JP5156453B2 - High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more - Google Patents

High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more Download PDF

Info

Publication number
JP5156453B2
JP5156453B2 JP2008088309A JP2008088309A JP5156453B2 JP 5156453 B2 JP5156453 B2 JP 5156453B2 JP 2008088309 A JP2008088309 A JP 2008088309A JP 2008088309 A JP2008088309 A JP 2008088309A JP 5156453 B2 JP5156453 B2 JP 5156453B2
Authority
JP
Japan
Prior art keywords
steel sheet
old
strength
mpa
tensile strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008088309A
Other languages
Japanese (ja)
Other versions
JP2009242832A (en
Inventor
哲史 下山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008088309A priority Critical patent/JP5156453B2/en
Priority to EP20090001913 priority patent/EP2105515B1/en
Priority to CN2009101301414A priority patent/CN101545074B/en
Publication of JP2009242832A publication Critical patent/JP2009242832A/en
Application granted granted Critical
Publication of JP5156453B2 publication Critical patent/JP5156453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

本発明は、引張強度で980MPa以上の高強度を維持しつつ、曲げ加工性にも優れた高強度鋼板に関するものであり、特に大型化が求められている建築機械構造物に好適に用いることのできる鋼板に関するものである。   The present invention relates to a high-strength steel sheet excellent in bending workability while maintaining a high strength of 980 MPa or more in tensile strength, and is particularly suitable for use in a building machine structure that is required to be increased in size. It is related with the steel plate which can be performed.

近年、中国を中心として都市化が急速に進められている。これによって、土木・建築関連の工事量は増加しており、建築機械への需要の伸びが著しい傾向がある。   In recent years, urbanization has been progressing rapidly mainly in China. As a result, the amount of civil engineering / architecture-related construction work has increased, and there has been a significant increase in demand for construction machinery.

一方、建築機械構造物による作業効率向上は今後の都市開発において重要となることが予想され、作業効率向上のための建築機械構造物の大型化も進められている。しかしながら、地球環境問題への対応からクレーン自体の重量制約も厳しくなりつつあり、より高強度(例えば、引張強度で980MPa以上)な厚鋼板が必要となっている。   On the other hand, it is expected that improvement of work efficiency by building machine structures will be important in future urban development, and the size of building machine structures is being increased to improve work efficiency. However, the weight restrictions of the crane itself are becoming stricter due to the response to global environmental problems, and a thick steel plate with higher strength (for example, a tensile strength of 980 MPa or more) is required.

またこうした高強度厚鋼板は、建築機械構造物への適用を考慮した場合、その加工性(特に曲げ加工性)が良好であることも要求されることになる。しかしながら、高強度と加工性とは相反する特性であり、両方の特性を満足させることは困難である。   Such high-strength thick steel plates are also required to have good workability (particularly bending workability) when considering application to building machine structures. However, high strength and workability are contradictory characteristics, and it is difficult to satisfy both characteristics.

引張強度が780MPa以上の高張力厚鋼板で、その一様伸びを改善した技術として、例えば特許文献1のような技術も提案されている。この技術は、旧オーステナイト(以下、「旧γ」と略記することがある)粒径の微細化(粒度番号で7以上または板厚方向厚み平均で10μm以下)を図って転位の障害を多くし、加工硬化能を高めることによって、一様伸びを改善するものである。しかしながら、旧γ粒径の微細化を図っただけでは、必ずしも加工性が良好になるとは限らないことが分かった。
特開2002−88440号公報
As a technique for improving the uniform elongation of a high-strength thick steel plate having a tensile strength of 780 MPa or more, for example, a technique such as Patent Document 1 has been proposed. This technique increases the number of dislocation failures by reducing the grain size of old austenite (hereinafter sometimes referred to as “old γ”) (7 or more in the grain number number or 10 μm or less in the thickness direction thickness average). The uniform elongation is improved by increasing the work hardening ability. However, it has been found that the workability is not necessarily improved only by reducing the old γ grain size.
JP 2002-88440 A

本発明は、こうした状況の下でなされたものであって、その目的は、引張強度が980MPa以上という高強度を維持しつつ曲げ加工性をも良好な高強度鋼板を提供することにある。   The present invention has been made under such circumstances, and an object of the present invention is to provide a high-strength steel sheet having good bending workability while maintaining a high strength of a tensile strength of 980 MPa or more.

上記目的を達成し得た本発明の高強度鋼板とは、C:0.1〜0.25%(質量%の意味、化学成分組成については以下同じ)、Si:0.1〜0.5%、Mn:0.5〜2.0%、Cr:0.1〜1.5%、Mo:0.1〜0.5%、Ti:0.01〜0.05%およびNb:0.01〜0.05%を夫々含有する他、V:0.01〜0.05%および/またはB:0.0001〜0.005%を含有し、残部が鉄および不可避的不純物からなり、且つ旧オーステナイトの平均粒径が20μm以下であると共に、旧オーステナイト粒径分布の標準偏差(σ)が5μm以下である点に要旨を有するものである。   The high-strength steel sheet of the present invention that can achieve the above-mentioned object is C: 0.1 to 0.25% (meaning mass%, the same applies to the chemical composition), Si: 0.1 to 0.5 %, Mn: 0.5 to 2.0%, Cr: 0.1 to 1.5%, Mo: 0.1 to 0.5%, Ti: 0.01 to 0.05%, and Nb: 0.3%. In addition to each containing 01 to 0.05%, V: 0.01 to 0.05% and / or B: 0.0001 to 0.005%, the balance consisting of iron and inevitable impurities, and It has a gist in that the average particle size of prior austenite is 20 μm or less and the standard deviation (σ) of the prior austenite particle size distribution is 5 μm or less.

