す。
Carbon equivalent Ceq: 0.16-0.60
If the carbon equivalent Ceq is less than 0.16, the hardenability is too low, the metal structure of the steel sheet is not desired, and the intended steel sheet strength cannot be ensured. On the other hand, if the carbon equivalent Ceq exceeds 0.60, the hardenability becomes too high, and the hardness at the 1 mm position from the surface after tempering does not become less than 250 HV in terms of Vickers hardness, and the HIC resistance decreases. For this reason, carbon equivalent Ceq shall be the range of 0.16-0.60. Preferably it is 0.30-0.50, More preferably, it is the range of 0.35-0.45.
The carbon equivalent Ceq is defined by the following formula.
Ceq = C + Mn / 6 + (Cr + Mo + V) / 5 + (Cu + Ni) / 15
Here, the element symbol represents the content (% by mass) of each element.

以上が本発明の基本成分であるが、鋼板の強度、靭性をさらに改善させる目的で、以下に示すNb、Cu、Ni、Cr、Mo、V、Ca、REM、Mgの1種以上を含有してもよい。   The above is the basic component of the present invention, but for the purpose of further improving the strength and toughness of the steel sheet, it contains one or more of Nb, Cu, Ni, Cr, Mo, V, Ca, REM and Mg shown below. May be.

Nb: 0.05%以下
Nbは、圧延時や焼入れのための加熱時の粒成長を抑制し、微細粒化により靭性を向上させる。この効果を得るためには0.005%以上の添加が好ましい。しかし、Nb量が0.05%を超えると溶接熱影響部の靭性が劣化する。従って、Nb量は0.05%以下とする。好ましくは0.03%以下である。
Nb: 0.05% or less Nb suppresses grain growth during rolling or heating for quenching, and improves toughness by fine graining. In order to obtain this effect, 0.005% or more is preferably added. However, if the Nb amount exceeds 0.05%, the toughness of the weld heat affected zone deteriorates. Therefore, the Nb amount is 0.05% or less. Preferably it is 0.03% or less.

Cu:0.50%以下
Cuは、靭性の改善と強度の上昇に有効な元素である。この効果を得るためには0.05%以上の添加が好ましい。しかし、0.50%を超えて含有するとスラブ加熱時に割れが生じやすくなる上、溶接性が劣化する。従って、Cuを含有する場合は、Cu量は0.50%以下とする。好ましくは0.25%以下である。
Cu: 0.50% or less Cu is an element effective for improving toughness and increasing strength. In order to obtain this effect, addition of 0.05% or more is preferable. However, if it exceeds 0.50%, cracks are likely to occur during slab heating, and weldability deteriorates. Therefore, when it contains Cu, the amount of Cu shall be 0.50% or less. Preferably it is 0.25% or less.

Ni:0.50%以下
Niは、靭性の改善と強度の上昇に有効な元素である。この効果を得るためには0.05%以上の添加が好ましい。しかし、0.50%を超えて含有すると応力腐食割れが発生しやすくなる。従って、Niを含有する場合は、Ni量は0.50%以下とする。好ましくは0.25%以下である。
Ni: 0.50% or less Ni is an element effective for improving toughness and increasing strength. In order to obtain this effect, addition of 0.05% or more is preferable. However, if it exceeds 0.50%, stress corrosion cracking tends to occur. Therefore, when Ni is contained, the Ni content is 0.50% or less. Preferably it is 0.25% or less.

Cr:0.50%以下
Crは焼き入れ性を高め十分な強度を得るために有効な元素である。この効果を得るためには0.05%以上の含有が好ましい。しかし、0.50%を超えて含有すると溶接性を劣化させる。従って、Crを含有する場合は、Cr量は0.50%以下とする。好ましくは0.40%以下である。
Cr: 0.50% or less Cr is an effective element for improving the hardenability and obtaining sufficient strength. In order to acquire this effect, 0.05% or more is preferable. However, if it exceeds 0.50%, weldability is deteriorated. Therefore, when Cr is contained, the Cr content is 0.50% or less. Preferably it is 0.40% or less.

Mo:0.50%以下
Moは、靭性の改善と強度の上昇に有効な元素である。この効果を得るためには0.05%以上の含有が好ましい。しかし、0.50%を超えて含有すると溶接性や耐HIC性が劣化する。従って、Moを含有する場合は、、Mo量は0.50%以下とする。好ましくは0.35%以下である。
Mo: 0.50% or less Mo is an element effective for improving toughness and increasing strength. In order to acquire this effect, 0.05% or more is preferable. However, if the content exceeds 0.50%, weldability and HIC resistance deteriorate. Therefore, when Mo is contained, the Mo amount is 0.50% or less. Preferably it is 0.35% or less.

V:0.50%以下
Vは、靭性、溶接性、および耐サワー性を劣化させずに強度を上昇させる元素である。この効果を得るためには0.01%以上の含有が好ましい。しかし、0.50%を超えて含有すると溶接性を著しく損なう。従って、Vを含有する場合は、V量は0.50%以下とする。好ましくは0.10%以下である。
V: 0.50% or less V is an element that increases strength without deteriorating toughness, weldability, and sour resistance. In order to acquire this effect, 0.01% or more is preferable. However, when it exceeds 0.50%, weldability is remarkably impaired. Therefore, when V is contained, the V amount is 0.50% or less. Preferably it is 0.10% or less.

Ca:0.0005〜0.0050%
Caは硫化物系介在物の形態制御に不可欠な元素であるが、0.0005%未満ではその効果がなく、0.0050%を超えて含有しても効果が飽和し、むしろ清浄度の低下により耐HIC性を劣化させる。従って、Caを含有する場合は、Ca量は0.0005〜0.0050%の範囲とすることが好ましい。さらに好ましくは、0.0010〜0.0030の範囲である。
Ca: 0.0005 to 0.0050%
Ca is an element indispensable for controlling the form of sulfide inclusions, but if it is less than 0.0005%, there is no effect, and if it exceeds 0.0050%, the effect is saturated, and rather the cleanliness decreases. To deteriorate the HIC resistance. Therefore, when it contains Ca, it is preferable to make Ca amount into the range of 0.0005 to 0.0050%. More preferably, it is the range of 0.0010-0.0030.