本発明の高強度鋼板においては、必要に応じて更にCa:0.0005〜0.01%を含有させることも有効であり、これによって高強度鋼板の特性を更に向上させることができる。   In the high-strength steel sheet of the present invention, it is also effective to further contain Ca: 0.0005 to 0.01% as necessary, whereby the characteristics of the high-strength steel sheet can be further improved.

本発明によれば、化学成分組成を適切に調整すると共に、旧γの平均粒径および旧γ粒径分布の標準偏差(σ)を適切な範囲に制御することによって、引張強度が980MPa以上という高強度を維持しつつ曲げ加工性な高強度鋼板が実現でき、このような鋼板は大型の建築機械構造物の素材として極めて有用である。   According to the present invention, the tensile strength is 980 MPa or more by appropriately adjusting the chemical component composition and controlling the average particle size of old γ and the standard deviation (σ) of the old γ particle size distribution to an appropriate range. A high-strength steel sheet that can be bent while maintaining high strength can be realized, and such a steel sheet is extremely useful as a material for a large-scale construction machine structure.

本発明者は、引張強度が980MPa以上の鋼板において良好な曲げ加工性を実現するために様々な角度から検討した。組織的には、旧γ粒径の微細化を図ることによって、一様伸びが改善できることは提案されている(前記特許文献1)。しかしながら、旧γ粒径の微細化を図っただけでは、必ずしも曲げ加工性が改善されるとは限らないことを明らかにした。そこで、本発明者は、こうした現象が生じる原因について検討した。   This inventor examined from various angles, in order to implement | achieve favorable bending workability in the steel plate whose tensile strength is 980 Mpa or more. Organizationally, it has been proposed that uniform elongation can be improved by refining the old γ grain size (Patent Document 1). However, it has been clarified that the bending workability is not always improved only by reducing the old γ grain size. Therefore, the present inventor examined the cause of such a phenomenon.

その結果、上記のような鋼板では、旧γ粒径の異方性については、何ら考慮されておらず、化学成分組成や製造条件によっては異方性が顕著になり、これが原因して鋼板材質にばらつきが発生することになり、こうしたばらつきは強度や靭性のばらつきが生じる他、一様伸びに関してもばらつきが生じてしまい、これによって加工性を損ねることが判明した。   As a result, in the steel sheet as described above, no consideration is given to the anisotropy of the old γ grain size, and the anisotropy becomes prominent depending on the chemical composition and manufacturing conditions, and this is the cause of the steel sheet material. It has been found that these variations cause variations in strength and toughness as well as variations in uniform elongation, thereby impairing workability.

そこで、本発明者は、旧γ粒径の微細化を図ると共にそのばらつきを低減すれば、伸びが改善されて、曲げ加工性も改善されるのではないかとの着想の下で、その具体的手段について化学成分組成および製造条件の面から検討を進めた。特に、ばらつきが発生する原因は、様々な要因によって再結晶粒成長が不均一に生じ、これがばらつき発生の原因となると考え、こうした不均一な再結晶粒成長を抑制するための条件について検討した。   Therefore, the present inventor has concretely developed the idea based on the idea that if the γ grain size is refined and the variation is reduced, the elongation is improved and the bending workability is also improved. We investigated the means from the viewpoint of chemical composition and production conditions. In particular, the cause of the variation is that the recrystallized grain growth is unevenly caused by various factors, which is considered to cause the variation, and the conditions for suppressing the uneven recrystallized grain growth were examined.

その結果、化学成分組成の設定方向として、次のような知見が得られた。引張強度が980MPa以上の鋼板を実現するためには、従来では固溶強化能の高いCuやNi等を添加することが有用とされているが、本発明の鋼板ではこれらの元素を一切含有しない成分系とした。これで、再結晶温度域は従来の成分系に比べて広くなり、不均一に発生した再結晶組織を蚕食する頻度が増加し、より均一な組織が得られやすくなる。また、適正量のNbやTiを添加することによって、これらの炭窒化物による結晶粒のピン止め効果が発揮され、旧γ粒径をより微細にすることが可能となる。   As a result, the following knowledge was obtained as the setting direction of the chemical component composition. In order to realize a steel sheet having a tensile strength of 980 MPa or more, it is conventionally useful to add Cu, Ni or the like having high solid solution strengthening ability, but the steel sheet of the present invention does not contain any of these elements. Component system. Thus, the recrystallization temperature range becomes wider than that of the conventional component system, and the frequency of phagocytosing the non-uniformly generated recrystallized structure increases, and a more uniform structure can be easily obtained. Further, by adding an appropriate amount of Nb or Ti, the pinning effect of crystal grains by these carbonitrides is exhibited, and the old γ grain size can be made finer.

一方、本発明者は、不均一な再結晶組織の生成を抑制するための製造条件については、次の様な知見が得られた。まず、仕上げ圧延時の最長パス間時間を15秒以内とし、一枚の鋼板の圧延における1パス当りの圧下率のうち、少なくとも3回は20〜30%程度として均一圧下に制御することによって、不均一に発生する再結晶を抑制し、更に核生成サイトの増加によって、均一且つ微細な組織を得ることができるようになる。尚、上記パス間時間は、鋼板長手方向の最先端が圧下されてから、次のパスで同じ位置が圧下されるまでの時間のことを指す。   On the other hand, the present inventor has obtained the following knowledge about manufacturing conditions for suppressing the formation of a non-uniform recrystallized structure. First, the time between the longest passes at the time of finish rolling is set to 15 seconds or less, and the rolling reduction per pass in the rolling of one steel sheet is controlled to a uniform reduction as about 20 to 30% at least three times, By suppressing recrystallization that occurs non-uniformly and increasing the number of nucleation sites, a uniform and fine structure can be obtained. The time between passes refers to the time from when the leading edge in the longitudinal direction of the steel sheet is reduced until the same position is reduced in the next pass.