REM:0.0050%以下、Mg:0.0050%以下
REM、Mgは共に硫化物の形態制御を介して母材の靭性向上および延性向上に寄与する。この効果を得るためには0.0005%以上の含有が好ましい。しかし、0.0050%を超えると過剰な介在物が生成し、逆に靱性が低下する場合があるため、REM、Mgを含有する場合は、REM量、Mg量はいずれも、0.0050%以下とする。好ましくは0.0030以下である。
REM: 0.0050% or less, Mg: 0.0050% or less Both REM and Mg contribute to improvement of the toughness and ductility of the base material through the control of the form of sulfide. In order to acquire this effect, 0.0005% or more is preferable. However, if it exceeds 0.0050%, excessive inclusions may be generated, and the toughness may be reduced. Therefore, when REM and Mg are contained, the REM amount and the Mg amount are both 0.0050%. The following. Preferably it is 0.0030 or less.

なお、本発明の鋼の上記成分以外の残部は、Feおよび不可避不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を拒むものではない。   The balance other than the above components of the steel of the present invention is Fe and inevitable impurities. However, the content of elements other than those described above is not rejected as long as the effects of the present invention are not impaired.

2.金属組織について
鋼板表面から板厚方向に1mmまでの範囲の金属組織:焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種
鋼板表面から板厚方向に1mmまでの範囲の金属組織が、焼戻しマルテンサイト、または、焼戻しベイナイト、または、焼戻しマルテンサイトと焼戻しベイナイトの混合組織でなければ、所望の強度が得られない。また、焼戻しマルテンサイトおよび焼戻しベイナイトは転位密度が高く比較的高強度でラス構造をもつフェライト中に微細なセメンタイトが分散した組織であるので、組織が均一で、水素の集積サイトとなる硬質な第二相が少なく、耐HIC性に優れている。また、靭性も優れている。このため、鋼板表面から板厚方向に1mmまでの範囲の金属組織は焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなる組織とする。
2. About metallographic structure Metallographic structure in the range from the steel sheet surface to the thickness direction of 1 mm: One or two types selected from tempered martensite and tempered bainite. The desired strength cannot be obtained unless the structure is tempered martensite, tempered bainite, or a mixed structure of tempered martensite and tempered bainite. In addition, tempered martensite and tempered bainite are structures in which fine cementite is dispersed in ferrite with a high dislocation density, relatively high strength, and lath structure. Fewer two phases and excellent HIC resistance. Also, the toughness is excellent. For this reason, the metal structure in the range from the steel sheet surface to 1 mm in the sheet thickness direction is a structure composed of one or two kinds selected from tempered martensite and tempered bainite.

板厚中央部から板厚方向に±1mmの範囲の金属組織:焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなる主相が面積分率で80%以上
板厚中央部はスラブ鋳造の際に中央偏析によりP、Sなどの不純物が濃化して介在物が生じやすいほか、CやMnも濃化するため、硬質な第二相が生じやすく、水素誘起割れが発生しやすい位置である。しかし、焼き入れの際の板厚中央の冷却速度は鋼板表面に比べて遅いため、板厚中央の硬さは表面近傍に比べ低い。このため、板厚中央部は耐HIC性に優れた、焼戻しマルテンサイト、または、焼戻しベイナイト、または、焼戻しマルテンサイトと焼戻しベイナイトの混合組織のみで構成する必要はないが、これらの組織を主相とする必要がある。ここで主相とは面積率で80%以上であることを言う。主相以外の残部はフェライト、パーライト、セメンタイト、残留オーステナイトの中から選ばれる1種以上である。板厚中央部で前記主相が面積率で80%を下回ると、軟質なフェライトが増加するため、所望の鋼板強度を得られなくなる。このため板厚中央部の組織は前記主相が面積率で80%以上とする。また、耐HIC性の面からも、耐HIC性に優れた焼戻しマルテンサイト、および/または、焼戻しベイナイトの割合は高いほうが好ましく、前記主相の面積率は90%以上とすることが好ましい。
Metal structure in the range of ± 1mm in the thickness direction from the center of the plate thickness: One or two main phases selected from tempered martensite and tempered bainite are 80% or more in area fraction. During slab casting, impurities such as P and S are concentrated due to central segregation, and inclusions are likely to occur, and since C and Mn are also concentrated, a hard second phase is likely to occur and hydrogen-induced cracking is likely to occur. Position. However, since the cooling rate at the center of the plate thickness during quenching is slower than the surface of the steel plate, the hardness at the center of the plate thickness is lower than that near the surface. For this reason, it is not necessary for the central portion of the plate thickness to be composed only of tempered martensite, tempered bainite, or a mixed structure of tempered martensite and tempered bainite, which has excellent HIC resistance. It is necessary to. Here, the main phase means that the area ratio is 80% or more. The balance other than the main phase is at least one selected from ferrite, pearlite, cementite, and retained austenite. If the main phase is less than 80% in terms of the area ratio in the central portion of the plate thickness, soft ferrite increases, and the desired steel plate strength cannot be obtained. For this reason, the structure of the central portion of the plate thickness is such that the main phase has an area ratio of 80% or more. From the viewpoint of HIC resistance, the ratio of tempered martensite and / or tempered bainite having excellent HIC resistance is preferably high, and the area ratio of the main phase is preferably 90% or more.

3.硬さについて
鋼板表面から板厚方向に1mmの位置の平均硬度:ビッカース硬さで250HV以下
鋼板表面近傍の硬さは耐HIC性を決定する重要な因子である。硬さが高いほど耐HIC性が低下する。鋼板表面から板厚方向に1mmの位置の平均硬度が250HVを超えるとHIC試験により割れが発生するため、250HV以下とする。好ましくは240HV以下である。また、表面近傍の硬さが高くなると鋼材の曲げ加工性が劣化してしまうため、この面からも、250HV以下とする。
3. About hardness The average hardness at a position of 1 mm from the steel sheet surface in the thickness direction: Vickers hardness of 250 HV or less The hardness in the vicinity of the steel sheet surface is an important factor for determining the HIC resistance. The higher the hardness, the lower the HIC resistance. If the average hardness at a position of 1 mm in the thickness direction from the steel sheet surface exceeds 250 HV, cracks occur in the HIC test. Preferably it is 240HV or less. In addition, if the hardness in the vicinity of the surface is increased, the bending workability of the steel material is degraded.