これは、パス間時間を規定し、未圧延時の再結晶頻度と再結晶粒の成長を制御することと、1パス当りの圧下率を規定することで圧延時に導入されるひずみ量を制御し、再結晶の発生する頻度を制御することによって、旧γ粒径の微細均一化が達成されるものと考えられた。   This defines the time between passes, controls the recrystallization frequency and recrystallized grain growth during unrolling, and controls the amount of strain introduced during rolling by defining the rolling reduction per pass. It was considered that fine uniformization of the prior γ grain size was achieved by controlling the frequency of occurrence of recrystallization.

本発明では、上記の手段を採用することによって、旧γ粒径の微細化を図ると共にそのばらつきを低減でき、曲げ加工性も改善されることになる。旧γ粒径の微細化の基準としては、旧γの平均粒径が20μm以下とする必要がある。これによって、加工性改善のために必要な伸びが高いものになる。但し、旧γ粒径の微細化を達成するだけでは、本発明の目的は達成されず、そのばらつきも低減する必要がある。その指標として、結晶粒径分布の標準偏差(σ)が5μm以下である必要がある。尚、標準偏差σは、下記の方法によって求められるものである。   In the present invention, by adopting the above-described means, it is possible to reduce the variation of the old γ grain size and to improve the bending workability. As a standard for refinement of the old γ particle size, the average particle size of the old γ needs to be 20 μm or less. This increases the elongation required for improving workability. However, the object of the present invention cannot be achieved only by achieving the refinement of the old γ grain size, and it is necessary to reduce the variation. As an index, the standard deviation (σ) of the crystal grain size distribution needs to be 5 μm or less. The standard deviation σ is obtained by the following method.

[標準偏差σの測定方法]
光学顕微鏡で400倍の倍率でミクロ組織を観察し、縦・横夫々5等分し、夫々の線分が切断した結晶粒(旧γ粒)の長さ(xi)を計測した結果よりその分布を求め、下記(1)式、(2)式によって平均値、分散を求めた後、分散の平方根をとったものを標準偏差とする。
[Measurement method of standard deviation σ]
The microstructure is observed with an optical microscope at a magnification of 400 times, divided into 5 parts each in the vertical and horizontal directions, and the distribution (distance from the result of measuring the length (xi) of the crystal grains (former γ grains) from which each line segment is cut) After obtaining the average value and variance by the following formulas (1) and (2), the standard deviation is taken as the square root of the variance.

Figure 0005156453
Figure 0005156453

Figure 0005156453
Figure 0005156453

曲げ加工性を改善する因子として、最大結晶粒径が支配することも考えられるが、本発明の高強度鋼板では、結晶粒(旧γ粒)が正規分布に近い分布を示しており、最大結晶粒径は殆ど問題にならないものと考えられた。こうした最大結晶粒径が問題になるのは、低合金鋼の場合であり、本発明の鋼板のように強度クラスが980MPa以上の高合金鋼の場合には、結晶粒の異常成長の起こる温度域が低く、駆動力が小さいので殆ど発生することはない。こうしたことから、本発明では最大結晶粒径ではなく、標準偏差を規定するだけで、その特性が評価できるものとなる。   Although the maximum crystal grain size may dominate as a factor to improve the bending workability, the high-strength steel sheet of the present invention shows that the crystal grains (old γ grains) are close to the normal distribution, and the maximum crystal The particle size was considered to be hardly a problem. Such a maximum crystal grain size becomes a problem in the case of a low alloy steel, and in the case of a high alloy steel having a strength class of 980 MPa or more like the steel sheet of the present invention, a temperature range where abnormal growth of crystal grains occurs. Is low and the driving force is small, it hardly occurs. Therefore, in the present invention, the characteristics can be evaluated only by defining the standard deviation instead of the maximum crystal grain size.

安定して伸びの良い鋼板を製造する上で、異方性の大きい組織は材質の異方性を生む結果となるため圧倒的に不利となる。本発明の様に、結晶粒径が均一な組織とすることによって、曲げ加工性の良好な鋼板が得られることになる。また、組織単位を微細化することによって、転位の障害となる単位面積当りの粒界を増加させることになり、これが伸びを改善することになる。即ち、加工硬化が大きい材料であれば、引張時に局部的に応力がかかったとしても、その部分が非常に高い加工硬化能を発揮することで、その部分ではそれ以上変形が起きず、他の未加工硬化部分で変形が進行することになる。その結果、加工硬化させる能力の大きい組織(微細な組織)であれば、伸びが大きなものとなる。   In producing a steel plate that is stable and has good elongation, a structure with large anisotropy results in anisotropy of the material, which is overwhelmingly disadvantageous. As in the present invention, a steel sheet with good bending workability can be obtained by forming a structure having a uniform crystal grain size. Further, by refining the texture unit, the grain boundary per unit area that becomes an obstacle to dislocation is increased, which improves the elongation. In other words, if the material has a high work hardening, even if a local stress is applied during tension, the part exhibits a very high work hardening ability, and no further deformation occurs in that part. Deformation proceeds at the uncured portion. As a result, if the structure (fine structure) has a large ability to work and harden, the elongation becomes large.

組織微細化によって上記のような現象が生じる理由は、結晶粒内における転位のパイルアップ理論(pile−up理論)に基づくものであり、結晶粒界は転位のパイルアップサイトとして機能することが知られている。結晶粒界には、旧γ粒界、バケット粒界、ブロック粒界、ラス粒界等が存在するが、隣り合う結晶粒との方位差が最も大きい旧γ粒界は転位のパイルアップサイトとしての機能が高いという知見が得られており、伸びの支配因子としては、旧γ粒径が最も影響が高いと考えられた。   The reason why the above-mentioned phenomenon occurs due to the refinement of the structure is based on the pile-up theory of dislocations in the crystal grains, and it is known that the grain boundaries function as dislocation pile-up sites. It has been. There are old γ grain boundaries, bucket grain boundaries, block grain boundaries, lath grain boundaries, etc., at the grain boundaries, but the old γ grain boundaries with the largest misorientation between adjacent crystal grains are used as pileup sites for dislocations. As a result, it was considered that the prior γ grain size had the highest influence as the governing factor of elongation.