鋼板表面から1mmの位置と板厚中央部との硬度差:60HV以下
鋼板表面から1mmの位置と板厚中央部との硬度差がビッカース硬さで60HVを超えると、板厚中央部の硬さが低すぎ、所望の強度が得られなくなる。このため、鋼板表面から1mmの位置と板厚中央部との硬度差はビッカース硬さで60HV以下とする。好ましくは50HV以下である。
Hardness difference between the position 1 mm from the steel plate surface and the center of the plate thickness: 60 HV or less If the hardness difference between the position 1 mm from the surface of the steel plate and the center of the plate thickness exceeds 60 HV in terms of Vickers hardness, the hardness of the plate thickness center Is too low to obtain the desired strength. For this reason, the hardness difference between the position 1 mm from the surface of the steel sheet and the central part of the thickness is set to 60 HV or less in terms of Vickers hardness. Preferably it is 50HV or less.

4.製造条件について
上述した組成を有する鋼を、転炉、電気炉等の溶製手段により溶製し、連続鋳造法または造塊〜分塊法等でスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。その後、所望の形状に圧延し、圧延後に、冷却および加熱を行う。なお、鋼材(鋼素材(スラブ)または鋼板)の温度は特に断らない限り、鋼材の表面温度を意味する。
4). Manufacturing conditions It is preferable that the steel having the above-described composition is melted by a melting means such as a converter or an electric furnace to form a steel material such as a slab by a continuous casting method or an ingot-bundling method. The melting method and the casting method are not limited to the methods described above. Then, it rolls to a desired shape and performs cooling and heating after rolling. The temperature of the steel material (steel material (slab) or steel plate) means the surface temperature of the steel material unless otherwise specified.

鋼素材の加熱温度:1050〜1300℃
加熱温度が1050℃未満では、鋼素材(スラブ)中に存在する粗大な炭化物が完全に溶解しないため、得られる鋼板の強度が低下しやすい。また、スラブ温度が低いため鋼材の変形抵抗が高く、圧延能率も低下する。一方、鋼素材の加熱温度が1300℃を超えると、組織が粗大化して得られる鋼板の靱性が低下し、また、焼入性が増加しすぎて、得られる鋼板の表層硬さが増加しやすくなる。このため、鋼素材の加熱温度は1050℃〜1300℃の範囲に限定した。
Heating temperature of steel material: 1050-1300 ° C
When the heating temperature is less than 1050 ° C., coarse carbides present in the steel material (slab) are not completely dissolved, so that the strength of the obtained steel sheet is likely to decrease. Moreover, since the slab temperature is low, the deformation resistance of the steel material is high, and the rolling efficiency also decreases. On the other hand, when the heating temperature of the steel material exceeds 1300 ° C., the toughness of the steel sheet obtained by coarsening the structure decreases, and the hardenability increases too much, and the surface hardness of the obtained steel sheet tends to increase. Become. For this reason, the heating temperature of the steel material was limited to the range of 1050 ° C to 1300 ° C.

直接焼入れ(焼入れ開始温度:Ar変態点以上、冷却停止温度:400℃以下)
熱間圧延終了後、母材強度および母材靭性を確保するため、また、マルテンサイト、または、ベイナイト、または、マルテンサイトとベイナイトの混合組織を主相とする組織を得るために、Ar変態点以上の温度から、鋼板を強制冷却により焼入れ処理を施すことが必要である。焼入れ開始温度がAr変態点を下回ると、オーステナイトが一部、フェライトに変態してしまい所望の強度、組織が得られない。このため、焼入れ開始温度はAr変態点以上とする。400℃以下に到達するまで直接焼入れする理由は、オーステナイトからマルテンサイトもしくはベイナイトヘの変態を完了させ母材の強度を保つため、および耐HIC性に優れる所望の組織を得るためである。
Direct quenching (quenching starting temperature: Ar 3 transformation point or more, cooling stop temperature: 400 ° C. or less)
After hot rolling is completed, in order to secure the base material strength and base material toughness, and to obtain a structure mainly composed of martensite, bainite, or a mixed structure of martensite and bainite, the Ar 3 transformation From the temperature above the point, it is necessary to quench the steel sheet by forced cooling. When the quenching start temperature is lower than the Ar 3 transformation point, a part of austenite is transformed into ferrite and the desired strength and structure cannot be obtained. Therefore, the quenching start temperature and Ar 3 transformation point or more. The reason for direct quenching until reaching 400 ° C. or less is to complete the transformation from austenite to martensite or bainite to maintain the strength of the base material, and to obtain a desired structure excellent in HIC resistance.

焼戻し時の鋼板表面温度:500℃以上Ac変態点未満
焼戻し時の鋼板表面の最高到達温度が500℃未満では、加熱温度が低すぎるため直接焼入れによって生じたマルテンサイトまたはベイナイトの焼き戻しが十分でないため、低下した靭性の回復が不十分である。また、表面近傍の硬さを目標未満に低下させることができず、耐HIC特性が十分でない。一方、鋼板表面の最高到達温度がAc変態温度以上になると、逆変態によりフェライトが生じ、表層部の靭性および強度などが著しく低下してしまう。このため、焼戻し時の鋼板表面の最高到達温度は、500℃以上Ac変態点未満の範囲とする。
Steel plate surface temperature during tempering: 500 ° C. or higher and less than Ac 1 transformation point When the maximum temperature reached on the steel plate surface during tempering is less than 500 ° C., the heating temperature is too low, so that tempering of martensite or bainite caused by direct quenching is sufficient. Therefore, the recovery of the reduced toughness is insufficient. In addition, the hardness in the vicinity of the surface cannot be reduced below the target, and the HIC resistance is not sufficient. On the other hand, when the maximum temperature of the steel sheet surface becomes more Ac 1 transformation temperature, ferrite by reverse transformation occurs, such as toughness and strength of the surface layer portion significantly decreases. For this reason, the maximum temperature reached on the steel sheet surface during tempering is set to a range of 500 ° C. or higher and lower than the Ac 1 transformation point.

焼戻し時の鋼板表面温度の昇温速度Vs:Vs≧−0.0036×t+0.54
一般的には、焼戻しにおいては、鋼板全体を均一な組織とするため、鋼板全体ができるだけ均一な温度になってから加熱炉から鋼板を抽出する。しかし、本発明では、意図的に表面と鋼板内部と温度差がついた状態で焼戻しを終了し、鋼板を加熱炉から抽出する。これは、本発明が目的とする耐HIC性に優れた鋼板では、耐HIC性の確保のため表面近傍の硬さを抑制する必要があり、表面近傍の焼戻しを進行させる必要がある反面、鋼板の強度を確保するために鋼板内部の焼戻しは抑制する必要があるためである。
Temperature rising rate Vs of steel plate surface temperature during tempering: Vs ≧ −0.0036 × t + 0.54
Generally, in tempering, in order to make the whole steel plate a uniform structure, the steel plate is extracted from the heating furnace after the temperature of the whole steel plate is as uniform as possible. However, in the present invention, tempering is terminated in a state where there is a temperature difference between the surface and the inside of the steel sheet, and the steel sheet is extracted from the heating furnace. This is because the steel sheet excellent in HIC resistance intended by the present invention needs to suppress the hardness in the vicinity of the surface in order to ensure the HIC resistance, and tempering in the vicinity of the surface needs to be advanced. This is because it is necessary to suppress tempering inside the steel sheet in order to ensure the strength of the steel sheet.

鋼板内部の代表的な位置として板厚1/4を考える。熱伝導解析により、鋼板表面と板厚1/4の温度を計算すると、鋼板表面の昇温速度Vsが小さくなるほど鋼板表面と板厚1/4の温度差が小さくなることがわかった。また、鋼板表面の昇温速度Vsが[Vs≧−0.0036×t+0.54]を満たす状態では、「板厚表層温度−板厚1/4温度≧5℃」を満足していることがわかった。ただし、Vsは鋼板表面の昇温速度(℃/min)、tは鋼板の板厚(mm)である。このような状態では、鋼板表層と板厚1/4に5℃以上の温度差をつけて焼戻しすることができる。当然ながら板厚1/4よりも鋼板の内部(例えば板厚1/2)ではさらに大きい温度差がつく。   As a representative position inside the steel plate, a thickness of 1/4 is considered. When the temperature of the steel plate surface and the thickness ¼ was calculated by heat conduction analysis, it was found that the temperature difference between the steel plate surface and the thickness ¼ became smaller as the heating rate Vs on the steel plate surface became smaller. Further, in the state where the temperature increase rate Vs on the steel sheet surface satisfies [Vs ≧ −0.0036 × t + 0.54], it is satisfied that “plate thickness surface layer temperature−plate thickness 1/4 temperature ≧ 5 ° C.”. all right. Where Vs is the rate of temperature rise (° C./min) on the surface of the steel sheet, and t is the thickness (mm) of the steel sheet. In such a state, the steel sheet surface layer and the plate thickness ¼ can be tempered with a temperature difference of 5 ° C. or more. Naturally, a larger temperature difference is produced inside the steel plate (for example, plate thickness 1/2) than the plate thickness 1/4.

温度差をつける焼戻しを行うと、通常の焼戻しと比べて、鋼板内部の強度低下を抑制して、鋼板表層部を焼戻しすることができるため、鋼板強度を保ちつつ、鋼板表層部の軟化を達成できる。板厚表層と板厚1/4の温度差が5℃以上あれば、目標の表面近傍硬さおよび目標の鋼板強度を確保できる。このため、鋼板を加熱炉から抽出する直前の鋼板の状態が、鋼板表面温度が500℃以上Ac変態点未満で、鋼板表面の昇温速度VsがVs≧−0.0036×t+0.54を満足する状態として、鋼板を加熱炉から抽出する。 When performing tempering with a temperature difference, compared to normal tempering, the steel plate surface layer can be tempered while suppressing the decrease in strength inside the steel plate, so the steel plate surface layer is softened while maintaining the steel plate strength. it can. If the temperature difference between the plate thickness surface layer and the plate thickness ¼ is 5 ° C. or more, the target surface hardness and the target steel plate strength can be ensured. For this reason, the state of the steel plate immediately before extracting the steel plate from the heating furnace is such that the steel plate surface temperature is 500 ° C. or higher and less than the Ac 1 transformation point, and the temperature rising rate Vs of the steel plate surface is Vs ≧ −0.0036 × t + 0.54. As a satisfactory condition, the steel plate is extracted from the heating furnace.

加熱炉から抽出した鋼板は空冷する。加熱炉から抽出した鋼板を空冷する理由としては、焼き戻した鋼板を水冷すると鋼板の表面と内部に温度差が生じて、鋼板が歪むおそれがあるからであり、鋼板が歪まない冷却速度であれば、通常の空冷以外にも、水の噴霧によるミスト冷却やファンで強制的に空気を送風する冷却も適応できる。なお、鋼板を抽出する直前の鋼板表面の昇温速度Vsの上限は特に定めないが、鋼板表面の昇温速度Vsが大きすぎる場合には、鋼板表層と板厚1/4の温度差が大きすぎ、鋼板内部が十分に焼戻されず、焼入れままのマルテンサイトあるいはベイナイトが残留し靭性および耐HIC性が優れないおそれがあるため、Vs≦−0.0036×t+2.18を満足するまで鋼板を加熱炉中に保持することが好ましい。   The steel sheet extracted from the heating furnace is air-cooled. The reason why the steel sheet extracted from the heating furnace is air-cooled is that when the tempered steel sheet is water-cooled, a temperature difference is generated between the surface and the inside of the steel sheet and the steel sheet may be distorted. For example, in addition to normal air cooling, mist cooling by spraying water or cooling forcibly blowing air with a fan can be applied. In addition, although the upper limit of the temperature increase rate Vs on the steel plate surface immediately before extracting the steel plate is not particularly defined, when the temperature increase rate Vs on the steel plate surface is too large, the temperature difference between the steel sheet surface layer and the plate thickness ¼ is large. The inside of the steel sheet is not sufficiently tempered, and as-quenched martensite or bainite may remain and the toughness and HIC resistance may not be excellent. Therefore, the steel sheet is kept until Vs ≦ −0.0036 × t + 2.18 is satisfied. It is preferable to hold in a heating furnace.