尚、本発明の鋼板では、後述する製造方法によって、最終的に焼戻しマルテンサイト組織や焼戻しベイナイト組織とされて、引張強度が980MPa以上の鋼板とされるのであるが、いずれの組織となるにしても、旧γ粒径は最終製品においても保存されており、その旧γ粒径を微細化することによって上記の効果が達成されることになる。   In the steel sheet of the present invention, a tempered martensite structure or a tempered bainite structure is finally formed by a manufacturing method described later, and a steel sheet having a tensile strength of 980 MPa or more is used. However, the old γ particle size is preserved even in the final product, and the above-mentioned effect is achieved by making the old γ particle size fine.

本発明の高強度鋼板では、組織の微細化の観点から、TiおよびNbの含有量を適切に調整する必要があるが、その他C、Si、Mn、Cr、Mo等の基本成分についても適切に制御する必要がある。これらの元素の範囲限定理由は、次の通りである。   In the high-strength steel sheet of the present invention, it is necessary to appropriately adjust the contents of Ti and Nb from the viewpoint of refinement of the structure, but other basic components such as C, Si, Mn, Cr, and Mo are also appropriately adjusted. Need to control. The reasons for limiting the ranges of these elements are as follows.

[C:0.1〜0.25%]
Cは強度向上に不可欠の元素であり、再加熱焼入れ・焼戻しによる製造方法では(後述するQT法)、C含有量が0.1%未満では引張強度が980MPa以上という高強度を得るためには、他の合金元素を多量に添加することになり、コストアップとなってしまう。しかしながら、C含有量が過剰になると、靭性や溶接性を著しく損ねるので、0.25%までとする必要がある。
[C: 0.1-0.25%]
C is an element indispensable for improving the strength. In the manufacturing method by reheating quenching and tempering (QT method described later), in order to obtain a high strength of 980 MPa or more when the C content is less than 0.1%. In other words, a large amount of other alloy elements is added, resulting in an increase in cost. However, if the C content is excessive, the toughness and weldability are remarkably impaired, so it is necessary to set the content to 0.25%.

[Si:0.1〜0.5%]
Siは鋼材の高強度化と脱酸に不可欠の元素であるが、0.1%未満ではこうした効果を発揮させることが不十分であり、0.5%を超えて過剰に含有させると靭性が低下することになる。こうしたことから、Si含有量は0.1〜0.5%とする必要がある。
[Si: 0.1 to 0.5%]
Si is an indispensable element for increasing the strength and deoxidation of steel materials. However, if it is less than 0.1%, it is insufficient to exert such an effect, and if it exceeds 0.5%, it has toughness. Will be reduced. For these reasons, the Si content needs to be 0.1 to 0.5%.

[Mn:0.5〜2.0%]
Mnは鋼板の焼入れ性を高め、強度・靭性を向上させる元素として有効である。こうした効果を発揮させるためには、Mn含有量は0.5%以上とする必要がある。しかしながらMnを過剰に含有させると、溶接部の靭性が劣化するので、その上限を2.0%とする。
[Mn: 0.5 to 2.0%]
Mn is effective as an element that improves the hardenability of the steel sheet and improves strength and toughness. In order to exert such effects, the Mn content needs to be 0.5% or more. However, if Mn is contained excessively, the toughness of the welded portion deteriorates, so the upper limit is made 2.0%.

[Cr:0.1〜1.5%]
CrはMnと同様に少量の添加で焼入れ性を向上させる元素として有用である。こうした効果を発揮させるためには、Cr含有量は0.1%以上とする必要がある。しかしながらCrを過剰に含有させると、溶接部の靭性が劣化するので、その上限を1.5%とする。
[Cr: 0.1 to 1.5%]
Similar to Mn, Cr is useful as an element that improves hardenability by adding a small amount. In order to exert such effects, the Cr content needs to be 0.1% or more. However, if Cr is excessively contained, the toughness of the welded portion deteriorates, so the upper limit is made 1.5%.

[Mo:0.1〜0.5%]
Moには、焼鈍後の強度を確保する効果がある。こうした効果を発揮させるためには、0.1%以上含有させる必要がある。しかしながら、Moを0.5%よりも過剰に含有させても、その効果が飽和するばかりか、鋼板の靭性を却って低下させることになる。こうしたことから、Moの含有量は0.1〜0.5%と規定した。
[Mo: 0.1 to 0.5%]
Mo has the effect of ensuring the strength after annealing. In order to exhibit such an effect, it is necessary to contain 0.1% or more. However, even if Mo is contained in excess of 0.5%, not only the effect is saturated, but also the toughness of the steel sheet is reduced. For these reasons, the Mo content is defined as 0.1 to 0.5%.

[Ti:0.01〜0.05%]
Tiは微細な炭窒化物を形成しやすく、少量の添加で結晶粒界や転位をピン止めすることで、微細な旧γ粒を形成すると共に、鋼板の強化に寄与する効果を有する。こうした効果を発揮させるためには、その含有量は0.01%以上とする必要があるが、Ti含有量が過剰になって0.05%を超えると、靭性劣化の原因となる。
[Ti: 0.01 to 0.05%]
Ti easily forms fine carbonitrides, and by pinning crystal grain boundaries and dislocations with a small amount of addition, it has the effect of forming fine old γ grains and contributing to strengthening of the steel sheet. In order to exert such effects, the content needs to be 0.01% or more. However, if the Ti content becomes excessive and exceeds 0.05%, it causes deterioration of toughness.