再加熱焼入れ(再加熱温度:Ac変態点以上、焼入れ開始温度:Ar変態点以上、冷却停止温度:400℃以下)
熱間圧延後の直接焼入れに代えて、再加熱焼き入れをすることもできる。熱間圧延終了後、鋼板をAc変態点以上に再加熱し、Ar変態点以上の温度から水冷を開始し、400℃以下の温度まで水冷する。再加熱温度がAc変態点未満であると未変態のフェライトが残存し、所望の強度、組織が得られない。このため、再加熱温度はAc変態点以上とする。また、水冷開始温度がAr変態点を下回ると、オーステナイトが一部、水冷開始前に、フェライトに変態してしまい所望の強度、組織が得られない。このため、焼入れ開始温度はAr変態点以上とする。400℃以下に到達するまで水冷する理由は、オーステナイトからマルテンサイトもしくはベイナイトヘの変態を完了させ母材の強度を保つため、および耐HIC性に優れる所望の組織を得るためである。再加熱焼き入れ完了後、鋼板には焼戻しを行なうが、焼戻しの条件は、既に述べた直接焼入れの後に行なう焼戻しと同様である。
Reheating and quenching (reheating temperature: Ac 3 transformation point or higher, quenching start temperature: Ar 3 transformation point or higher, cooling stop temperature: 400 ° C. or lower)
Instead of direct quenching after hot rolling, reheating quenching can also be performed. After the hot rolling, the steel sheet is reheated to the Ac 3 transformation point or higher, water cooling is started from the temperature of the Ar 3 transformation point or higher, and the water cooling is performed to a temperature of 400 ° C. or lower. Reheating temperature is untransformed of ferrite remaining to be Ac less than 3 transformation point, a desired strength, the tissue can not be obtained. Therefore, the reheating temperature is set to Ac 3 transformation point or more. Further, when the water cooling start temperature is lower than the Ar 3 transformation point, a part of austenite is transformed to ferrite before the start of water cooling, and a desired strength and structure cannot be obtained. Therefore, the quenching start temperature and Ar 3 transformation point or more. The reason for water cooling until reaching 400 ° C. or lower is to complete the transformation from austenite to martensite or bainite to maintain the strength of the base material, and to obtain a desired structure having excellent HIC resistance. After the reheating and quenching is completed, the steel sheet is tempered. The tempering conditions are the same as the tempering performed after the direct quenching already described.

なお、Ar変態点、Ac変態点、Ac変態点は、以下の式より計算される値を用いる。 As the Ar 3 transformation point, Ac 1 transformation point, and Ac 3 transformation point, values calculated from the following equations are used.

Ar3変態点(℃)=900−332C+6Si−77Mn−20Cu−50Ni−18Cr−68Mo
Ac1変態点(℃)=750.8−26.6C+17.6Si−11.6Mn−22.9Cu−23Ni+24.1Cr+22.5Mo
−39.7V−5.7Ti+232.4Nb−169.4Al−894.7B
Ac3変態点(℃)=937−476.5C+56Si−19.7Mn−16.3Cu−26.6Ni−4.9Cr+38.1Mo
+124.8V+136.3Ti−19.1Nb+198.4Al
(ここで、C、Si、Mn、Cu、Ni、Cr、Mo、V、Ti 、Nb、 Al:各元素の含有量(質量%))
Ar 3 transformation point (° C) = 900-332C + 6Si-77Mn-20Cu-50Ni-18Cr-68Mo
Ac 1 transformation point (℃) = 750.8-26.6C + 17.6Si-11.6Mn-22.9Cu-23Ni + 24.1Cr + 22.5Mo
−39.7V−5.7Ti + 232.4Nb−169.4Al−894.7B
Ac 3 transformation point (℃) = 937-476.5C + 56Si-19.7Mn-16.3Cu-26.6Ni-4.9Cr + 38.1Mo
+ 124.8V + 136.3Ti-19.1Nb + 198.4Al
(Here, C, Si, Mn, Cu, Ni, Cr, Mo, V, Ti, Nb, Al: content of each element (mass%))

転炉−取鍋精錬−連続鋳造法で、表1に示す鋼組成の鋼素材(スラブ)を鋳造し、250mm厚のスラブとした。ここで、鋼種A〜Dは発明鋼、鋼種Eは比較鋼である。これらのスラブに熱間圧延を行い、直接焼入れ(DQ)−焼き戻し処理、あるいは、再加熱焼入れ(RQ)−焼き戻し処理を施した。表2に製造条件を示す。
得られた鋼板について組織観察、硬度測定、引張り特性評価、母材靭性測定、耐HIC試験を下記の要領で実施した。得られた結果を表3に示す。
A steel material (slab) having a steel composition shown in Table 1 was cast by a converter-ladder refining-continuous casting method to obtain a slab having a thickness of 250 mm. Here, steel types A to D are invention steels, and steel type E is a comparative steel. These slabs were hot-rolled and subjected to direct quenching (DQ) -tempering treatment or reheating quenching (RQ) -tempering treatment. Table 2 shows the manufacturing conditions.
The obtained steel sheet was subjected to structure observation, hardness measurement, tensile property evaluation, base material toughness measurement, and HIC resistance test in the following manner. The obtained results are shown in Table 3.

[組織観察]
鋼板の組織は、圧延方向に垂直な断面のサンプルを採取し、断面を鏡面まで研磨後、硝酸メタノール溶液で腐食し、鋼板表面から板厚方向に1.0mmまで、および板厚中央部から板厚方向に±1mmの範囲を光学顕微鏡により400倍で当該範囲を、画面が連続した複数枚で写真撮影し、写真より当該範囲の相を同定し、各相の面積分率を決定した。焼戻しマルテンサイトと焼戻しベイナイトの組織はいずれもラス間に微細な炭化物が分散した組織であり、これらを判別できないので、焼戻しマルテンサイトと焼戻しベイナイトは同じ相とした。なお、焼戻し前の鋼板では、結晶粒中のセメンタイトの有無でマルテンサイトとベイナイトを区別することが可能である。
[Tissue observation]
As for the structure of the steel sheet, a sample with a cross section perpendicular to the rolling direction was taken, the cross section was polished to a mirror surface, then corroded with a methanolic nitric acid solution, and from the steel sheet surface to 1.0 mm in the thickness direction, and from the center of the thickness A range of ± 1 mm in the thickness direction was photographed at a magnification of 400 with an optical microscope, and the range was photographed with a plurality of continuous screens. Phases in the range were identified from the photograph, and the area fraction of each phase was determined. The structures of tempered martensite and tempered bainite are both structures in which fine carbides are dispersed between the laths, and these cannot be distinguished. Therefore, tempered martensite and tempered bainite have the same phase. In the steel sheet before tempering, it is possible to distinguish martensite and bainite by the presence or absence of cementite in the crystal grains.

[硬度測定]
鋼板の組織は、圧延方向に垂直な断面のサンプルを採取し、断面を鏡面まで研磨後、JIS Z2244に準拠してビッカース硬さを測定した。ビッカース圧子の荷重は10kgとした。表面から1mmの位置、および板厚1/2の位置でそれぞれ5点測定し、5点のビッカース硬さを平均し、表面から1mmの位置および板厚1/2の位置の硬さとした。
[Hardness measurement]
As for the structure of the steel sheet, a sample having a cross section perpendicular to the rolling direction was collected, and after the cross section was polished to a mirror surface, the Vickers hardness was measured in accordance with JIS Z2244. The load of the Vickers indenter was 10 kg. Five points were measured at a position 1 mm from the surface and a position where the plate thickness was 1/2, and the Vickers hardness at 5 points was averaged to obtain a hardness at a position 1 mm from the surface and a position where the plate thickness was 1/2.

[引張り特性]
JIS Z2241 に準拠し、板厚全厚の5号引張り試験片を圧延方向に垂直方向を試験片長手方向として鋼板より採取し、引張り試験を実施した。
[Tensile properties]
In accordance with JIS Z2241, a No. 5 tensile test piece having a full thickness was taken from the steel sheet with the direction perpendicular to the rolling direction as the test piece longitudinal direction, and a tensile test was performed.

[母材靭性]
各鋼板の板厚1/2位置の圧延方向と垂直な方向から、JIS Z 2202(1998年)の規定に準拠してVノッチ試験片を採取し、JIS Z 2242(1998年)の規定に準拠して各鋼板について各温度3本のシャルピー衝撃試験を実施し、試験温度0℃での吸収エネルギーを求め、母材靭性を評価した。試験温度0℃での吸収エネルギー(vEと言う場合がある)の3本の平均値が50J以上を母材靭性に優れるものとした。
[Base material toughness]
V-notch test specimens were collected from the direction perpendicular to the rolling direction at the plate thickness 1/2 position of each steel plate in accordance with JIS Z 2202 (1998), and conformed to JIS Z 2242 (1998). Then, each steel plate was subjected to a Charpy impact test at three temperatures, the absorbed energy at a test temperature of 0 ° C. was determined, and the base material toughness was evaluated. The average value of the three absorbed energy at the test temperature of 0 ° C. (sometimes referred to as vE 0 ) was 50 J or more, and the base material toughness was excellent.

[耐HIC試験]
耐HIC性は、pHが約3の硫化水素を飽和させた5%NaCl+0.5%CHCOOH水溶液(通常のNACE溶液)中に鋼材サンプル(幅30mm×長さ60mm×板厚)を96時間浸漬し、その後サンプルを幅中央位置で長さ方向に平行に切断し、板厚断面(圧延方向に平行で幅方向に垂直な断面)を鏡面まで研磨し、断面を20倍で観察し、割れの有無を調査するというHIC試験により評価した。割れが全く観察されないものを合格、割れが1つでも観察されたものを不合格とした。
[HIC resistance test]
The HIC resistance is obtained by placing a steel sample (width 30 mm x length 60 mm x plate thickness) in a 5% NaCl + 0.5% CH 3 COOH aqueous solution (normal NACE solution) saturated with hydrogen sulfide having a pH of about 3 for 96 hours. Immerse, then cut the sample parallel to the length direction at the center of the width, polish the plate thickness cross section (cross section parallel to the rolling direction and perpendicular to the width direction) to the mirror surface, observe the cross section at 20 times, crack It was evaluated by the HIC test of investigating the presence or absence. Those in which no cracks were observed were accepted, and those in which even one crack was observed were rejected.

Figure 0005928405
Figure 0005928405

Figure 0005928405
Figure 0005928405

Figure 0005928405
Figure 0005928405

その結果を表3に示す。ここで、No.1〜5、No.10は発明例、No.6〜9、No.11は比較例である。発明例はいずれも降伏強さ:415MPa以上、引張強さ:550MPa以上を有し、鋼板表面から1mm〜5mmの表層部の平均硬さが250HV以下で、表面から1mmと板厚中央との硬度差が60HV以下である板厚方向硬さ分布を示しており、耐HIC特性も良好であった。   The results are shown in Table 3. Here, no. 1-5, no. No. 10 is an invention example. 6-9, no. 11 is a comparative example. Each of the inventive examples has a yield strength of 415 MPa or more, a tensile strength of 550 MPa or more, an average hardness of a surface layer portion of 1 mm to 5 mm from the steel plate surface is 250 HV or less, and a hardness of 1 mm from the surface and the center of the plate thickness. The hardness distribution in the plate thickness direction with a difference of 60 HV or less was shown, and the HIC resistance was also good.

Claims (5)