[Nb:0.01〜0.05%]
NbはTiと同様に微細な炭窒化物を形成しやすく、結晶粒界や転位をピン止めすることで、微細な旧γ粒を形成すると共に、鋼板の強化に寄与する効果を有する。こうした効果を発揮させるためには、その含有量は0.01%以上とする必要があるが、Nb含有量が過剰になって0.05%を超えると、靭性劣化の原因となる。
[Nb: 0.01 to 0.05%]
Nb is easy to form fine carbonitride like Ti, and has the effect of contributing to strengthening of the steel sheet while forming fine old γ grains by pinning crystal grain boundaries and dislocations. In order to exert such effects, the content needs to be 0.01% or more. However, if the Nb content becomes excessive and exceeds 0.05%, it causes deterioration of toughness.

[V:0.01〜0.05%および/またはB:0.0001〜0.005%]
VとBは、いずれも鋼材を強化する上で有効な元素である。このうちVは、TiやNbと同様に、微細な炭窒化物を形成しやすく、結晶粒界や転位をピン止めすることで、微細な旧γ粒を形成すると共に、鋼板の強化に寄与する効果を有する。こうした効果を発揮させるためには、V含有量は0.01%以上とする必要があるが、その含有量が過剰になって0.05%を超えると、靭性劣化の原因となる。
[V: 0.01 to 0.05% and / or B: 0.0001 to 0.005%]
V and B are both effective elements for strengthening steel. Among them, V, like Ti and Nb, tends to form fine carbonitrides, and by pinning crystal grain boundaries and dislocations, it forms fine old γ grains and contributes to strengthening of the steel sheet. Has an effect. In order to exert such effects, the V content needs to be 0.01% or more. However, if the content is excessive and exceeds 0.05%, it causes deterioration of toughness.

一方、Bは、極少量の添加で鋼の焼入れ性を向上させて固溶強化によって鋼板の強度を向上させる効果を発揮する。こうした効果を発揮させるためには、B含有量は0.0001%以上とする必要があるが、その含有量が過剰になって0.005%を超えると、靭性劣化の原因となる。   On the other hand, B exhibits the effect of improving the hardenability of the steel by adding a very small amount and improving the strength of the steel sheet by solid solution strengthening. In order to exert such effects, the B content needs to be 0.0001% or more. However, if the content is excessive and exceeds 0.005%, it causes toughness deterioration.

本発明の高強度鋼板において、上記成分の他は、鉄および不可避的不純物であるが、溶製上不可避的に混入する微量成分(許容成分)も含み得るものであり(例えば、P,S,O等)、こうした鋼板も本発明の範囲に含まれるものである。また、本発明の高強度鋼板には、必要によって、更にCa:0.0005〜0.01%を含有することも有効であり、Caを含有することによって高強度鋼板の特性を更に向上させることができる。Caを含有させるときの範囲限定理由は下記の通りである。   In the high-strength steel sheet of the present invention, in addition to the above components, iron and unavoidable impurities can be included, but trace components (acceptable components) that are inevitably mixed during melting can be included (for example, P, S, O)), such steel sheets are also included in the scope of the present invention. In addition, it is also effective to further contain Ca: 0.0005 to 0.01% in the high-strength steel sheet of the present invention, and the characteristics of the high-strength steel sheet can be further improved by containing Ca. Can do. The reasons for limiting the range when Ca is contained are as follows.

[Ca:0.0005〜0.01%]
Caは、非金属介在物の制御により靭性を向上させる効果がある。こうした効果を発揮させるためには0.0005%以上含有させることが好ましい。しかしながら、Ca含有量が0.01%を超えて過剰になってもその効果が飽和するので0.01%以下とすることが好ましい。
[Ca: 0.0005 to 0.01%]
Ca has the effect of improving toughness by controlling non-metallic inclusions. In order to exhibit such an effect, it is preferable to contain 0.0005% or more. However, even if the Ca content exceeds 0.01% and becomes excessive, the effect is saturated.

本発明の高強度鋼板を製造するには、不均一な再結晶組織の生成を抑制するという観点から、仕上げ圧延時の最長パス間時間を15秒以内とし、一枚の鋼板における1パス当りの圧下率のうち、少なくとも3回は20〜30%程度の均一圧下をする必要があるが、その他の条件については、通常の製造条件に従えば良い。但し、連続鋳造後の熱間圧延から直接焼入れ−焼戻しする方法(以下、「DQ−T法」と呼ぶ)では、旧γ粒径は大きくならないが、加速冷却過程における冷却むらに起因する組織のばらつきが発生しやすいため、旧γ粒径のばらつきが大きくなりやすく、好ましくない。   In order to manufacture the high-strength steel sheet of the present invention, from the viewpoint of suppressing the formation of a non-uniform recrystallized structure, the time between longest passes during finish rolling is set to 15 seconds or less, and one sheet of steel sheet per pass Of the rolling reduction ratio, it is necessary to perform uniform rolling of about 20 to 30% at least three times, but other conditions may be in accordance with normal manufacturing conditions. However, in the method of direct quenching and tempering from hot rolling after continuous casting (hereinafter referred to as “DQ-T method”), the old γ grain size does not increase, but the structure of the structure caused by cooling unevenness in the accelerated cooling process Since the variation tends to occur, the variation in the old γ particle size tends to increase, which is not preferable.

こうした観点から、連続鋳造した後、熱間圧延を行い、その後一旦冷却してから焼入れ・焼戻しする方法が好ましい。具体的には、上記のような化学成分系にて転炉で溶製し、得られたスラブ鋳片を1100〜700℃程度で熱間圧延を行う。このときの圧延条件は、粗圧延機にて板厚:120mm以下まで圧延した後、仕上げ圧延機にて上記した条件(パス間時間、1回当りの圧下率)で圧延し、圧延終了温度を再結晶温度以上で圧延を終了する。このときの板厚は6〜50mmである。   From such a viewpoint, after continuous casting, a method of performing hot rolling and then cooling and then quenching and tempering is preferable. Specifically, the slab slab obtained by melting in a converter in the chemical component system as described above is hot-rolled at about 1100 to 700 ° C. The rolling conditions at this time are as follows: After rolling to a sheet thickness of 120 mm or less with a rough rolling mill, rolling is performed with the finish rolling mill under the conditions described above (time between passes, rolling reduction per run), and the rolling end temperature is Rolling ends at the recrystallization temperature or higher. The plate thickness at this time is 6 to 50 mm.