質量%で、C:0.05〜0.30%、Si:0.05〜0.60%、Mn:0.5〜2.0%、P:0.050%以下、S:0.050%以下、Al:0.100%以下、Ti:0.007〜0.012%を含有し、炭素当量Ceqを0.300.50とし、残部Fe及び不可避的不純物からなり、鋼板表面から板厚方向に1mmまでの範囲の金属組織が、焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなり、板厚中央部から板厚方向に±1mmの範囲の金属組織が、焼戻しマルテンサイト、焼戻しベイナイトの中から選ばれる1種または2種からなる主相が面積分率で80%以上であり、主相以外の残部がフェライト、パーライト、セメンタイト、残留オーステナイトの中から選ばれる1種以上からなり、さらに、鋼板表面から板厚方向に1mmの位置の硬度がビッカース硬さで250HV以下で、鋼板表面から1mmの位置と板厚中央部との硬度差がビッカース硬さで60HV以下であることを特徴とする耐水素誘起割れ性に優れた調質鋼板。 In mass%, C: 0.05 to 0.30%, Si: 0.05 to 0.60%, Mn: 0.5 to 2.0%, P: 0.050% or less, S: 0.050 % Or less, Al: 0.100% or less, Ti: 0.007 to 0.012% , the carbon equivalent Ceq is 0.30 to 0.50 , and the balance is Fe and unavoidable impurities. The metal structure in the range up to 1 mm in the sheet thickness direction is composed of one or two kinds selected from tempered martensite and tempered bainite, and the metal structure in the range of ± 1 mm in the sheet thickness direction from the center of the sheet thickness, One or two main phases selected from tempered martensite and tempered bainite are 80% or more in area fraction, and the remainder other than the main phase is selected from ferrite, pearlite, cementite, and retained austenite. From one or more Furthermore, the hardness at the position of 1 mm from the surface of the steel sheet in the thickness direction is 250 HV or less in terms of Vickers hardness, and the hardness difference between the position of 1 mm from the surface of the steel sheet and the central portion of the thickness is 60 HV or less in terms of Vickers hardness. Tempered steel sheet with excellent resistance to hydrogen-induced cracking. さらに、質量%で、Nb:0.05%以下、Cu:0.50%以下、Ni:0.50%以下、Cr:0.50%以下、Mo:0.50%以下、V:0.50%以下の中から選ばれる1種以上を含有することを特徴とする請求項1に記載の耐水素誘起割れ性に優れた調質鋼板。   Further, in terms of mass%, Nb: 0.05% or less, Cu: 0.50% or less, Ni: 0.50% or less, Cr: 0.50% or less, Mo: 0.50% or less, V: 0.00. The tempered steel sheet having excellent resistance to hydrogen-induced cracking according to claim 1, comprising at least one selected from 50% or less. さらに、質量%で、Ca:0.0005〜0.0050%、REM:0.0050%以下、Mg:0.0050%以下の中から選ばれる1種以上を含有することを特徴とする請求項1または2に記載の耐水素誘起割れ性に優れた調質鋼板。   Furthermore, by mass%, it contains at least one selected from Ca: 0.0005 to 0.0050%, REM: 0.0050% or less, and Mg: 0.0050% or less. 1. A tempered steel sheet having excellent resistance to hydrogen-induced cracking according to 1 or 2. 請求項1乃至3の何れかに記載の調質鋼板の製造方法であって、
請求項1乃至3の何れかに記載の成分組成を有する鋼素材を、1050〜1300℃の温度範囲に加熱し、所定の板厚に熱間圧延して鋼板とした後、引続き鋼板をAr変態点以上から直接焼入れし、400℃以下の温度域で冷却停止した後に、500〜800℃の雰囲気温度の加熱炉に装入して鋼板を加熱し、次いで、加熱炉から抽出する直前の鋼板の状態を、鋼板表面温度が500℃以上Ac変態点未満で、かつ、鋼板表面の昇温速度Vsが下記式(1)を満たす状態として、加熱炉から鋼板を抽出し、空冷することを特徴とする耐水素誘起割れ性に優れた調質鋼板の製造方法。
Vs≧−0.0036×t+0.54 ・・・(1)
ただし、Vs:鋼板表面の昇温速度(℃/min)、t:鋼板板厚(mm)
A method for producing a tempered steel sheet according to any one of claims 1 to 3,
A steel material having the component composition according to any one of claims 1 to 3 is heated to a temperature range of 1050 to 1300 ° C and hot-rolled to a predetermined plate thickness to obtain a steel plate, and subsequently the steel plate is subjected to Ar 3 After quenching directly from the transformation point and above, after stopping cooling in a temperature range of 400 ° C. or less, the steel plate is charged in a heating furnace having an ambient temperature of 500 to 800 ° C., and then immediately before extraction from the heating furnace. The steel sheet surface temperature is 500 ° C. or more and less than the Ac 1 transformation point, and the steel sheet surface temperature rise rate Vs satisfies the following formula (1), and the steel sheet is extracted from the heating furnace and air-cooled. A method for producing a tempered steel sheet having excellent hydrogen-induced cracking resistance.
Vs ≧ −0.0036 × t + 0.54 (1)
However, Vs: Temperature rising rate of steel plate surface (° C./min), t: Steel plate thickness (mm)
請求項1乃至3の何れかに記載の調質鋼板の製造方法であって、
請求項1乃至3の何れかに記載の成分組成を有する鋼素材を、1050〜1300℃の温度範囲に加熱し、所定の板厚に熱間圧延して鋼板とした後、鋼板をAc変態点以上の温度に加熱し、引き続きAr変態点以上から水冷により400℃以下の温度まで冷却し、さらに、500〜800℃の雰囲気温度の加熱炉に装入して鋼板を加熱し、次いで、加熱炉から抽出する直前の鋼板の状態を、鋼板表面温度が500℃以上Ac変態点未満で、かつ、鋼板表面の昇温速度Vsが下記式(1)を満たす状態として、加熱炉から鋼板を抽出し、空冷することを特徴とする耐水素誘起割れ性に優れた調質鋼板の製造方法。
Vs≧−0.0036×t+0.54 ・・・(1)
ただし、Vs:鋼板表面の昇温速度(℃/min)、t:鋼板板厚(mm)
A method for producing a tempered steel sheet according to any one of claims 1 to 3,
A steel material having the composition according to any one of claims 1 to 3 is heated to a temperature range of 1050 to 1300 ° C and hot-rolled to a predetermined plate thickness to obtain a steel plate, and then the steel plate is subjected to Ac 3 transformation. Is heated to a temperature equal to or higher than the point, subsequently cooled to a temperature of 400 ° C. or lower by water cooling from the Ar 3 transformation point or higher, further charged in a heating furnace having an atmospheric temperature of 500 to 800 ° C., and then heated. The state of the steel plate immediately before extraction from the heating furnace is defined as a state in which the steel plate surface temperature is 500 ° C. or higher and less than the Ac 1 transformation point, and the steel plate surface heating rate Vs satisfies the following formula (1). A method for producing a tempered steel sheet excellent in hydrogen-induced cracking resistance, characterized by extracting air and air cooling.
Vs ≧ −0.0036 × t + 0.54 (1)
However, Vs: Temperature rising rate of steel plate surface (° C./min), t: Steel plate thickness (mm)
JP2013099116A 2013-05-09 2013-05-09 Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same Active JP5928405B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013099116A JP5928405B2 (en) 2013-05-09 2013-05-09 Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013099116A JP5928405B2 (en) 2013-05-09 2013-05-09 Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014218707A JP2014218707A (en) 2014-11-20
JP5928405B2 true JP5928405B2 (en) 2016-06-01

Family

ID=51937449

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013099116A Active JP5928405B2 (en) 2013-05-09 2013-05-09 Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same

Country Status (1)

Country Link
JP (1) JP5928405B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6554844B2 (en) * 2015-03-18 2019-08-07 日本製鉄株式会社 Manufacturing method of high-pressure hydrogen container
EP3330398B1 (en) * 2015-07-27 2020-11-25 Nippon Steel Corporation Steel pipe for line pipe and method for manufacturing same
CN105886909B (en) * 2016-04-19 2017-08-11 江阴兴澄特种钢铁有限公司 A kind of resistance against hydrogen cracking steel plate of pressure vessel and its manufacture method
KR101889189B1 (en) * 2016-12-22 2018-08-16 주식회사 포스코 Ts 450mpa grade heavy guage steel sheet having excellent resistance to hydrogen induced cracking and method of manufacturing the same
CN111094610B9 (en) 2017-09-19 2021-11-09 日本制铁株式会社 Steel pipe and steel plate
KR102031450B1 (en) * 2017-12-24 2019-10-11 주식회사 포스코 High strength steel sheet and manufacturing method for the same
MX2020010540A (en) * 2018-04-09 2020-11-06 Nippon Steel Corp Steel material suitable for use in sour environments.
WO2020203158A1 (en) * 2019-03-29 2020-10-08 日本製鉄株式会社 Steel sheet
JP6874919B1 (en) * 2019-08-06 2021-05-19 Jfeスチール株式会社 High-strength thin steel sheet and its manufacturing method
KR102289522B1 (en) * 2019-11-22 2021-08-12 현대제철 주식회사 Steel and method of manufacturing the same
JP7360075B2 (en) 2020-03-04 2023-10-12 日本製鉄株式会社 steel pipes and steel plates
KR102493979B1 (en) * 2020-12-21 2023-01-31 주식회사 포스코 High-strength steel plate for pressure vessels with excellent impact toughness and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233415A (en) * 1994-02-22 1995-09-05 Nippon Steel Corp Production of high tensile strength steel plate excellent in sour resistance and low temperature toughness
US20030116231A1 (en) * 1997-03-07 2003-06-26 O'hara Randy D. Hydrogen-induced-cracking resistant and sulphide-stress-cracking resistant steel alloy
JP4333282B2 (en) * 2003-08-28 2009-09-16 Jfeスチール株式会社 Manufacturing method of high-strength steel sheet
JP5124988B2 (en) * 2005-05-30 2013-01-23 Jfeスチール株式会社 High-tensile steel plate with excellent delayed fracture resistance and tensile strength of 900 MPa or more and method for producing the same
JP4892978B2 (en) * 2005-06-08 2012-03-07 Jfeスチール株式会社 Method for producing high-tensile steel plate with excellent SSC resistance
JP4645461B2 (en) * 2006-01-27 2011-03-09 Jfeスチール株式会社 High-strength steel material excellent in ductile crack initiation characteristics and fatigue crack propagation characteristics and method for producing the same
JP5098256B2 (en) * 2006-08-30 2012-12-12 Jfeスチール株式会社 Steel sheet for high-strength line pipe with low yield stress reduction due to the Bauschinger effect with excellent hydrogen-induced cracking resistance and method for producing the same
JP5277648B2 (en) * 2007-01-31 2013-08-28 Jfeスチール株式会社 High strength steel sheet with excellent delayed fracture resistance and method for producing the same
JP5277672B2 (en) * 2007-03-29 2013-08-28 Jfeスチール株式会社 High strength steel plate with excellent delayed fracture resistance and method for producing the same
JP5223511B2 (en) * 2007-07-31 2013-06-26 Jfeスチール株式会社 Steel sheet for high strength sour line pipe, method for producing the same and steel pipe
JP5181775B2 (en) * 2008-03-31 2013-04-10 Jfeスチール株式会社 High strength steel material excellent in bending workability and low temperature toughness and method for producing the same
JP5782828B2 (en) * 2011-05-24 2015-09-24 Jfeスチール株式会社 High compressive strength steel pipe and manufacturing method thereof

Also Published As

Publication number Publication date
JP2014218707A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
JP5928405B2 (en) Tempered steel sheet excellent in resistance to hydrogen-induced cracking and method for producing the same
JP5266791B2 (en) High strength steel plate of X100 grade or more excellent in SR resistance and deformation performance and method for producing the same
JP6048436B2 (en) Tempered high tensile steel plate and method for producing the same
US10767250B2 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
EP2484792A1 (en) Steel plate with low yield ratio, high strength, and high toughness and process for producing same
KR102119561B1 (en) Thick steel plate for structural pipes or tubes, method of producing thick steel plate for structural pipes or tubes, and structural pipes and tubes
JP6583374B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP5845674B2 (en) High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP6572952B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
KR101908818B1 (en) High strength steel having excellent fracture initiation resistance and fracture arrestability in low temperature, and method for manufacturing the same
JP6583375B2 (en) Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP2015190026A (en) Thick high strength electroseamed steel pipe for linepipe and manufacturing method therefor
JP7155702B2 (en) Thick steel plate for sour linepipe and its manufacturing method
WO2015151468A1 (en) Steel material for highly-deformable line pipes having superior strain aging characteristics and anti-hic characteristics, method for manufacturing same, and welded steel pipe
CN114402086B (en) Wear-resistant steel sheet and method for producing same
JP2015183279A (en) Thick steel sheet for marine vessel, for marine structure and for hydraulic pressure steel pipe excellent in brittle crack arrest property
KR102002241B1 (en) Steel plate for structural pipes or tubes, method of producing steel plate for structural pipes or tubes, and structural pipes and tubes
WO2016157235A1 (en) High-strength steel, production method therefor, steel pipe, and production method therefor
JP4547944B2 (en) Manufacturing method of high strength and high toughness thick steel plate
JP4507708B2 (en) Low yield ratio high strength high toughness steel sheet manufacturing method
JP3941211B2 (en) Manufacturing method of steel plate for high-strength line pipe with excellent HIC resistance
JP7115200B2 (en) Steel plate for line pipe
JP6241434B2 (en) Steel plate for line pipe, steel pipe for line pipe, and manufacturing method thereof
JP4824142B2 (en) Steel for line pipe with good strength and ductility and method for producing the same
JP7251512B2 (en) Steel plate and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5928405

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250