上記圧延後は、大気中で100℃以下まで冷却した後、再加熱焼入れ処理を行う。このときの焼入れ条件は、加熱温度:880〜930℃まで加熱し、その温度で5〜15分保持した後、水焼入れを行う。更に、焼入れ処理後、鋼板温度を100℃以下にしてから焼戻し処理を行う。このときの焼戻し条件は、温度:300〜500℃まで加熱し、その温度で5〜15分程度保持した後、大気中で空冷する(以下、この方法を「QT法」と呼ぶ)。   After the said rolling, after cooling to 100 degrees C or less in air | atmosphere, a reheating quenching process is performed. The quenching conditions at this time are heating to 880 to 930 ° C., and holding at that temperature for 5 to 15 minutes, followed by water quenching. Further, after the quenching process, the steel sheet temperature is set to 100 ° C. or lower, and then the tempering process is performed. Tempering conditions at this time are as follows: temperature: heated to 300 to 500 ° C., held at that temperature for about 5 to 15 minutes, and then air-cooled in the atmosphere (hereinafter, this method is referred to as “QT method”).

以下、実施例によって本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で変更を加えて実施することは勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in more detail by way of examples.However, the present invention is not limited by the following examples as a matter of course, and may be implemented with modifications within a range that can meet the gist of the preceding and following descriptions. Of course, they are all possible and are included in the technical scope of the present invention.

[実施例1]
下記表1に示す化学成分組成の鋼を通常の方法によって溶製し、上記した方法(QT法)によって、各種鋼板を製造した。このとき、熱間圧延後に一旦冷却せずに、直接焼入れ−焼戻しした鋼板(DQ−T法)についても作製した(後記表2のNo.16、17)。
[Example 1]
Steels having the chemical composition shown in Table 1 below were melted by an ordinary method, and various steel plates were produced by the method described above (QT method). At this time, a steel plate (DQ-T method) directly quenched and tempered without being cooled once after hot rolling was also produced (Nos. 16 and 17 in Table 2 below).

Figure 0005156453
Figure 0005156453

得られた各鋼板について、下記の方法によって引張試験を行い、鋼板の機械的特性(引張強度TS、全伸びEL)を測定すると共に、下記の方法によって旧γ粒径を測定し、その粒径を統計学的に定量評価した。   About each obtained steel plate, a tensile test is performed by the following method, the mechanical properties (tensile strength TS, total elongation EL) of the steel plate are measured, and the old γ particle size is measured by the following method. Were quantitatively evaluated statistically.

[機械的特性の測定方法]
引張試験の試験片は、JIS Z 2201 5号試験片(板厚:4.5〜6mmの場合)、JIS Z 2201 1A号試験片(板厚:6〜40mmの場合)、またはJIS Z 2201 4号試験片(板厚40〜50mmの場合)を使用し、圧延方向に垂直な方向を長手方向とする様に試験片を加工した。これらの試験片を用い、JIS Z 2241の要領で引張試験を行ない、鋼板の引張強度TS、および全伸びELを測定した。このとき、試験片採取位置は、鋼板の板厚方向1/4の位置とした。尚、引張強度については、少なくとも980MPa以上を確保する必要があり、全伸びELについては、厚板製品を加工する際に曲げ割れが発生しないために必要とされる13%を合格基準とした。
[Measuring method of mechanical properties]
The test piece of the tensile test is a JIS Z 2201 No. 5 test piece (in the case of plate thickness: 4.5 to 6 mm), a JIS Z 2201 No. 1A test piece (in the case of plate thickness: 6 to 40 mm), or JIS Z 2201 4. No. test piece (in the case of a plate thickness of 40 to 50 mm) was used, and the test piece was processed so that the direction perpendicular to the rolling direction was the longitudinal direction. Using these test pieces, a tensile test was performed in accordance with JIS Z 2241, and the tensile strength TS and total elongation EL of the steel sheet were measured. At this time, the test piece collection position was set to a position in the thickness direction 1/4 of the steel sheet. In addition, it is necessary to ensure at least 980 MPa about tensile strength, and about the total elongation EL, 13% required in order not to generate | occur | produce a bending crack when processing a thick plate product was made into the acceptance | permission reference | standard.

[旧γ粒径の測定方法]
鋼板の圧延方向と平行な断面を光学顕微鏡で観察した。このときの観察条件は、観察倍率:400倍、観察位置は板厚方向の1/4部であり、視野数は任意の10視野とした。総観察面積は、1試料当り3×102(μm2)である。このとき試料を観察しやすくするために、ピクリン酸、塩酸、界面活性剤等を含有する腐食液にて化学腐食を施した。そして、前述した方法によって、旧γ粒径の平均値と標準偏差σを求めた。
[Measurement method of old γ particle size]
A cross section parallel to the rolling direction of the steel sheet was observed with an optical microscope. The observation conditions at this time were observation magnification: 400 times, the observation position was ¼ part in the plate thickness direction, and the number of visual fields was arbitrary 10 visual fields. The total observation area is 3 × 10 2 (μm 2 ) per sample. At this time, in order to facilitate observation of the sample, chemical corrosion was performed with a corrosive solution containing picric acid, hydrochloric acid, a surfactant, and the like. And the average value and standard deviation (sigma) of the old gamma particle size were calculated | required by the method mentioned above.

その結果を、製造方法(QT法またはDQ−T法)、最長パス間時間、圧下率(3回ほぼ均一に圧下したときの1回当りの平均圧下率)と共に下記表2に示す。またこれらの結果に基づき、旧γ粒径(平均値)と全伸びELの関係を図1に、標準偏差σと全伸びELの関係を図2に夫々示す。   The results are shown in Table 2 below together with the production method (QT method or DQ-T method), the time between the longest passes, and the rolling reduction (average rolling reduction per one time of rolling almost uniformly three times). Further, based on these results, the relationship between the old γ particle size (average value) and the total elongation EL is shown in FIG. 1, and the relationship between the standard deviation σ and the total elongation EL is shown in FIG.

Figure 0005156453
Figure 0005156453

これらの結果から次のように考察できる。まず、試験No.1〜15のものは、本発明で規定する要件を満足する鋼板(発明鋼)であり、いずれも高い引張強度と共に良好な伸びを示していることが分かる。また、平均旧γ粒径を20μm以下とすると共に、その標準偏差σを5μm以下とすることによって、高い伸びが達成できることが分かる。   These results can be considered as follows. First, test no. 1 to 15 are steel plates (invention steels) that satisfy the requirements defined in the present invention, and it can be seen that all exhibit good elongation along with high tensile strength. It can also be seen that high elongation can be achieved by setting the average old γ particle size to 20 μm or less and the standard deviation σ to 5 μm or less.

これに対して、試験No.16〜20のものでは、本発明で規定する要件のいずれかを欠くものであり(比較鋼)であり、いずれも伸びが小さな値となっている。具体的には、試験No.16、17のものは、製造方法がDQ―T法によるものであり、旧γ粒径こそ小さく制御されているが、加速冷却過程における冷却むらに起因する組織のばらつきが発生しているため、旧γ粒径分布のばらつきが発生しており(標準偏差σの値が大きい)、希望する伸びを確保できない。   In contrast, test no. Those of 16 to 20 lack any of the requirements defined in the present invention (comparative steel), and all have small elongation values. Specifically, Test No. 16 and 17, the manufacturing method is based on the DQ-T method, and the old γ particle size is controlled to be small, but because of the variation in the structure due to the cooling unevenness in the accelerated cooling process, The old γ particle size distribution varies (the standard deviation σ is large), and the desired elongation cannot be secured.

試験No.18〜20のものは、結晶粒径微細化と組織の均一化に影響するNbやTiを含有させていない成分系の鋼板であり、NbやTiの炭窒化物による旧γ粒径の微細化が図れず、更に仕上げ圧延における最長パス間時間や圧下率が適切に調整されていないので、再結晶粒成長のばらつきにより旧γ粒径のばらつきも大きくなるため、高い伸びが達成できない。   Test No. 18-20 is a steel plate of a component system not containing Nb or Ti that affects the refinement of crystal grain size and the homogenization of the structure, and refinement of the old γ grain size by carbonitride of Nb or Ti. Furthermore, since the time between the longest pass and the rolling reduction in the finish rolling are not properly adjusted, the variation in the old γ grain size becomes large due to the variation in the recrystallized grain growth, so that high elongation cannot be achieved.

旧γ粒径(平均値)と全伸びELの関係を示すグラフである。It is a graph which shows the relationship between an old gamma particle size (average value) and total elongation EL. 標準偏差σと全伸びELの関係を示すグラフである。It is a graph which shows the relationship between standard deviation (sigma) and total elongation EL.

Claims (2)

C:0.1〜0.25%(質量%の意味、化学成分組成については以下同じ)、Si:0.1〜0.5%、Mn:0.5〜2.0%、Cr:0.1〜1.5%、Mo:0.1〜0.5%、Ti:0.01〜0.05%およびNb:0.01〜0.05%を夫々含有する他、V:0.01〜0.05%および/またはB:0.0001〜0.005%を含有し、残部が鉄および不可避的不純物からなり、且つ旧オーステナイトの平均粒径が20μm以下であると共に、旧オーステナイト粒径分布の標準偏差(σ)が5μm以下であることを特徴とする曲げ加工性に優れた引張強度が980MPa以上の高強度鋼板。   C: 0.1 to 0.25% (meaning by mass, the same applies to the chemical composition), Si: 0.1 to 0.5%, Mn: 0.5 to 2.0%, Cr: 0 0.1 to 1.5%, Mo: 0.1 to 0.5%, Ti: 0.01 to 0.05% and Nb: 0.01 to 0.05%, respectively, V: 01-0.05% and / or B: 0.0001-0.005%, the balance is iron and inevitable impurities, and the average grain size of the prior austenite is 20 μm or less, and the prior austenite grains A high-strength steel plate having a tensile strength of 980 MPa or more and excellent bending workability, wherein the standard deviation (σ) of the diameter distribution is 5 μm or less. 更に、Ca:0.0005〜0.01%を含有するものである請求項1に記載の高強度鋼板。   The high-strength steel sheet according to claim 1, further comprising Ca: 0.0005 to 0.01%.
JP2008088309A 2008-03-28 2008-03-28 High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more Expired - Fee Related JP5156453B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008088309A JP5156453B2 (en) 2008-03-28 2008-03-28 High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more
EP20090001913 EP2105515B1 (en) 2008-03-28 2009-02-11 High strength plate with 980 MPa or above tensile strength excellent in bending workability
CN2009101301414A CN101545074B (en) 2008-03-28 2009-03-27 High strength plate xcellent in bending workability with tensile strength 980 mpa or above e

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008088309A JP5156453B2 (en) 2008-03-28 2008-03-28 High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more

Publications (2)

Publication Number Publication Date
JP2009242832A JP2009242832A (en) 2009-10-22
JP5156453B2 true JP5156453B2 (en) 2013-03-06

Family

ID=40870599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008088309A Expired - Fee Related JP5156453B2 (en) 2008-03-28 2008-03-28 High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more

Country Status (3)

Country Link
EP (1) EP2105515B1 (en)
JP (1) JP5156453B2 (en)
CN (1) CN101545074B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5870525B2 (en) * 2010-07-16 2016-03-01 Jfeスチール株式会社 High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP5845674B2 (en) * 2010-07-16 2016-01-20 Jfeスチール株式会社 High strength steel plate excellent in bending workability and low temperature toughness and method for producing the same
JP5906147B2 (en) 2012-06-29 2016-04-20 株式会社神戸製鋼所 High-tensile steel plate with excellent base metal toughness and HAZ toughness
JP5937538B2 (en) * 2013-03-29 2016-06-22 株式会社神戸製鋼所 High strength steel plate excellent in low temperature toughness, elongation and weldability, and method for producing the same
JP6024928B2 (en) * 2013-12-27 2016-11-16 Jfeスチール株式会社 Steel plates for marine, marine structures and hydraulic iron pipes with excellent brittle crack propagation stopping properties and methods for producing the same
US10941471B2 (en) 2015-12-28 2021-03-09 Jfe Steel Corporation High-strength steel sheet, high-strength galvanized steel sheet, method for manufacturing high-strength steel sheet, and method for manufacturing high-strength galvanized steel sheet
JP6610575B2 (en) * 2017-02-03 2019-11-27 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
JP6607209B2 (en) * 2017-02-03 2019-11-20 Jfeスチール株式会社 Abrasion resistant steel sheet and method for producing the abrasion resistant steel sheet
CN110952020A (en) * 2019-10-16 2020-04-03 邯郸钢铁集团有限责任公司 Economical 900 MPa-grade ultrahigh-strength quenched and tempered steel plate and production method thereof
JP7485929B2 (en) 2020-06-16 2024-05-17 日本製鉄株式会社 Low alloy heat-resistant steel and manufacturing method thereof
WO2024190763A1 (en) * 2023-03-13 2024-09-19 日本製鉄株式会社 Steel sheet and method for producing same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0953119A (en) * 1995-08-18 1997-02-25 Sumitomo Metal Ind Ltd Production of high strength resistance welded tube
JP2000282175A (en) * 1999-04-02 2000-10-10 Kawasaki Steel Corp Superhigh strength hot-rolled steel sheet excellent in workability, and its production
JP3424619B2 (en) * 1999-09-16 2003-07-07 住友金属工業株式会社 High tensile cold rolled steel sheet and method for producing the same
JP4254013B2 (en) * 2000-05-11 2009-04-15 住友金属工業株式会社 Thick steel plate with excellent resistance to fatigue crack growth and manufacturing method thereof
JP3465676B2 (en) 2000-09-12 2003-11-10 住友金属工業株式会社 High tensile steel with large uniform elongation
JP3952714B2 (en) * 2001-02-07 2007-08-01 Jfeスチール株式会社 Hot-rolled steel sheet having excellent toughness after quenching and manufacturing method thereof
JP2007262469A (en) * 2006-03-28 2007-10-11 Jfe Steel Kk Steel pipe and its production method
JP5034308B2 (en) * 2006-05-15 2012-09-26 Jfeスチール株式会社 High strength thick steel plate with excellent delayed fracture resistance and method for producing the same
JP5220341B2 (en) * 2006-05-17 2013-06-26 日産自動車株式会社 Ultra-high strength steel plate and automotive strength parts using the same
JP5194878B2 (en) * 2007-04-13 2013-05-08 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in workability and weldability and method for producing the same

Also Published As

Publication number Publication date
CN101545074B (en) 2011-02-16
CN101545074A (en) 2009-09-30
EP2105515A3 (en) 2010-03-24
JP2009242832A (en) 2009-10-22
EP2105515A2 (en) 2009-09-30
EP2105515B1 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
JP5156453B2 (en) High strength steel plate with excellent bending workability and tensile strength of 980 MPa or more
JP6465266B1 (en) Hot rolled steel sheet and manufacturing method thereof
KR101706485B1 (en) High-strength cold-rolled steel sheet and method for producing the same
JP4897125B2 (en) High-strength steel sheet and its manufacturing method
JP5363922B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP5457840B2 (en) High strength cold-rolled steel sheet with excellent elongation and stretch flangeability
JP5846080B2 (en) High-strength steel with excellent delayed fracture resistance
JPWO2010032428A1 (en) High strength thick steel plate and manufacturing method thereof
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2012077336A (en) High-strength hot-rolled steel sheet excellent in bending characteristics and low temperature toughness, and method for production thereof
JP2016211073A (en) High strength hot rolled steel sheet and production method therefor
JP2017179540A (en) Hot rolled steel sheet and manufacturing method therefor
JP4464909B2 (en) High yield strength high tensile strength steel plate with excellent toughness of weld heat affected zone
JP5302840B2 (en) High-strength cold-rolled steel sheet with an excellent balance between elongation and stretch flangeability
JP2013139610A (en) HIGH-TENSILE STRENGTH THICK STEEL SHEET HAVING TENSILE STRENGTH OF 780 MPa OR MORE, AND METHOD FOR MANUFACTURING THE SAME
JP2009215572A (en) High strength cold rolled steel sheet having excellent yield stress, elongation and stretch-flange formability
JP5080215B2 (en) High-strength cold-rolled steel sheet with excellent isotropy, elongation and stretch flangeability
JP2012224884A (en) High strength steel material having excellent strength, ductility and energy absorption power, and method for producing the same
JP2012067363A (en) High-strength reinforcing bar and manufacturing method therefor
JP7508469B2 (en) Ultra-high strength steel plate with excellent shear workability and its manufacturing method
JP6036615B2 (en) Steel sheet for welded structure having excellent weldability and fatigue crack propagation resistance and method for producing the same
JP2013095926A (en) High tensile strength steel sheet excellent in weldability and manufacturing method thereof
JP2005240135A (en) Method for manufacturing wear-resistant steel having excellent bendability, and wear-resistant steel
JP5326827B2 (en) Low yield ratio steel and its manufacturing method
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees